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We show how flux vacua that differ from each other in flux quanta can be seen as different vacua in a
single scalar potential of an enlarged field space, which resolves the separation by thin domain walls. This
observation, which is motivated by the anti–de Sitter distance conjecture, allows one to compute distances
between different vacua using the usual field-space metric. We verify for explicit examples such as scale-
separated IIA flux vacua and the IIB Freund-Rubin vacua that the distance conjecture (for scalar fields) is
satisfied and that the asymptotic directions in the enlarged field space are indeed hyperbolic. This enlarged
field space contains the tachyon fields on the unstable D̃p-branes of type II string theory, which can induce
the brane charges of the stable D-branes. We suggest that requiring continuous interpolations refines the
cobordism conjecture and postdicts the existence of unstable D̃p-branes.
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I. INTRODUCTION

The rich structure of the vacuum manifold of string
theory, also known as the Landscape, is often depicted by
an energy functional (scalar potential) with many local
minima. While this picture is useful for conveying to the
public, it is not commonly used in quantitative investiga-
tions of the Landscape. In particular, we do not tend to
think of flux vacua that differ by flux quantum numbers or
compactification manifold as different vacua in a single
potential. Instead, vacua that differ in flux numbers or
choices of compactification manifold can be thought of as
being separated by domain walls. The Swampland cobord-
ism conjecture [1] formalizes this picture by postulating
that such domain walls have to exist.

However, domain walls can be thin or thick; the latter can
be described as a kink solution with fields gradually moving
from one vacuum to another. When the thickness of the
domainwall ismuch smaller than the short-distance cutoff of
theeffective field theory(EFT),wecanregard thewallas thin.
Consider, for instance, what happens in the absence of

moduli stabilization for the Landscape of 4D supersym-
metric (SUSY) N ¼ 2 vacua from type II string theory on
Calabi-Yau threefolds. According to Reid’s conjecture [2],
all Calabi-Yau spaces can be connected to each other
through geometric transitions that can change the topology.
From a 4D viewpoint, these transitions can be seen as
motion in the space of (potentially massive) scalars from
one vacuum to another.
In this paper, we continue on our previous work [3] and

argue for a similar picture in the presence of moduli
stabilization through fluxes. In other words: thin domain
walls separating flux quanta can be seen as thick domain
walls by integrating in certain open-string degrees of
freedom. Hence, in the larger field space containing
(possibly very heavy) open-string fields, we arrive at a
picture in which different flux vacua are different local
minima inside a single scalar potential. In Ref. [3], we
demonstrated this for the original scale-separated flux
vacua of type IIA orientifold compactifications of
Refs. [4–7]. This was partially motivated by an ongoing
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debate on the consistency of these vacua as string-theoretic
backgrounds. The open-string fields in this case come from
unstable D4-branes wrapping trivial one-cycles inside
nontrivial two-cycles Poincaré dual to the 4-form fluxes
of the would-be solution. The positions of these branes
correspond to 4D scalars whose scalar potential variations
are smaller than the size of the actual vacuum energy.
The present work aims to generalize this picture to any

setup. Let us consider some flux vacuum characterized by a
specific n-dimensional internal manifold and a set of
integers describing flux quanta over various submanifolds.
Using Hodge duality, one can describe any flux as some
internal k-form Fk, with k ≤ n, threading compact dimen-
sions only. If this form is, for instance, a Ramond-Ramond
(RR) flux, then a Dð8 − kÞ-brane wrapping the dual
(n − k)-cycle would appear as a domain wall in the non-
compact (10 − n)-dimensional spacetime separating vacua
with RR-flux quanta differing by the Dð8 − kÞ-brane
charge. A universal way to think of this domain wall as
a thick wall is by regarding the Dð8 − kÞ-brane as a tachyon
kink solution of an unstable D̃ð9 − kÞ-brane [8]. In other
words, one integrates in open-string tachyons and, in the
enlarged field space of compactification moduli and tachy-
ons, the different vacua reside in one single scalar potential.
In addition to the general conceptual picture, another

motivation for our work originates in the so-called anti–de
Sitter (AdS) distance conjecture [9], which states that, for
any d-dimensional AdS flux vacuum with cosmological
constant ΛAdS, there exists a tower of states with a mass
scale m that behaves as

m
mP;d

∼ΛAdS∼0jm−2
P;dΛAdSjα; ð1:1Þ

for a positive constant α, where mP;d is the Planck mass.
The strong form of this conjecture states that α ¼ 1=2 for
SUSY vacua. Whereas the general conjecture is supported
by every controlled vacuum solution ever constructed, the
strong form is more controversial and even more far
reaching, as it would imply that SUSY AdS vacua do
not admit a separation of scales and cannot be regarded as
vacua inside a lower-dimensional EFT as the tower of
particles does not decouple. Since SUSY AdS vacua are
known to have conformal field theory duals, the implica-
tions for holography are equally far reaching.
The argument for the general form of the conjecture relies

on an extension of the ordinary distance conjecture [10],
whichquantifieshowatowerofstatesbecomeslightwhenthe
geodesic distance traveled in moduli space becomes large in
Planck units. The generalization that leads to the AdS
distance conjecture of Ref. [9] relied on distances in metric
space insteadof (scalar)moduli space.Unfortunately, there is
no independent support for the interesting suggestion that the
distance conjecture can be applied to fields of all spin.
In light of this, it is instructive to connect flux vacua

through trajectories in scalar field space since then one can

use the kinetic term of the scalar fields to compute the
distance between different vacua. This was done in Ref. [3]
for the scale-separated IIA flux vacua of Refs. [4–7], and it
was found that the distance conjecture is obeyed by the
scalars that provide the interpolation of flux quanta. We
refer to Refs. [11–13] for extensions of these observations
to other vacua and to Refs. [14,15] for alternative measures
of distances between vacua.
In this paper, using unstable D̃p-branes, we can dem-

onstrate in general circumstances that flux vacua can be
seen as critical points in a single potential and how this
realizes the exponential dependence on the distance of the
tower mass scale. It furthermore verifies the suggestion [10]
that the field-space metric becomes hyperbolic in the large-
distance limit. However, since the field trajectories involve
massive fields, strictly speaking, we cannot see this as a
manifestation of the original distance conjecture for moduli
spaces, but rather its stronger and more speculative exten-
sion to fields that are lifted in a scalar potential.

II. NON-BPS BRANES AS DOMAIN WALLS

In addition to the RR-charged stable Bogomol’nyi-
Prasad-Sommerfield (BPS) D-branes, type II theories also
feature non-BPS D̃-branes, which are unstable Dp-branes
for p odd/even in type IIA/IIB theories; for a review see,
e.g., Refs. [8,16,17]. As a manifestation of the instability of
such non-BPS branes, the spectrum of open strings ending
on the latter is nonsupersymmetric and contains a tachyon
along with a gauge field.
At small string coupling, unstable non-BPS D̃p-branes

are described by a world volume action that resembles in
many aspects the action of stable BPS D-branes. First, they
have a string-frame Dirac-Born-Infeld (DBI) term [17]

SD̃pDBI ¼ −μ̃p
Z
Σ1;p

d1;pξe−ΦVðTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det½γαβ�

q
; ð2:1Þ

where γαβ ¼ Gαβ þ ∂αT∂βT þ ðBþ 2πlsFÞαβ. Here, Φ is
the ten-dimensional dilaton, while Gαβ and Bαβ are the
metric and Kalb-Ramond field. Furthermore, F ¼ dA is
the field strength of the open-string gauge field Aα, and
T is the open-string tachyon, while μ̃p ¼ ffiffiffi

2
p

μp ¼ffiffiffi
2

p
2π=ð2πlsÞpþ1 is the tension of the brane. Finally,

VðTÞ is the function

VðTÞ ¼ 1

cosh
�

Tffiffi
2

p
ls

� ; ð2:2Þ

which represents the tachyon potential. Second, the Wess-
Zumino (WZ) term, in polyform notation, is [17,18]

SD̃pWZ ¼ μ̃p

Z
Σpþ1

C ∧ tr½WðTÞdT ∧ eBþ2πlsF�; ð2:3Þ
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where WðTÞ is a function that behaves like

WðTÞ ∼T∼�∞ 1

2
e
∓ Tffiffi

2
p

ls : ð2:4Þ

A kink solution of the theory interpolates between the
vacua at T ¼ �∞; such a kink solution, once plugged back
into the action, represents a lower-dimensional stable
Dðp − 1Þ-brane since μ̃p

R
∞
−∞ dξVðTðξÞÞ ¼ μp−1, and in

the WZ-term we have μ̃p
R
∞
−∞ WðTÞdT ¼ μp−1.

Given this quick summary, let us consider a type II
compactification of the form Md × Xn, with dþ n ¼ 10,
and imagine that there is some (unbounded) RR flux Fk
winding a k-cycle Σk inside the space Xn. Now imagine a
spacetime-filling non-BPS D̃ð9 − kÞ-brane wrapping the
(n − k)-cycle dual to Σk. Then, changing the tachyonic
world volume scalar field from one tachyon vacuum to
another induces a change in Fk flux by one unit.
This is motivated because the non-BPS D̃ð9 − kÞ-brane

sources the Bianchi identity for Fk, being

dFk ¼ 2κ210μ̃pWðTÞdT ∧ δðΣkÞ; ð2:5Þ

where we ignored the term H3 ∧ Fk−2 as such a term is
absent in the examples treated in this paper. The Bianchi
identity can be integrated to become

1

ð2πlsÞk−1
Fk ¼ UðTÞδðΣkÞ þ Nϵk; ð2:6Þ

where we defined UðTÞ ¼ ffiffiffi
2

p R
T
−∞ WðSÞdS=ð2πlsÞ and N

is the constant background flux on the background-volume
form ϵk. By integrating over the k-cycle Σk, we obtain

1

ð2πlsÞk−1
Z
Σk

Fk ¼ UðTÞ þ N: ð2:7Þ

Since UðT ¼ −∞Þ ¼ 0, the quantized flux is just N, but
when UðT ¼ þ∞Þ ¼ 1, there are N þ 1 units of flux.
One might worry that the flux vacuum we end up with is

not a genuine vacuum due to the presence of the non-BPS
brane. However, following Sen’s conjecture [19], a non-
BPS brane with the tachyon condensed in its tachyon
vacuum corresponds to not having any brane at all. This
means that the non-BPS brane only exists during the
transition, and one truly starts and ends with a flux vacuum
without extra local objects.
For all practical purposes, one can think of the non-BPS

D̃ð9 − kÞ-brane as a dimensional extension of a Dð8 − kÞ-
brane domain wall in spacetime, wrapping the same
(n − k)-cycle Σn−k. Such a brane is the usual domain wall
that is responsible for interpolations between Fk-flux
vacua.
As an example, let us have a look at the Freund-Rubin

solution AdS5 × S5 in type IIB supergravity. The solution is

parametrized by the integer N, measuring the quantized
self-dual F5 flux. Additionally, there is the massless 10D
dilaton. The AdS scale LAdS and the radius L of the S5 are
related and both depend on the flux as LAdS ∼ N1=4ls and
L ∼ N1=4ls. According to our proposal, the tachyon of a
spacetime-filling non-BPS D̃4-brane does the trick of
controlling the F5 flux on the dual five-cycle, i.e., the S5.

III. FIELD-SPACE METRICS AND DISTANCES

As we argued above, moving in tachyon space allows us
to change the RR fluxes in the compactification. However,
changing the flux alone does not guarantee one to end up in
a new flux vacuum. Indeed, the scalar fields in the
compactification need to adjust accordingly. For example,
in AdS5 × S5, the volume field of the S5, or its radius
L ∼ N1=4ls, also shifts when the flux is changed. The goal
of this section is to identify what the scalar field space,
enlarged with the tachyons, looks like. We argue that the
field space takes a hyperbolic structure for unbounded
fluxes. It is then natural to contemplate distances between
the different flux vacua. However, there is a potential
involved, hence the field space is not a moduli space. For
the latter, a well-defined notion of distance exists as the
geodesic distance in the moduli space: for a theory of scalar
fields ϕa, when moving along a trajectory in the moduli
space, parametrized by s, the dimensionless field-space
distance is

Δ ¼
Z

1

0

dsκd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gab

dϕa

ds
dϕb

ds

r
; ð3:1Þ

where gab is the field-space metric and κd is the
d-dimensional gravitational coupling. This definition has
been extensively used in the context of the Swampland
distance conjecture. It is less clear what a good definition of
distance is in field spaces with potentials (see Ref. [20]
where it was argued that the same formulas should apply;
see also Refs. [14,15] for alternatives).
We want to emphasize that we keep an open mind as to

what the precise definition of field distances should be.
Nevertheless, if we take the geodesic distance in the field
space, we find agreement with the Swampland distance
conjecture, due to the hyperbolic structure of the field-
space geometry.
An expansion of the DBI action of a non-BPS D̃ð9 − kÞ-

brane shows that the field-space metric1 for the tachyon
T reads

1In this note, we follow the standard convention in which the
field-space metric gab of a set of scalar fields ϕa can be read off
from the kinetic action

S ¼ −
Z
M1;d−1

d1;d−1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−g̃1;d−1

p 1

2
gabðϕÞg̃μν∂μϕa

∂νϕ
b:

CONNECTING FLUX VACUA THROUGH SCALAR FIELD … PHYS. REV. D 109, 066017 (2024)

066017-3



gTT ¼ 2π
ffiffiffi
2

p

ð2πlsÞd
Vn−kffiffiffiffiffiffi
Vn

p eΦdVðTÞ: ð3:2Þ

Here, Φd is the d-dimensional dilaton and Vn−k and Vn are
the dimensionless string-frame volumes of the wrapped
cycle and of the total internal space, respectively. Below,
we redefine the tachyon as X ≡ γ

R
dT

ffiffiffiffiffiffiffiffiffiffiffi
VðTÞp

, where the
factor γ absorbs all constant factors and the appropriate
dimensionful terms, except for a factor of

ffiffiffi
2

p
for conven-

ience. If, for instance, the internal volume is factorized such
that two string-frame radions σ1 and σ2 control such
volumes as Vn−k ¼ eðn−kÞσ1 and Vn ¼ eðn−kÞσ1þkσ2 ,2 the
tachyon metric then becomes

gXX ¼ 2e
ffiffiffiffiffi
d−2

p
2

Φ̃dþ
ffiffiffiffiffi
n−k

p
2

σ̃1−
ffiffi
k

p
2
σ̃2 ; ð3:3Þ

where we also canonically normalized the closed-string
scalars.3 Now, the tachyon vacua at T ¼ �∞ correspond to
vacua for X at finite values, which after fixing the
integration constant in the definition of X, can be taken
at X ¼ 0; X0. Furthermore, we can imagine extending the
range of X from this interval to the real line R, where the
points X ¼ NX0, for N ¼ 0; 1;…, correspond to vacua
where the associated flux is N.
In the case of a single unbounded flux, the field space

clearly contains a hyperbolic factor H2 since there is one
open-string tachyon, which is, of course, coupled to a
single linear combination of closed-string fields (dilaton
and radions). This is actually a more general structure. If
there are m fluxes that are unbounded, and which are not
related to each other by tadpole conditions, then the field
space contains a hyperbolic factor ðH2Þm: this is because
the kink solutions for each of the tachyons controlling one
of them flux quanta would allow one to make a jump in this
flux without affecting the others. Therefore, the tachyon
kinetic couplings must be orthogonal. In other words, the
field-space metric is always of the form

ds2field ¼ 2
Xm
r¼1

e
P

a
αraφ

aðdXrÞ2 þ
X
a

ðdφaÞ2; ð3:4Þ

where φa ¼ ðΦ̃d; ðσ̃iÞiÞ represents the canonically normal-
ized closed-string moduli and is such thatX

a

αraαs
a ¼ δrs: ð3:5Þ

In the remainder of this section, we verify this behavior
for some examples. We illustrate it here for the simplest
scale-separated vacua of massive type IIA string theory and
for AdS5 × S5 vacua of type IIB string theory. We also
compute the scalar field distances in the large flux regime.
In Appendix B, we explain how these distances can be
calculated, and we show that they are always logarithmic in
the flux quantum N. Additionally, we performed an
analogous analysis for the scale-separated vacua in mass-
less type IIA of Ref. [21] and for AdS3 × S3 × T 4 vacua of
type IIB in Appendix C. In all of these examples, we only
consider the scalars whose vacuum expectation values shift
under flux changes.

A. AdS4 × CY3 vacua in massive type IIA

Among our main examples of interest are the flux
solutions on a toroidal orientifold (or, more generally, on
Calabi-Yau orientifolds) of massive type IIA string theory
found in Refs. [4–7]. There are three unbounded F4 fluxes
on three different four-cycles. Following the prescription
outlined above, we can wrap non-BPS D̃5-branes on the
two-cycles dual to the four-cycles. Therefore, we have three
different tachyons Xi in the problem, with i corresponding
to the ith two-cycle that the brane is wrapping, whose
string-frame radions are denoted as σ̃i. The field-space
metric is

ds2field ¼ 2
X
i

e
Φ̃4þ
P

j
ϵij σ̃jffiffi

2
p

dX2
i þ dΦ̃2

4 þ
X
i

dσ̃2i ; ð3:6Þ

where ϵij ¼ −1þ 2δij, and by the SO(4) rotation

Pi ≡ 1

2

�
Φ̃4 þ

X
j

ϵijσ̃
j

�
; ð3:7aÞ

Q≡ 1

2
ðΦ̃4 þ σ̃1 þ σ̃2 þ σ̃3Þ; ð3:7bÞ

and after defining Pi ¼ −
ffiffiffi
2

p
logZi, it becomes

ds2field ¼ 2
X
i

dX2
i þ dZ2

i

Z2
i

þ dQ2: ð3:8Þ

As expected, the field space has the form ðH2Þ3 ×R.
Therefore, the geodesic distance can be calculated
with the techniques illustrated in Appendix B. As σ̃i ∼
ð ffiffiffi

2
p

=4Þ logN and Φ̃4 ∼ −ð3 ffiffiffi
2

p
=2Þ logN, we find that Zi ∼

N7=8 and Q ∼ ð3=8Þ logN and still Xi ∼ N, such that the
distance becomes Δ ¼ ffiffiffiffiffiffiffiffiffiffi

63=8
p

logN. Notice that the dis-
tance is not only logarithmic in N, but also smaller than
what was found in Ref. [3].
This logarithmic dependence ensures that the distance

conjecture is satisfied. Indeed, the distance conjecture

2The total volume can be controlled by several radions, but
here a simple factorized structure of the internal space has been
considered for simplicity; in the explicit examples, we will be
precise.

3A review of how to canonically normalize the dilaton and the
radions is in Appendix A. For brevity, in the main text, we will
drop the factors of κd.
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applied to the Kaluza-Klein (KK) tower, taking the form
mKKðNÞ=mKK;0 ¼ e−αΔ, agrees with the power-law scaling
of mKKðNÞ ∼ N−1=4ls. Here mKK;0 is the KK mass from
which one starts. Furthermore, we find that α ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=126

p
< 1=

ffiffiffi
2

p
, violating the sharpened distance con-

jecture of Ref. [22] proposed for exact moduli spaces.

B. AdS5 × S5 in type IIB

In the AdS5 × S5 solutions of type IIB strings, it will be a
non-BPS D̃4-brane that has the right couplings for chang-
ing the F5 flux. This D̃4-brane fills spacetime and has no
cycle to wrap in the internal space. The relevant field space
is made up of the 5D volume, the dilaton, and the tachyon
and it reads

ds2field ¼ 2e
ffiffi
3

p
2
Φ̃5−

ffiffi
5

p
2
σ̃dX2 þ dΦ̃2

5 þ dσ̃2: ð3:9Þ

After the SO(2) rotation,

�
P

Q

�
≡ 1

2
ffiffiffi
2

p
 ffiffiffi

3
p

−
ffiffiffi
5

p
ffiffiffi
5

p ffiffiffi
3

p
!�

Φ̃5

σ̃

�
; ð3:10Þ

and redefining P ¼ −
ffiffiffi
2

p
logZ, we find

ds2field ¼ 2
dX2 þ dZ2

Z2
þ dQ2: ð3:11Þ

Again, the field space is the product of the hyperbolic plane
and the real line, i.e., H2 ×R. From the proper scalings,
σ̃ ∼ ð ffiffiffi

5
p

=4Þ logN and Φ̃5 ∼ −ð5=4 ffiffiffi
3

p Þ logN one finds that
Z ∼ N5=8 and Q ∼ ð1=4Þ logN and X ∼ N, from which it
follows that the distance is Δ ¼ ffiffiffiffiffiffiffiffiffiffi

23=6
p

logN. Here the
logarithmic behavior also ensures that the distance con-
jecture is satisfied. Using that mKK ∼ N−1=4ls, we find that
α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3=184
p

, also violating the sharpened distance con-
jecture of Ref. [22].

IV. DISCUSSION

We have argued on general grounds and shown with
concrete examples that vacua that differ in flux quanta can
be seen as different critical points of a single-valued scalar
potential, extending ideas of Ref. [3]. This allows us to
define, in a natural way, the distance between flux vacua as
a distance traveled in scalar field space. This can be done by
integrating in open-string fields. In this paper, we took them
to be tachyon fields of unstable D̃p-branes, but this choice
is not unique. In our previous work [3], we took those open-
string fields to be the positions of Dp-branes wrapping
cycles trivial in homology. A benefit of using tachyon fields
of unstable D̃p-branes is that one can argue more model
independently how flux vacua arise as critical points in a
universal single-valued scalar potential.

We suggest that requiring interpolations between vacua
to be continuous postdicts the existence of these non-BPS
branes, in the spirit of the Swampland cobordism conjecture
[1]. However, string theory has more to offer than vacua
where themoduli are stabilized with RR fluxes alone. There
exist scenarios where unbounded Neveu-Schwarz-Neveu-
Schwarz fluxes do stabilize the moduli, such as, e.g., in the
non-SUSY vacua of Ref. [23], and M-theory has vacuum
solutions with G7 and G4 fluxes. If a continuous version of
the cobordism conjecture is to be taken seriously, then our
proposal implies the existence of extended non-BPS objects
with NS5 charge and non-BPS objects with M2 or M5
charges in M-theory. The idea is then again that BPS thin
domain walls are described as thick domain walls that lift to
space-filling non-BPS branes.
For the examples that we have studied, this formalism

confirms that the field space connecting asymptotic vacua
in the large-flux regime is hyperbolic and the distances are
logarithmic in the flux quantum N. Since the KK masses
scale with a negative power of N, this agrees with the
ordinary Swampland distance conjecture [10], stating that
the mass scale of the (KK) tower is exponential in the
distance and not just the AdS distance conjecture [9]. Note
that we do not touch upon the strong AdS distance
conjecture of Ref. [9], which rules out supersymmetric
scale-separated vacua.
One could argue that there is not as much evidence for a

distance conjecture applied to scalar fields that are not pure
moduli but are lifted by a scalar potential instead. In such
cases, we tend to use the distance conjecture only when
the potential is exponentially suppressed in asymptotic
regimes. Below, we argue why, despite the naive high mass
scale of the tachyon fields, there is a notion in which they
behave as pure moduli in the large-N limit, which could be
the explanation of why the ordinary distance conjecture is
obeyed.
The scalar potential of the tachyon in the d-dimensional

Einstein frame scales as

V tachyon ∼
2π

ffiffiffi
2

p

ð2πlsÞd
Vn−kffiffiffiffiffiffi
Vn

p e
dþ2

2
ffiffiffiffiffi
d−2

p Φ̃dVðTÞ: ð4:1Þ

Therefore, because ∂2V tachyon=∂T2∼V tachyon=ð2l2
sÞ, we can

estimate the scaling of the tachyon mass in d-dimensional
Planck units as

m2
tachyon ∼

1

2
g−1TT

∂
2

∂T2
V tachyon ∼ l−2

s e
2Φ̃dffiffiffiffiffi
d−2

p
; ð4:2Þ

as we should have expected since the mass scale of the
tachyon is the string scale. On the other hand, the KK mass
in d-dimensional Planck units scales as

m2
KK ∼ L−2

KKe
2Φ̃dffiffiffiffiffi
d−2

p
; ð4:3Þ
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where LKK is the radius in string units of the largest cycle in
the compact manifold. Since we require large volumes, we
see that the effective tachyon mass is higher than the KK
scale. One might worry that this should invalidate the whole
effective field theory, as the KK scale provides an upper
bound for the cutoff scale of the theory. However, we will
argue that this is not necessarily true. Indeed, we should
also compare the tachyon energy with the energy coming
from the flux potential. How this scales with the flux
parameterN depends on the compactification. For instance,
for the simple scale-separated flux vacua in type IIA string
theory [4–7], the tachyon potential is parametrically smaller
than the flux potential, being

V tachyon

VAdS4×CY3

∼ N−1=4: ð4:4Þ

For the AdS5 × S5 vacua of type IIB strings, we have a
similar pattern, being

V tachyon

VAdS5×S5
∼ N−3=4: ð4:5Þ

This means that, in the tachyon direction X, both examples
have tachyonvacuawith three very specific features: (i) they

are equidistant, when we are considering just the X
direction while keeping the Z field constant; (ii) they are
separated by hills in the potential that become smaller in
size; (iii) they become sharper with respect to the KK scale,
as N becomes larger.4This is illustrated qualitatively
in Fig. 1.
In this particular sense, the tachyon field behaves as a

modulus at large N: the wiggles (i.e., energy differences
between the vacua) become arbitrarily small in AdS units.
Hence, the tachyon field can be given a kinetic energy well
below the AdS scale so that it will fly through the potential
as if the wiggles were absent. This is not different from our
usual notion of asymptotic field variations in compactifi-
cations and the usual distance conjecture should apply. Yet,
one could object that the second derivative of the canoni-
cally normalized tachyon field remains of order of the
string scale in every vacuum. This is small in Planck units
since the string scale is suppressed by inverse powers of N
with respect to the Planck scale. Yet, this is large in KK
units, which is our EFT cutoff. Since the tachyon is not part
of the d-dimensional supergravity multiplet, we consider it
possible that its mass renormalization is strong enough for
it to obtain a mass below the cutoff, but this is merely a
suggestion at this point.
Finally, our arguments should apply beyond vacua with

unbounded fluxes. One could, for instance, consider the
type IIB Landscape of 4D vacua from compactifications on
conformal Calabi-Yau threefolds. The complex structure
moduli are stabilized by 3-form fluxes that are bounded by
tadpole constraints [24,25]. One could interpolate between
such flux vacua by using non-BPS branes, or by space-
filling 5-branes as in Ref. [26]. It would be interesting to
investigate how scalar field distances in this context relate
to obtaining a small on-shell flux superpotential W0 for
KKLT (Kachru-Kallosh-Linde-Trivedi) constructions as in
Ref. [27], but we leave this to further research.
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APPENDIX A: CANONICAL NORMALIZATION
OF CLOSED-STRING SCALARS

Let ls ¼
ffiffiffiffi
α0

p
be the string length. We can define the

d-dimensional Einstein-frame metric g̃μν, which determines
a line element expressed as ds̃21;d−1 ¼ g̃μνdxμdxν, by para-
metrizing the string-frame metric, defined through the line
element ds21;9 ¼ GMNdxMdxN , as

FIG. 1. The figure shows the main qualitative features of the
potentials that we consider in this paper. The different local
minima correspond to AdS vacua corresponding to different flux
units N, while the wiggles represent the contribution to the total
potential coming from the potential along the tachyonic direction
X. As N grows, the tachyon potential that lets the theory hop
between vacua with different flux units has three main features:
the local minima are equidistant, the convexity of the minima
increases (with respect to the KK scale), and the height of the
wiggles decreases.

4This specific wiggly behavior does not happen for all
examples, as shown in Appendix C.
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ds21;9 ¼ e
4Φd
d−2χg̃μνdxμdxν þ e2σ ğmndymdyn; ðA1Þ

where Φd is the d-dimensional dilaton and σ is the string-
frame radion. Here, the internal metrics are assumed to be
normalized in such a way that

R
Kn

dny
ffiffiffiffiffi
ğn

p ¼ ð2πlsÞn, with
n ¼ 10 − d. An arbitrary constant χ has also been inserted:
fixing it as χ ¼ e−4hΦdi=ðd−2Þ makes the d-dimensional
metric components correspond in both frames, in the
vacuum. Another possible choice is

ds21;9 ¼ e
ϕ
2

�
χg̃μνdxμdxν

e2ω
10−d
d−2

þ e2ωğmndymdyn
�
; ðA2Þ

which involves the shifted ten-dimensional dilaton
ϕ¼Φ− lngs, where gs¼ ehΦi is the string-coupling vac-
uum expectation value, and the Einstein-frame radion ω.
The ðΦd; σÞ and ðϕ;ωÞ bases can be related via the linear
transformations Φd ¼ ½ðd − 2Þ=8�ϕ − ½ð10 − dÞ=2�ω and
σ ¼ ϕ=4þ ω. For an isotropic compactification, both bases
are diagonal and the canonically normalized fields, e.g., in
the ðΦd; σÞ basis read

Φ̃d ¼
2ffiffiffiffiffiffiffiffiffiffiffi
d − 2

p Φd

κd
;

σ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
10 − d

p σ

κd
:

Here, given the string-frame gravitational coupling 2κ210 ¼
ð2πlsÞ8=2π (which is not proper, due to the extra dilaton
factor), the reduced d-dimensional gravitational coupling is

2κ2d ¼
1

2π

g2se2hΦdi

ð2πlsÞ2−d
¼ g2sð2πlsÞd−2

2πeð10−dÞhωi
: ðA3Þ

This is related to the d-dimensional Planck mass mP;d as

mP;d ¼ κ2=d−2d . Although the ten-dimensional dilaton and
the Einstein-frame radions are more intuitive quantities to
work with, in an anisotropic compactification there are
multiple radions and they are kinetically mixed in the
d-dimensional Einstein frame; the d-dimensional dilaton
and the string-frame radions are instead always diagonal.
In Sec. III, for instance, we consider internal metrics
decomposed as ds2n ¼ e2σ1ds̆2n−k þ e2σ2ds̆2k. For the details
of anisotropic compactifications, see, e.g., Appendix B
of Ref. [28].

APPENDIX B: COMPUTING DISTANCES
IN HYPERBOLIC SPACE

Suppose we have a hyperbolic field space of the form

ds2field ¼
1

Z2
ðdX2 þ dZ2Þ: ðB1Þ

Let us suppose that we want to compute a distance in this
field space along a path ðXðsÞ; ZðsÞÞ, where Xð0Þ ∼ 0,

Xð1Þ ∼ Nf and Zð0Þ ∼ 1, Zð1Þ ∼ Ng. Here, N ≫ 1 is a
large positive number, while f and g are constant powers
one can specify for any given model of interest. Of course,
N has to be interpreted as a large flux at the end of the
trajectory at s ¼ 1, whereas the beginning at s ¼ 0 would
correspond to a low flux, say N ¼ 1. The geodesics are arcs
of semicircles, and the solution can be parametrized as

XðsÞ ¼ l tanhðd1sþd2ÞþXc; ZðsÞ ¼ lsechðd1sþd2Þ:
ðB2Þ

In particular, the geodesics are such that

½Xc − XðsÞ�2 þ ½ZðsÞ�2 ¼ l2 ðB3Þ

and the geodesic distance is simply

Δ ¼
Z

1

0

ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Z2

��
dX
ds

�
2

þ
�
dZ
ds

�
2
�s
¼ jd1j: ðB4Þ

A picture of the geodesic path is in Fig. 2.
All the integration constants l, d1, d2, and Xc are fixed by

the boundary conditions, as we explain below. To do this,
let us assume that one of the end points of the semicircle is
(close to) the origin, and therefore Xc ≃ l, which is justified
in the large-N limit, since we also have l ≫ 1 as we show
below. We can estimate the radius of the semicircle by
noticing that ½l − Xð1Þ�2 þ ½Zð1Þ�2 ¼ l2 is solved for

l ¼ ðXð1ÞÞ2 þ ðZð1ÞÞ2
2Xð1Þ : ðB5Þ

Let us look now at the case f > g, for which X becomes
much larger than Z. It means that the trajectory goes over
the top of the semicircle. In this limit, the radius l behaves
as Xð1Þ, and thus l ∼ Nf. Let us now look at the equation
for Z, evaluated at s ¼ 0. We know that this should not
scale with N at leading order. We find

Zð0Þ ¼ lsechd2 ∼ Nfsechd2: ðB6Þ

FIG. 2. A sketch of the geodesic path in hyperbolic plane.
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We see that d2 must scale as d2 ¼ �f logN in the large-N
limit. Without loss of generality, we take the minus sign.
We now evaluate Z at s ¼ 1, and from the requirement that
Zð1Þ ∼ Ng, we deduce that there are two options, either

d1 ¼ ð2f − gÞ logN or d1 ¼ g logN: ðB7Þ

It turns out that, if Z is to increase and decrease over the
interval s∈ ½0; 1�, one needs to choose the first option in
Eq. (B7). This is because the sech function requires an
argument, here d1sþ d2, that is first negative and then
positive with increasing s for that behavior. Hence, the
geodesic distance in the large-N limit is

Δ ¼ ð2f − gÞ logN: ðB8Þ

Suppose now that the opposite is true: g > f. This means
that the Z coordinate becomes much larger than X in the
large-N limit. It means the end point is not yet reaching the
top of the semicircle. The same formula for the radius l
applies, and we now see from this that l ¼ N2g−f. From
Zð0Þ ∼ 1, it then follows that

d2 ∼�ð2g − fÞ logN; ðB9Þ

and again we take the minus sign without loss of generality.
Consequentially, from Zð1Þ ∼ Ng, we get that either

d1 ¼ ð3g − 2fÞ logN or d1 ¼ g logN: ðB10Þ

This time, Z is to increase but not decrease over the interval
s∈ ½0; 1�, for which the first option in Eq. (B10) needs to be
taken, as the argument of the sech function needs to remain
negative. Hence, the distance is now

Δ ¼ g logN: ðB11Þ

Suppose now that the field space is a direct product of
hyperbolic planes and the real line, with metric

ds2field ¼
X
i

ai
Z2
i
ðdX2

i þ dZ2
i Þ þ bdQ2: ðB12Þ

In that case, the solution to the geodesic equation is for all
the Xi’s and Zi’s the same as Eq. (B2), with associated
integration constants d1;i, d2;i, li, and X0;i. The integration
constants can be found analogously to the above.
Furthermore, Q is solved as QðsÞ ¼ d3sþ d4. Finally,
the distance becomes

Δ2 ¼
X
i

aid21;i þ bd23: ðB13Þ

APPENDIX C: FIELD SPACES AND DISTANCES
FOR SCALE-SEPARATED VACUA OF
MASSLESS TYPE IIA STRINGS AND
AdS3 × S3 × T4 OF TYPE IIB STRINGS

In this appendix, we discuss the field space and compute
the distances for the scale-separated vacua of massless type
IIA string theory and the AdS3 × S3 × T 4 vacua of type IIB
string theory.

1. Scale-separated AdS4 vacua
in massless type IIA

The scale-separated solutions of Ref. [21] are set in
massless type IIA string theory, compactified on a SU(3)-
structure nilmanifold (the Iwasawa manifold). For gener-
alizations, see Ref. [29]. In the simplest example of
Ref. [21], there are three unbounded fluxes: two F2 fluxes
and the F6 flux. Following our prescription, we can use two
non-BPS D̃7-branes wrapping the two four-cycles dual to
the two-cycles that the F2 fluxes are winding to change
them. Similarly, we can use a spacetime-filling non-BPS
D̃3-brane to change the F6 flux. The field-space metric is

ds2field ¼ 2e
Φ̃4−σ̃1−σ̃2−σ̃3ffiffi

2
p

dX2
1 þ 2e

Φ̃4þσ̃1þσ̃2−σ̃3ffiffi
2

p
dX2

2

þ 2e
Φ̃4þσ̃1−σ̃2þσ̃3ffiffi

2
p

dX2
3 þ dΦ̃2

4 þ
X
i

dσ̃2i ; ðC1Þ

where X1 represents the D7 tachyon and X2 and X3 the D3
tachyons. After an SO(4) rotation of the fields, i.e.,

P1 ≡ −
1

2
ðΦ̃4 − σ̃1 − σ̃2 − σ̃3Þ; ðC2aÞ

P2 ≡ −
1

2
ðΦ̃4 þ σ̃1 þ σ̃2 − σ̃3Þ; ðC2bÞ

P3 ≡ −
1

2
ðΦ̃4 þ σ̃1 − σ̃2 þ σ̃3Þ; ðC2cÞ

Q≡ −
1

2
ðΦ̃4 − σ̃1 þ σ̃2 þ σ̃3Þ; ðC2dÞ

and defining Pi ¼ −
ffiffiffi
2

p
logZi, the field-space metric

becomes

ds2field ¼ 2
X
i

dX2
i þ dZ2

i

Z2
i

þ dQ2; ðC3Þ

which means that the field space is again of the form
ðH2Þ3 ×R. According to Ref. [21], the scalars scale as Φ̃4∼
−½ ffiffiffi2p ðaþ bþ cÞ=4� logN, σ̃1 ∼ ½ ffiffiffi2p ða − b − cÞ=4� logN,
σ̃2 ∼ ½ ffiffiffi2p ða − bþ cÞ=4� logN, and σ̃3 ∼ ½ ffiffiffi2p ðaþ b−
cÞ=4� logN. Consequentially, Z1 ∼ Nð5aþbþcÞ=8, Z2 ∼
Nðaþ5bþcÞ=8, Z3 ∼ Nðaþbþ5cÞ=8, and Q ∼ ½ðaþ bþ cÞ=
8� logN. The tachyons, playing the role of the fluxes, have
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to scale as X1 ∼ Na, X2 ∼ Nb, and X3 ∼ Nc. The expression
for the distance now depends on the relative size of a, b,
and c. They all need to be positive. Without loss of
generality, we take c ≥ b and it follows from growing
volumes that a > c ≥ b and also a > 2b. From that, it can
be seen that X1 always scales higher than Z1, whereas X2

always scales lower than Z2. If aþ b > 3c, then X3 scales
lower than Z3 too, and the distance becomes

Δ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31a2 − 2aðbþ cÞþ 7b2þ 6bcþ 7c2

p
2
ffiffiffi
2

p logN: ðC4Þ

In the other case, when aþ b < 3c, we find

Δ2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31a2−2aðbþ5cÞþ7b2−2bcþ31c2

p
2
ffiffiffi
2

p logN: ðC5Þ

These expressions are compatible with each other
when aþ b ¼ 3c.
Looking at the energy scales, whether the tachyon

potentials are lower than the flux potential depends on
the relative size of the fluxes. Indeed, we have

VXi

VAdS4×Iw6

∼ NðaþbþcÞ=4−aδi1−bδi2−cδi3 : ðC6Þ

With constraints on the scaling exponents a, b, and c
discussed above, we notice that the potential for the D3
tachyon X1 is always lower than the flux potential, whereas
the D7 tachyon X2 always scales higher. For the D7
tachyon X3 it depends: if aþ b > 3c, its potential scales
lower than the flux potential and higher otherwise. This is
reminiscent of the distance computations above, where we
needed to investigate when Xi scales higher or lower
than Zi.

2. AdS3 × S3 × T4

We can also take a look at type IIB string theory
compactified to AdS3 × S3 × T 4 with an F3 flux along
the S3 and an F7 flux along the whole compact space. Here
the relevant scalar fields are the 3D dilaton Φ̃3, and the
volume moduli of the S3 and the T 4, which we call σ̃ and τ̃,
respectively. Our proposal suggests we need a non-BPS
D̃2-brane and D6-brane inducing changes in the F7 flux
and F3 flux, respectively. We call their world volume
tachyons X1 and X2, respectively. The relevant field-space
metric is

ds2field ¼ 2e
Φ̃3
2
−
ffiffi
3

p
2
σ̃−τ̃dX2

1 þ 2e
Φ̃3
2
−
ffiffi
3

p
2
σ̃þτ̃dX2

2

þ dΦ̃2
3 þ dσ̃2 þ dτ̃2: ðC7Þ

After the field rotation,

Pi ≡ −
1

2

�
Φ̃3

2
−

ffiffiffi
3

p

2
σ̃ þ ð−1Þiτ̃

�
; ðC8aÞ

Q≡ −
1

2

�
Φ̃3 þ

σ̃ffiffiffi
3

p
�
; ðC8bÞ

and defining Pi ¼ logðZiÞ, we find

ds2field ¼ 2
X
i

dX2
i þ dZ2

i

Z2
i

þ dQ2; ðC9Þ

i.e., a field space of the form ðH2Þ2 ×R. Then again, one
should find how the solutions scale. One can infer that if the
F7 flux is given by Na and the F3 flux by Nb, then
Φ̃3 ∼ −½3ðaþ bÞ=4� logN, σ̃ ∼ ½ ffiffiffi3p ðaþ bÞ=4� logN and
τ̃ ∼ ½ða − bÞ=2� logN. With that, the new fields scale as
Z1 ∼ Nð5aþbÞ=8, Z2 ∼ Nðaþ5bÞ=8, andQ ∼ ½ðaþ bÞ=4� logN.
In order to have large volume for the four-torus, we need
a > b. This guarantees that X1 ∼ Na scales higher than Z1

in the large-N limit. The same happens for Z2 and X2 ∼ Nb

when 3b > a > b; otherwise, X2 scales lower than Z2.
When 3b > a, the distance is

Δ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
112a2 − 13abþ 32b2

8

r
logN: ðC10Þ

In the other case, when a > 3b, we have

Δ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
112a2 − 5abþ 8b2

8

r
logN: ðC11Þ

Comparing the tachyon energy densities with the flux
potential, we notice that

VX1

VAdS×S3×T4

∼Nðb−3aÞ=4;
VX2

VAdS×S3×T4

∼Nða−3bÞ=4: ðC12Þ

Here the potential energy of the D2 tachyon X1 is para-
metrically smaller than the flux provided by the fluxes (as
a > b for the large volume limit). Whether the energy of
the D6 tachyon X2 is lower than the flux potential depends,
again, on whether a < 3b or not, similar to how whether X2

scales higher than Z2 and how it influences the distance
computation.
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