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We study the effects of conservation laws on wormholes that are made traversable by a double trace
deformation. After coupling the two asymptotic boundaries of a maximally extended (dþ 1)-dimensional
black brane geometry withUð1Þ conserved current operators, we find that the quantummatter stress-energy
tensor of the corresponding bulk gauge fields in the hydrodynamic limit violates the averaged null energy
condition, rendering the wormhole traversable. Applying our results to axionic two-sided black hole
solutions, we discuss how the wormhole opening depends on the charge diffusion constant, how this affects
the amount of information that can be sent through the wormhole, and possible implications for many-body
quantum teleportation protocols involving conserved current operators.
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I. INTRODUCTION

In holography [1–3], maximally extended two-sided
black holes are dual to a pair of conformal field theories
entangled in a thermofield double state [4]. The wormhole
connecting the two sides of the geometry can be made
traversable by introducing a nonlocal coupling between the
two asymptotic boundaries. This construction was first
proposed by Gao, Jafferis, and Wall [5], and it allows us to
send a message from one side of the geometry to the other.
From the point of view of the boundary theory, this can be
viewed as a teleportation protocol [5,6].
In the simplest instance of quantum teleportation, two

distant observers, often called Alice and Bob, share a pair of

maximally entangled qubits. Alice has an additional qubit
jψi that she wants to teleport to Bob. To do so,
Alice performs a measurement on the two particles in
her possession in a particular basis (the Bell basis) and
reports the result to Bob through a classical communication
channel. Finally, Bob performs a unitary operation in
his qubit to obtain the desired quantum state [7]. The
essential ingredients of this teleportation protocol are share
entanglement, measurement, and classical communication,
and it involves only three qubits.
The Gao, Jafferis, and Wall (GJW) traversable wormhole

is related to a new type of teleportation protocol, the
so-called traversable wormhole teleportation protocol. It
involves two copies of a strongly interacting many-body
system entangled in a thermofield double state. Let us call
them the left and the right systems, and consider the
teleportation of a qubit from the left system to the right
system. In this setup, the quantum information to be tele-
ported is initially scrambled among the degrees of freedom
of the left system. Then, after a weak coupling between the
left and the right systems, the quantum information reap-
pears (unscrambles) in the right system after a time of the
order of the scrambling time. In this protocol, the thermo-
field double state plays the same role that the maximally
entangled pair plays in conventional teleportation protocols,
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whilemeasurement and classical communication are used to
implement the coupling between the two systems (see
Fig. 1). The traversable wormhole protocol can be imple-
mented in rather general chaotic many-body quantum
systems, but the phenomenon of many-body quantum
teleportation has distinct features in the case of systems
that have an emergent gravitational description. This prop-
erty makes the traversable wormhole protocol a powerful
experimental tool to gain insights into the inner-working
mechanisms of gauge-gravity duality [8–10].
Traversable wormholes violate the averaged null energy

condition (ANEC), which states that the integral of the
stress energy tensor along complete achronal null geodesics
is always non-negative

Z
Tμνkμkνdλ ≥ 0; ð1:1Þ

where kμ is a tangent vector and λ is an affine parameter. In
classical theories, the construction of traversable worm-
holes is prevented by the null energy condition (NEC)
Tμνkμkν ≥ 0, which implies (1.1) and is valid in physically
reasonable theories. GJW construction of a traversable
wormholes overcomes this difficulty by considering
quantum mechanical effects. They work in the context
of the semiclassical approximation, in which the gravita-
tional field is treated classically, but the matter fields are
treated quantum mechanically. In this context, one writes
Einstein’s equations as follows:

Gμν ¼ 8πGNhTμνi; ð1:2Þ

where Gμν is the Einstein tensor, and hTμνi is the expect-
ation value of the stress tensor in a given quantum state.
Initially, before introducing the deformation, the wormhole
connecting the two asymptotic boundaries is not travers-
able, which is consistent with the fact that the two boundary
theories are not interacting. One then introduces a nonlocal
deformation of the boundary theory,

Sbdry→Sbdryþ
Z

dtdd−1xhðt;xÞOLð−t;xÞORðt;xÞ; ð1:3Þ

which couples the two asymptotic boundaries. Here, Sbdry
denotes the action for the two copies of the boundary
theory,1 and OL;R denotes a scalar operator that acts on
the d-dimensional left/right boundary theory. For certain
choices of hðt; xÞ, the deformation (1.3) gives rise to a stress
energy tensor whose expectation value violates ANEC,Z

hTμνikμkνdλ < 0; ð1:4Þ

rendering the wormhole traversable. The physical picture is
that the deformation (1.3) introduces negative energy in the
bulk, whose backreaction is given in terms of a negative
energy shock wave that causes a time advance for the
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FIG. 1. Left panel: Penrose diagram for the GJW traversable wormhole. The negative energy shock wave (shown in blue) causes a time
advanceΔU for geodesics crossing it. The geodesics are actually continuous, but they appear to be discontinuous because the diagram is
drawn using discontinuous coordinates. Using the equations of motion one can see that the time advance is proportional to the averaged
null energy, i.e.,ΔU ∼

R hTVVidV. The signal (shown in red) originated on the left boundary and propagating along the horizon (U ¼ 0)
can cross to the other side of the geometry if ΔU < 0, which happens when ANEC is violated, i.e.,

R hTVVidV < 0. Right panel:
schematic representation of the traversable wormhole teleportation protocol proposed in [10]. The quantum information (shown in red)
is introduced in the left system at early times, gets scrambled with the other degrees of freedom, and reappears (unscrambles) in the right
system at late times after a weak coupling between the two systems. The coupling is implemented as follows. We measure some operator

OL in the left system, obtaining one of the possible values of oj. We then apply the operator V̂ ¼ ei
R

hojOR on the right system. For
further details about this teleportation protocol, we refer to [10].

1In what follows, we will not need the explicit form of Sbdry, so
we did not write it here.
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geodesics crossing it, as opposed to the usual time delay
caused by positive-energy shockwaves. In this way, a signal
originated on the left boundary can cross the wormhole and
reach the right boundary after interacting with the negative
energy, as shown in Fig. 1. The ANEC can be violated
in the GJW setup because the geodesics crossing the
wormhole are not achronal—early and late times points
along the horizon can be connected by a timelike curve
passing through the directly coupled boundaries.
GJW construction of a traversable wormhole involves a

two-sided Bañados-Teitelboim-Zanelli (BTZ) black hole,
but their construction can be extended to several other
gravitational setups, including two-dimensional black
holes [6,11–13], rotating BTZ black holes [14], asymp-
totically flat black holes [15], higher-dimensional hyper-
bolic black holes [16], and near-extremal traversable
wormholes [17]. Other interesting developments include
[18–34]. For a recent review of wormholes and their
applications in gauge-gravity duality, see [35].
Despite the existence of a growing literature about

wormholes that become traversable by a double trace
deformation, most works only considered deformations
involving scalar operators. It is then natural to question if
such a construction is still possible for deformations
involving other types of operators, such as vector and
tensor operators. In particular, conserved current operators
have different scrambling properties as compared to (non-
conserved) scalar operators, and this is expected to affect
the traversability properties of the wormhole.
In this work, we study the boundary deformations

involving Uð1Þ conserved current operators. We are inter-
ested in the corresponding bulk gauge fields in the hydro-
dynamic limit. In this case, the gauge field displays a
diffusive behavior which is expected to affect the travers-
ability properties of the wormhole. In general, the diffusive
behavior of bulk gauge fields leads to a power-law behavior
of two-point functions [36,37] and out-of-time-order corre-
lators2 at late times [39]. Since thewormhole opening can be
computed as an integral involving a product of two-point
functions, we expect it to display a power-law behavior at
late times. Moreover, we expect the wormhole opening and
consequently the bound on information transfer to depend
on the transport properties of the black hole horizon. In
particular, we would like to understand the effects of
conservation laws on many-body traversable wormhole
protocols and obtain the expected behavior for systems that
admit a dual gravitational description. Is teleportation
favored in this case? Or do the different scrambling proper-
ties of conserved currents result in a less efficient telepor-
tation protocol? The benchmark holographic behavior is
well understood in the case where the double trace defor-
mation involves scalar-field operators but has not yet been
explored for deformations involving vector and tensor

operators, and this might be relevant in the experimental
realization of traversable wormhole teleportation protocols,
especially because of this possible interplay between tra-
versability and hydrodynamic behavior.

A. Organization of this work

This work is organized as follows. In Sec. II, we introduce
our gravity setup. In Sec. III, we review the boundary
conditions for scalars fields associated with the GJW con-
struction of a traversable wormhole. In Sec. IV, we discuss
boundary conditions for vector fields. In Sec. V, we consider
a double trace deformation involvingUð1Þ conserved current
operators and show that it leads to a violation of the averaged
null energy condition. In Sec. VI, we discuss our results. We
relegate some technical details to Appendixes A–C.

II. GRAVITY SETUP

We consider a general (dþ 1)-dimensional black brane
background, with the line element of the form

ds2 ¼ −GttðzÞdt2 þGzzðzÞdz2 þ GijðzÞdxjdxj; ð2:1Þ

where ðt; xiÞ are the boundary theory coordinates, with i
running from 1 to d − 1, and z is the AdS radial coordinate.
We take the boundary to be located at z ¼ 0, where the
geometry is assumed to asymptote AdSdþ1. We assume
the horizon is located at z ¼ zh, where Gtt has a first-order
zero and Gzz has a first order pole. All the other metric
components are assumed to be finite and nonzero at the
horizon. For simplicity, we take Gij ¼ δijGxx, which corre-
sponds to assuming full rotational symmetry in the xi

directions. Near the horizon, we write the metric functions
Gtt and Gzz as

Gtt ¼ c0ðz − zhÞ; Gzz ¼
c1

z − zh
: ð2:2Þ

With the above assumptions and by requiring regularity of the
Euclidean continuation of the above line element at the
horizon, one obtains the inverse Hawking temperature as

β ¼ 4π

ffiffiffiffiffi
c1
c0

r
: ð2:3Þ

To analyze the equations of motion near the horizon, it is
convenient to define the tortoise coordinate,

dr ¼ −

ffiffiffiffiffiffiffi
Gzz

Gtt

s
dz; ð2:4Þ

in terms of which the boundary is located at r ¼ 0 and the
horizon at r ¼ −∞. In terms of the tortoise coordinate, the
line element reads,

2For a review on out-of-time-order correlators in holography,
we refer to [38].
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ds2 ¼ −GttðrÞðdt2 − dr2Þ þGxxðrÞδijdxidxj: ð2:5Þ
Finally, to describe the globally extended spacetime, we

introduce Kruskal-Szekeres coordinates ðU;V; xiÞ as

U¼−e−
2π
β ðt−rÞ; V¼þe

2π
β ðtþrÞ ðright exterior regionÞ;

U¼þe−
2π
β ðt−rÞ; V¼−e

2π
β ðtþrÞ ðleft exterior regionÞ;

U¼þe−
2π
β ðt−rÞ; V¼þe

2π
β ðtþrÞ ðfuture interior regionÞ;

U¼−e−
2π
β ðt−rÞ; V¼−e

2π
β ðtþrÞ ðpast interior regionÞ:

In terms of these coordinates, the line element takes the
form,

ds2 ¼ GUVðUVÞdUdV þGxxðUVÞδijdxidxj;

GUVðUVÞ ¼ −
β2

4π2
GttðUVÞ

UV
; ð2:6Þ

where we used the fact that r is a function of UV. In
these coordinates the horizon is located at U ¼ 0 or
at V ¼ 0. The left and right boundaries are located at
UV ¼ −1 and the past and future singularities at
UV ¼ 1. The Kruskal and Penrose diagrams for this
geometry are shown in Fig. 2.

III. BOUNDARY CONDITIONS
FOR SCALAR FIELDS

In this section, we review the boundary conditions for
scalar fields that are associated with the GJW traversable
wormhole. Let us consider a minimally coupled scalar field
with massm propagating on the background (2.1). Near the
boundary, the field behaves as

ϕðz; yÞ ¼ αðyÞzΔ− þ βðyÞzΔþ ; ð3:1Þ
where y ¼ ðt; xÞ denotes a boundary point, and

Δ� ¼ d
2
� ν with ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=4þm2

q
: ð3:2Þ

For m2 > −d2=4þ 1, the first term in (3.1) is non-
normalizable and is associated to a deformation of the
boundary theory of the form,

Wα ¼
Z

ddyjαðyÞOαðyÞ with αðyÞ ¼ jαðyÞ; ð3:3Þ

where the single trace operator OαðyÞ has scaling dimen-
sion Δþ ¼ d=2þ ν. The second term in (3.1) is normal-
izable, and is related to the expectation value of Oα

βðyÞ ¼ 2νhOαðyÞi: ð3:4Þ
For −d2=4 < m2 < −d2=4þ 1, both terms in (3.1) are
normalizable. In this regime, we are free to impose
boundary conditions on either α or β. Each choice corre-
sponds to a different boundary theory. In the boundary
theory in which αðβÞ is fixed, the bulk field ϕ is dual to an
operator of dimension ΔþðΔ−Þ. We refer to these boundary
theories as CFTΔþ and CFTΔ−

. In particular, the so-called
alternative boundary condition,

βðyÞ ¼ jβðyÞ; ð3:5Þ
is associated to deformations of the form,

Wβ ¼
Z

ddyjβðyÞOβðyÞ; ð3:6Þ

in which the boundary operatorOβðyÞ has scaling dimension
Δ− ¼ d=2 − ν. Note that, since −d2=4 < m2 < −d2=4þ 1,
one has d−2

2
< Δ− < d

2
. In this case, the leading-order term is

now associated to the expectation value of OβðyÞ,
αðyÞ ¼ −2νhOβðyÞi: ð3:7Þ

The above equations allow us to symbolically write the
deformation asWβ ∼

R
ddyβα. A linear boundary condition

relating the faster and the slower falloff parts,

β ¼ hα; ð3:8Þ

FIG. 2. Kruskal diagram (Left) and Penrose diagram (Right) for a two-sided asymptotically AdS black brane.
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corresponds to a double trace deformation of the form [40],

Wβ ∼
Z

ddyhα2 ∼
Z

ddyhO2
β; ð3:9Þ

which is a relevant deformation, because Δ− < d=2.
Starting from the CFTΔ−

, the deformation (3.9) produces
a renormalization group flow which is expected to end at
the CFTΔþ in the infrared. We now explain how the linear
boundary condition (3.8) can be used to construct a
traversable wormhole.
GJW construction of a traversable wormhole relies on

the use of a relevant deformation, because in this case the
near boundary geometry is not modified by backreaction in
an uncontrolled way [5]. In this way, their construction can
be shown to be embeddable in a UV complete theory of
gravity. To have a relevant deformation, they consider a
massive scalar field with mass in the range −d2=4 < m2 <
−d2=4þ 1 with the alternative boundary condition, in
which the boundary operator has dimensionΔ− ¼ d=2 − ν.
For the fields propagating in the left and right exterior
regions, we expect the following near boundary behaviors,

ϕðz → 0L; yÞ ¼ αLðyÞzΔ− þ βLðyÞzΔþ ; ð3:10Þ

ϕðz → 0R; yÞ ¼ αRðyÞzΔ− þ βRðyÞzΔþ : ð3:11Þ
In order to have a deformation coupling the two asymptotic
boundaries, GJW impose the following boundary conditions,

βR ¼ hαL; βL ¼ hαR; ð3:12Þ

which correspond to a nonlocal double trace deformation of
the form

Wβ ∼
Z

ddy hαLαR ∼
Z

ddy hðyÞOðLÞ
β ðyÞOðRÞ

β ðyÞ: ð3:13Þ

The deformation (3.13) modifies the one-loop expectation
value of the scalar field stress-energy tensor. For somechoices
of hðyÞ, this leads to a violation of the ANEC that renders the
wormhole traversable.

IV. BOUNDARY CONDITIONS
FOR VECTORS FIELDS

In this section, we briefly review possible boundary
conditions for vector fields in AdS=CFT. A general
discussion about this topic was first presented in [41].
We consider a massless vector field Aμ propagating on the
background (2.1) with action,

S ¼ −
1

4

Z
M

ddþ1r
ffiffiffiffiffiffi
−g

p
FμνFμν þ

Z
∂M

ddy
ffiffiffiffiffiffi
−γ

p
nμFμνAν;

ð4:1Þ

where r ¼ ðz; t; xÞ∈M denotes a bulk point and
y ¼ ðt; xÞ∈ ∂M denotes a boundary point. Here, γ denotes
the determinant of the induced metric on the boundary, and
nμ is the outward pointing unit vector normal to ∂M. The
equation of motion for Aμ reads

∇νFμν ¼ 0: ð4:2Þ

A. Dirichlet boundary conditions for vector fields

Near the boundary (z → 0), the gauge field behaves as

Aμðz → 0Þ ¼ aμ þ bμzd−2 þ…: ð4:3Þ

In general, when d ≥ 4, the leading term aμ is non-
normalizable and must be fixed. This corresponds to
imposing a Dirichlet boundary condition on Aμ. From
the point of view of the boundary theory, such boundary
condition correspond to a deformation by a global Uð1Þ
conserved current operator,

WA ¼
Z
∂M

ddyaμJμ; ð4:4Þ

with aμ acting as a source for Jμ. Note that, since Aμ ¼ aμ
at the boundary, we can write WA ¼ R

∂M ddyAμJμ. The
expectation value of the conserved current is given by

hJμi ∼ bμ: ð4:5Þ

This allow us to write WA ∼
R
∂M ddyaμbμ. Similarly to

the scalar field case, a double trace deformation can be
introduced by imposing a linear relation between aμ and bμ,
i.e., aμ ¼ Qμνbν, which leads to

WA ∼
Z
∂M

ddyQμνbμbν ∼
Z
∂M

ddyQμνJμJν; ð4:6Þ

which is an irrelevant deformation, with dimension 2d − 2,
because the scaling dimension of Jμ is d − 1. Here Qμν is a
set of parameters that we will specify later.
Just like in the scalar field case, one can construct a

traversable wormhole by coupling the two asymptotic
boundaries of an asymptotically AdS two-sided black hole
with conserved current operators. This can be done as
follows. First, we write the near boundary behavior of the
gauge field as follows:

Aμðz → 0RÞ ¼ aðRÞμ þ bðRÞμ zd−2 þ…; ð4:7Þ

Aμðz → 0LÞ ¼ aðLÞμ þ bðLÞμ zd−2 þ…; ð4:8Þ

where the superscripts R and L denote the right and left
exterior regions, respectively. Then, an irrelevant double
trace deformation can be introduced by imposing the
following boundary condition:
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aμðRÞ ¼ QμνbðLÞν ; aμðLÞ ¼ QμνbðRÞν ; ð4:9Þ

which leads to a deformation of the form

WA ∼
Z
∂M

ddyQμνJðLÞμ JðRÞν : ð4:10Þ

We show in the next section that for some choices of Qμν

the deformation (4.10) leads to a violation of the ANEC,
rendering the wormhole traversable.
In this work, we consider the deformation (4.10) because

we are interested in the hydrodynamic limit of the gauge
fields, associated with long-distance physics. We can think
about our setup as the IR fixed point of a renormalization
group (RG) flow. As explained in the next section, a
relevant deformation can be introduced if one considers
gauge fields satisfying Neumann boundary conditions. In
this case, the initial UV theory flows under the RG flow to
an IR fixed point in which the gauge fields respect Dirichlet
boundary conditions, which corresponds to our case.
By that reasoning, we expect that our construction has a
well-defined UV fixed point.
Our analysis should be contrasted with the one conducted

by performed by Gao, Jafferis, and Wall [5]. In their case,
from the dual conformal field theory (CFT) viewpoint, the
double trace deformation is relevant in the context of the
renormalization group, leading to a well-defined UV fixed
point. The deformation we employ in our analysis (4.10),
however, is irrelevant, and thus, there is no guarantee that it
leads to a well-defined fixed point. Nevertheless, as dis-
cussed in [41], there is evidence supporting that the
deformation (4.10) results in a well-defined UV fixed point
in four, five, and six bulk spacetime dimensions.

B. Neumann boundary conditions for vector fields

In the previous section, we adopted the most common
boundary condition for vector fields in AdS=CFT, which
corresponds to imposing Dirichlet boundary conditions on
Aν. As pointed out in [41], for d ¼ 3, 4, and 5, it is possible
to consider an alternative boundary condition for vector
fields, in which one imposes Neumann boundary condition
on the gauge field by fixing

Fν ¼ ffiffiffiffiffiffi
−γ

p
nμFμν; ð4:11Þ

at the boundary. This boundary condition fixes the value bμ,
but leaves aμ unconstrained. For d ¼ 3, this corresponds to
a deformation of the boundary theory by an operator OFν,
with dimension one. One can show that this operator is a
Uð1Þ gauge field [41–43].
Imposing the condition bμ ¼ Qμνaν corresponds to intro-

ducing a relevant double trace deformation of the form [41],

WF ¼
Z
∂M

ddyQμνOFμOFν ; ð4:12Þ

which has dimension two. Under the deformation (4.12), the
boundary theory associated to Neumann boundary condi-
tions flows in the infrared to the boundary theory associated
to Dirichlet boundary conditions [41].
Once again, an wormhole connecting the two sides

of an asymptotically AdS two-sided black hole can be
made traversable by introducing the following relevant
deformation:

WF ¼
Z
∂M

ddyQμνOðLÞ
Fμ OðRÞ

Fν ; ð4:13Þ

which is associated to boundary conditions of the form,

bμðRÞ ¼ QμνaðLÞν ; bμðLÞ ¼ QμνaðRÞν : ð4:14Þ

V. OPENING THE WORMHOLE WITH
CONSERVED CURRENT OPERATORS

In this section, we propose a generalization of the GJW
traversable wormhole that involves a double trace defor-
mation constructed out of conserved currents,

δHðtÞ ¼
Z

dd−1xQμνðt; xÞJðLÞμ ð−t; xÞJðRÞν ðt; xÞ: ð5:1Þ

For some choices of Qμν, the deformation (5.1) introduces
negative null energy in the bulk, which makes the worm-
hole traversable. For simplicity, we consider the coupling
between the two conformal field theories as involving only

JðRÞt and JðLÞt , i.e., we set Qμν as

Qμνðt1; x1Þ ¼ δμt δ
ν
t hðt1; x1Þ: ð5:2Þ

Here, hðt1; x1Þ controls the coupling between the two
boundary theories. We choose a perturbation that is instan-
taneous in time t0 and uniform in the transverse space,

hðt1; x1Þ ¼ hδ
�
2π

β
ðt1 − t0Þ

�
¼ hV0δðV1 − V0Þ; ð5:3Þ

where h is a constant. By dimensional analysis, h has
dimensions of ½E�2−d. Later, we will factor out this dimen-
sional dependence and write this constant as h ¼ h̃T2−d.
The traversability of the wormhole can be measured near

the event horizon (U ¼ 0) by the averaged null energy,

A ¼
Z

dVTVV; ð5:4Þ

where TVV is the VV component of the Maxwell stress-
energy tensor. To study the effect of the deformation on
TVV , we compute the one-loop Maxwell stress-energy
tensor using a point splitting technique. The Maxwell
stress-energy tensor is given by
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Tμν ¼ −FαμFα
ν þ

1

4
gμνFαβFαβ: ð5:5Þ

To simplify our calculation, we consider that only AV and
AU are nonzero, and we consider a metric of the form
ds2 ¼ GUVdUdV þGijdxidxj. With these assumptions,
the VV component of the stress-energy tensor reads,

TVV ¼ −FαVFα
V ¼ −FiVFi

V ¼ −GijFiVFjV: ð5:6Þ

Now, using FiV ¼ ∂iAV − ∂VAi ¼ ∂iAV and the point
splitting method, we write

hTVVi ¼ −lim
r0→r

Gijh∂iAVðrÞ∂j0AVðr0Þi
¼ −lim

r0→r
Gij

∂i∂j0 hAVðrÞAVðr0Þi; ð5:7Þ

where hAVðrÞAVðr0Þi is the bulk two-point function
between two points r ¼ ðz; t; xÞ, and r0 ¼ ðz0; t0; x0Þ.3

A. Modified bulk two-point function

To compute stress energy tensor involving the deforma-
tion δH in (5.1), we first compute the modified bulk two-
point function. Due to the deformation, the gauge field
operators in (5.7) evolves in time with the operator

Uðt; t0Þ ¼ T e
−i
R

t

t0
dt1δHðt1Þ in the interaction picture.

Then, the modified bulk two-point function in (5.7) is
given by

GVVðr; r0Þ≡ hAðHÞ
V ðrÞAðHÞ

V ðr0Þi
¼ hUðt; t0Þ−1AðIÞ

V ðrÞUðt; t0ÞUðt0; t0Þ−1

× AðIÞ
V ðr0ÞUðt0; t0Þi; ð5:8Þ

where we used the superscripts H and I to distinguish
between the Heisenberg and interaction picture, respec-
tively. For notational simplicity, we will omit the super-
script I in what follows.
Working at first order in perturbation theory, we expand

Uðt; t0Þ ¼ T e
−i
R

t

t0
dt1δHðt1Þ ¼ 1 − i

Z
t

t0

dt1δHðt1Þ; ð5:9Þ

GVVðr; r0Þ ¼ Gð0Þ
VVðr; r0Þ þ Gð1Þ

VVðr; r0Þ; ð5:10Þ

where Gð0Þ
VVðr; r0Þ is the unperturbed two-point function of

AV . The first correction to the two-point function of AV is
obtained as follows:

Gð1Þ
VVðr; r0Þ ¼ i

Z
t0

t0

dt1
�
AVðrÞ

�
δHðt1Þ; AVðr0Þ

��þ i
Z

t

t0

dt1
��
δHðt1Þ; AVðrÞ

�
AVðr0Þ

�
¼ i
Z

t0

t0

dt1dd−1x1Qμν
�
AVðrÞ

�
JðLÞμ ð−t1; x1ÞJðRÞν ðt1; x1Þ; AVðr0Þ

��þ ðr ↔ r0Þ

¼ i
Z

t0

t0

dt1dd−1x1Qμν
�
AVðr0ÞJðLÞμ ð−t1; x1Þ

���
JðRÞν ðt1; x1Þ; AVðrÞ

��þ ðr ↔ r0Þ: ð5:11Þ

In the second line,we put (5.1) into the expression. In the third
line, we assume that the fields AVðrÞ and AVðr0Þ act on the
right exterior region. Then, we can use large N factorization
and the fact that the operator on the right exterior region
commutes with the operators on the left boundary.
Let us introduce the Wightman and retarded bulk-to-

boundary propagators for the right exterior region as

Kw
μνðz; t; x; t1; x1Þ≡ −ihAμðz; t; xÞJðRÞν ðt1; x1Þi; ð5:12Þ

Kret
μνðz; t; x; t1; x1Þ≡ −ih½Aμðz; t; xÞ; JðRÞν ðt1; x1Þ�i; ð5:13Þ

for t > t1. Then, the expression of the first order correction to
the bulk two-point function ofAV can be rewritten as follows:

Gð1Þ
VVðr; r0Þ ¼ i

Z
t0

t0

dt1dd−1x1QμνKw
Vμ

�
z0; t0; x0;−t1 −

iβ
2
; x1

�
Kret

Vνðz; t; x; t1; x1Þ þ ðt0 ↔ tÞ

¼ i
Z

t0

t0

dt1dd−1x1hðt1; x1ÞKw
Vt

�
z0; t0; x0;−t1 −

iβ
2
; x1

�
Kret

Vtðz; t; x; t1; x1Þ þ ðt0 ↔ tÞ:

3Note that hTVVi can be written in terms of the gauge invariant quantity FiV ¼ ∂iAV − ∂VAi ¼ ∂iAV, i.e., hTVVi ¼ limr0→rgijhFiVðrÞFjVðr0Þi. This makes it clear that the expression is gauge invariant, as expected on physical grounds.
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In the first line, we used the Kubo-Martin-Schwinger

condition [44] which gives the relation between JðLÞμ

and JðRÞμ , and in the second line, we included the perturba-
tion (5.2).
In this work, we consider the bulk-to-boundary propa-

gators (5.12) and (5.13) under the hydrodynamic approxi-
mation because in that case the gauge field reveals a
diffusive behavior, controlled by a charge diffusion con-
stant. In this approximation, we focus on large times and
large distances. This translates to solving our equations of
motion for low-energy modes with large wavelengths. The
bulk-to-boundary propagators in the hydrodynamic limit
can be written as (see Appendix C or [39])

Kret
VtðV;x;t1;x1Þ¼2iTDcθðV−e2πTt1Þ∂V

×
Z

dd−1k
ð2πÞd−1

eik·ðx−x1Þ

ðVe−2πTt1 −1ÞDck2

2πT

; ð5:14Þ

Kw
VtðV; x; t1; x1Þ ¼ TDc∂V

Z
dd−1k
ð2πÞd−1

1

2 sinðDck2

2T Þ

×
eik·ðx−x1Þ

ð1 − Ve−2πTt1ÞDck2

2πT

; ð5:15Þ

where Dc is the charge diffusion constant,

Dc ¼
ffiffiffiffiffiffiffi
−G

p

Gxx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GttGzz

p
				
zh

Z
zh

0

dz
GttGzzffiffiffiffiffiffiffi

−G
p : ð5:16Þ

Using the above expressions, Gð1Þ
VV is obtained as

Gð1Þ
VV ¼ −2T2D2

c

Z
V 0

V0

dV1

2πTV1

hðV1Þ
Z

dd−1k
ð2πÞd−1

D2
k

2 sinðπDkÞ

×
eik·ðx−x0Þ

ðV=V1 − 1ÞDkþ1ð1þ V1V 0ÞDkþ1

þ ðV ↔ V 0Þ; ð5:17Þ

where Dk ¼ Dc
2πT k

2, and V1 ¼ e2πTt1 .

B. One-loop stress tensor

The VV component of the one-loop expectation value
can then be computed as

hTVVi ¼ −lim
r0→r

Gij
∂i∂j0G

ð1Þ
VVðr; r0Þ; ð5:18Þ

where we used the fact that Gð0Þ
VV does not contribute to the

opening of the wormhole. Using (5.3) and performing the
integral in V1, the expectation value of the stress-energy
tensor can be written as

hTVVi ¼
h
4π3

D4
cGxxðzhÞ

T

Z
dd−1k
ð2πÞd−1

1

sinðπDkÞ

×
k6

½ðV=V0 − 1Þð1þ VV0Þ�Dkþ1
: ð5:19Þ

By writing k in spherical coordinates, the expectation value
of the stress-energy tensor can then be written as

hTVVi ¼
h

2dπ
dþ5
2 Γðd−1

2
Þ
D4

cGxxðzhÞ
T

1

PðV; V0Þ

×
Z

kmax

0

dk
kdþ4

sinðπDkÞPðV; V0ÞDk
; ð5:20Þ

PðV; V0Þ ¼
�
V
V0

− 1

�
ð1þ VV0Þ; ð5:21Þ

and kmax is a momentum cutoff. Since we derived the bulk-
to-boundary propagators using a hydrodynamic approxi-
mation, in which k

2πT ≪ 1, it is natural to set kmax ∼ 2πT. In
this work, however, we choose to introduce a double trace
deformation that only involves low energy modes, and we
write the momentum cutoff as kmax ¼ 2πT

ffiffiffi
f

p
, where

the parameter f controls the maximum energy of our
deformation. This is conceptually similar to what was
done in [6,45], in which the authors consider a signal that
only contains low-energy modes by changing the corre-
sponding wave functions as ψðpÞ → ψðpÞe−p2=σ2 . Here we
do a similar procedure for the deformation, instead of the
signal, and introduce a hard cutoff, instead of a smooth
(Gaussian) cutoff. Our motivation to consider such type of
deformation is because we are interested in the connection
between traversability and diffusion, and diffusion only
takes place for low energy modes. Before evaluating the
integral in (5.22), let us first introduce a new variable,
u ¼ Dk ¼ Dc

2πT k
2, and factor out the temperature depend-

ence of h, Dc and GxxðzhÞ by writing them as follows:
h ¼ h̃T2−d, Dc ¼ Dc=T and Gxx ¼ G̃xx=T2. In terms of
these new variables, the expectation value of the stress-
energy tensor can be written as

hTVVi ¼ N ðh̃; zh; d;DcÞ
1

PðV; V0Þ

×
Z

umax

0

du
u

dþ3
2

sinðπuÞPðV; V0Þu
; ð5:22Þ

where the overall factor,

N ðh̃; zh; d;DcÞ ¼
h̃G̃xxðzhÞD

3−d
2
c

2
d−3
2 Γðd−1

2
Þ ; ð5:23Þ

contains information about the geometry, while the remain-
ing part only depends on umax. Note that kmax ¼ 2πT

ffiffiffi
f

p

AHN, JAHNKE, BAK, and KIM PHYS. REV. D 109, 066016 (2024)

066016-8



implies umax ¼ 2πDcf, which is typically a Oð1Þ number.4

Figure 3 shows the behavior of N −1hTVVi as a function of
V for several values of V0 with d ¼ 4 and umax ¼ 1=2. This
figure shows that the stress-energy tensor diverges at the
insertion time V ¼ V0, and quickly decreases to zero for
larger values of V. Similar behavior was also observed
in [5].

C. Averaged null energy

In this subsection, we compute the averaged null energy
in the presence of double trace deformation involving Uð1Þ
conserved current operators. By integrating (5.22) along
complete achronal null geodesics, the averaged null energy
can be computed as

A ¼
Z

∞

V0

dVhTVVi

¼ N ðh̃; zh; d;DcÞ
Z

∞

V0

dV
1

PðV; V0Þ

×
Z

umax

0

du
u

dþ3
2

sinðπuÞPðV; V0Þu
; ð5:24Þ

where N ðh̃; zh; d;DcÞ is given by (5.23). The above
integrals can be computed numerically. In Fig. 4, we plot
N −1

R
TVVdV versus V0 for several spacetime dimensions

using (5.24). The averaged null energy becomes less
negative as we increase d, suggesting that it is more difficult
to open the wormhole in higher-dimensional setups, in
accordance with previous results in the literature [16].
The relation between the averaged null energy and the

wormhole opening ΔU reads (see Appendix A)

ΔU ¼ −
1

GUVð0Þ
16πGN

dðd − 1Þ
Z

∞

V0

hTVVidV: ð5:25Þ

Using (5.24), we write the wormhole opening as follows:

ΔU ¼ −
h̃

GUVð0Þ
16πGN

dðd − 1Þ
Z

∞

V0

dV
PðV; V0Þ

1

D
d−3
2
c

×
Z

2πfDc

0

duF ðu; V; V0; dÞ; ð5:26Þ

where

F ðu; V; V0; dÞ ¼
G̃xxðzhÞ
2
d−3
2 Γðd−1

2
Þ

u
dþ3
2

sinðπuÞPðV; V0Þu
: ð5:27Þ

Here we write the UV cutoff as kmax ¼ 2πT
ffiffiffi
f

p
, which

leads to umax ¼ 2πDcf. The factor f controls the size of the
UV cutoff.

1. Application for linear-axion models

In this subsection, we would like to investigate how the
averaged null energy depends on the charge diffusion
constant. In order to do that, we consider a linear axion
model where the charge diffusion constant depends on a
parameter that controls the momentum relaxation of the
dual field theory, and becomes arbitrarily small as one
increases the momentum relaxation parameter.
More specifically, we consider a simplified version of the

linear-axion model proposed in [46], with action of the
form,

S ¼ 1

16πGN

Z
ddþ1x

ffiffiffiffiffiffi
−g

p 

R −

dðd − 1Þ
L2

−
1

2

Xd−1
i

ð∂ψ IÞ2
�
;

ð5:28Þ

where L is the AdS length scale. For convenience, we set
L ¼ 1. We consider the background solution found in [46],
which takes the form,

FIG. 4. Averaged null energy versus V0 in asymptotically
AdSdþ1 spacetimes for several values of d. Here we fix
umax ¼ 1=2 and h̃ ¼ −1.

FIG. 3. Stress-energy tensor (5.22) versus V for several values
of the insertion time V0. Here, we set h̃ ¼ −1, d ¼ 4, and
umax ¼ 1=2.

4To prevent instances where the integral with respect to u
in (5.22) encounters the pole at u ¼ 1, we establish an UV cutoff
by ensuring that umax remains below 1. In scenarios where umax
exceeds 1, one could potentially compute the stress-energy tensor
by numerically extracting the principal value of the integral
in (5.22). However, addressing these intricacies is beyond the
scope of our current investigation.
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ds2¼−fðRÞdt2þ dR2

fðRÞþR2δabdxadxb; ψ I ¼αIaxa;

ð5:29Þ

where the boundary is located at R → ∞, and the black
hole horizon is located at R ¼ R0. Here, the index a runs
from 1 to d − 1, labeling the d − 1 spatial directions, I is an
internal index labeling d − 1 scalar fields, and αIa are real
arbitrary constants. The emblackening factor is given by

fðrÞ ¼ R2 −
α2

2ðd − 2Þ −
Rd
0

Rd−2

�
1 −

1

2ðd − 2Þ
α2

R2
0

�
; ð5:30Þ

where α is a parameter that controls the momentum
relaxation of the system, and it is given by

α2 ¼ 1

d − 1

Xd−1
a¼1

α⃗a · α⃗a; ð5:31Þ

where α⃗a · α⃗b ¼
P

d−1
I¼1 αIaαIb, and we made the assumption

that α⃗a · α⃗b ¼ α2δab for all values of a and b. The black
hole temperature is given by

T ¼ f0ðR0Þ
4π

¼ 1

4π

�
dR0 −

α2

2R2
0

�
: ð5:32Þ

Since there is no background gauge field in the above
solution, the charge diffusion constant associated to fluc-
tuations of a probe gauge field can be computed using
Eq. (B27) derived in Appendix B,

Dc ¼
ffiffiffiffiffiffiffi
−G

p

Gxx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GttGzz

p
				
zh

Z
zh

0

dz
GttGzzffiffiffiffiffiffiffi

−G
p

¼ 2d

ðd − 2Þ�4πT þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dα2 þ 16π2T2

p 
 : ð5:33Þ

The dimensionless charge diffusion constant takes the
form,

Dc ¼ DcT ¼ 2d

ðd − 2Þ
�
4π þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2d α2

T2 þ 16π2
q � : ð5:34Þ

For α ¼ 0, it takes the value Dc ¼ d
d−2

1
4π, and it becomes

arbitrarily small in the zero temperature limit, in which the
ratio α=T becomes arbitrarily large.5

We would like to understand how the presence of
momentum relaxation affects the traversability properties

of the wormhole. In our hydrodynamic limit, our result is
almost universal, and the dependence on the system comes
basically from the dimensionless charge diffusion constant,

which naively appears only as an overall factor ofD
3−d
2
c . In the

regime of strong momentum relaxation, Dc becomes arbi-

trarily small, and the overall factor of D
3−d
2
c becomes

arbitrarily large, causing ΔU to diverge. However, once
we introduce an UV cutoff of the form kmax ¼ 2πT

ffiffiffi
f

p
, this

implies that thewormhole opening takes the schematic form

ΔU ∼ h̃GN

Z
∞

V0

dV
PðV;V0Þ

1

D
d−3
2
c

Z
2πfDc

0

duF ðu; V; V0; dÞ;

ð5:35Þ

and the limit of strong momentum relaxation (in
which Dc → 0) does not lead to any divergence of ΔU,
due to the fact that the upper limit of integration is also
proportional to the dimensionless charge diffusion constant,
i.e., umax ¼ 2πDcf. In Fig. 5 we show the result for the
averaged energy condition for several spacetimes dimen-
sions and for several values of α=T, which is the parameter
that controls the momentum relaxation in the system. From
this figure, we can see that the wormhole opening decreases
as we increase the momentum relaxation parameter, and
approaches zero as α=T ≫ 1. That suggests that, at least in
our hydrodynamic approximation, the presence of momen-
tum relaxation does not favor traversability. In fact, a small
diffusion constant leads to a very small wormhole opening.6

D. Fitting the data

In this subsection, we show that our numerical results for
the averaged null energy can be described reasonably well
by the following function:

AðV0Þ ¼
Z

∞

V0

dVhTVVi ¼ −
V0

V2
0 þ 1

a�
log
�
V0 þ 1

V0


�
b ;

ð5:36Þ

where the fitting parameters a and b are functions of d and
α=T. Figure 6 shows our numerical results for the averaged
null energy, obtained with Eq. (5.24) as well as the fitted
function of the form (5.36). Figure 7 shows the results for
the fitted parameters a and b for several values of d and
α=T. The fit was done in the interval V0 ∈ ½0; 10�. The
parameter a decreases as we increase the dimensionality of
spacetime or the momentum relaxation parameter. The
parameter b, however, does not change very much as we
increase d, and decreases as we increase α=T.

5Note that to have T ≥ 0 in (5.32), the momentum relaxation
parameter α cannot take arbitrarily large values. Therefore, to
have an arbitrarily large value of the ratio α=T we need to take the
small temperature limit.

6In previous versions of this paper, we speculated that a small
diffusion constant could favor traversability. The more precise
calculation of the current version of this paper actually shows
otherwise.
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FIG. 6.
R
TVVdV as a function of V0 for several values of the momentum relaxation parameter α=T. The dots represent numerical

results obtained with Eq. (5.24) and the continuous curves represent the fitted curves of the form (5.36).

FIG. 7. Fitted parameters a and b versus d for several values of the momentum relaxation parameter α=T. The fit was done in the
interval V0 ∈ ½0; 10�.

FIG. 5.
R
TVVdV as a function of V0 for several values of the momentum relaxation parameter α=T and d for the asymptotically

AdSdþ1 background solution in (5.29). Here we fix umax ¼ 1=2 for α ¼ 0 by setting f ¼ ðd − 2Þ=d.

TRAVERSABLE WORMHOLES VIA A DOUBLE TRACE … PHYS. REV. D 109, 066016 (2024)

066016-11



E. Bound on information transfer

A traversable wormhole allows us to send a signal from
one side of the geometry to the other side. In this section,
we derive a bound on the amount of information that can
be transferred through wormholes opened by conserved
current operators and discuss what happens to this bound
in the small frequency limit. The basic idea is that the
backreaction of each particle that we send through the
wormhole has the effect of reducing jΔUj, i.e., it closes
the wormhole a bit. Therefore, if we try to send a signal
with too many particles, the corresponding backreaction
will eventually reduce jΔUj to zero, closing the wormhole
completely.
Consider a message with Nbits particles, each one

with momentum peach
U , such that the total momentum of

the signal is ptot
U ¼ Nbitspeach

U . Using the uncertainty
principle and requiring that the signal ‘fits’ in the
opening of the wormhole. The uncertainty principle
implies that

peach
U ΔUeach ≳ 1: ð5:37Þ

Let us assume that the double trace deformation open the
wormhole by an amount ΔU. Requiring that each par-
ticle’s wave function fits in the wormhole opening, we
find that

ΔUeach ≤ jΔUj: ð5:38Þ

Combining (5.37) and (5.38), we find

1

peach
U

≲ ΔUeach ≤ jΔUj: ð5:39Þ

Using (5.39), and the fact that Nbits ¼ ptot
U

peach
U
, we find

Nbits ≲ ptot
U jΔUj: ð5:40Þ

Finally, we require that the backreaction of the signal is
small. To impose this condition, we need to model the
stress-energy tensor of the signal. For a very early
perturbation, the stress-energy of the signal takes a simple

form, which can be written as TUU ∼ ptot
Uffiffiffiffiffiffiffiffiffiffiffiffiffi

Gd−1
xx ðzhÞ

p δðUÞ. The
probe approximation requires GN

ptot
Uffiffiffiffiffiffiffiffiffiffiffiffiffi

Gd−1
xx ðzhÞ

p ≪ 1, and it

breaks down roughly at

ptot
U ≲

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gd−1

xx ðzhÞ
p

GN
: ð5:41Þ

Finally, plugging (5.41) and (5.35) into (5.40), and we
obtain

Nbits ≲ h̃ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GxxðzhÞ

p
Þd−1

Z
∞

V0

dV
PðV;V0Þ

1

D
d−3
2
c

×
Z

2πfDc

0

duF ðu; V; V0; dÞ: ð5:42Þ

The fact that the bound is proportional to ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GxxðzhÞ

p Þd−1
is consistent with the analysis of [20] for higher-dimen-
sional traversable wormholes. The functional dependence
of the result onDc implies that Nbits → 0 asDc → 0. From
the point of view of the boundary theory, that suggests that
the presence of momentum relaxation makes the tele-
portation protocol less efficient. It would be interesting to
check if this also happens in many-body quantum
teleportation protocols in which the classical communi-
cation involves the measurement of conserved current
operators.

VI. DISCUSSION

We constructed a traversable wormhole by coupling the
two asymptotic boundaries of a general (dþ 1)-dimen-
sional black brane with Uð1Þ conserved current operators.
The nonlocal coupling introduces a quantum correction to
the expectation value of the stress-energy tensor that
violates ANEC, rendering the wormhole traversable.
The double trace deformation involving Uð1Þ conserved

current operators is dual to a gauge field fluctuation in the
bulk. In the limit where the frequency is small, the gauge
field in the bulk displays a diffusive behavior. We found
that the diffusive properties of the gauge field affect the
behavior of the wormhole openingΔU (see Fig. 8), causing
it to have a power-law behavior as a function of the
insertion time t0. In fact, by using that V0 ¼ e2πTt0 , and
taking the limit where 2πTt0 ≫ 1 in (5.36), we can write
the averaged null energy as

Aðt0Þ ∼
e−2πTt0

tb0
: ð6:1Þ

The power law part is reminiscent of the power law
behavior observed in two-point functions [36,37] and
out-of-time-order correlators involving conserved current
operators [39], and it is related to the diffusive behavior of
the bulk gauge field. The exponential part also takes place
in the large time limit when the double trace involves
scalar operators. For scalar operators of dimension Δ, one
finds [16,20]

Ascalar ∼
�

V0

1þ V2
0

�
2Δþ1

: ð6:2Þ

In the limit t0 ≫ 1=T, one obtains Ascalar ∼ e−2πTð2Δþ1Þt0 .
Therefore, while the exponential decrease with t0 is present
in both cases, the power law part only appears in the case
involving conserved current operators.
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We studied how the wormhole opening depends on the
charge diffusion constant. In order to do that, we consider
two-sided axionic black hole solutions (see Sec. V C 1) and
study the behavior of the averaged null energy as a function
of the momentum relaxation parameter. In these back-
grounds, the charge diffusion constant becomes arbitrarily
small as one increases the momentum relaxation parameter
α=T. We computed the averaged null energy in the same
limit and checked that it becomes arbitrarily small as
α=T ≫ 1. See Fig. 5. This suggests that the presence of
momentum relaxation makes it harder to open the worm-
holes using Uð1Þ conserved current operators.
To compute the charge diffusion constant, we introduced

a bulk gauge field in the probe approximation. If the bulk
gauge field backreacts in the geometry, then our formula for
the charge diffusion constant Eq. (B27) is not valid. It
would be interesting to generalize our results for systems
with nonzero chemical potential. Another interesting future
direction would be to consider double trace deformations
involving other types of conserved currents and study how
the wormhole opening depends on the corresponding
transport coefficients.
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APPENDIX A: ANEC VIOLATION

In this appendix, we review how the wormhole opening
is related to the violation of ANEC. We consider a back-
ground metric Gμν that satisfies (1.2) with vanishing
right-hand side. Assuming the double trace deformation
introduces a nonzero expectation value for the stress-
energy tensor hTμνi ∼OðϵÞ, we consider fluctuations
Gμν → Gμν þ hμν, with hμν ∼OðϵÞ. Using Kruskal coor-
dinates, we find that at U ¼ 0,

1

2

�
−ΛhVV þ δij

∂Vhij þ V∂2Vhij
Vz2h

�
¼ 8πGNhTVVi: ðA1Þ

Integrating both sides with respect to V we find

8πGN

Z
hTVVidV ¼ −Λ

Z
hVVdV: ðA2Þ

The wormhole opening can then be computed as

ΔU ¼ −
1

GUVð0Þ
Z

hVVdV

¼ −
1

GUVð0Þ
16πGN

dðd − 1Þ
Z

hTVVidV; ðA3Þ

where in the last equality we used that Λ ¼ − dðd−1Þ
2L2 . The

metric component in the UV direction, denoted as GUV , is

expressed as GUV ¼ − β2

4π2
Gtt
UV, which can be determined

once the geometry is specified. Near the horizon, the
tortoise coordinate is given by r ¼ β

4π log
z−zh
k1
, where k1

is a constant that depends on the geometry, allowing
us to evaluate the product UV. In the exterior regions,

UV ¼ −e
4π
β r ¼ − z−zh

k1
. By using the near-horizon expres-

sion for Gtt, namely Gtt ¼ c0ðz − zhÞ, we obtain

GUVð0Þ ¼ β2

4π2
c0k1.

FIG. 8. The boundary double trace deformation with Uð1Þ
conserved current operators corresponds to gauge field fluctua-
tions in the bulk. One can view the red lines as photons that are
delocalized with different longitudinal energies, and it indicates
the diffusive behavior of the bulk gauge fields. The right and left
past (future) horizons intersect at the point P1ðP2Þ. The size of the
wormhole opening ΔU can be obtained by integrating along an
achronal null geodesic, which is represented by the blue line.
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APPENDIX B: VECTOR FIELD FLUCTUATION
ON A GENERIC BLACK BRANE BACKGROUND

In this appendix, we review how to solve the Maxwell-
Einstein equation of motion,

∂μð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0; ðB1Þ

for a generic black brane background with line element of
the form,

ds2 ¼ gttdt2 þ grrdr2 þ gxxδijdxidxj; ðB2Þ

in the hydrodynamic limit. In (B2), r is tortoise coordinate,
defined in (2.4) and gμν denote the metric components in
tortoise coordinates ðt; r; xiÞ. In terms of the general line
element (2.1), these metric components are written as
gtt ¼ −grr ¼ −Gtt, and gxx ¼ Gxx. For simplicity, we
follow [39] and we choose a configuration in which
Ai ¼ 0. This corresponds to analyzing the longitudinal
sector of the gauge-field fluctuations, which are known to
be controlled by a diffusion pole [47,48].
We first decompose the gauge field in Fourier modes,

Aμ ¼
Z

dωdd−1k
ð2πÞd Aμðr;ω; kÞe−iωteik·x; ðB3Þ

and assume the momentum to be parallel to the x axis. With
these assumptions, Eq. (B1) for ν ¼ r becomes

−iω
� ffiffiffiffiffiffi

−g
p

grrgttð−iωAr − ∂rAtÞ


− k2

� ffiffiffiffiffiffi
−g

p
gxxgttAr


 ¼ 0:

ðB4Þ

Solving (B4) for Ar, we find

Ar ¼
iωgtt∂rAt

ω2gtt þ k2gxx
: ðB5Þ

Now we turn our attention to Eq. (B1) for ν ¼ t:

∂r

� ffiffiffiffiffiffi
−g

p
grrgttð∂rAt þ iωArÞ



− k2

� ffiffiffiffiffiffi
−g

p
gxxgttAt


 ¼ 0;

ðB6Þ

Substituting (B5) into (B6), we find an equation for At:

A00
t ðrÞ þ A0

tðrÞ∂r log

 ffiffiffiffiffiffi−gp

grrgttgxx

ω2gtt þ k2gxx

�
− grrðω2gtt þ k2gxxÞAtðrÞ ¼ 0: ðB7Þ

The above equation has two independent solutions, which
near the horizon (r → ∞) take the form e�iωr, correspond-
ing to outgoing and infalling boundary conditions.We focus
on the solution that satisfies infalling boundary conditions at
the horizon, and look for a solution of the form,

AtðrÞ ¼ e−iωrFðrÞ: ðB8Þ

With this ansatz, Eq. (B7) becomes

F00 − 2iωF0 þ ∂r log


 ffiffiffiffiffiffi−gp
grrgttgxx

ω2gtt þ k2gxx

�
ðF0 − iωFÞ

−
�ð1þ grrgttÞω2 þ grrgxxk2

�
F ¼ 0: ðB9Þ

To find a solution in the hydrodynamic limit, we set
ðω; kÞ → λðω; kÞ and take λ ≪ 1. We then expand the
function F as follows:

F ¼ F0 þ λF1 þ � � � ; ðB10Þ

and solve the equations of motion at each order in the
parameter λ. At zero order in λ, we have the following
equation:

F00
0 þ ∂r log


 ffiffiffiffiffiffi−gp
grrgttgxx

ω2gtt þ k2gxx

�
F0
0 ¼ 0; ðB11Þ

whose solution reads

F0 ¼ C0 þ C1

Z
r
dr0

ω2gtt þ k2gxxffiffiffiffiffiffi−gp
grrgttgxx

: ðB12Þ

To find a regular solution it is convenient towriteF0 in terms
of the coordinates ðt; xi; zÞ defined in Sec. II. In these
coordinates, we find

F0 ¼ C0 þ C1

Z
z
dz0

ffiffiffiffiffiffiffi
Gzz

Gtt

s
G

3−d
2
xx

�
−ω2 þ Gtt

Gxx
k2
�
: ðB13Þ

In the near horizon region, the solution takes the approxi-
mate form

F0 ¼ C0 − C1

ω2β

4π
GxxðzhÞ3−d2 log ðz − zhÞ; ðB14Þ

For this solution to be regular at the horizon we need to set
C1 ¼ 0. At linear order in λ, we find

F00
1 − 2iωF0

0 − ∂r log



ω2gtt þ k2gxxffiffiffiffiffiffi−gp

grrgttgxx

�
ðF0

1 − iωF0Þ ¼ 0:

ðB15Þ

Using that F0 ¼ C0, we find

F1 ¼
Z

r
dr0


iωC0 þ C2

�
ω2gtt þ k2gxxffiffiffiffiffiffi−gp

grrgttgxx

��
þ C3: ðB16Þ

In terms of the coordinates ðt; xi; zÞ, the solution reads
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F1¼−
Z

z
dz0

ffiffiffiffiffiffiffi
Gzz

Gtt

s 

iωC0þC2

�
ω2−

Gtt

Gxx
k2
�
G

3−d
2
xx

�
þC3:

ðB17Þ

In the near horizon region, the solution takes the approxi-
mate form,

F1 ¼ −
β

4π
ðiωC0 þ C2ω

2GxxðzhÞ3−d2 Þ log ðz − zhÞ þ C3:

ðB18Þ

Requiring regularity at the horizon fixes the integration
constant C2 as

C2 ¼ −
iC0

ω
ðGxxðzhÞÞd−32 : ðB19Þ

Then, we can use C3 to write the solution in terms of a
definite integral

F1 ¼ iωC0

Z
zh

z
dz0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GzzðzÞ
GttðzÞ

s

×



1 −

GxxðzhÞd−32
GxxðzÞd−32

�
1 −

GttðzÞ
GxxðzÞ

k2

ω2

��
; ðB20Þ

where we wrote the argument of the metric functions
explicitly to avoid confusion. To first order in λ, the gauge
field can be written as

AtðzÞ ¼ C0e−iωrðzÞ
 
1þ iω

Z
zh

z
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GzzðzÞ
GttðzÞ

s

×



1 −

GxxðzhÞd−32
GxxðzÞd−32

�
1 −

GttðzÞ
GxxðzÞ

k2

ω2

��!
: ðB21Þ

The constant C0 can be fixed by requiring Atðz → 0Þ ¼ 1.
To do that, it is convenient to write the solution as

AtðzÞ ¼ C0e−iωrðzÞ
�
1þ iωH1ðzÞ þ

ik2

ω
H2ðzÞ

�
; ðB22Þ

where

H1ðzÞ ¼
Z

zh

z
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GzzðzÞ
GttðzÞ

s �
1 −

GxxðzhÞd−32
GxxðzÞd−32

�
;

H2ðzÞ ¼
Z

zh

z
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GzzðzÞGttðzÞ

p GxxðzhÞd−32
GxxðzÞd−12

: ðB23Þ

The constant C0 can then be obtained as

C0 ¼
1

1þ iωH1ð0Þ þ ik2
ω H2ð0Þ

: ðB24Þ

The normalized gauge field then becomes

AtðzÞ ¼ C0e−iωrðzÞ
�
1þ iωH1ðzÞ þ ik2

ω H2ðzÞ



�
1þ iωH1ð0Þ þ ik2

ω H2ð0Þ

 : ðB25Þ

The above expression has a pole which, at leading order in
a hydrodynamic approximation, scales as ω ∼ k2. That
implies that the term ωH1ð0Þ is subleading compared to
k2H2ð0Þ=ω and can be ignored in the hydrodynamic
approximation. Moreover, taking the near horizon limit
z ≈ zh implies H2ðzÞ ≈ 0. With the above assumptions, the
gauge field can finally be written as

AtðzÞ ¼ e−iωrðzÞ
ω

ωþ iDck2
; ðB26Þ

where the diffusion constant is given byDc ¼ H2ð0Þ. Using
that

ffiffiffiffiffiffiffi
−G

p ¼ G
d−1
2
xx

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GttGzz

p
, we can write the diffusion

constant as

Dc ¼ H2ð0Þ ¼
ffiffiffiffiffiffiffi
−G

p

Gxx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GttGzz

p
				
zh

Z
zh

0

dz
GttGzzffiffiffiffiffiffiffi

−G
p ; ðB27Þ

which is consistent with the results obtained in [47,48]. The
formula (B27) was obtained considering fluctuations of a
gauge field in the probe approximation. This formula is not
valid in the presence of a background gauge field. From the
point of view of the boundary theory, that implies that
our results are only valid for systems with zero chemical
potential.

APPENDIX C: VECTOR FIELD
BULK-TO-BOUNDARY PROPAGATORS

IN THE HYDRODYNAMIC LIMIT

In this section, we derive bulk-to-bulk propagators for a
gauge field propagating in the background (2.1). We start
by writing Maxwell-Einstein equations with a source term

∂μ

� ffiffiffiffiffiffi
−g

p
gμρgνσFρσ


 ¼ Jνbulk; ðC1Þ

where the source satisfies the equation

∂μJ
μ
bulk ¼ 0: ðC2Þ

The gauge field can then be written as

AμðrÞ ¼
Z

ddþ1rGμνðr − r0ÞJνbulkðr0Þ; ðC3Þ

where r ¼ ðr; t; xÞ and Gμνðr − r0Þ solves (C1) with a delta
function as the source.
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Following [39], we use the gauge Ai ¼ 0. By writing the
propagators and the sources in momentum space

Gμνðt; xÞ ¼
Z

dωdd−1k
ð2πÞd Gμνðr;ω; kÞe−iωteik·x;

Jνbulkðt; xÞ ¼
Z

dωdd−1k
ð2πÞd Jνbulkðr;ω; kÞe−iωteik·x; ðC4Þ

we can find a solution for Gμνðr;ω; kÞ in the hydrodynamic
limit. To find Gtt, we require Jrbulk ¼ 0, and Jtbulkðr;ω; kÞ ¼
δðr − r0Þ. Then (C2) implies Jxbulkðr;ω; kÞ ¼ ω

k δðr − r0Þ.
The t components of (C1) reads

∂r

� ffiffiffiffiffiffi
−g

p
grrgttð∂rGtt þ iωGrrÞ



− k2

� ffiffiffiffiffiffi
−g

p
gxxgttGtt



¼ δðr − r0Þ; ðC5Þ

while the r component of (C1) reads

−iω
� ffiffiffiffiffiffi

−g
p

grrgttð−iωGrr−∂rGttÞ


−k2

� ffiffiffiffiffiffi
−g

p
gxxgttGrr


¼0:

ðC6Þ

By solving (C6) for Grr and substituting the result in (C5),
we find

∂r

� ffiffiffiffiffiffi−gp
grrgttgxx∂rGtt

ω2gtt þ k2gxx

�
− ð ffiffiffiffiffiffi

−g
p

gxxgttGttÞ ¼
δðr − r0Þ

k2
;

ðC7Þ
which, after some simplifications, can be written as

∂
2
rGtt þ ∂rGtt∂r log


 ffiffiffiffiffiffi−gp
grrgttgxx

ω2gtt þ k2gxx

�
− grrðω2gtt þ k2gxxÞGtt

¼ grrðω2gtt þ k2gxxÞffiffiffiffiffiffi−gp
gttgxx

δðr − r0Þ
k2

: ðC8Þ

A solution to the above equation satisfying infalling
boundary conditions at the horizon and Neumann boundary
conditions on the boundary corresponds to the retarded
bulk-to-bulk propagator in momentum space,

Gret
tt ðr; r0;ω; kÞ ¼ −i

Z
dt dd−1xeiωt−ik·xθðtÞ

×
�½Atðr; t; xÞ; Atðr0; 0; 0Þ�

�
: ðC9Þ

For small ω and small k, one can show that the solution in
the near-horizon region reads [39]

Gret
tt ðr; r0;ω; kÞ ∼

ω2

k2
e−iωðr−r0Þ

iω −Dck2
: ðC10Þ

with Dc given by (B27).
The Wightman function iGw

tt ¼ hAtðr;ω; kÞAtðr0;ω; kÞi
can be written as [49]

Gw
ttðr; r0;ω; kÞ ¼ 2i

eω=2T

eω=T − 1
ImGret

tt ðr; r0;ω; kÞ: ðC11Þ

In position space, the above bulk-to-bulk propagators can
be written as

Gret
tt ðr; t; x; r0; t0; x0Þ ¼ −i

Z
dd−1k
ð2πÞd−1

dω
2π

Gret
tt ðr; r0;ω; kÞe−iωðt−t0Þeik·ðx−x0Þ

¼ −i
Z

dd−1k
ð2πÞd−1

dω
2π

ω2

k2
e−iωðrþt−r0−t0Þ

iω −Dck2
eik·ðx−x0Þ

¼ −i
Z

dd−1k
ð2πÞd−1

dω
2π

ω2

k2
ðV=V 0Þ−iω=2πT
iω −Dck2

eik·ðx−x0Þ

¼ iD2
c

Z
dd−1k
ð2πÞd−1 k

2

�
V
V 0

�
−Dck2=2πT

eik·ðx−x0ÞθðV − V 0Þ: ðC12Þ

The Wightman function can be obtained as

Gw
ttðU;V; x;U0; V 0; x0Þ ¼ D2

c

Z
dd−1k
ð2πÞd−1

k2eik·ðx−x0Þ

2 sinðDck2

2T Þ

"�
V
V 0

�
−Dck2

2πT

−
�
U
U0

�Dck2

2πT

#
: ðC13Þ

The corresponding bulk-to-boundary propagators can be obtained from the above expressions by taking one of the bulk
points to the boundary. Denoting the bulk point as ðU ¼ 0; V; xÞ and the boundary point as ðt1; x1Þ, we can write the
retarded bulk-to-boundary propagator as

Kret
tt ðV; x; t1; x1Þ ¼ iD2

c

Z
dd−1k
ð2πÞd−1 k

2
eik·ðx−x1Þ

ðVe−2πTt1ÞDck2

2πT

θðV − e2πTt1Þ; ðC14Þ
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and the Wightman bulk-to-boundary propagator as

Kw
ttðV; x; t1; x1Þ ¼ D2

c

Z
dd−1k
ð2πÞd−1

k2

2 sinðDck2

2T Þ
eik·ðx−x1Þ

ðVe−2πTt1ÞDck2

2πT

;

ðC15Þ

where we used that rðz → 0Þ ¼ 0 and consequently
V → e2πTt1 as z → 0.
In the calculation of ΔU, we need Kw

Vt and Kret
Vt, which

can easily be obtained from Kw
tt and Kret

tt . Since AV ¼ AtþAr
2πTV ,

we can write hAVJti ¼ 1
2πTV hðAt þ ArÞJti. This can be

simplified even more in the hydrodynamic limit, in which
Ar ¼ At. Using this last equality, we find hAVJti ¼
1

πTV hAtJti. With the above considerations, we find

Kret
VtðV; x; t1; x1Þ ¼ 2iDcTθðV − e2πTt1Þ∂V

×
Z

dd−1k
ð2πÞd−1

eik·ðx−x1Þ

ðV=V1Þ
Dck2

2πT

; ðC16Þ

Kw
VtðV;x; t1;x1Þ¼TDc∂V

Z
dd−1k
ð2πÞd−1

1

2sinðDck2

2T Þ
eik·ðx−x1Þ

ðV=V1Þ
Dck2

2πT

;

ðC17Þ

where V1 ¼ e−2πTt1 , and an overall factor of T was
included for dimensional reasons. These formulas were
derived in the hydrodynamic limit, which means they are
only well-defined near the black hole horizon. Since we
consider the expectation value of stress-energy tensor in the

near horizon region, the large time separation modes
(V=V1 ≫ 1) give a dominant contribution to it.
Also, the stress tensor hTVVi computed from the

above propagators is independent on the insertion time
t0. This happens because hTVVi is proportional to7

KretðV; t0ÞKwðV;−t0Þ and the t0 dependence cancels out.
Consequently, the expression for the averaged null energyR∞
V0

dVhTVVi derived using (C16) and (C17) is only valid at
late times. To fix this problem and obtain a result for ANE
that depends on the insertion time, we used the propagators
proposed by Swingle and Cheng in [39]:

Kret
VtðV; x; t1; x1Þ ¼ 2iTDcθðV − e2πTt1Þ∂V

×
Z

dd−1k
ð2πÞd−1

eik·ðx−x1Þ

ðVe−2πTt1 − 1ÞDck2

2πT

; ðC18Þ

Kw
VtðV; x; t1; x1Þ ¼ TDc∂V

Z
dd−1k
ð2πÞd−1

1

2 sinðDck2

2T Þ

×
eik·ðx−x1Þ

ð1 − Ve−2πTt1ÞDck2

2πT

: ðC19Þ

According to [39], the above propagators have qualitatively
the same behavior as (C16) and (C17) in the late-time limit
and have the desired analytic properties connectingKret and
Kw. They allow us to study the dependence of ANE for any
value of the insertion time, which is more physical, since
there is nothing special about t0 ¼ 0.
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