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A recently introduced functional renormalization group (RG) provides a new tool to explore
nonperturbative and covariant RG flows in Lorentzian spacetimes. We apply it for the first time to
investigate the ultraviolet limit of quantum gravity. While the RG flow is state dependent, it is possible to
evaluate state- and background-independent contributions to the flow. Taking into account only these
universal terms, the RG flow exhibits a nontrivial fixed point in the Einstein-Hilbert truncation, providing a
mechanism for asymptotic safety in Lorentzian quantum gravity.
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I. INTRODUCTION

General relativity (GR) was discovered in 1915; quan-
tum mechanics in 1926. The realization that the gravita-
tional field should have been quantized along the same
lines of the electromagnetic field came almost immediately:
Already in 1916, Einstein pointed out that quantum effects
would modify the theory of general relativity [1]. The
search for a consistent quantum theory of gravity has
fascinated generations of physicists ever since.
Among many conceptual puzzles, the main technical

difficulty in the quantization of gravity is that the standard
approach of quantum field theory (QFT) produces a
quantum theory of gravity that is perturbatively nonrenor-
malizable [2–4].
Perturbative nonrenormalizability still leaves open the

possibility of the asymptotic safety (AS) scenario [5,6], in
which a QFTof the metric tensor is nonperturbatively renor-
malizable, thanks to the existence of a nontrivial fixed point
in its RG flow. First realized in 2þ ϵ dimensions [7,8], the
AS scenario in four dimensions has been explored through
lattice simulations [9,10] and, in the continuum, through
functional renormalization group (fRG) techniques [11–18].
While lattice computations are based on a background-
independent regularization of the Lorentzian path integral,
fRG approaches are mostly based on the Euclidean formu-
lation of theWetterich equation [19,20], with few exceptions.
In 2011, an fRG-based approach to Lorentzian quantum

gravity (QG) has been put forward, providing the first

evidence of a nontrivial fixed point in the RG flow in
Lorentzian spacetimes [21]. The computation was carried
out assuming an Arnowitt-Deser-Misner (ADM) foliation
of the background geometry and a compact time direction,
which allowed for a resummation of Matsubara frequencies
in the propagator. The Lorentzian fRG based on the ADM
formalism initiated a study of AS in foliated spacetimes
[22,23]. More recently, fRG-based investigations have been
carried out for the graviton spectral function in Minkowski
[24,25]. However, all fRG-based approaches in Lorentzian
spacetimes had to give up background independence in
favor of Lorentzian signature.
In this paper, we provide the first evidence for a back-

ground-independent, nontrivial fixed point for quantum
gravity in Lorentzian signature, in the Einstein-Hilbert
truncation. The result is based on a novel Wetterich-type
fRG equation (FRGE), directly developed in Lorentzian
spacetimes with a covariant formalism and for any
Hadamard state [26,27]. This new RG equation uses a
local regulator in position, thus acting as an artificial mass,
and a Hadamard regularization to subtract the UV diver-
gences. Since it is written in terms of the interacting
Feynman propagator, the Lorentzian FRGE exhibits state
dependence [26]. The state is chosen for the free theory, and
it acts as a background, fiducial quantity for the flow,
similarly to the background geometry.
While a state for the graviton in general spacetimes is not

known, here we show that the universal terms that must
contribute in the FRGE for any state and, in all back-
grounds, already determine the existence of a Reuter-type
fixed point for Lorentzian quantum gravity.

II. QUANTUM GRAVITY AS A LOCALLY
COVARIANT QFT

In order to apply the Lorentzian FRGE to gravity, we
take as theoretical framework QG as a locally covariant
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QFT [28,29]. In this context, gravity is quantized on a
fixed, globally hyperbolic spacetime ðM; ḡÞ with back-
ground metric ḡ; our computation is background indepen-
dent in the sense that M is fixed, but arbitrary, thus
studying the RG equations in all spacetimes at once [30].
The space of off-shell configurations is E ðMÞ ¼

ΓðT�ðMÞ⊗2Þ ∋ ĥ, the space of symmetric bitensors. As
usual, the configuration space must be extended to include
the ghosts ĉ, the antighosts ˆ̄c, and the Nakanishi-Lautrup
fields b̂. We collect an element of the extended configuration
space in the field multiplet φ ≔ fĥ; ĉ; b̂; ˆ̄cg∈ Ē ðMÞ.
In the Batalin-Vilkovisky (BV) formalism [31–33], the

configuration space is doubled to include the antifields,
identified with the basis of the tangent space, φ‡ ≔ δ

δφ. The
classical BV algebra BV is, thus, the algebra of local
functions on the odd cotangent bundle of the extended
configuration space [34,35]. The antibracket is defined by
fφAðxÞ;φ‡

BðyÞg ¼ δABδðx − yÞ, with A, B indices on the
field space, and extended to functions of the fields and
antifields by the graded Leibniz rule.
The dynamics is governed by the Euler-Lagrange equa-

tions of the action

I ≔ IEH þ Iaf þ γΨ ¼ IEH þ Iaf þ Igh þ Igf; ð1Þ

where IEH ¼ 2ζ2
R
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ĝ

p ðRðĝÞ − 2ΛÞ is the Einstein-
Hilbert action in terms of the full metric ĝ ≔ ḡþ ĥ and
ζ2 ¼ ð32πGÞ−1, where G is Newton’s constant. The anti-
field term is

Iaf ≔
Z
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ĝ

p
Lĉĝabh

‡
ab þ cb∂bcac

‡
a þ ib̂ac̄‡b;

where Lĉ is the Lie derivative. The gauge-fixing fermion Ψ
in the De-Donder gauge is

Ψ ¼ i
Z
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ḡ

p
ˆ̄cb
�
∇aĥab −

1

2
∇bĥacḡac

�
:

Finally, the Becchi-Rouet-Stora-Tyutin (BRST) differential
is defined as γ ≔ f·; Iafg [36–38], and the action satisfies
the classical master equation fI; Ig ¼ sI ¼ 0, where the
BV differential is s ≔ f·; Ig [28,29,34,35].
Deformation quantisation proceeds splitting the action I

into a term quadratic in the fields I0 and a remaining,
interacting term V ≔ I − I0. The free part I0 is used to
define the quantum products and the time-ordered products.
The free algebra A is the �− algebra of local functions
F ðĒÞ of the extended configuration space, together with the
non-commutative product, and the involution defined by
complex conjugation, FðφÞ ¼ FðφÞ�:

A ≔ fF ;⋆; �g: ð2Þ

As it is customary, we omit the noncommutative product in
the following, denoting F⋆G ¼ FG.
The Epstein-Glaser renormalisation procedure con-

structs the time-ordered products of local functions at
coincidence points [39–43]. Interacting observables are
represented as formal power series in the �−algebra of
free observables A. Finally, a state is a linear, positive,
normalised functional ω∶A → C mapping the observable
to its expectation value [44,45].
In order to define the generating functionals, we introduce

sources that couple linearly to the fields, J ≔
R
M jAφA,

and classical BRST sources that couple to their BRST
variations Σ ≔

R
M σAγφ

A. The contributionΣ can be under-
stood as a shift of the antifield term Iaf, so that, even if
evaluating on a state ω sets the antifield to the zero
configurationφ‡ ¼ 0, thegenerating functionals still depend
nontrivially on σ.
Finally,weneed to introduce the regulator termsQk. These

are chosen as local terms quadratic in the fields, acting as
artificial masses in the correlation functions [26,27]:

Qk ≔ −
1

2

Z
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ḡðxÞ

p
½TðĥabðxÞqkabcdðxÞĥcdðxÞÞ

þ 2T ˆ̄caðxÞ eqkabðxÞĉbðxÞ�; ð3Þ
where T is the time-ordering operator. Notice that the
regulator are local in position, preserving causality and
Lorentz invariance. The regulator kernels qk and eqk are
chosen proportionally to the RG scale k and include a
compactly supported smooth function fðxÞ∈C∞

c which
equals 1 on a given region O ⊂ M.
Together with the regulator term, we also introduce a

source for its BRST variation:

HðηÞ≔ 1

2

Z
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det ḡðxÞ

p

× ½ηðxÞγðTĥabðxÞĥabðxÞÞ þ η̃γðT ˆ̄caðxÞĉaðxÞÞ�: ð4Þ

Introducing a scale-dependent BV differential sk ≔ sþR
M qkA

δ
δηA

, the extended action Iext ≔ I þ ΣþQk þH
satisfies a symmetry identity, extending the BV invariance
of the classical action I to [27]

skIext ¼ 0: ð5Þ
The regularised generating functional for time-ordered

correlation functions is defined as

Zkðḡ; j; σ; ηÞ ≔ ωðTðe−iT−1VÞTðeiT−1ðVþΣþJþQkþHÞÞ. ð6Þ

This definition of Zk generalizes the usual path integral
representation [46] to globally hyperbolic spacetimes
and generic states ω. In flat space, both in Lorentzian
or in Euclidean signature, there is a unique Poincaré
(or Euclidean) invariant ground state, and it is usually chosen
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to evaluate correlation functions. However, in curved space-
times there is no unique choice for a vacuum (as is known
already for the scalar case, for example, in Schwarzschild
spacetimes [47]), and the choice of a stateω needs to be taken
explicitly into account.
The effective average action (EAA) Γkðḡ;ϕ; σ; ηÞ is

defined in the standard way. The regularized generating
functional for connected Green’s functions WkðjÞ ¼
−i logZk defines the classical fields ϕ ¼ Wð1Þ

k ¼ hφi as
functions of the sources j. The mean value operator is
defined by

hFi ¼ Z−1
k ωðTðeiT−1VÞ−1TðeiT−1ðVþΣþJþQkþHÞFÞÞ. ð7Þ

The relation between the sources and the fields can
be inverted in Wð1ÞðjϕÞ ¼ ϕ [26], so that the Legendre
transform Γ̃k ¼ WkðjϕÞ − JϕðϕÞ is well defined. The EAA
is the modified Legendre transform of the regularized
generating functional of connected Green’s functions
Γk ≔ Γ̃k −QkðϕÞ. The EAA is, thus, a function of the
classical fields ϕ ≔ fh; c; b; c̄g, of σ, and the scale k.
Thanks to the extended symmetry of Eq. (5), the

Legendre EAA satisfies the extended Slavnov-Taylor
identity [27]
Z
M

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−det ḡðxÞp

�
δΓ̃k

δσAðxÞ
δΓ̃k

δϕAðxÞþqAk ðxÞ
δΓ̃k

δηAðxÞ
�
¼ 0: ð8Þ

The EAA is then constrained by the cohomology of the
BRSToperator γ in ghost number zero; from the solution of
the Wess-Zumino consistency condition [48,49], it follows
that the EAA must be a BRST-invariant functional of the
full classical metric g ≔ ḡþ h [27].

III. RENORMALIZATION GROUP
FLOW EQUATIONS

The RG flow equations for gravity are derived in complete
analogy with the gauge theory case [27,50]. They read

∂kΓkðḡ;ϕÞ ¼
i
2

Z
M

Trf∂kqkðxÞ∶Gk∶ ðx; xÞg: ð9Þ

The trace is over Lorentz and field indices. The equations are
written in terms of Γkðḡ;ϕÞ ¼ Γkðḡ;ϕ; σ ¼ 0; η ¼ 0Þ, with
the field b integrated out, and the interacting propagator,
satisfying

δ2

δϕðxÞδϕðzÞ ðΓk þQkÞGkðz; yÞ ¼ −δðx; yÞI; ð10Þ

where I denotes an appropriate tensor identity.
Notice that, contrary to standard practice in the asymptotic

safety literature in Euclidean space [14], the regulator terms
are local in position. In Euclidean signature, the regulator is
usually chosen to be a nonlocal function in position. This
guarantees that the RG equation remains finite, without

additional regularizations. However, in Lorentzian space-
times, there is no known example of a regulator that satisfies
at the same time the requirements of Lorentz invariance,
causality, and finiteness of the FRGE [51]. In the case of
cosmological backgrounds, an alternative is the use of a
regulator depending on the spatial momenta only, since the
background already breaks Lorentz invariance [52].
Here, as the background is kept arbitrary, we choose

a simple regulator local in position, qkðxÞ ¼ k2fðxÞ.
Recall that f∈C∞

c and equals 1 on a region O ⊂ M.
The advantage of such a regulator is that it preserves
Lorentz invariance and causality. Moreover, the cutoff
function f acts as an infrared cutoff, since the rhs of the
FRGE (9) is proportional to f itself.
Ultraviolet finiteness is instead guaranteed by the nor-

mal-ordering prescription, arising from the definition of the
EAA in terms of time-ordered quantities. It follows that the
FRGE is both ultraviolet and infrared finite by definition.
In fact, by direct computation, one can see that the

normal-ordered interacting propagator is given by

lim
y→x

− i∶Gk∶ ≔ hlim
y→x

ðφðxÞφðyÞ − hFðx; yÞÞi

¼ lim
y→x

hφðxÞφðyÞi −Hk:

The subtraction of the Hadamard parametrix hFðx; yÞ,
encoding the divergences of the Feynman propagator in
the coincidence limit, follows from the insertion of the
time-ordering operator in the regulator, Eq. (3) [26]. The
commutation of the limit with the mean value operator,
thus, defines the counterterm Hk, and it guarantees that
FRGE are ultraviolet finite.
Operationally, the normal ordering of ∶Gk∶ can be

computed by a point-splitting procedure. Formally diver-
gent quantities, such as hĥabðxÞĥcdðxÞi ¼ −iGhh

k ab
cdðx; xÞ,

are replaced by point-split expressions Ghh
k ab

a0b0 ðx; yÞ,
for y in the vicinity of x and spacelike separated. The
singular terms in the coincidence limit Hk are sub-
tracted, obtaining the regularized corresponding quantity
∶Ghh

k ab
ab∶ ≔ Gk −Hk.

Despite the use of a local regulator, it is still possible to
prove that [26]

lim
k→∞

Γk ¼ IðϕÞ þ C;

where C is a (finite) arbitrary constant. It follows that the
EAA interpolates between the quantum action Γ0 in the IR
and the bare classical action I in the UV. The FRGE, thus,
describes an RG flow, even if strictly speaking it is derived as
a flow of the EAA under rescalings of the mass parameter.
Mass-type regulators appeared already in the literature

with the name of Callan-Symanzik cutoffs [24,53]. The
FRGE (9), first derived in Refs. [26,27], shares some
similarities with the recently introduced renormalized
spectral flows [51]. The difference is in the definition of
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the counterterms Hk: In the case of renormalized spectral
flows, they arise from the dependence of the regulator
function Qk on an additional, UV cutoff scale Λ.

IV. STATE DEPENDENCE

In Lorentzian spacetimes, Eq. (10) admits an infinite
family of solutions Gk. This is the main difference from the
Euclidean case, where the EAA admits a unique inverse. It
follows that the FRGE depends on the choice of the
interacting propagator Gk. Different propagators Gk and
G0

k differ by a smooth contribution w − w0, and they give
raise to different RG flows.
The ambiguity in the choice of the interacting propagator

can be fixed choosing a state for the free theory ω. Here, we
recall the main argument and results; a detailed discussion
can be found in Refs. [26,27,54]. Consider a region of
the spacetime where the interaction is turned off, V ¼ 0.
Then, the EAA reduces to ΓkðϕÞ ¼ I0ðϕÞ þ C, for some
finite constant C, where I0 is the quadratic part of the bare
action I. By direct computation, the interacting propagator
is then proportional to ΔF;k, the Feynman propagator for
the free theory with a mass modified by the regulator term
qk. The Feynman propagator is fixed by the choice of a
state ω, as it is given by the time-ordered, connected two-
point function. Moreover, if the state satisfies the
Hadamard condition, the Feynman propagator has a uni-
versal UV singular structure hk [44,55–57]. It follows that
the choice of a Hadamard state fixes the smooth contribu-
tions to the Feynman propagator wk ≔ ΔF;k − hk.
When the interaction V is turned on, the EAA can be

decomposed into Γk ¼ I0 þ UkðϕÞ, where Uk incorporates
all the quantum corrections, including nonlocal and higher
derivative terms. The construction of the full interacting
propagator Gk follows from the free case by a perturbative-
type construction, and, in particular, it is possible to prove
that [26]

−i∶Gk∶ ¼
X∞
n¼0

ðiΔF;kU
ð2Þ
k ÞnðΔF;k − hkÞ: ð11Þ

The series is uniquely fixed by the starting element
wk ¼ ΔF;k − hk, and the requirement that Gk is a funda-

mental solution forΓð2Þ
k − qk. The interactingpropagator and,

by extension, the FRGE, thus, depend on the choice of the
smooth contribution wk, which uniquely fixes a quasifree
Hadamard state for the free theory, as quasifree states are
determined by their two-point function. In this way, the
FRGE inherits a dependence on the state for the free theory.

V. HADAMARD SUBTRACTION AND LOCAL
POTENTIAL APPROXIMATION

We now assume that the operator Γð2Þ
k − qk is Green

hyperbolic, with the kinetic term, apart from a possible

wave function renormalization Zk, given by the free part of

the action: Γð2Þ
k − qk ¼ ZkD − qk þUð2Þ

k , where D ¼ Ið2Þ0 .

In this approximation, the effective potential Uð2Þ
k does not

contain derivatives of the Dirac delta.
In this case, it is known that the interacting propagator

coincides with the propagator of the free theory, with a
mass modified by qk −Uk [26,58], by an exact resumma-
tion of the series in Eq. (11). Therefore, in the LPA the
FRGE reduces to

∂kΓkðḡ;ϕÞ ¼ −
1

16π2ζ2k

Z
M
Tr∂kqkðxÞωkð∶φ2∶ðxÞÞ; ð12Þ

and the computation of ∶Gk∶ reduces to the problem of
computing the renormalised Wick square, in the state ωk of

the free theory, with a mass modified by qk −Uð2Þ
k [26].

This in particular means that, if ΔF;k satisfies the
Hadamard condition, Gk is Hadamard as well. Thus, for
y in a normal convex neighbourhood of a given x, the
interacting propagator must have the same Hadamard
singularity structure of the free propagator:

Gk ¼
i

8π2ζ2k
ðHk þWÞ; ð13Þ

written in terms of a smooth contribution W and the
Hadamard parametrix, capturing its universal UV singu-
larity structure:

Hkðx; yÞ ¼
i

8π2ζ2k
lim
ϵ→0þ

�
Δ1=2

σϵðx; yÞ
I þ V log

σϵðx; yÞ
μ2

�
:

In the last equations, ζ2k ≔ Zkζ
2, σðx; yÞ is the squared

geodesic distance taken with sign between x and y and
σϵðx; yÞ ¼ σðx; yÞ þ iϵ, Δ is the van Vleck–Morette
determinant. I is an appropriate tensor structure, depending
on whether Gk describes the gravitational or the ghost
propagator.
The distributions V and W can be expanded in

an covariant Taylor expansion as V ¼ P
n¼0 Vnσ

n and
W ¼ P

n¼0Wnσ
n; the Hadamard recursion relations

determine higher orders in the expansion from the zeroth
order [59]. The zeroth term V0 is completely determined by
the quantum wave operator and the background geometry
by the formula [60]

V0 ¼ −
1

2

δ2

δϕδϕ
ðΓk þQkÞΔ1=2I; ð14Þ

and the coincidence values Δ1=2ðx; xÞ ¼ 1 and
∇a∇bΔ1=2ðx; xÞ ¼ 1=6R̄ab [61]. On the other hand, the
smooth contribution W0 remains arbitrary; once W0 is
fixed, it locally identifies the state.
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The subtraction of the Hadamard parametrix defines
the normal-ordered quantity ∶Gk∶ ≔ Gk −Hk, smooth
in the coincidence limit; the FRGE for Γk thus becomes

∂kΓkðḡ;ϕÞ ¼−
1

16π2ζ2k

Z
M
Tr

�
∂kqkðxÞ

�
S0þV0 log

M2

μ2

��
:

ð15Þ
The logarithmic term logM2 is a smooth contribution
coming from the arbitrary function W, and it is necessary
to make the logarithm in Eq. (21) dimensionless; S0 is the
remaining smooth contribution in the coincidence limit.
Equation (15) holds for a local regulator and a Hadamard

interacting propagator Gk. In Euclidean space, it is possible
to derive a completely analogous equation, with the
fundamental difference that the smooth contributions in
the rhs of Eq. (15) are uniquely fixed by Eq. (10).
Moreover, in Euclidean space the coefficients Vn can be
equivalently computed by heat kernel techniques. However,
the Hadamard expansion is preferable for two reasons in
Lorentzian spacetimes. First, the heat kernel is ill-defined
on Lorentzian spacetimes, as it relies on the positivity of the
wave operator; secondly, heat kernel computations typi-
cally discard the smooth contributions to the 2-point
function [62]. In Lorentzian spacetimes, these smooth
contributions correspond to the freedom in the choice of
a state, and they contribute to the FRGE (9).

VI. EINSTEIN-HILBERT TRUNCATION

The Einstein-Hilbert truncation assumes an ansatz for
the effective average action in the form

Γkðḡ;ϕ; σ; ηÞ ¼ ΓEH
k ðḡ; gÞ þ Γgh

k ðḡ; h; c; c̄Þ
þ Γgf

k ðḡ; h; b; c; c̄Þ þ Σðḡ;ϕ; σÞ
þHðḡ;ϕ; ηÞ: ð16Þ

The Einstein-Hilbert contribution is

ΓEH
k ¼ 2ζ2k

Z
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
ðRðgÞ − 2ΛkÞ:

In terms of the fluctuation field h ≔ hĥi ¼ g − ḡ, the ghost
and gauge-fixing terms are, respectively,

Γgh
k ¼ ζ2k

Z
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ḡ

p
c̄aðḡab□þ R̄abðḡÞÞcb;

Γgf
k ¼ −ζ2k

Z
M

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ḡ

p
ba
�
∇bhab −

1

2
∇aḡbchbc

�
;

and Σ and H correspond to the classical contributions.
The equations for the interacting propagators are derived

expanding the effective average action up to second-order in
a Taylor expansion, ΓkðḡþhÞ¼ΓkðḡÞþOðhÞþΓquad

k ðh;ḡÞ.

We can now specify the regulator terms qk and eqk. They
are chosen to act as artificial masses for the fields, dressing
the d’Alembertians as □ → □ − k2:

qkabcd ¼ ζ2kk
2Kab

cd; q̃kab ¼ ζ2kk
2gab; ð17Þ

where Kabcd ¼ 1=2ðḡacḡbd þ ḡbcḡad − ḡabḡcdÞ.
The graviton propagator may be decomposed in the sum

of a tensor GT
k and a scalar GS

k ¼ ḡabḡc0d0Ghh
k ab

cd contri-
bution [63]. The equations of motion then read

ζ2k

�
ḡacḡbd

�
□ − k2 þ 2Λk −

1

2
R̄

�
− Pabcd

�
GT

k
abc0d0

¼ −
1

2
ðḡcc0 ḡdd0 þ ḡdc

0
ḡcd

0 − ḡcdḡc
0d0 Þδðx; yÞ; ð18Þ

−
ζ2k
2
ð□ − k2 þ 2ΛkÞGS

k ¼ −δðx; yÞ; ð19Þ

ζ2k½ḡabð□ − k2Þ þ R̄ab�G̃ab0
k ¼ −ḡbb

0
δðx; yÞ: ð20Þ

The tensor Pab
cd ≔ −2R̄ðacbÞ

d − 2ḡðcðaR̄dÞ
bÞ þ ḡcdR̄ab þ

ḡabR̄cd is a potential term. In the last relation, all curvature
quantities are constructed from the background metric ḡ;
the d’Alembertian is □ ¼ ḡð∇;∇Þ.
Each propagator has a corresponding Hadamard

expansion:

GS
k ¼ −

i
4π2ζ2k

fHS
k þ VS

0 logM
2
S þ SS0g; ð21Þ

GT
k
abc0d0 ¼ i

8π2ζ2k
fHT

k
abc0d0 þ VT

0
abc0d0 logM2

T þ ST0
abc0d0 g;

ð22Þ

G̃ab0
k ¼ i

8π2ζ2k
fH̃ab0

k þ Ṽ0
ab0 log M̃2 þ S̃0

ab0 g: ð23Þ

The terms VT
0 , V

S
0 , and Ṽ0 arising from Eqs. (18)–(20) can

be computed from Eq. (14) and are given by [63,64]

VS
0 ¼

1

2
ðk2 − 2ΛkÞ −

1

12
R; ð24Þ

VT
0ab

cd ¼ 1

2

�
k2 − 2Λk þ

1

3
R̄

�
Kab

cd

þ 1

2

�
Pab

cd −
1

2
ḡcdPabe

e

�
; ð25Þ

Ṽ0
ab ¼ −

1

12
ḡabR̄þ 1

2
ðk2ḡab − R̄abÞ: ð26Þ

VII. UNIVERSAL TERMS AND STATE
DEPENDENCE

The RG equations (15) depend on the choice of a state.
This is the main difficulty in applying the Lorentzian RG
equations, in comparison with their Euclidean counterpart.
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In particular, Hadamard states for the graviton are not
known in general spacetimes but only in specific geometries
[65–71]. The construction of a Hadamard vacuum state for
the graviton is well beyond the scope of this short note. Thus,
here we take into account only universal contributions to the
evolution equations, that are present in any Hadamard state
and in all backgrounds. The evaluation of state-dependent
contributions is possible only selecting a class of back-
grounds, and it will be addressed in future works.
To solve the FRGE (15), we need to evaluate S0 ¼

fSS0; ST0 ; S̃0g and M2
S, M

2
T , and M̃2. First of all, the smooth

functions S0 vanish in the flat space limit [66,72].
Moreover, any k-independent term can be removed by a
redefinition of the effective average action, while terms
proportional to the scale k can be removed by an appro-
priate choice of the renormalization ambiguities [41–43].
Since the remaining contributions are completely state
dependent, here we neglect S0.
On the other hand, while the specific expressions for the

functions M2
T , M

2
S, and M̃2 are state dependent, they must

be present in any Hadamard state. They are functions of
mass dimension 2, analytic in the physical parameters.
Moreover, the expression

V0 logM2 ð27Þ
must havewell defined limits for thevanishing of the running
cosmological constant, of the Ricci scalar, and of the scale
k → 0 independently, so that the interacting propagator (and
thus the RG flow) is well-defined also in flat or Ricci flat
spacetimes, or in the absence of the regulator. The only
dimension-2 term in the Hadamard expansion for the
interacting propagator is V0; we, thus, choose

M2
S ¼ VS

0; M2
T ¼ VT

0ab
cdIabcd; M̃2 ¼ Ṽ0

abḡab: ð28Þ
These choices completely fix WS

0 , W
T
0 , and W̃0, and,

thus, they fix a vacuumlike state through the Hadamard
recursion relations. In the case of the scalar field, this
choice coincides with the Minkowski vacuum state [26].
The last term to be fixed is the arbitrary mass μ. Contrary

to the mass terms M2
T , M

2
S, and M̃2, depending on the

choice of the state, this term is actually an arbitrary mass
contribution coming from the choice of the Hadamard
parametrix. Thus, we are free to choose a running
Hadamard mass μ2 ¼ k2, adjusting the UV regularization
to the renormalization scale k.
With these choices, the FRGE (15) is written in terms of

state-independent, universal quantities. Of course, state-
dependent terms in specific backgrounds can significantly
alter the FRGE.

VIII. PHASE DIAGRAM

We can now compute the β functions for the dimensionless
constants gk and λk, related to the dimensionful running
Newton’s and cosmological constants by canonical rescalings:

ð32πζ2kÞ−1 ¼ Gk ¼ k−2gk; Λk ¼ k2λk:

Substituting the values for the V0 coefficients, Eqs. (24)–
(26), the mass functions Eq. (28), and setting the smooth
contributions S0 to 0 in the RG flow (15), we get a flow
equation for the EAAwritten in terms of the Ricci scalar R̄
and the coupling constants ζ2k and Λk. Notice that, thanks to
the truncation, the rhs of Eq. (15) depends on spacetime
points only through the cutoff function f, and the trace is a
simple trace over Lorentz and field indices. Thus, the
functional derivatives on both sides of Eq. (15), with
respect to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
and with respect to R̄ at vanishing

background fields, give the zeroth and first order in the
Ricci scalar expansion, resulting in the evolution equations
for ζ2kΛk and ζ2k, respectively. The evolution equations are
proportional to f, and we can take the adiabatic limit f ¼ 1
over the whole spacetime M. Substituting the dimension-
less coupling constants then give the β functions for the
dimensionless couplings gk and λk:

k∂kgk ¼ ðηN þ 2Þgk; ð29Þ

k∂kλk ¼ −ð2− ηNÞλk þ
gk
4π

ð2− ηNÞ
�
4 log4þ ð1− 2λkÞ

×
�
8 log½4ð1− 2λkÞ� þ log

�
1

2
ð1− 2λkÞ

���
; ð30Þ

in terms of the anomalous dimension ηN ≔ G−1
k k∂kGk:

ηNðgk; λkÞ ¼
gk
6π

27 logð1− 2λkÞ þ 7þ 37 log2
1þ gk

12π ð37 log2þ 27 logð1− 2λkÞÞ
: ð31Þ

The β functions Eqs. (29) and (30) can now be numeri-
cally integrated, producing the phase diagram in Fig. 1.

FIG. 1. Phase diagram obtained by numerical integration of
the β functions (29) and (30). The solid line is the separatrix,
connecting the non-Gaussian fixed point (circle) to the Gaussian
one (square); the dashed line denotes the locus where ηN diverges.
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The resulting phase diagram shares many similarities
with its Euclidean counterpat, first obtained in Ref. [73].
The flow exhibits one nontrivial fixed point for
g� ¼ 1.15; λ� ¼ 0.42, realizing the analog of the Reuter
fixed point in Lorentzian spacetimes. The critical coeffi-
cients for the Lorentzian fixed point are a pair of complex
conjugate values, θ1;2 ¼ 5.11� 11.59i; therefore, λk and gk
are two relevant directions, agreeing again with Euclidean
results. These values can be compared to those obtained in
the ADM formalism in Ref. [21] that are ðgADM� ; λADM� Þ ¼
ð0.21; 0.3Þ and θADM1;2 ¼ 0.94� 3.1i. The Euclidean values
are [74] ðgE� ; λE� Þ ¼ ð0.34; 0.3Þ and θE1;2 ¼ 1.55� 3.83i.
While the numerical values are roughly of the same order
of magnitude, their difference is expected from the different
spacetime signatures (Lorentzian versus Euclidean), choice
of regulators (local versus nonlocal), and computational
technique (Hadamard expansion scheme versus heat kernel
techniques).
In the ADM formalism in Ref. [21], the interacting

propagator is computed from a resummation of Matsubara
frequencies in the compact time direction. The difference
between the ADM-based formalism and the covariant
formalism presented here should lie in different reference
states ω. In fact, the smooth contributions W selecting
a Hadamard state are related to the choice of positive
frequencies along a selected timedirection. The resummation
of Matsubara frequencies suggests that the computation in
Ref. [21] is performed with respect to a thermal Kubo-
Martin-Schwinger (KMS) state at finite inverse temperature
β ¼ k. The computation presented here instead captures
universal contributions to theRG flow, that are present in any
state and in any background. The similarity between the two
phase diagrams suggests that the choice of a thermal state can
alter the precise values of the coupling constants at the fixed
point and the critical exponents, but it leaves unaltered the
existence and qualitative features of the fixed point.
The detailed connection between the two formalisms will

be performed in future works, to highlight state and back-
grounddependence of theRG flow inLorentzian spacetimes.
However, the qualitative picture of a non-Gaussian fixed
point in the positive quadrantwith critical exponents arises in
all cases. The fixed point ðg�; λ�Þ, thus, provides a realization
of the AS scenario in Lorentzian spacetimes.

IX. CONCLUSIONS

The novel RG framework allows for the investigation
of Lorentzian flows in a nonperturbative regime for gravity.
In this note, we have seen that the contribution of universal,
background-independent terms in the flow of the Einstein-
Hilbert truncation supports the evidence that gravity is non-
perturbatively renormalizable also in the Lorentzian case.

To preserve background independence, we have
restricted our attention to contributions to the flow coming
only from universal terms. The important question now is if
the nontrivial fixed point persists when state-dependent
terms are taken into account. The investigation of state-
dependent terms, however, requires one to select a back-
ground. The Lorentzian FRGE (15) then allows for a
systematic investigation of these state-dependent contribu-
tions in specific background geometries.
The RG flow state dependence can also be put in contact

with the different runnings of the coupling constants in
the effective field theory approach to quantum gravity [75].
In fact, Newton’s constant and the cosmological constant
have different scalings in different scattering processes.
Since the Lorentzian RG flow is state dependent, it is
possible to study the flow of couplings in different states
nonperturbatively.
The new formalism is tailored to Lorentzian spacetimes.

The Hadamard expansion allows for quick generalizations
to more advanced truncations. Universal terms, in particu-
lar, can be easily computed from the V0 and Ṽ0 terms in
the Hadamard expansion in terms of the EAA thanks to
Eq. (14). The use of a local regulator and the Hadamard
expansion of the interacting propagator allow for a rela-
tively simple computation scheme for the contributions to
the FRGE, preserving general covariance.
The main novel result is that, in all backgrounds and for

all Hadamard states, universal contributions are sufficient
to identify a nontrivial fixed point in the RG flow, thus
providing a universal mechanism for asymptotic safety in
quantum gravity, at least in the Einstein-Hilbert truncation.
The result is of particular relevance in a Lorentzian context,
where there is an infinite family of interacting propagators
for any given effective average action, indexed by a smooth
function. Whether the choice of specific backgrounds
and states can significantly alter this mechanism will be
addressed in future works.
Finally, while the EAA is a gauge-dependent quantity,

gauge-invariant relational observables have been already
studied in the context of locally covariant QG [76–79] and
in Euclidean fRG flows [80]. In future works, we plan to
investigate the RG flow of gauge-invariant observables in
Lorentzian quantum gravity.
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