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We show that the d’Alembertian operator with a possible mass term in the anti–de Sitter (AdS) soliton
and more general confining gravity dual backgrounds admits infinitely many different spectra. These can
be interpreted as different theories in the infrared and correspond to multitrace deformations of either the
Dirichlet or the Neumann theory. We prove that all these fluctuations are normalizable and provide
examples of their spectra. Therefore, the AdS soliton can be interpreted as giving a holographic
Renormalization Group flow between a universal UV theory at the AdS boundary and these infinitely
many possibilities in the IR, obtained by deformations. The massive spectrum of the double trace
deformation in AdS5 allows the matching of the large-N glueball masses of lattice QCD3; the ratio of the
ground states of the 2þþ and 0þþ channels are in full agreement with the lattice prediction. When
considering AdS7 and the four-dimensional pure glue theory, a remarkably general picture emerges, where
we can write formulas for the fluctuations that are in agreement with ones from holographic high-energy
scattering and from AdS=CFT with IR and UV cutoff. We point out that this log branch in the IR in D
dimensions can be seen as the usual logarithmic branch of scalar fields saturating the Breitenlohner-
Freedman bound in a conformally rescaled metric, with AdSD−1 × S1 asymptotics.

DOI: 10.1103/PhysRevD.109.066011

I. INTRODUCTION AND DISCUSSION

Holography, in AdS=CFT and gauge/gravity duality,
identifies the quantum states of supergravity in the bulk
and those of the corresponding quantum field theory (QFT)
on the boundary. These quantum states are required to be
normalizable to belong to the relevant Hilbert spaces, hence
normalizable modes of the supergravity fields are identified
with the nonperturbative states in the QFT. However, a field
can be logarithmically divergent and normalizable. The
main objective of this letter is to analyze the rich physics
that this logarithmic branch brings in.
Another, related, point we study is the generality of some

simple formulas for the glueball spectra arising from
gravity duals of QCD3 (or rather, pure glue, YM3) and
QCD4 (YM4). The Witten model [1] for finite temperature
AdS=CFT, arising from a certainM → ∞ scaling of a black
hole in AdSD, can be written in Euclidean space as

ds2 ¼ r2

l2

h
dτ2FðrÞ þ dx⃗2ðD−2Þ

i
þ l2

dr2

r2FðrÞ

FðrÞ ¼ 1 −
rD−1
0

rD−1 ; ð1:1Þ

and forD ¼ 5 (AdS5), can be also obtained, oncewe add an
extra S5, as the near-horizon near-extremal D3-branemetric.
If we compactify and reduce on the “Euclidean time” τ, we
get a model dual to pure glue in three dimensions, which we
call QCD3. On the other hand, if we consider near-horizon
near-extremal D4-branes in Euclidean time, with

ds2 ¼
�
U
l

�
3=2�

FðUÞdτ2 þ dx⃗2ð4Þ
�

þ
�
l
U

�
3=2

�
dU2

FðUÞ þU2dΩ2
4

�

¼ 8
ρ

l

�
ρ2

l2
ðFðρÞdτ2 þ dx⃗2ð4ÞÞ þ l2

�
dρ2

ρ2FðρÞ þ dΩ2
4

��
;

ð1:2Þ
where ρ ¼ ðlUÞ1=2=2 and FðUÞ ¼ 1 −U3

0=U
3, so is con-

formal to asymptotically AdS6 × S4 (though, of course,
the presence of the nontrivial, U-dependent dilaton
eϕ−ϕ0 ¼ ðU=lÞ3=4 means that the solution itself does not
haveAdS6 symmetries), and if we compactify and reduce on
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τwe get a model dual to pure glue in four dimensions, which
we call QCD4 (or YM4), which was expanded by the
introduction of D8-branes by Sakai and Sugimoto [2,3].
In both of thesemodels, as well as in other holographicQCD
constructions forN ¼ 1SYM4 [4–6] andN ¼ 1SYM3 [7],
the metric in the IR is smooth, and locally equivalent to flat
space, while in the UV it asymptotes to AdS space, perhaps
log corrected [4,5] or with an equivalent nontrivial dilaton
[6,7], as needed for gravity duals of QCD-like theories (see,
for instance, chapter 21 of [8] for more details). A simpler
model for QCD is the “hard-wall” model [9], where
AdS space is cut off in the IR, while the Randall-
Sundrum model [10,11] can also be understood as
AdS=CFT with an extra UV cutoff, besides the IR cutoff.
In all of these cases, the d’Alembertian operator □ in the
gravity dual, corresponding to glueball spectra, reduces to a
one-dimensional Schrödinger problem, and we will see that
there are universal features, namely model independent, and
how they reflect on the modes.
First, we will study a real scalar field in a general

confining background. The discussion is quite generic,
showing that always there is a solution with a logarithmic
branch in the IR. Second, using the standard Klein-Gordon
norm, we show that a scalar field with a logarithmic branch
in the IR is indeed normalizable. Third, we show how to
renormalize the action in the infrared and show how the
logarithmic branch allows a holographic interpretation as a
multi-trace deformation of the dual theory in the IR. Then
we provide the spectra of several boundary conditions and
we point out the relation of the log branch with that of a
scalar field saturating the Breitenlohner-Freedman bound in
AdSD−1 × S1. Finally, we consider the generic behavior of
the UV and IR modes, from which we derive formulas for
the mass spectrum that fit well the (lattice numerics) data,
and show that they are compatible both with the Kaluza-
Klein (KK) modes of the Randall-Sundrum model [10,11],
reinterpreted through AdS=CFT, and with the spectrum
derived from scattering of hadrons at high energy, via the
Polchinski-Strassler scenario in the hard-wall model [9],
found and argued to be asymptotically exact in [12–15].
The paper is organized as follows. In Sec. II we describe

the IR logarithmic branch, its normalizability and its
connection with the UV in AdSD−1 × S1, in Sec. III we
study applications to QCD3 and QCD4 models, with several
numerical results and explicit details. Below, in the tables
and plots of this work we give the masses in units of 1=z0.

II. A LOGARITHMIC BRANCH IN THE IR

We consider the following gravity dual background, of
which we see that the “Witten model,” or “AdS soliton,” is
an example,1

ds2 ¼ l2

z2

�
FðzÞdθ2 þ dz2

FðzÞ þ γabdxadxb
�
; ð2:1Þ

where γab is a Lorentzian metric independent of z and l is
the AdS radius, z ¼ l2=r in (1.1), and xa ¼ ðt; x⃗Þ. We take
z∈ ½0; z0�. At the UVend point, Fð0Þ ¼ 1, and at the IR end
point, Fðz0Þ ¼ 0. Both are simple zeros of F and the
function is otherwise positive. An important example in D
dimensions is F ¼ 1 − ðz=z0ÞD−1 and γab ¼ ηab is the
Minkowski metric, which is the well-known Witten model
or AdS soliton [17]. It satisfies the Einstein equations with

a negative cosmological constant Rμν ¼ − ðD−1Þ
l2 gμν and θ

parametrizes a circle that has no conical singularities
when θ∈ ½0; θ0�. Other interesting and simple examples
are the supersymmetric solitons of [18], which have F ¼
1 − ðz=z0Þ4, for D ¼ 4, F ¼ 1 − ðz=z0Þ6, for D ¼ 5 and
γab ¼ ηab. Our discussion below on the existence and
normalizability of the logarithmic mode in the IR depends
only on the form of the metric in the neighborhood of z0.
Pick a real scalar field in this background with the

standard, Lorentzian action

Sϕ¼−
1

2

Z
z0

0

dz
Z

θ0

0

dθ
Z

dD−2x
ffiffiffiffiffiffi
−g

p �ð∂ϕÞ2þm2ϕ2
�þS∂;

ð2:2Þ

where we include possible boundary terms, S∂, which will
render the action principle well defined. The novelty is that
S∂ arises in the IR; in the UV, we assume that the standard
considerations apply, see the review [19] and references
therein. Let us remark that in the IR, the procedure is not
completely new: in the context of AdS=CFT in Minkowski
space at finite temperature, Son and Starinets [20] proposed
to write boundary terms both in the UVand IR, and further
Iqbal and Liu [21] used a similar procedure to calculate
transport coefficients at the horizon via the membrane
paradigm; this became a standard tool in AdS=CMT, see
the review [22] and the book [23] for more details. The
wave equation is □gϕ −m2ϕ ¼ 0, when evaluated in (2.1)
with the Frobenius ansatz ϕ ¼ ðz0 − zÞΔΦMðt; x⃗Þ cosðpθÞ
and □γΦM −M2ΦM ¼ 0 yields Δ ¼ �pc−10 under the
assumption that the metric and the scalar field potential
admits a Taylor series around z0 of the form FðzÞ ¼
c0ðz0 − zÞ þOðz0 − zÞ2. It follows that when p ¼ 0 there
is a logarithmic branch. This is the case of our interest.
Hence, in what follows we restrict our study to p ¼ 0 and
the following expansion of the scalar field in the IR:

ϕi ¼ αiðt; x⃗Þ
X∞
n¼0

an

�
1 −

z
z0

�
n
þ βiðt; x⃗Þ ln

�
1 −

z
z0

�

×
X∞
n¼0

bn

�
1 −

z
z0

�
n
; ð2:3Þ1The condition for such a background to be dual to a confining

theory can be found from [16].
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where we fix the redundancy in the parametrization setting
a0 ¼ b0 ¼ 1. Moreover, this logarithmic branch is generic
for all solitons, in all theories, in all dimensions provided
that the background admits this expansion; for several
examples see Refs. [18,24–29].
The Klein-Gordon current in D dimensions is Jμ ¼

−iðϕ�
1∂μϕ2 − ϕ2∂μϕ

�
1Þ, where ϕi are two different solutions

to the Klein-Gordon equation. For a detailed discussion of
normalizability in AdS=CFT, see, for instance, [30]. Let us
prove that the logarithmic mode is normalizable with this
norm.2 To do this we first show that it is possible to define a
conserved and finite norm from Jμ independently of z
including the logarithmic branch. To pass from the current
to the norm it is useful to note that, because the fluctuation
of interest is independent of θ, Jθ ¼ 0, and
Z

z0

0

dz
ffiffiffiffiffiffi
−g

p ∇zðJzÞ ¼ Jzgzz
ffiffiffiffiffiffi
−g

p 				
z0

0

¼ ic0ðβ2α�1 − β�1α2Þ
lD−2

zD−2
0

− UV: ð2:4Þ

We suppose that the UV term vanishes as the fluctuations
are normalizable there. The IR term vanishes with Dirichlet
boundary conditions α ¼ 0, Neumann boundary conditions
β ¼ 0, or double trace boundary conditions β ¼ λα. We
will justify the denomination “double-trace” below. With
these IR conditions the constant time integral of ∇μJμ ¼ 0

yields a conserved norm

0 ¼
Z

dzdD−3x
ffiffiffiffiffiffi
−g

p ∇μJμ ¼
d
dt

Z
dzdD−3xgttJt

ffiffiffiffiffiffi
−g

p
:

ð2:5Þ
We note that for black holes (in Lorentzian signature) gtt

(∝ FðzÞ−1) is singular around FðzÞ ¼ 0, whereas for sol-
itons (¼ z2=l2) it is regular in the IR,which allows for a finite
result. Therefore, the z integrals are manifestly finite in the
IR, as follows from the expansion (2.3). Also note that, while
scalars of interest might be real, the standard prescription for
the KK soliton (here AdS soliton), as in [17,18,31], allows
for discarding a part of the scalar field (with negative
energy), and thus keeping a complex part.
In order to define a standard QFT, the states with positive

energy should have positive norm. It should be clear from
the previous discussion that a solution with a well-defined
mass ϕ ¼ ΦMðt; x⃗ÞXMðzÞ has a positive norm whenever
they have a positive energy, ∂tΦM ¼ −iωΦM. Indeed, in
this case the conserved norm (2.5) reduces to the standard
Klein-Gordon norm in flat space for ΦM times a manifestly
positive integral,

NM ≡ −
Z

z0

0

dz
ffiffiffiffiffiffi
−g

p
gttXMðzÞ2 > 0: ð2:6Þ

The variation of the action (2.2) with these new boundary
conditions gets a contribution in the IR. Hence, counter-
terms need to be included there, a divergent and a finite one,

S∂ ¼ −4π
lD−2

zD−2
0

Z
dD−2x

ffiffiffiffiffiffi
−γ

p �
β2

2
ln ϵþ SF

�
; ð2:7Þ

where ϵ is an IR regulator defined as z ¼ z0 − ϵz0, such that
the IR is located at ϵ ¼ 0, and SF is a finite counterterm that
one can add and that changes the IR theory, where we can
have, for instance,

SF¼0⇒ δSϕ¼4π
lD−2

zD−2
0

Z
dD−2x

ffiffiffiffiffiffi
−γ

p
βδα;

SF¼αβ⇒ δSϕ¼−4π
lD−2

zD−2
0

Z
dD−2x

ffiffiffiffiffiffi
−γ

p
αδβ;

SF¼
β2

2λ
⇒ δSϕ¼4π

lD−2

zD−2
0

Z
dD−2x

ffiffiffiffiffiffi
−γ

p
βðδα−δβ=λÞ

≡4π
lD−2

zD−2
0

Z
dD−2x

ffiffiffiffiffiffi
−γ

p
βδJβ;

SF¼αβ−
λα2

2
⇒ δSϕ¼−4π

lD−2

zD−2
0

Z
dD−2x

ffiffiffiffiffiffi
−γ

p
αðδβ−λδαÞ

≡−4π
lD−2

zD−2
0

Z
dD−2x

ffiffiffiffiffiffi
−γ

p
αδJα; ð2:8Þ

where Jβ ¼ α − β
λ and Jα ¼ β − λα are generalized sources

and λ is a constant. As the renormalized action is finite, one
should consider λ as a renormalized coupling constant. One
can see that the possibilities in the last two cases, with
SF ¼ SFðλÞ, are double trace deformations of the dual
theory in the IR, in the sense of [32].
It is interesting to note that, for the third case in (2.8),

with source Jβ ¼ α − λ−1β and deformation SF ¼ λ−1β2=2,
the coupling constants are related by 1

λ þ ln ϵ ¼ 1
λ0
, where λ0

is the bare coupling constant. Let us set ϵ ¼ μ
Λ, with

Λ ≫ μ,3 then one can recover the typical relation between
the renormalized coupling and the bare coupling in a theory
with a beta function running only at one loop,

λ ¼ λ0
1þ λ0 ln

Λ
μ

: ð2:9Þ

This discussion is the same as the one given in [32],
giving the same (2.9), but there in the UV. However, in [32],

2This is the norm that is finite and conserved in time for
solutions with arbitrary time dependence of the wave equation;
otherwise other norms could be imagined. We thank Carlos
Núñez for a discussion on this point.

3In this language it is natural to think of the IR scale of the
theory asΛ ¼ z0 and the renormalization scale as μ ¼ z0 − zwith
fixed z.
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λ is in the numerator of SF andΛ is a UV cutoff. Here λ is in
the denominator of the deformation SF, and we have an IR
cutoff, which is ΛQCD in this holographic context, so
it is natural to replace 1=ϵ ¼ Λ=μ and λ ¼ λðΛÞ with
1=ϵ ¼ μ=ΛQCD and λ ¼ λðμÞ, as noted. The fact that the
coupling constant appears in the denominator of SF makes
it natural to identify λ ¼ �g2QFT, where g

2
QFT is the standard

coupling constant of a non-Abelian gauge theory, with the
beta function

μ
∂gQFT
∂μ

¼ −
�1

2
g3QFT: ð2:10Þ

It is not completely clear what is the exact interpretation
of the formula (2.9) in field theory, though one possible
interpretation would be that there is an effective quantum
IR description, according to the rules above, which is one-
loop exact (since presumably, higher loop corrections
would modify the formula).
In conclusion, we replace an UV renormalization with an

IR renormalization, which at one loop still looks formally
the same. In these double trace deformations, (both Jβ ¼ 0

and Jα ¼ 0 imply that) we have α ¼ λ−1β, as an on-shell
relation (at zero source). We notice that the behavior is that
of asymptotic freedom in the IR for λ > 0 and the theory is
strongly coupled in the IR for λ < 0. We have chosen
our conventions such that the sign of λ indicates the sign of
the contribution to the energy. Hence, the behavior of the
fluctuations with positive or negative λ should be very
different. This will be shown to be the case in what follows.

A. Conformal relation to AdSD − 1 × S1

The IR structure we propose here is analogous to what
happens at the usual AdS boundary. Therefore, one might
wonder whether the IR is related to a geometry with an AdS
factor. This is indeed the case, as we will show below.
Furthermore, we will see how to map the dynamics of the
fluctuations in one metric to the other in the neighborhood
of z ¼ z0.
First, note that the conformally rescaled metric (2.1),

ds2AdSD−1×S1
¼ ds2g
FðzÞ¼

l2

z2

�
dθ2þ dz2

FðzÞ2þ
1

FðzÞγabdx
adxb

�
;

ð2:11Þ

is asymptotically AdSD−1 × S1. This can be easily
seen by going to the neighborhood of z ¼ z0, setting
FðzÞ ¼ c0ðz0 − zÞ, and changing the coordinates as

z ¼ −
1

4
c0Z2 þ z0; ð2:12Þ

which shows that (2.11) is asymptotically AdSD−1 × S1

around Z ¼ 0. The radius of this new AdSD−1 is L ¼ 2l
z0c0

,

which is also the radius of the S1. Hence, we find that when
FðzÞ ¼ c0ðz0 − zÞ we have

ds2AdSD−1×S1
≃ L2dθ̃2 þ L2

Z2

�
dZ2 þ γabdxadxb

�
; ð2:13Þ

with θ̃∈ ½0; 2πÞ. For fluctuations independent of the angle θ
or equivalently of θ̃, we find that

FðzÞ2−D4 �□AdSD−1×S1ψ − μ2ψ
�
− FðzÞ�□gϕ −m2ϕ

�
¼ Oðz0 − zÞ; ð2:14Þ

provided that ψ ¼ ϕFðzÞD−2
4 , and that the mass of

the fluctuation ψ in the conformally rescaled metric
saturates the Breitenlohner-Freedman bound in that space,

μ2 ¼ − ðD−2Þ2
4L2 .4 This observation seems interesting, since it

might help to export holographic techniques and concepts
to other space-times. In particular, in this case we see that
the log branch we have discussed so far is, asymptotically,
the usual logarithmic branch of a scalar field saturating the
Breithenloner-Freedman bound in AdSD−1 × S1.
This discussion is instructive to see that from the point of

view of the AdSD−1 × S1, the α and β of (2.3) have the same
conformal dimension, Δ, corresponding to a scalar field
saturating the Breithenloner-Freedman bound, ψ , namely
Δ ¼ D−2

2
. From the point of view of the original metric, and

scalar field ϕ ¼ ψZ−D−2
2 , it follows that α and β are invariant

under rescaling in Z. Therefore the deformations discussed
above, (2.8), can be thought of as relevant, with Z as the
energy scale. Then a particular IR theory corresponds to a
particular value for these α and β.

III. APPLICATIONS

A. Massless modes and validity of the probe limit

Our previous discussion has been rather general; now we
pass to discuss concrete theories. The first important issue
would be whether these modes can be treated as probes on a
geometry as they can potentially deform it due to its
logarithmic IR behavior. This turns out to be intrinsically
related to the existence of a possible massless mode for
certain deformations. It is relatively simple to construct
such mode in the case of the AdS soliton for a scalar
field of the form □Φ ¼ 0, the massless mode is
Φ ¼ Φ0ðt; x⃗Þ ln ð1 − ð zz0ÞD−1Þ, with ηab∂a∂bΦ0 ¼ 0. This
mode is indeed normalizable, since the norm NM ¼ N0

satisfies

N0 ≤ ζð3Þ; ð3:1Þ

4Note that in (2.14) the m2 term becomes subleading in this IR
region of the original metric, and instead of it, we now have μ2,
leading in (the UV of) AdSD−1 × S1.

ANDRÉS ANABALÓN and HORATIU NASTASE PHYS. REV. D 109, 066011 (2024)

066011-4



with ζ the Riemann zeta function and equality saturated for
D ¼ 3. This massless mode has IR boundary conditions
α ¼ β lnðD − 1Þ. However, whenever this massless mode
exists there is also a zero mode that changes the geometry.
The most general static solutions of the Einstein-massless
scalar system with a cosmological constant are the naked
singularities found in [33]. When the scalar field is normal-
izable in the UV, all these solutions have the IR boundary
conditions α ¼ β lnðD − 1Þ.5 These pathological cases are
therefore excluded if the boundary condition of the gravity
theory is such that λ−1 ≠ lnðD − 1Þ. Hence, when the probe
limit is valid these new IR boundary conditions exclude
massless modes on the brane.6 This can be understood as a
no-hair theorem for massless scalar fields in AdS. Namely,
in the Einstein-massless Klein Gordon-AdS system the only
solution that is normalizable in the UV satisfies α ¼
β lnðD − 1Þ in the IR. Therefore if the case α ¼ β lnðD − 1Þ
is excluded, the only static solution is that of pure general
relativity with cosmological constant. Hence, the probe
limit is valid provided on-shell the scalar field satisfies
λ−1 ≠ lnðD − 1Þ and is normalizable in the UV.

B. QCD3

Further insight can be gained by going to a concrete
dimension. Let us focus on D ¼ 5 and type IIB super-
gravity. The deformation has α ¼ λ−1β. In this case the
massless scalar field can be identified with the dilaton of
string theory. The glueballs dual to the operator TrF2

μν are
in the 0þþ channel. A remarkable qualitative feature of the
spectra of the new boundary conditions is that the 2þþ
spectrum (given by the β ¼ 0 column of Table I, or
λ−1 ¼ �∞) is no longer degenerate with that of the 0þþ
one generated by the dilaton. This is rather desirable, since
to break this degeneracy was an open problem, in the
attempts to describe the glueball spectrum of QCD with
holographic techniques. Furthermore, the lightest glueball
in the 0þþ channel can be seen as arising from the dilaton
(previously it was from the metric, see Ref. [35]). The
double trace deformation allows us to pick λ, in order to
match the mass ratio of the ground states of some arbitrary
desired channel. For instance, in the large N limit, lattice
QCD3 predicts a ratio for the ground states M2þþ=M0þþ ≈
1.68 [36]. This is exactly reproduced in the gravity side
with a ground state of M2

0þþ ≈ 4.1=z20; namely λ ≈ e. In
other words, choosing the background (with a given l and
z0), fixes M2þþ , and fixing λ ≈ e then achieves the best fit.
This is, so far, the best quantitative matching of top-down

holography to lattice QCD in the literature,7 and is achieved
by a nontrivial choice of λ. This is a rather unexpected
result as lattice QCD calculations are at weak t’Hooft
coupling and the gravity result is at strong t’Hooft
coupling [40].8

In Fig. 1 we show how the value λ−1 ¼ ln 4 is the onset
of an instability characterized by the existence of tachyonic
glueballs in the region 0 < λ < 1

ln 4. The Neumann theory
(β ¼ 0) is located at limλ→0− M2. Remarkably enough, the
spectrum shows the property that M2

nðλ−1 ¼ −∞Þ ¼
M2

nþ1ðλ−1 ¼ ∞Þ for each eigenvalue labeled by n.

1. Conformal quantum mechanics

Conformal quantum mechanics is characterized by
a potential of the form 1=u2, see Ref. [42]. The
d’Alembertian operator in the AdS soliton background
can be seen to have this conformal behavior in the IR and in

the UV. If we replace the ansatz Φ ¼ e−iðωt−k⃗·x⃗Þ z3=2

FðzÞ1=4 ΨðuÞ
with dz

du ¼
ffiffiffiffiffiffiffiffiffiffi
FðzÞp

, in the wave equation □Φ ¼ 0 we get
(through the usual procedure) the one-dimensional
Schrödinger problem,

−
d2ΨðuÞ
du2

þ VðuÞΨðuÞ ¼ ðω2 − k2ÞΨðuÞ≡M2ΨðuÞ;

VðzÞ ¼ −z5=2FðzÞ1=4 d
dz

×

�
FðzÞ
z3

d
dz

�
z3=2

FðzÞ1=4
��

: ð3:2Þ

For the AdS soliton in five dimensions, one can actually
find the change of coordinates from z to u explicitly, from
dz=du. We have z ¼ z0 snðuz0 ; iÞ, which is the Jacobi elliptic
sine of modulus i. This means that the interval over which
the spacetime is defined is mapped as z∈ ð0; z0Þ →
u∈ ð0; z0KÞ, where K ≈ 1.31102 is the complete elliptic

TABLE I. Masses2 of the 0þþ glueballs from the dilaton in type
IIB supergravity. The β ¼ 0 column coincides with the numerics
available in the literature [35,41], the other spectra are given as
possible examples of the formalism developed here and are new.

Mass2 spectrum for different IR boundary conditions for QCD3

β ¼ 0 α ¼ 0 α ¼ 2β

11.5878 5.05077 3.76515
34.537 27.4248 26.6285
68.9753 60.424 59.5767
114.987 104.961 103.975

5To show this, one has to put the metric given in Eq. (13)
of [33] in the gauge where gxx ¼ gzz; gxx is the metric used in [33]
and gzz is our metric (2.1). This yields the change of coordinates

x ¼ b
2zD−1

0
−zD−1

zD−1 .
6The logarithmic branchwas previously excluded in its entirety,

without taking into account these subtleties; see, e.g., [34].

7See, for instance, [37,38]. Note also [39] for a top-down
construction for QCD4.8We thank Carlos Núñez for pointing out this important detail
to us.
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integral at modulus i. We observe the same power-law
behavior in the UV and the IR of VðuÞ, namely,

Vðu ≃ 0Þ ≈ 15

4u2
þOðu6Þ; ð3:3Þ

Vðu ≃ Kz0Þ ≈
−1

4ðu − Kz0Þ2
þ 4

z20
þO

�ðu − Kz0Þ2
�
: ð3:4Þ

The behavior around these two points is that of con-
formal quantum mechanics, but with different coupling
constants, namely 15=14 in the UVand −1=4 in the IR. The
value of −1=4 is the analog of the saturation of the
Breitenlohner-Freedman bound for the conformal quantum
mechanics describing the gravity dual by reduction to 0þ 1
dimensions, and generates the log branch in the IR. The IR
solution, using only the divergent part of the potential, is

Ψ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kz0−u

p 

C1J0ððu−Kz0ÞMÞþC2Y0ððu−Kz0ÞMÞ�;

ð3:5Þ

with J0 and Y0 the standard Bessel functions of degree zero.
The Neumann boundary condition sets C2 ¼ 0 (eliminating
the log-divergent mode Y0), and the UV boundary

condition, imposed assuming that the IR solution is valid
throughout, an approximation that could be questioned, but
will be justified a posteriori shortly, implies then the
quantization condition, giving the masses of the 0þþ
glueballs,

J0ðKz0MnÞ ¼ 0: ð3:6Þ

The matching of the exact numerical solution with
Dirichlet boundary condition to the IR solution (3.5), exact
for small argument of J0, is not too good, but for its zeros it
is quite good; the match to the Bessel function J3=2 is
actually almost perfect as we see in Fig. 2.
Note that in the UV, where the space is just AdS, we

have the same solution for Ψ, just replacing J0, Y0 with J2,
Y2 (and this corresponds to large argument for J2, Y2).
But since J2ðtÞþJ0ðtÞ¼ 2

t J1ðtÞ, Y2ðtÞ þ Y0ðtÞ ¼ 2
t Y1ðtÞ,

and at jtj → ∞, J3=2ðtÞ ≃ J1ðtÞþY1ðtÞffiffi
2

p ¼ t
2
ffiffi
2

p ðJ0ðtÞ þ Y0ðtÞ þ
J2ðtÞ þ Y0ðtÞÞ, this suggests that the average of the IR and
UV solutions, with the IR given by the sum of the constant
mode J0 and the log divergent, yet normalizable one, Y0,
provides a better fit to the exact numerical solution with
Neumann boundary conditions, whose zeros give the
quantization condition, replacing (3.6); thus the zeros of
J3=2, or J1 þ Y1 replace the zeros of J0.
We note that the application of the AdS5 soliton to the

holographic superconductor in [43] gave similar results to our
glueball spectrum, for the nontrivial deformation of the
conductivity σðωÞ by the analog of the λ deformation we
considered (see, for instance, their Fig. 3 for the behavior in
theUV), since 1=λ takes the role of the conductivity σ, andM2

ofω. The holographic superconductor is a scalar deformation
of the horizon (the IR theory), just that one usually calculates
transport coefficients in the UV; but via Iqbal and Liu’s
membrane paradigm [21], that is equivalent with an IR
calculation at the horizon under certain conditions.

C. AdS7 and four-dimensional pure glue theory

In this case the fluctuations of the different supergravity
fields have to be combined with other metric fluctuations to
yield the dual of the 0þþ glueball spectra of the pure glue
theory. However, by comparing with [35] we find that the
operator associated to T4ðrÞ in [35] is the same as that of
the d’Alembertian of the massless scalar. To make the
logarithmic branch relevant for the glueballs in this case,
one should verify that it is normalizable with the norm
associated to metric fluctuations. Hence, we study this
scalar fluctuation, normalizable with respect to the Klein-
Gordon norm, but we postpone its connection to glueballs
for a future work. Here the relevant background is the
soliton in AdS7 × S4, corresponding to near-horizon
near-extremal M5-branes, after we compactify two direc-
tions to get effectively D ¼ 4 on the boundary, and thus
obtaining the four-dimensional pure glue (QCD4) theory.

FIG. 1. M2 vs λ−1 for the multitrace deformation α ¼ λ−1β for
QCD3. Glueball mass2 as a function of the inverse of the coupling
constant λ. The green line is λ−1 ¼ ln 4. For λ−1 > ln 4 there is a
tachyon. At limλ→0− M2 the Neumann theory is recovered. The
Dirichlet theory is located at λ−1 ¼ 0. We observe thatM2

nðλ−1 ¼
−∞Þ ¼ M2

nþ1ðλ−1 ¼ ∞Þ for each eigenvalue labeled by n. For
the ease of visualization of this property, we include the red line
which shows the matching of the asymptotic values of the lowest
eigenvalue.
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Equivalently, consider the Witten-Sakai-Sugimoto setup
(1.2), of near-horizon near-extremal D4-branes, with back-
ground metric conformal to AdS6 × S4. The discussion is
qualitatively the same. The spectrum can be found in
Table II, and Fig. 3 shows the masses2 and deformations
with λ.
For the solution of the □Φ ¼ 0, in a general dimension

D of the AdS soliton, we have the ansatz Φ ¼
e−iðωt−k⃗·x⃗Þ zðD−2Þ=2

FðzÞ1=4 ΨðuÞ, again with dz
du ¼

ffiffiffiffiffiffiffiffiffiffi
FðzÞp

, and for

the Schrödinger problem we get

VðzÞ ¼ −zD−2
2 FðzÞ1=4 d

dz

�
FðzÞ
zD−2

d
dz

�
z
D−2
2

FðzÞ1=4
��

; ð3:7Þ

FIG. 3. M2 vs λ−1 for the multitrace deformation α ¼ λ−1β for
the AdS soliton in D ¼ 7. The green line is λ ¼ ln 6. For λ−1 >
ln 6 there are tachyons. At λ−1 ¼ 0 the Neumann theory. We
observe again that M2

nðλ−1 ¼ −∞Þ ¼ M2
nþ1ðλ−1 ¼ ∞Þ for each

eigenvalue labeled by n. The red line eases the visualization of
this property.

TABLE II. Masses2 for the scalar fluctuations on the AdS
soliton in D ¼ 7, corresponding to four-dimensional pure-glue
theory. The β ¼ 0 column coincides with the numerics available
in the literature for the T4 in [35], the other spectra are new.

Mass2 spectrum for different IR boundary conditions for AdS7

β ¼ 0 α ¼ 0 α ¼ −β

22.1007 11.9994 14.5728
55.5851 45.5793 47.3567
102.452 90.9102 92.7819
162.708 149.552 151.554

50 100 150 200 250

–0.4

–0.2

0.2

0.4

0.6

0.8

1.0

FIG. 2. The numerical solution for the d’Alembertian operator on the AdS soliton in blue vs J3=2ðKMÞ in orange. One can see that the
zeros of both functions are in very good agreement. The x axis is M2.
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which gives the same IR potential (3.4), so the same IR
solution (3.5), but the UV potential is now Vðu ≃ 0Þ≈
DðD−2Þ

4u2 þOðu6Þ, so the UV solution is

Ψ ¼ ffiffiffi
u

p 

C1JD−1

2
ðuMÞ þ C2YD−1

2
ðuMÞ�: ð3:8Þ

In the case relevant here, ofD ¼ 7, weget the functions J3
and Y3 in the UV, instead of J2 and Y2 as in the QCD3

case. But since J3ðtÞ ¼ ð4=tÞJ2ðtÞ − J1ðtÞ, Y3ðtÞ ¼
ð4=tÞY2ðtÞ − Y1ðtÞ, at least at large t (large z0M), if we
take a combination of the IR andUVsolutions, again a linear
combination of the J1 and Y1 gives the correct quantization
condition.

D. Universal quantization relations

Wehave seen that the quantization conditions for themass
of theQCD3 glueballs were, in a first approximation, written
in terms of the zeros of J0, j0;n, as in (3.6). In a better
approximation, this was given by the zeros of J1, or rather of
J1 þ Y1. These Mns for glueball states were obtained from
the □ operator eigenstates in the AdS soliton, with an
essential contribution from the IR of the soliton solution.
But there are two other cases that result in masses for

glueball solutions. One is the case of high-energy hadron
scattering in the Polchinski-Strassler scenario, considered in
the limiting case that saturates the Froissart unitarity bound,
analyzed in [12–15]. There it was argued that the gravity
dual matches exactly the Heisenberg model for high-energy
scattering in field theory, when at sufficiently high energies
the scattering looks like a collision of gravitational shock
waves in the gravity dual, creating a black hole. In the
limiting (Froissart saturated) case, the gravity scattering
happens effectively on the IR cutoff (IR brane), and
produces a black hole entirely on this IR cutoff and
completely classical (with negligible fluctuations). The
gravitational shock wave profile in AdS with this IR cutoff
was calculated in [12] and found to be, at the IR cutoff
position y ¼ 0,

fðrÞ¼Φðr;y¼0Þ¼Rs

ffiffiffiffiffiffiffiffi
2πl
r

r X
n≥1

j−1=21;n J2ðj1;nÞ
a1;n

e−Mnr;

Mn¼
j1;n
l

; ð3:9Þ

whereMn are the glueball states, j1;n are the zeros of J1, l is
the AdS radius, andRs ∼G4

ffiffiffi
s

p
the Schwarzschild radius of

the shockwave collision. Thus, as usual, the states in the IR
dominate the high-energy scattering giving the Froissart
bound: keeping onlyM1, then the black hole horizon radius
rH is reachedwhen fðrÞ ∼ 1, giving a Froissart cross section
σðsÞ ∼ πr2H ∼ π

M2
1

ln2ð ffiffiffi
s

p
G4M1Þ [13].

So the glueball states in this case are given by the
quantization condition J1ðlMnÞ ¼ 0.

We can also obtain the glueball states by considering
the Randall-Sundrum model [10,11], understood as
AdS5=CFT4 with both an IR and an UV cutoff. Then the
solution for the graviton wave function at smallM is of the
J2 þ Y2 type,

ψ ¼ NMðjzj þ 1=kÞ1=2
�
Y2ðMðjzj þ 1=kÞÞ

þ 4k2

πM2
J2ðMðjzj þ 1=kÞÞ

�
; ð3:10Þ

where z ¼ �ðeky − 1Þ=k ≫ 1=k, k ¼ 1=l, and M=k ≪ 1,
and the IR brane is situated at a large z ¼ zc (and the UV
brane is at z ¼ 0). There is a zero mode wave function, the
massless graviton, obtained from the Y2 solution in a certain
M → 0 limit, and KK modes, all corresponding to states in
the boundary field theory. The quantization condition for
KKmodes (QFT states) is obtained by imposing a boundary
condition at zc, which amounts to

Y1ðtþaÞþ 4

π2a2
J1ðtþaÞ¼0; t¼Mjzcj;

a¼M=k¼Ml≪1; tþa¼Mnleyc=l; ð3:11Þ

so it is approximately again J1ðtÞ ¼ J1ðMnzcÞ ¼ 0, but
otherwise again involves both J1 and Y1. We note that both
of these cases give 0þþQFT states coming from the graviton
spectrum in the dual, and in the latter case there is also a
massless mode.
In conclusion, we can say that the most general quan-

tization condition is of the type

J1ðMnlKÞ þ cY1ðMnlKÞ ¼ 0; ð3:12Þ

for some constants K and c, and K can be absorbed in the
overall rescaling of Mn.

IV. CONCLUSIONS

In this paper we have considered the logarithmic (log-
divergent) branch of the d’Alembertian operator in AdS
soliton and related confining holographic backgrounds, we
have shown that it is normalizable, and it has the inter-
pretation of giving multitrace deformations of the theory,
but otherwise not changing the RG flow at the UV, which is
a universal flow between the UV theory and a fixed IR.
The one thing that does change is the glueball spectrum,

for which we can have different results, depending on the
deformation. We have considered the deformation with
α ¼ λ−1β, which we have found corresponds to a renorm-
alization of the same functional form as the one-loop non-
Abelian case (2.9), but now in the IR instead of the UV, and
we have found that we can use the parameter λ to lift the
degeneracy of the 0þþ and 2þþ spectra and match desired
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lattice data better than previous ones in the literature
for QCD3.
We have also found that we can express to a good degree

of accuracy the quantization conditions of the spectra
through a combination of the functions J1 and Y1, as in
(3.12), which matches both the results of spectra from
holographic high-energy hadron scattering in QCD, and of
spectra from the Randall-Sundrum model, understood as
AdS=CFT with UV and IR cutoffs.
The coupling constant that appears due to the IR

deformation, λ, is such that the eigenvalues seem to make
a continuous curve on a cylinder. This follows from the fact
thatM2

nðλ−1 ¼ −∞Þ ¼ M2
nþ1ðλ−1 ¼ ∞Þ, and therefore one

can identify these points.
The spectrum is free of tachyons provided that

the coupling of the deformation satisfies λ−1 < λ−1c . At
the onset of this instability there is a massless mode and the

probe limit is no longer valid. This seems to indicate that
the scale at which the confining gauge theories confine is
important, and that the value of the coupling constant there
can be constrained by purely theoretical reasoning.
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