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Building upon recent research in spin systems with nonlocal interactions, this study investigates operator
growth using the Krylov complexity in different nonlocal versions of the Ising model. We find that the
nonlocality results in a faster scrambling of the operator to all sites. While the saturation value of Krylov
complexity of local integrable and local chaotic theories differ by a significant margin, this difference is
much suppressed when nonlocal terms are introduced in both regimes. This results from the faster
scrambling of information in the presence of nonlocality. In addition, we investigate the behavior of level
statistics and spectral form factor as probes of quantum chaos to study the integrability breaking due to
nonlocal interactions. Our numerics indicate that in the nonlocal case, late time saturation of Krylov
complexity distinguishes between different underlying theories, while the early time complexity growth

distinguishes different degrees of nonlocality.
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I. INTRODUCTION

The study of operator growth using Krylov complexity
(also referred to as “K-complexity”’) has emerged as a
powerful framework for investigating the behavior of
quantum systems and their underlying dynamics [1-3].
K-complexity is a measure of the delocalization of a
local initial operator evolving under Heisenberg evolution
with respect to the Hamiltonian [1-5]. It is conjectured to
grow at most exponentially generically nonintegrable
systems [1]. This exponential growth of K-complexity
can be used to extract the Lyapunov exponent [I,2],
establishing a connection with out-of-time-ordered-corre-
lators (OTOC) [6,7]. Further studies have shown a relation
between K-complexity and chaos in context of various
models such as Ising models [8,9], Sachdev-Ye-Kitaev
(SYK) models [5,10,11], quantum field theories [12—17],
many-body localization system [18,19], and open quan-
tum systems [20-24].

Among different systems, of particular interest are the
so-called fast scramblers for which scrambling time is
logarithmic in the number of degrees of freedom. The
examples include black holes [6,25,26], conjectured
to be the fastest scramblers in nature, SYK [27] and other
related holographic models. The previous studies [28-31]
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suggest that local chaotic dynamics along with nonlocal
interactions are sufficient to give rise to the phenomena
termed as “fast scrambling.” These developments have
motivated the study of quantum information scrambling
in nonlocal systems [32,33] as well as experimental
proposal for probing fast scramblers with simpler
models [30-32,34].

In this study, we characterize the growth of K-complexity
in nonlocal systems. It has been established that
K-complexity can distinguish between the integrable
and chaotic regimes in local systems. To be precise, the
complexity growth rate and saturation value are known to
be significantly higher for chaotic systems as compared
to the integrable ones [3,8,9]. Here, we ask the question
of how these characteristics get modified once nonlocal
interactions are turned on within these regimes. While
chaotic systems with nonlocal interactions can exhibit fast
scrambling properties, the nonlocal terms in the otherwise
integrable cases are also expected to accelerate the operator
growth and therefore begs some investigation as to whether
the notions of local integrability and chaos remain dis-
tinguishable in the presence of nonlocality.

Apart from K-Complexity, we also study the two
widely used measures to probe chaos: Level statistics
(Appendix A 1) and spectral form factor (Appendix A 2).
The symmetry-reduced level statistics is known to exhibit
Poisson distribution for integrable regimes, while in chaotic
regimes, it shows the Wigner-Dyson distribution [35-37].
On the other hand, the spectral form factor (SFF) is found to
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exhibit an explicit dip-ramp-plateau behavior for chaotic
evolution in contrast to the integrable regime where higher
amount of fluctuations wash out the dip-ramp-plateau
behavior [38—40]." We study these quantities to compare
their behavior in the presence of nonlocal terms in the
Hamiltonian and analyse how the introduction of non-
locality changes their nature.

Our results indicate that with increasing degrees of
nonlocality, the integrable evolution becomes similar to
chaotic ones. We study the three diagnostics for character-
izing chaos for various models which indicates that non
locality apparently makes all regimes chaotic. However, a
closer look at the plots reveals that nonlocal terms with
local integrable operator evolution can still be distinguished
from nonlocal terms with local chaotic operator evolution
using K-complexity. Moreover, we also observe that the
increase in nonlocality is captured by the initial growth rate
of the K-complexity. To have a clearer understanding of
how nonlocality changes behavior of Krylov complexity,
we also study “mixed field” spin chains [33], where we
vary the degree of nonlocality and study how it increases
the slope of the Lanczos ascent.

The rest of the paper is structured as follows. In Sec. II,
we briefly review the notion of K-complexity, and it’s
characteristics for local Hamiltonians, discussing both
integrable and nonintegrable regimes. In Sec. III, we
introduce several nonlocal models and discuss distin-
guished features present in the K-complexity profiles.
Section III A consists of the numerical findings for non-
locality introduced to an otherwise local integrable and
chaotic version of the transverse field Ising model.
In Secs. IIIB and IIIC, we present the models and
numerics when we deal with varying degrees of non-
locality by tuning a parameter in transverse field Ising
model and XXZ spin chain respectively. Finally, we
conclude in Sec. IV discussing the implications of our
results. In the Appendix we study the remaining probes,
namely the level statistics and the spectral form factor for
both local and nonlocal models to be able to compare their
behavior with Krylov complexity.

II. REVIEW FOR LOCAL HAMILTONIANS

In this section, we briefly review Krylov complexity and
the features of operator growth for local Hamiltonians. As
part of our exploration, we will focus on how this behaves
within the context of the transverse-field Ising model,
considering both integrable and nonintegrable scenarios.
For our analysis, we will take the local Hamiltonian to be a
one-dimensional transverse-field Ising model with open
boundary conditions, which has the form,

"This might vary from model to model. In some cases, an
effective ramp appears, but it is not as evidently clear as it is for
chaotic ones.

N-1 N
S DL HET) St ) SL AT
=1

Jj=1 Jj=1

where g and / are the coupling parameters. When i = 0,
the Hamiltonian remains integrable for all values of g, as it
can be mapped to the free-fermionic model [41]. However,
when both g and & are nonzero, the system departs from
integrability. To investigate the integrable regime, we set
g = 1 and h = 0, while for the chaotic regime, we choose
g=—1.05 and 7 =0.5 [42]. The model has a parity
symmetry for all values of coupling parameters, and
additional Z-reflection symmetry when i = 0.

A. Operator dynamics in Krylov basis

We begin with a brief review of the operator dynamics
in Krylov space [1-3]. Consider the evolution of an
operator with seed O, at = 0 under the time-independent
Hamiltonian H. At any time ¢, the time-evolved operator
O(t) under Heisenberg evolution can be written as

O(l) = eiH’(’)oe_iH’ = ei['lOO = Z (l’;‘? ;CnOO (2)
n=0 :

where £ is Liouvillian superoperator, which satisfies
the relation £O = [H, O]. This motivates the definition
of Krylov space associated with the operator O as the
minimal subspace of operator space that contains
the time evolution of (O at all times. Therefore, the
Krylov space is obtained from repeated action of
Liouvillian £"O:

Ho = span{L" O},
=span{O, [H,O|,[H,[H,O]], ...} (3)

Once the Krylov space is obtained, an orthonormal
basis is then formed using a choice of inner product on
the operator space. This is achieved using the Lanczos
algorithm, an instance of the Gram-Schmidt process
[1,43]. For our purpose, we will use the infinite-
temperature inner product, also known as Frobenius
inner product:

(AIB) = S TIA'B)

Al = V(AJA),  (4)

where D = Tr[I] is the trace of the identity matrix of
appropriate dimension. In the orthonormal basis obtained
from Lanczos iteration, the Liouvillian takes a tridiagonal
form:
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where K is dimension of Krylov space, constrained to
1 <K < D?>-D +1 [3]. Equation (5) can be recast into
the following form,

‘C|OVL) = bn|0n—l) + bn+l|0n+l) (6)

We can expand the time-evolving operator in the Krylov
basis as:

K-1

0(0) =Y i"¢u(1)|0,) (7)

n=0

where ¢,(t) are time-dependent probability amplitudes
associated with the Krylov chain. The wave functions
satisfy the recursive differential equation, followed by the
Heisenberg equation, which takes the form

¢n<t) = bnd’n—l(t) - bn+l¢n+1(t) (8)

where ¢_;(1) =0 and ¢,(0) =3,. The unitarity of
operator evolution implies a normalization condition on
the probability amplitudes,

K—-1
Sl =1 9)
n=0

In Eq. (8), we can think of the Lanczos coefficients b,, as
the hopping amplitudes for the seed Oy, to traverse in the
Krylov Space and ¢, as the probability amplitude asso-
ciated with site n. The average position of the distribution
on the Krylov chain is called K-complexity and is given by

Ce(t) = S nlpu () (10)

n=0

We can also define the complexity operator [44],

K-1
K= nl0,)(0, (1)
n=0

which plays the role of the position operator in the Krylov
chain so that the Krylov complexity can be written as the
expectation value of the complexity operator
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FIG. 1. (a) The Lanczos-sequence for the TFIM Hamiltonian in
Eq. (1) computed for L = 7 spins with open boundary conditions
for fixed parity P = +1 in integrable and chaotic limits. (b) Kry-
lov complexity for TFIM Hamiltonian (1) computed for L =7
spins with open boundary conditions for fixed parity P = +1 in
Integrable and Chaotic limits. Outset: full-time range computed.
Inset: zoom in at early times.

Cx (1) = (O()[K|O(1)). (12)

To study K-complexity we will use open boundary
conditions and focus on a local operator O which respects
the parity symmetry and keeps the computation within the
chosen sector,

O=Si+ S5 i1 (13)

where i is chosen somewhere close to the center of the
chain.’ Figure 1 shows the Lanczos sequence b, and K-
complexity for TFIM Hamiltonian (1) computed for L = 7
for fixed parity P = +1 sector for the operator O = S3.
The study of Lanczos sequence and Krylov complexity
in integrable and chaotic limits have extensively been
done in previous studies for different systems [8,46—48].
The Lanczos coefficient features sublinear growth in the
integrable limit while linear growth in the chaotic limit,
followed by saturation, and the descent, while K-complexity
transitions from exponential growth at very early time to
linear increase followed by saturation [3,8]. The saturation
value of K-complexity is significantly large for local
chaotic evolution as compared to the local integrable
one. The suppressed complexity saturation of integrable
cases results from higher fluctuations in Lanczos coeffi-
cients during the descent phase. This fluctuating descent
period is dubbed as the Krylov localization.

The operator is chosen so that it respects the parity symmetry
(defined as in [45]) and keeps the computation within the chosen
sector. The results deduced in this work remains unchanged even
if 7 is varied in Eq. (13). However, as discussed in [8], the
behavior of K-complexity is controlled by the statistics of the
Hamiltonian spectrum and the structure of operator under
consideration. For example, if the chosen operator has spread
in all the sites from the beginning, the behavior of Krylov
complexity might change as there is no scope for scrambling.
Therefore, while the results can differ for an arbitrary seed
operator, the conclusions remain invariant for any operator that
respects the symmetries (parity here) of the Hamiltonian and has
support in small number of sites to begin with so that it has
enough scope to spread and scramble in the rest of the sites.
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III. NONLOCAL MODELS AND NUMERICAL
FINDINGS

In this section, we will study operator growth in nonlocal
systems. We compare the results with the local counterpart
to demonstrate the effect of nonlocality on these quantities.
For these Hamiltonians, it is, in general, expected that due
to nonlocal terms, the Liouvillian will also be nonlocal.
Now, since the notion of integrability is believed to be
closely related to locality [32,33], the evolution of the
operator under the nonlocal Liouvillian is expected to show
chaotic behavior even in the case when the local part of the
Hamiltonian is integrable. Therefore it is expected that the
nonlocal terms in the Hamiltonian will result in the loss of
its integrability.

We study two types of nonlocal terms in this paper:
(i) All-to-all couplings with the same interaction strength
which we call the nonlocal transverse field Ising model, and
(i1) All-to-all couplings with varying interaction strength,
where the coupling between two sites decay as a power of
the distance between the sites. We call this the transverse
mixed field Ising model and by tuning the power, we vary
the degree of nonlocality in this model.

A. Nonlocal transverse field Ising model

We consider the fast scrambling spin-1/2 Hamiltonian
introduced in [31],

H = Hioca — # 26?657 (14)

i<j

where o7 is the Pauli z operator acting on site i and ., is
Hamiltonian with only local interactions. In our study, we
will consider the local Hamiltonian as a one-dimensional
transverse-field Ising model with open boundary condi-
tions introduced in Sec. II. At this point, it is important
to emphasize the terminology used throughout this liter-
ature. We will later observe from the results of operator
growth as well as level-statistics and spectral form factor
(discussed in the Appendixes A1 and A 2), that non-
locality can break the integrability of the system. While
referring to a system whose local part of the Hamiltonian
in Eq. (14) is integrable, we will call it nonlocal integrable
Hamiltonian even though nonlocality breaks integrability,
and the model is no longer integrable.

We studied the nonlocal TFIM Hamiltonian with L = 7
sites and nonlocal parameter y = 0.5. The numerical results
for Lanczos-sequence and Krylov complexity are shown in
Figs. 2 and 3. The global picture emerging from these
results can be summarized in the following points:

(1) Lanczos sequence. The initial growth of Lanczos
coefficients is faster for the nonlocal cases as
compared to local cases (in both integrable and
chaotic limits). While this accelerated growth is not
prominently observable in smaller system sizes, it
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n n
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2 4 6
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FIG. 2. Comparison between Lanczos-coefficients for local and
nonlocal TFIM Hamiltonian with nonlocal parameter y = 0.5,
computed for L = 7 spins in the P = +1 sector for integrable and
chaotic limits of local Hamiltonian. Top row: complete spectrum
of Lanczos coefficients; Bottom row: initial Lanczos coefficients.

becomes distinctly apparent in larger system sizes as
shown in Fig. 4. Note that the growth of the primary
few Lanczos coefficients correspond to the pre-
scrambling behavior. Hence a faster growth of
primary Lanczos coefficients result in an higher
exponent for the exponentially growing complexity
before scrambling time. The peak value of the
Lanczos sequence is more than that of the corre-
sponding local case. The overall Lanczos profile for
the nonlocal integrable case resembles the form of
the local chaotic case. The fluctuations in the
decaying part of the Lanczos sequence are also
small for the nonlocal integrable case which results
in a high saturation value of K-complexity.
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FIG. 3. Krylov complexity for TFIM Hamiltonian (1) com-
puted for L = 7 spins with open boundary conditions for fixed
parity P = 41, and nonlocality parameter y = 0.5 in Left:
integrable; Right: chaotic limits. Top: full-time range computed.
Bottom: zoom in at early times.
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Local 12 Local
10 Non-local Non-local

FIG. 4. Comparison between initial Lanczos-coefficients for
local and nonlocal TFIM Hamiltonian with nonlocal parameter
y = 0.5, computed for L = 12 spins in the P = +1 sector for
integrable and chaotic limits of local Hamiltonian. The Lanczos
coefficients exhibit faster growth with nonlocal terms, especially
evident in larger system sizes.

(i) K-complexity. This shows a transition from expo-
nential growth to linear increase starting from the
scrambling time. This transition time is lower for
nonlocal models in both integrable and chaotic
regimes. Furthermore, the initial growth rate is also
greater in nonlocal cases compared to their local
counterparts. At exponentially late times the complex-
ity saturates at half of the Krylov dimension for the
chaotic cases local and nonlocal cases, since by then
the operator is uniformly distributed over the Krylov
basis. It is also worth noting that even after the
introduction of nonlocal terms to the otherwise local
integrable Hamiltonian, the complexity saturation
value does not reach exactly the value of the local
chaotic Hamiltonian. The saturation value for non-
local terms + local integrable Hamiltonian is close to
1500 (much higher compared to local integrable
which was 500) whereas the saturation value for
nonlocal terms + local chaotic Hamiltonian is close
to 2000 (almost similar to the local chaotic case). The
late-time saturation value of the chaotic Hamiltonian
is the same for both local and nonlocal cases, although
the nonlocal chaotic Hamiltonian has a large initial
growth compared to the local chaotic Hamiltonian.

B. Transverse mixed field Ising model

Consider the one-dimensional transverse mixed field
Ising model of N spins with open boundary conditions

Moo= =D Jioie; =g oy =h) o;  (15)
i J

i<j
where J{; is interaction strength between spins at position i
and j which assume to follow power law 1/x - J/|i — j|*
Throughout our study, we take J =1, and x=1. In
previous studies [33], the information scrambling, using
out-of-time-order correlators (OTOCs) as a probe, has been
studied in such a model with a variation of nonlocal
parameter a. It’s shown that for @ > 2, the dynamics
effectively resemble local dynamics, while for smaller
exponents, the dynamics become nonlocal. Here, we will

(®) 5

40

FIG. 5. The Lanczos-sequence for the transverse mixed field
Ising model Hamiltonian in Eq. (15) computed for L = 13 spins
with open boundary conditions for fixed parity P = +1 in
(a) integrable and (b) chaotic limits with varying nonlocal
exponent a values.

confine ourselves to studying the initial Lanczos sequence
for the model with varying exponent a.

In Fig. 5, we showed the initial Lanczos coefficients b,,
for L = 13 with varying exponent a € {0.1,0.5,1.0, 1.5,
2.0,2.5}. The initial operator is chosen to be S5. In both
limits integrable and chaotic, we find the increasing
slope and saturation value in initial growth with the
decrease in exponent @ and therefore increase in non-
locality. This ensures that the initial (prescrambling)
growth rate of the Krylov complexity always increases
in the presence of nonlocality (See Fig. 6). In Fig. 7,
we showed the initial growth rate calculated using fit,
b, = éﬁ + ¢ (for 1D systems, as conjectured in [1]) in
initial Lanczos coefficients.

The saturation value of the late-time Krylov complexity
is controlled by the amount of fluctuations in the Lanczos
coefficients as reported in [9,22]. Fluctuations are more for

Ci(t)

0.0p —

FIG. 6. Krylov complexity for the transverse mixed field
Ising model Hamiltonian in Eq. (15) computed for L = 13 spins
with open boundary conditions for fixed parity P = +1 in
(a) integrable and (b) chaotic limits with varying nonlocal
exponent a values.

10

o 1
3 b, o< dn/In(n) b ox 61/ In()

FIG. 7. The growth rate 6 plotted for different nonlocal
exponent a values for Lanczos coefficients in Fig. 5.
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FIG. 8. The complete Lanczos-sequence is calculated for
mixed-field TFIM for L =7 spins in the P = +1 sector. The
comparison between the coefficients is shown for integrable and
chaotic values with Left: @ = 0.5; Right: @ = 1. The inset shows
that the fluctuations for integrable parameter value (blue) are
larger compared to chaotic parameter value (red). These larger
fluctuation in large b, leads to suppression of K-complexity for
integrable parameter values even for nonlocal model.

integrable parameter values and this phenomenon is
dubbed as the Krylov localization. We notice that although
nonlocal terms in the Hamiltonian increase the initial
growth in Lanczos coefficients for both integrable and
chaotic parameter values, the fluctuations in later Lanczos
coefficients is still comparatively more for the integrable
parameter values. This is shown in Fig. 8 for two choices of
the nonlocal exponent a of the mixed TFIM model. As a
result, the late time saturation value of Krylov complexity
in Fig. 9 distinctly differentiates the nature of the under-
lying integrable and chaotic theories even in the nonlocal
models. In Fig. 9, the left figure shows the complexity
saturation for various nonlocal + integrable cases while the
same is shown for nonlocal + chaotic cases for various a.
While the late-time saturation value indeed distinguishes
whether the underlying theory is integrable or chaotic, it
remains insensitive to the magnitude of the nonlocal
exponent a. Nevertheless, as we noted earlier, the pre-
scrambling growth of both Lanczos coefficients as well as
the Krylov complexity serves as a clear indicator distin-
guishing between the nonlocal behaviors associated with
different values of the exponent (Fig. 5).

C. Mixed field XXZ Hamiltonian

In this section, we will introduce mixed-field XXZ
Hamiltonian analogous to mixed-field TFIM. The XXZ

1500

(a) (b)
AT g AT 2000
1000

~ 1500

© 1000

Ck(t)

500

a=05
a=1

500

a=2
0 0

0 2000 4000 6000 8000 10000 0 2000 1000 6000 8000 10000
t

FIG. 9. Late time Krylov complexity for the transverse
mixed field Ising model Hamiltonian computed for L = 7 spins
with open boundary conditions for fixed parity P = +1 in
(a) integrable and (b) chaotic limits with varying nonlocal
exponent a values.

Hamiltonian contains nearest-neighbor interaction terms
which are used to describe the behavior of a system of
interacting spin-1/2 particles in a magnetic field and the
Hamiltonian can be written as,

=

-1
Jzz

Hxxz = J(O‘ff"fﬂ + f’zygzyﬂ) +TU§0§+1- (16)

B
Il

i

The XXZ Hamiltonian commutes with total spin operator
M in the z-direction and is also invariant under reflection
with respect to the edge of the chain, i.e., under parity
operator P. In previous studies [8,49-55], it was shown that
the integrability can be broken by addition local term
H;=S;. (17)
The mixed field XXZ is an extension of the XXZ

Hamiltonian where we add varying nonlocal strength
analogous to the case of mixed field TFIM.

Ja

. lN—l o Jj'
Hiinz =3 D _J5(oiot, +olo), )+ loioi,  (18)
i=1

where J¢; and fl?; are interaction strength between spins at
position i and j. These follow power law behavior,
1/k-J/|i—j|% and 1/k-J../|i — j|* respectively. Note
that this model reduces to local XXZ model in the limit
a — oo. We consider the following nonlocal interpolating
Hamiltonian:

7_[nonlo(:al = Hgfa})(z +e4H,. (19)

In our study, we will consider H,; = §% and therefore,

(N+1)/2°
both the symmetry-breaking terms keep the symmetries
intact. In further calculations, we fix J/ =1, and J, = 1.1
for all cases.

We study the initial Lanczos sequence and K-complexity
for L = 12 with varying exponent « for zero and nonzero
value of e; (See Figs. 10 and 11). The initial operator O is

FIG. 10. The Lanczos-sequence for the transverse mixed field
XXZ model Hamiltonian in Eq. (15) computed for L = 12 spins
with open boundary conditions for fixed parity P = +1 and
M = 5in(a) e; = 0 and (b) ¢; = 0.5 limits with varying nonlocal
exponent a values. The initial operator is chosen to be S§ + S5.
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chosen such that it respects the two symmetries of the
model, i.e., parity and total spin in z-direction

O =8+ Sy, (20)

where i is chosen to be near the center of the chain. We find the
increasing slope and saturation value in initial growth with the
decrease in exponent o and, therefore increase in nonlocality.
These results are in agreement with the results presented in the
main text for the mixed-field TFIM model and, therefore,
reflect the universality of the result. We assert that the initial
(prescrambling) growth rate of the Krylov complexity is
always increased in the presence of nonlocality.

IV. CONCLUSIONS

To conclude, we have explored the behavior of
K-complexity in nonlocal spin chains. The purpose of this
study is to delineate what kind of novel features this
quantity can capture in the presence of nonlocal couplings.
Over the course of this work, the K-complexity has
emerged as a quantity of prime importance as it shows
signs of nonlocality in the system. Let us recount the major
findings in the following.

A. Discussion of results

Lanczos sequence. The saturation and initial growth
of Lanczos coefficients is greater in nonlocal TFIM
Hamiltonian relative to the local case, which reflects the
faster information scrambling in nonlocal systems. The
local chaotic dynamics, along with long-range nonlocal
interactions, are sufficient to give rise to fast scrambling.
This is because the Lanczos sequence for chaotic
Hamiltonian with local interactions saturates at a compa-
ratively smaller value than its nonlocal chaotic counterpart.
The large saturation value of Lanczos coefficients are the
result of nonlocal interactions in the system, but they can
equivalently be said to be the result of fast scrambling as
well. The fluctuation in the nonlocal cases is also sup-
pressed, which is a result of integrability breaking due to
nonlocal interaction. This results in a higher saturation
value of Krylov complexity.

Krylov complexity. Apart from common features of
Krylov complexity, such as the transition from exponential
growth to linear and the late time saturation, we find that
the initial time growth rate is greater in nonlocal cases,
indicating the onset of fast scrambling in the system. The
higher growth rate in Krylov complexity for the nonlocal
cases is a result of the initial faster growth of Lanczos
coefficients in nonlocal cases due to the nonlocal inter-
action. Furthermore, since nonlocality results in integra-
bility breaking, we also find a large saturation value in
Krylov complexity satisfying the bound in terms of the
Krylov dimension. It is important to note that although the
nonlocal interactions with the integrable local part of

Hamiltonian show level statistics that of a chaotic model,
it does not attain K-complexity saturation value similar to
that of a chaotic case. In terms of associated Lanczos
coefficients, the nonlocal integrable case has larger fluc-
tuations as compared to the local chaotic case. It is
noteworthy that even the introduction of the nonlocality
does not make the integrable model fully chaotic. On the
other hand, when similar nonlocal terms are introduced in
the otherwise local chaotic model, the late-time saturation
value does not change much compared to the local chaotic
model. However, the initial growth of complexity is faster
in this case also. We reach similar conclusions through our
study in the mixed field Ising and XXZ models. While the
initial complexity growth acts as a probe of the degree of
nonlocality (different a), the late-time saturation value only
probes whether the underlying local theory (a > 2) is
integrable or not.

In summary, our findings provide compelling evidence
that operator growth, as characterized by K-complexity,
exhibits a significantly greater magnitude in nonlocal
systems when compared to their local counterparts. An
increase in the nonlocality parameter leads to a heightened
scrambling rate in the system, as evident from both the
Lanczos spectrum and the K-complexity profile.
Furthermore, our observations indicate that the escalation
of the nonlocality parameter results in the breakdown of
integrability and a transition toward chaotic behavior in the
system. The integrability breaking due to nonlocal inter-
action is also evident from our study level statistics as well
as spectral form factor (see Appendixes A 1 and A 2).

B. Outlook

In future work, we would like to understand the relation
between nonlocality and fast scrambling better. This
requires a careful investigation of scrambling time which
is logarithmic in system size for fast scramblers, therefore
requires investigation on system with large sizes.> It would
be interesting find the degree of nonlocality require for fast
scramblers by studying model with power-law decaying
interactions. In Ref. [56], the authors shown that the fast
scrambling is prohibited in models with a generic all-to-all
term with prefactor ~1/N7 if y > 1/2. It would be
interesting if this bound can be verified from operator
growth using K-complexity.

Although all-to-all interactions are thought to be essen-
tial for fast scrambling [31], certain systems demonstrate
fast scrambling even in the absence of such interactions
[57]. These models consider spin chains with next-to-
nearest neighbor interactions in a specified combination of
some sectors. The spread of quantum information in similar
models with mild nonlocality are studied in literature [58].
These study show that although nonlocality increases the

*We leave this for future study due to the lack of resources to
perform computation for higher dimensions.
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FIG. 11. Krylov complexity for the transverse mixed field XXZ
model Hamiltonian in Eq. (15) computed for L = 12 spins with
open boundary conditions for fixed parity P = +1 and M = 5 in
(a) e, = 0and (b) ¢; = 0.5 limits with varying nonlocal exponent
a values.

rate of information spreading, but in lattice models these
rates are suppressed. An extension of this work may
consider K-complexity in such mild nonlocal models.
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APPENDIX: OTHER PROBES OF CHAOS:
LEVEL STATISTICS AND SPECTRAL
FORM FACTOR

1. Level statistics

In quantum chaos, random matrix theory (RMT) is a
powerful tool that accurately describes the spectral statistics
of quantum systems whose classical counterparts exhibit
chaotic behavior. For quantum Hamiltonians associated
with integrable classical systems, the Berry-Tabor conjec-
ture suggests that their level statistics follow a Poisson
distribution [35].

However, for quantum Hamiltonians whose classical
counterparts are chaotic, the Bohigas-Giannoni-Schmit
conjecture proposes that their level statistics should fall
into one of the three classical ensembles of RMT [36].
These ensembles correspond to Hermitian random matrices
with independently distributed entries as follows:

(i) Gaussian orthogonal ensemble (GOE): Correspond-
ing to systems with real random variables as matrix
entries.

(i) Gaussian unitary ensemble (GUE): Corresponding
to systems with complex random variables as matrix
entries.

(@ (®)

2.0 12

\ﬁ_Jm
10 JFF L‘_\U jl—'_h‘
~ 08 4 -
g
oat [

0.5
0.2 A

00 0.0 0.2 0.4 0.6 0.8 1.0 00 0.0 0.2 0.4 0.6 0.8 1.0

P 7

FIG. 12. Probability distribution functions of the 7 statistics for
fixed Z-reflection symmetry blocks and parity block of the
Hamiltonian (1), computed for L = 13 spins in the P = +1,
and z = +1 sector in (a) integrable and (b) chaotic limits. The
results are obtained from averaging over 100 ensembles with e
drawn from normal distribution with mean 0 and deviation 107,
The mean level spacing ratio obtained for the integrable and
chaotic limits are 0.38733 and 0.53433 respectively.

(iii) Gaussian symplectic ensemble (GSE): Correspond-
ing to systems with quaternionic random variables as
matrix entries.

These ensembles provide a robust framework for under-
standing the statistical behavior of quantum systems
with chaotic classical dynamics. Consider e, be an ordered
set of energy levels and the nearest-neighbor spacing,
S, = e,y — e,. Now, define the ratios 7, as

i 1
;'n == mln(sn’ Sn_l) = min (rn7_> (Al)
max(s,, S,_1) r,
where
s
=" A2
=t (A2

The distribution P(r) for random matrix ensembles Wigner
ensembles (GOE, GUE, and GSE) is shown to [37]

1 (r+r*)?
S Z, (4 2

P(r) (A3)
with Z; the normalization constant. The Wigner ensembles
are distinguished by their Dyson index (f =1, 2 and 4
respectively) in distribution Eq. (A3). For a Poissonian
distribution of level-spacings, the distribution of  is given by

(A4)

The distribution P(r) and P(7) are related to one another by
P(7) = 2P(r)O(1 — r). The mean value (7) associated with
different distribution (listed in below table) can be used to
distinguish between integrable and chaotic systems.

Ensembles Poisson GOE GUE GSE
(7) 2In2-1 4-2\3 zﬁ_% %ﬁ_%
~0.38629 ~0.53590 ~0.60266 ~0.67617

Results. In Fig. 12, we showed the probability distribu-
tion functions of the 7 statistics of the local TFIM
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FIG. 13. Probability distribution functions of the 7 statistics for
fixed Z-reflection symmetry blocks and Parity block of the
nonlocal Hamiltonian (1), computed for L = 13 spins in the
P = +1, and z = +1 sector and nonlocality parameter y = 0.5 in
(a) integrable and (b) chaotic limits of local Hamiltonian. The
results are obtained from averaging over 100 ensembles with €
drawn from a normal distribution with mean O and deviation
10*. The mean level spacing ratio obtained for integrable and
chaotic limits are 0.53784 and 0.52738 respectively.

Hamiltonian (1) in integrable and chaotic regimes. We
compare the results for both P(7) and (7) with the
analytical results for Poisson and GOE symmetry class.
The numerical result are in good agreement with those of
analytical.

In Fig. 13, we showed the probability distribution function
of the 7 statistics for nonlocal TFIM Hamiltonian (see
Sec. I A) computed for L = 13 spins. As reported in
[31], we find that nonlocality term changes the integrable
model to chaotic for |y| Z 0.25.

In Fig. 14, we shown level statistics distribution for
transverse mixed field Ising model discussed in Sec. I1I B
for varying nonlocal exponent a. It is clear from here that
it is hard to distinguish these different degrees of non-
locality from the level statistics, while the initial growth
rate of K-complexity can quite clearly distinguish them.
The reason is that in K-complexity, we can distinguish
between different degrees of nonlocality during the
prescrambling regime. At the same time, the level
statistics can capture only the details about the nature
of the spectrum, and there is no way to make such a
timewise distinction.

2. Spectral form factor

To compute the spectral form factor, we use the
analytically continued partition function

1.00

0.50

FIG. 14. Probability distribution functions of the 7 statistics for
Transverse mixed field Ising model for varying exponent a. Refer
Sec. III B for parameter values.

Z(P. 1) = Tr(ePH-iH1) (A5)

of the usual partition function Z(8) = Tr(e ). The
function Z(, 1) is an erratic function of time and, therefore
oscillates largely at late times. The fluctuations are studied
by considering the normalized squared quantity, the so-
called spectral form factor (SFF) [38—40].

Z(p.1)
Z(p)

1 :
= mZe_ﬁ<Em+En)el(Em_En)t (A6)

2

g(p.1) = '

where E,, is eigenvalue of energy eigenstate |n). The long-
time average can be written as

Z(p.1)
Z(p)

where we assumed the system Hamiltonian H to be
nondegenerate. Due to the erratic nature of Z(f3, 1), usually
the ensemble average over large Hamiltonians is consid-
ered. We define disorder-averaged analogs of SFF in
Eq. (A6) as

Z(p)*

1
lim —dt
T—-oo T

_ E[lZB. 1))
gann(ﬁ» t) - [EHZ(ﬁ, 0)|2] (As)
spo0) = || 250 (49)

which are called annealed SFF and quenched SFF,
respectively. Throughout this paper, we use the notatin
E[.] to denote the ensemble average. In this work, we will
be working with annealed SFF along with # = 0, meaning
that we are taking the disorder average separately in
the numerator and denominator. We will further call
Gann (. 0) = g(1), sometime this itself is referred to as
the spectral form factor, which has information about the
correlations of eigenvalues at different energy separations.
To understand the time profile of SFF, we split the
|E[|Z(B, t)|?] into two parts as

|[ETI.(€—iH(/)’+it)) |2

+ (E[[Tr(e”™PHD)P] = |ETr(e ™ PHI)12)  (A10)
The first term is a disconnected part of the SFF, which
comes solely from the average density of states. The
second part is a connected part which contains the
information on the correlation between energy levels.
According to random matrix universality, an ensemble of
quantum chaotic Hamilontians will generically have the
same connected SFF as the canonical Gaussian ensembles
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FIG. 15. A log-log plot of TFIM Hamiltonian SFF g(z; 8 = 0),
plotted against time for L = 11 in (a) integrable and (b) chaotic
limits. The value at late times, which is equal to plateau height g,,,
matches with Z(25)/Z()? (shown in black dashed line). The
average is taken over 50,000 samples drawn from the random
value of ¢ taken from a normal distribution with mean y = 0 and
standard deviation ¢ = 0.01 in case of chaotic limit. The dash-dot
line shows the linear fit in the ramp region, showing the linear
increase.

of RMT. The conjectured universal profile of the SFF of
the GUE contains three distinct regimes [40,59,60]:

(i) Initially the value drops quickly, through a region we
call the slope, to a minimum, which is called the dip.
The early time dip in profile comes from the
disconnected part of the SFF therefore, its precise
shape is nonuniversal. It is the result of loss of
constructive interference in different terms of
Tre~#(F+it) which acquire different phase factors
as t increases.

(i) After a dip, the values increase roughly linearly
which is what we call the ramp. The ramp is due to
the repulsion between eigenvalues that are far apart
in the spectrum, which is also well known in
quantum chaotic systems. Therefore a linear ramp
is often taken as a defining signature of quan-
tum chaos.

(iii) The plateau, which occurs at late times, results from
the discreteness of the spectrum.

The overall profile for GOE and GSE symmetry class
also follows a slope-dip-ramp-plateau pattern apart from a
few details, such as the shape of the ramp and the plateau.
For example, the SFF of the GUE symmetry class has a
sharp kink, while in the GOE symmetry class, the kink is
smoothed [59].

Results. In Fig. 15, we showed the behavior of SFF of the
TFIM Hamiltonian (1), where an average is taken for the
chaotic case. In the calculation of SFF for integrable cases,
we did not consider the disorder average since the model is
no longer integrable with the addition of disorder. It is still a

(b) 10°

1072 10" 10? 10* 10° 1072 10° 10% 10! 10°
t t

FIG. 16. A log-log plot of nonlocal TFIM Hamiltonian SFF
g(t; 4 =0), plotted against time for L =11, and y = 0.5 in
(a) integrable and (b) chaotic limits of local TFIM Hamiltonian.
The value at late times, which is equal to plateau height g,
matches with Z(28)/Z()* (shown in black dashed line). The
average is taken over 50,000 samples drawn from the random
value of e taken from normal distribution with mean p = 0 and
standard deviation ¢ = 0.01. The dash-dot line shows the linear
fit in the ramp region, showing the linear increase.

“free-fermion model” in the sense that it is bilinear in
fermion operators. But it is not integrable anymore. While
there are still an extensive number of conserved quantities,
they are no longer quasilocal, so we expect to see chaotic
behavior. In our calculation, we do find that the addition of
disorder in integrable cases gives rise to a ramp in the SFF
profile. In previous studies [61], it is shown that integrable
systems such as rectangular billiards, SYK, model, and
square-mod systems don’t show ramps in their SFF profile.
However, the emergence of a ramp-like feature has been
demonstrated after averaging over the ensemble in the
SYK, model. In Appendix A 1, we see that the model
follows the statistics of the GOE symmetry class in the
chaotic limit; therefore, we would expect such a profile to
be the same as that of GOE symmetry class. In other words,
in chaotic limit, we find slope-dip-ramp-plateau profile as
evident from the figure.

In Fig. 16, we show the SFF of nonlocal TFIM
Hamiltonian for L =11, and y = 0.5 in the integrable
and chaotic limits. We took the disordered average over
50,000 samples drawn from the random value of €. We find
slope-dip-ramp-plateau patterns in both limits, integrable
and chaotic, indicating that the non local interaction makes
the Hamiltonian chaotic even when its local counterpart is
in the integrable regime. It is also worth noting that there is
no clear way to distinguish between the two nonlocal plots
here. On the other hand, as described in the main text, by
looking at the saturation values of the nonlocal K-complexity
plots, we can still distinguish between which was integrable
and which was not in the local version.
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