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A quantum cosmological bouncing model may exhibit an ambiguity stemming from the nonclassical

nature of the background evolution: Two classically equivalent theories can produce two qualitatively

different potentials sourcing the perturbations. It reflects the general ambiguity in quantization of the

gravitational field at linear order. We derive explicitly the quantum canonical transformation of linear

perturbations involving the quantum background to show how it leads to inequivalent theories. We identify

the relevant quantum parameter describing the difference and expand upon the ambiguity by calculating the

expected power spectra produced for initial quantum vacuum fluctuations in the contracting phase of both

potentials. We find that one spectral index corresponds to all values of this parameter but one, while the

other thus represents a set of measure zero.
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I. INTRODUCTION

In a previous work [1], we studied a cosmological model
whose dynamics is led by general relativity (GR) and a
perfect fluid with arbitrary equation of state. Classically, the
solutions either contract toward or expand from a singu-
larity: Quantization permits one to regularize the trajecto-
ries (dubbed “semiquantum” in [1]), thereby leading to a
quantum bouncing behaviour.

Quantization of a cosmological model replaces the four-
dimensional spacetime with what we shall call a “quantum
spacetime” that violates the properties of classical geo-
metry. For instance, the dynamical law for a field in a
classical spacetime can be formulated in terms of different
field variables. In the Hamiltonian formalism used in this
work, these variables are connected by canonical trans-
formations. The fact that they all undergo physically
equivalent evolutions can be viewed as a manifestation
of a unique underlying background spacetime that imposes
a unique dynamical law on the field. In passing to quantum
theory of the background spacetime, on the other hand, the
use of different field variables may result in their very
different quantum dynamics. It is so because the field no
longer propagates in a fixed spacetime but rather in a
“quantum spacetime,” and the physical discrepancies
between the evolutions of different field variables reflect
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the “quantumness of spacetime.” As found in Ref. [1],
simple rescalings of the curvature perturbation in a quan-
tum Friedmann universe by powers of the scale factor
produce different gravitational potentials in the Mukhanov-
Sasaki equation, thereby making the dynamics of the
perturbation depend on the choice of the field variable
employed in its quantization.

In the present work, we study the physical consequences
of the ambiguity in the dynamical law for the scalar pertur-
bation due to quantization of the background spacetime. If
the infinitely many gravitational potentials found in [1]
actually correspond to infinitely many physical predictions,
then the theory is to be considered unphysical. Currently,
the literature (see, e.g., [2-5]) provides only one solution to
the primordial power spectrum from a quantum bounce. We
note that the simplest known quantum bounces produce
only blue-tilted power spectrum contrary not only to
inflationary predictions but also to observations; finding
new solutions could improve this situation.

Our work also pertains to the question of the usefulness
of the Mukhanov variable for describing scalar perturba-
tions in a quantum universe. In inflationary models based
on classical backgrounds, it is convenient to use the
Mukhanov variable because it allows one to asymptotically
define a quantum vacuum in the same way as for flat
spacetime. However, it is not the only valid choice for the
perturbation variables even in the context of inflation as
discussed, e.g., in Ref. [6]. In a fully quantum universe, the
issue is even less clear as the choice of perturbation
variables can influence both the definition of the initial
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vacuum state and the dynamics of perturbations. Thus, in
the context of our work, it is natural to ask whether the
Mukhanov variable remains a preferred choice in a fuller,
more quantum description of the primordial Universe or if
it should be replaced with another, better-suited, variable.
The latter situation would not be exceptional as there exist
situations for which the Mukhanov variable may become
singular and other variables, such as the Bardeen potential,
must be used instead.

The problem of choosing the fundamental variables for
passing to quantum theory is related to the factor-ordering
problem. Both issues arise from the absence of a canonical
isomorphism between the Poisson algebra of phase space
observables and the quantum operator algebra. A canonical
isomorphism is only feasible for a very limited set of
observables, such as the fundamental observables in
canonical quantization: momentum, position, and their
quadratic functions (see, e.g., Ref. [7]). Consequently,
the choice of fundamental observables typically influences
the resulting quantum theory.

The factor-ordering problem appears on top of this
choice and applies to most of the compound observables.
Proposed fundamental gravitational variables include the
Arnowitt-Deser-Misner (ADM) or Ashtekar variables [8],
each formulation suffering from its own factor-ordering
problem (see, e.g., [9,10]). In the former formulation, a
possible resolution to the factor-ordering problem with
the Hamiltonian constraint could involve insisting on its
covariance with respect to coordinate transformations on
the ADM configuration space [11]; this procedure applies
in a straightforward way if the Hamiltonian happens to
be quadratic in the momenta. Alternatively, one might
demand that, after quantization, the constraints remain first-
class' [12,13]. Notably, these proposals might not have a
unique solution regarding factor ordering [14]. The ambi-
guity is further magnified when finding the kernel of the
constraint operators is accompanied by promoting one of
the variables to an internal time variable and redefining the
scalar product in the Hilbert space to achieve a dynamical
interpretation of the theory [15].

Additionally, instead of quantizing the full ADM phase
space, one may prefer to first solve the constraints of the
classical theory by removing unphysical degrees of free-
dom and choosing some internal “spacetime” variables
with respect to which the spatial and temporal dependence
of the physical fields would be expressed [15]. In this
approach, only physical variables are quantized. The issue
of preferred fundamental physical variables, not to mention
factor ordering, seems to be rather hopeless as seen in
cosmological perturbation theory, notorious for its ambigu-
ous gauges and gauge-invariant variables. This is the
specific case addressed in this paper. We believe that the

'"These proposals are related but not identical.

ambiguity explored here is universal, reflecting the general
ambiguity in quantization of the gravitational field at the
linear perturbation level.

As the last point of this introduction, let us remark that
we view our framework of quantum fields in quantum
spacetime as a truncation of a full theory of quantum
gravity. The dynamics in the latter would naturally be
expressed in some internal time variable. Even if many
internal time variables are available, the particular choice
one makes does not seem to be crucial for the physical
predictions of quantum gravity (we refer the interested
reader to some of our previous works devoted to this
issue [16-20]). Nevertheless, if a truncation is to be consis-
tent, it should make use of a unique internal time variable
for quantizing and describing all dynamical variables, both
for the background and the perturbations. We emphasize
that our framework satisfies this requirement.

The plan of this work is as follows. In Sec. II, we
introduce our cosmological model: We first define the
classical model with a special attention paid to the
definition of perturbation variables, and then we quantize
it and set up its semiclassical approximation. We next
identify and discuss the dynamical ambiguity in the
resulting quantum model. In Secs. III and IV, we study
the ambiguity in detail: We solve the dynamical equations
and find all the possible physical predictions for the
amplitude and the spectral index of primordial perturba-
tions, which could be derived from the model. We find
that there are only two types of predictions that can be
produced by quantum bounce models. Section V gathers
our conclusions.

II. THE AMBIGUITY

Before going on to the new results obtained in this work,
let us summarize the framework of the semiquantum
ambiguity.

A. Background dynamics

We begin by defining the model used throughout.
We expand our spacetime manifold M as M ~R x T3,
whose background metric is given by the isotropic and
homogeneous flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric

ds? = =N?(7)d7* + a?(1)y;;dx'dx/, (1)

in units in which the velocity of light is ¢ = 1. We assume
that the spatial part is compact with coordinate volume

Vo :=/\/;7d3x, (2)

while the scale factor a(z) has its dynamics driven by GR
sourced by a perfect fluid with constant equation of state
parameter 0 < w = p/p < 1 (with p the pressure and p the
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energy density). The overall Einstein-Hilbert-Schutz action
then reads [21,22]

Skns :%/d“x\/—_gRjL/d“x\/—_gP(w,qﬁ), (3)

where k = 872Gy, and ¢ defines the cosmic fluid flow. We
use the expansion of this action to second order and an
adaptation of the fully canonical formalism from [23] so as
to obtain a Hamiltonian description in which only the truly
physical degrees of freedom are considered.

1. Classical dynamics

Setting the lapse function to N = (1 + w)a?”, the fluid
part of the action contributes a linear momentum term to the
Hamiltonian [24], so the fluid merely serves as a clock in
what follows. Going from {a, p,} to {q, p}, defined by

q — La%(l_w) = ya%(l_w>’ (4)
31=-wV1l+w
and
6(1
p= g (5

with H = a/(Na) the Hubble rate and xy = k/V,, the
zeroth-order gravitational Hamiltonian reads

H<0) = 2K0p2’ (6)

where we reverted the direction of time with respect to the
fluid variable to make it positive. We hereafter use 7 as
internal clock, assuming it coincides with the FLRW time
set in (1).

The solutions of the equations of motion stemming
from (6) read

HO
QCl(T) =4 2K'OI-I(0> (T_Ts) and pcl(T) =\~ (7)

2K'0 ’

where H? is a constant. These classical trajectories either
terminate at or emerge from the singularity ¢ — 0 (and thus
a — 0) at time z,. They are straight lines in phase space
{q, p} with constant p [16].

2. Quantum dynamics
Quantization of (6) is not as trivial as it seems. Of course,
one can merely impose a canonical rule and straightfor-
wardly set p — P = —ihd/dqg, but it turns out that P is not
a self-adjoint operator and cannot serve as a fundamental
variable. A more justified approach involves defining the
self-adjoint dilation operator gp +— D = : (OP+PQ)asa

fundamental variable alongside the position operator. The
canonical commutation rule is then recast as [0, D] = iQ.
This introduces the factor-ordering problem for (6) as
p? > “any combination of O and D classically equivalent
to Q'zf)z.” In Ref. [19], it was determined that for a broad
class of orderings, one obtains

HO s O = 2y (P? 4 ¢, 07?), (8)

where the parameter ¢y >0 depends on the specific
ordering.

The self-adjoint operators Q and D generate a unitary
group of affine transformations applicable for covariant
integral quantizations of the half-plane (¢, p)—analogous
to the role played by the Weyl-Heisenberg group (based
on Q and P) in quantizations of the full plane, including
Weyl (canonical) quantization [24]. This approach, termed
“affine quantization,” not only confirms the result (8) but
also provides a means of parametrizing the factor-ordering
ambiguity. For generality, we leave ¢, unspecified, empha-
sizing that all choices of ¢y > 0 yield the same qualitative
dynamics of the Universe rebounding against the singu-
larity ¢ = 0. For ¢y = 0, one recovers the canonical case,
while for ¢ > %hz, the Hamiltonian H©) becomes essen-
tially self-adjoint, and no boundary condition is required at
q = 0 to ensure a unique and unitary dynamics.

A useful approximate semiclassical (or, rather, semi-
quantum [1]) solution is obtained with a family of coherent
states [25] built upon a so-called fiducial state |£), satisfy-

ing <§|Q|§> =1 and <§|13|§) = 0, namely
4(2). (o)) = OO (9)

These states, written in short |g, p) when there is no
risk of confusion, are such that the expectation values
of P and Q are, respectively, (¢, p|Q|q.p) = q(z) and

(q.p|Plq. p) = p(2).
Setting

N K
Hyrn = <q7p|H(0)|q’p> _2K0<p2+?>’ (10)

with & > 0 a constant depending on the family of coherent
states chosen for the semiquantum approximation, it can be
shown that ¢(z) and p(7) satisfy the Hamilton equations
derived from Hg,, with solutions

(11a)

p =22 ! (11b)
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where g3 = 2kgR/Hgep, and @* = 4HZ% /K. The singu-
larity is clearly replaced by a bouncing behaviour, as
expected.

B. Perturbations

Compactness of space implies discrete Fourier wave
vectors k, and the second-order Hamiltonian H® is

naturally a sum over independent contributions H,((Z) for
each mode. The relevant perturbation variables, noted ¢, in
what follows, are obtained as a combination of the fluid
variable 6¢p; and the intrinsic curvature perturbation Ry,

namely
1 ﬁ(/)5¢k \/g 3 ; a? :|
- 420070 2 s,
P V2K0V0|: w(l+w)p w 4232 ‘

3(1+w)

[ ——@p  3(1—w)ap
ﬂf/I,k = 2K0|: W(] +W) |[_]¢|1+W 5pk— 8V2/3k2
0

1 3
xR — 1+ w)a“f“-‘”ﬁ%qsk} . (12)
w 8w

where Jpy, represents the fluid energy density perturbation,
while the background variable ¢ and its momentum p?
describe the fluid, with —ik p?5¢;, defining the flow of the
fluid energy through the surface orthogonal to k (see details
in Ref. [23]).

In term of the above variables, the Hamiltonian reads

1 q 4rg
B =5 ol 4 w002 (2) Rl 13

with

et (14)

whose numerical value lies in the range — % < rg < Ofor the
range of equation of state 0 < w < % we are concerned with.
Curvature perturbations, which are observationally rel-
evant gauge-invariant variables, can be easily derived
from (12). They are often calculated on comoving hyper-
surfaces, thereby defining 7R, through @’k*Ry =
—46Ry|54—o (With a conventional minus sign), reading

Ri = _\/?a_%(l_w)fﬁk, (15)

or uniform-density hypersurfaces (), i.e. a’k’(y =

46Ry|5,—0, Which is

V I+w 7
£ =20 [Ko ( 1 l_)¢k n bk . (6)
2 V3w gll-w 3p\/2w(1 4+ w)k

Note that it is usually assumed, e.g., using initial conditions
for the expanding Universe at the end of inflation, that
¢r > 7y, leaving only the first term.

The classical theory based on the Hamiltonian (13) can
be written using a different set of variables by performing a
time-dependent canonical transformation. Let us define
new variables via the rescaling

Z
Uy = Z¢k and T,k = Z_lﬂgb.k + ?¢k’ (17)

where Z is any nonvanishing phase space function. This
transforms the Hamiltonian into

2y 1 w(l +w)? (q\*F
R L e N

Z4
(18)

where the potential ) is defined through

1 [z Z\?
=—==-2|=) |- 19
epl@ o
An interesting and useful one-parameter family of such
scale transformations is obtained by setting

Z, =1 +w(€> , (20)
4
which yields
2y 14w /q\?¥
HY =2 (2) map  @2luP). o)
with
4re=r) r(r+1)(4x0)* (q\™*
Q2 = (i) Wk2+—0<_> P (2
v *(1+w)* \r @)

where we used the classical solution (7). It should be noted
at this point that setting r = rg and introducing the
conformal time # through

q 2rg
dp=(1+w)(=] de=2Z2ds (23)
/4

removes the overall coefficient in front of the Hamiltonian
(21), turning the kinetic term into its canonical form,
while (22) takes the simple and usual form

1"
2 2 v
Q= wk”———,

g

where a prime means a derivative with respect to the
conformal time #. The variable vy, in this case is nothing but
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the well-known Mukhanov-Sasaki variable: Its usual def-
inition v, = V1 + wa‘%("w)gbk indeed becomes

3 1
v = — MaRk, (24)
WKq

so that the function v/a, whose spectrum we compute
below, can be identified, up to an irrelevant constant, with
the curvature perturbation on the comoving hypersurfaces.

One can introduce the quantization of the background
following a two step procedure: One first replaces the
zeroth order quantities by the corresponding operators
using the rules

q°p* [Q"ISZ — ihaQ“‘lﬁ] +e(@)0*2,  (25)

in which ¢(@) o« A2 is positive. One way to determine c(c)
is from the canonical quantization rules that impose
symmetrization of the operator with respect to O and P.
However, as in the case of the Hamiltonian (8), canonical
prescription is not well-justified in this case either: The
(¢, p)-phase space admits affine symmetry rather than
the Weyl-Heisenberg symmetry. Affine quantization based
on the operators 0 and D is a more suitable approach,
respecting the covariance of the system with respect to
the affine transformations. This method results in largely
arbitrary ¢(a), introducing a quantization ambiguity. Details
of this procedure are to be found in a dedicated Appendix
of Ref. [1]. We can conveniently constrain this parameter;
however, its unrestricted choice does not seem to impact the
qualitative behavior of the system. From now on, we move
to natural units in which # = 1.

Combining this step with the usual quantization of the
perturbation variables v; and 7,; maps the classical
Hamiltonian (21) into a quantum one:

A

(2 1+W Q 2r . o

B =15 (2) (b + 20P). 29
with
Q%: <g>4(rp—r)Wk2+r(r+1)(4,2(0)2 <g> —4r

v (1+w) Y

x 072 [P+ 2i(r+1)07 P+ c(-2r=2)07, (27)

where the parameter ¢(—2r —2), calculable from affine
quantization, is unknown at this stage.

The second step consists in averaging the corresponding
operator (function of 0 and P) in the semiquantum state
lg(7), p(7)), leading to a Hamiltonian depending only on
the perturbation variables, the background being then
described by a trajectory. In practice, we use the definition

H(z) = {q(2), p)|H |q(2). p(2)),  (28)

and assume the parametric phase-space
{q(7), p(7)} to be given by the solutions (11).
Applying to these classically equivalent formulations the
two-step quantization procedure discussed above, and upon
canonical quantization of the variable vy, one finds

trajectory

. 1+W q 2r . ‘o
H) =5 (4) (P + R0P). (9
where
. 4(rp—r) (4 2 —4r
5 =g, (1) e 1 UL (0)
Y g (1+w)* \ry
<
X (m,p2 —i——zr), (30)
q

and &, M, N, I, are four arbitrary semiclassical
parameters that encode ambiguities in both the quantization
process (27) and the semiclassical transition through
unspecified coherent states (9) (see again Ref. [1] for
details).

Expanding ?; in creation and annihilation operators
yields the evolution for the mode functions, denoted v (7),
which only depend on the amplitude k& = |k| of the wave
vector and not the direction k/k. All the above models
can be easily compared provided one rescales the respec-
tive mode functions v;(7r) to a common variable, the
Mukhanov-Sasaki variable introduced above and denoted
by 7;(zr). The mode functions v,(z) satisfy the semi-
classical equations of motion stemming from the
Hamiltonian (29). It can be rescaled via the transformation

- q rF—r
P VUp, 31
. (y) . (31)

thereby defining . Then, using the conformal time
defined through Eq. (23) above, one finds that the mode
equation for ¥, becomes

o+ (MR wk*> = V)7 =0,

with the potential reading

L <€> o (A,p2 + %) . (32)

(1+w)*q* \r
with
A, =(rg=r)(1+rg+r) +MN,r(r+1),
and

B, =T Mr(r+1)—(rg—r)K.
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The classical limit (21) can be recovered for ¢ — oo by
sending A, to unity, which in turn, can be achieved by

rescaling the conformal time through n — 5/+/.A,; this
demands we assume A, > 0. Similarly, one can absorb the
irrelevant constant into a redefinition of the wave number

ky/wIM, A" = k. This leads to a Mukhanov-Sasaki
mode equation

WA+ (K =V,)o =0, (33)

with a potential V, given by

depending on the chosen value of the otherwise arbitrary
number 7; explicitly, it reads
KB, MK r(r4+1)—-(rg—r)

A MR r(r+ D)+ (re=r)(rg+r+1)

x= (35)

We are thus left with a single parameter y reflecting the
quantization ambiguity induced by the free choice of basic
perturbation variables to be quantized, which depends on r.
We note that y can be both positive and negative, both cases
being consistent with affine symmetry and admitting the
classical limit. Neither appears to be preferred.

Upon using the background solution (11) and expressing
K and H,, in terms of gg, w, and k;, namely

By B
16x5 o 8kg

Eq. (34) becomes

20° 1=-3w y+ (wr)?

A (T s

with Z,. given by (20).
One can also note that the potential )V, in (36) can be
given a simple form for an arbitrary y, namely

1 Te—Tr
V, = 2(1 —3w)y? (@)
r o - 2 Lt rptr
9(1 W) [1+(1+2I”F))(] G FHrc
with
2
rc +rE 30 —w) (38)

implying 3 < rc < 1 with 0 < w < 1. One can easily check
that for we] — 1, 1], the prefactor is positive definite.

As discussed in Ref. [1], there are two special values
for y, namely yp =—1/rc =—3(1—w) <0, the value

20 Vo) = 2(1 — 3w)
o\ = (1 + 3w)?n?
15
re\M
= 10 ("[)
X !
w0
=
g
£ os
0.0
(11\ )//
YV, =
(1) -
-05
=10 -5 o 5 10
Conformal time 7
FIG. 1. The potential V, sourcing the perturbations for w = 0.2

and different values of the phenomenological parameter y. They
all converge far from the bounce where they behave as V
[Eq. (39)] shown as a thin line. The two extreme with y = y(w)
and y = yc(w) are shown as full thick lines, while the dotted
curves represent a selection of values between these extreme. The
dashed curves are for y < yr and y > yc.

obtained for r = 0, for which the potential, we denote by
Vg, turns out to be Vi = (¢'7)"/q'F, and yoc = —1/rg =
3(1-=w)/(1=3w) >0, corresponding to the choice
r = rg, leading to Ve = (¢"¢)”/q"c. The prefactor is unity
at these points, with a vanishing minimum at y = 0. A few
cases are displayed in Fig. 1.

The specific form of the potentials with unit prefactor
enables an analytical approach to perturbation dynamics
while representing two distinct dynamical situations; this
is expanded upon in Sec. III B. These values naturally
reproduce the degenerate classical case ¢ — ¢ (i.e., for
large |5]), namely

v lad)” ()" 2(1-3w)
Tl ey (e

(39)

with g, and p, the classical solutions (7). We shall
however in what follows assume that y is an arbitrary real
parameter and restrict attention to these particular cases
whenever necessary. Figure 1 emphasizes some possible
cases with yp < y < yc, together with two examples for
x < yrand y > yc, illustrating that the points yc and yr do
not lead to anything particular apart from the fact that they
permit a simple writing of the potential. In fact, in the large
time limit wz > 1, the term proportional to y in both
Egs. (34) and (36) is in any way negligible, and it can be
checked explicitly that the classical case (39) is also
recovered for any value of y.
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The ambiguity is clear from Fig. 1: The parameter y
stems from the arbitrary choice that is made among various
classically equivalent theories to quantize. Once this choice
is made, and the factor ordering is taken care of, the
potential for the perturbations is completely fixed, but it
depends on the actual value of y, which is a priori not
fixed by any physical principle. The resulting spectrum, to
which we now turn, therefore also depends on this un-
physical parameter, thereby leading to ambiguous physical
predictions.

A more detailed examination of Eq. (35) however shows
that the ambiguity is twofold. Using the so-called “fluid
parametrization” r = 0 yields y = yr < 0, which is entirely
fixed once the barotropic index of the equation of state w
and the background solution (11) are known. On the
other hand, the conformal case r = rp depends on
x =%, /(]&N,,), which is not fixed by the background
but rather by the quantization procedure. The special case
¥ = Xc= 39_;? > (), again solely fixed by the equation of
state, belongs to the second category and will be called in
what follows “conformal parametrization.”

C. Discussion

Let us conclude the present section by emphasizing the
quantum origin of our new ambiguity.

First, we introduced a set of different basic variables for
the perturbation field through Eq. (17). They all represent
equally valid choices, their dynamics being, as expected,
generated by different Hamiltonians (18) that involve
different background observables for coupling the pertur-
bation variables to the background spacetime. Next, we
quantized the background observables with the quantiza-
tion prescription (25), in which ordering ambiguities are
taken care of by fixing the parameter of Eq. (25). On
comparing the mode functions associated with different
basic field variables, we found that their dynamical
equations given in Eq. (33) are inequivalent because of
the ambiguous gravitational potential (34). Had the back-
ground observables been classical, there would have been
no dynamical ambiguity. Indeed, the dynamics of the mode
functions in classical backgrounds is unique, and the
redefinition of the basic field variables merely transforms
the vacuum state of the perturbation field, as discussed,
e.g., in Ref. [6]. We conclude that it is the quantum
spacetime that is responsible for the dynamical ambiguity
whose physical consequence we study in the following
sections.

In more explicit details, as shown both diagrammatically
through Fig. 2 and analytically in the Appendix, the theory
described by Eq. (13) is canonically transformed, classi-
cally speaking, into Eq. (18) and subsequently quantized
to yield the semiclassical Hamiltonian (29). Instead,
starting from the quantum version of Eq. (13) upon
substituting g — 0O and p - P at the background level,

Classical Canonical Transformation

H(q,p, ¢,74) H(q,p,v,m)

Quantization
Quantization

s Quantum Canonical Transformation . ~

H(Q, P, ¢, 7y)

FIG. 2. The origin of our ambiguity explained by the process
through which one changes variables: Starting with a given
classical first order theory with Hamiltonian H(q. p.¢, )
depending on background (g, p) and perturbation (¢, 75) vari-
ables, one can either perform a classical canonical transformation
and quantize the resulting theory or first quantize the original
theory and subsequently perform a quantum canonical trans-
formation. These operations in general lead to different quantum
theories.

but also ¢, — g;ﬁk and 7y — 7,y for the perturbations, the
quantum canonical unitary transformation [3]

Uy = exp (iaD, i) exp (i), (40)
with @ = a(Q, P) and f = #(Q, P) Hermitian operators

(@' =a, BT =p) depending only on the background
variables and

Dv,k = (@kﬁ'v.k + ;fv.k@k) (41)

| =

yields, to second order in perturbations, the quantum
Hamiltonian (A15). The Appendix includes some details
on the application of the above transformation to the
quantized Hamiltonian (13). The perturbation variables,
to first order, transform as

o =UDU=e"% + -,
J/'\L'quk = UTﬁ'U‘kU = Caf\l’y’k + (ﬁea + eaﬂ)@k + e (42)

Setting a = In[v/T +w(Q/y)"] and = —1d,[exp (-2a)]
shows that, in the classical limit, the relations (42) indeed
become identical with the relations (17) [where Z is given
by Eq. (20)]. If the only quantized variables were the
perturbation variables for which both the classical and
the quantum canonical transformations are linear, then the
quantum motion generated by the respective quadratic
Hamiltonians would be unique irrespective of whether
the choice of perturbation variables is made at the classical
or quantum level (as shown in Ref. [6]). This is so because
there exists a homomorphism between the Poisson algebra
of polynomial phase space observables of degree no greater
than 2 and the brackets of corresponding operators (see,
e.g., [7] for more details). On the other hand, it is known
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that if a quantum unitary transformation is nonlinear or/and
the Hamiltonian is not quadratic, then the homomorphism
breaks down, which results in the noncommutativity
depicted in Fig. 2. In such cases, the quantum motion
depends on whether the choice of basic variables is made at
the classical or quantum level. If we view the quantum
canonical transformation (42), or the Hamiltonian (Al),
from the perspective of the full Hilbert space Hy ® Hp,
mixing background and perturbation degrees of freedom,
we note that they are higher order in basic variables as they
involve quantum background and perturbation variables.
Hence, we ascribe the source of the ambiguity to the long
known quantization  obstructions (the  so-called
Groenewold-Van Hove obstructions [26,27]).2

III. GETTING SPECTRAL INDICES

After having summarized the situation, let us now solve
the quantum dynamics of the perturbation modes, which we
do first numerically and then analytically. We investigate
the amplitude of the perturbations as a function of time for
various wave numbers k and focus on its dependency on the
free parameter of the conformal parametrization y.

We shall work in the Heisenberg picture of dynamics and
assume the perturbations to be in a fixed vacuum state that
is the ground state of the quantum Hamiltonian (13) or (29)
for all modes of interest in the large contracting Universe
(n = —o0). It can be shown that in order for the vacuum
state to be the ground state of the quantum Hamiltonians in
the infinite past 7,7 — —oo, the mode functions have to
satisfy (up to irrelevant phase), respectively,

| at
ni — = and  —=
ini /2k dn

where we used the vanishing of the gravitational potential in
the infinite past.3 Equipped with the initial conditions (43),

—iyf5 43)

Mini

k

’In Ref. [7], the quantized phase space is R2", whereas in our
case, it is (q,p,(],')k,7t¢,_k)G[R+ x R3. We, however, use the
dilation operator D as a basic quantum variable that combined
with In Q satisfies the canonical commutation rule and brings our
case to that of [7].

>The initial conditions of Eq. (43), are, strictly speaking,
approximate in the general situation. In the fluid parameter-
ization, for instance, the time derivative should read

dof ; k 1 1 d
dn 2 (1+w)V2kq " dy
the second term originating from the fact that it is the field ¢
rather than v that is quantized in this case. As initial conditions
are set for |z| > 1, one can thereby use the asymptotic behaviors
4/q ~7"and n ~ 777, (see Ref. [1]) to write the extra term in
the time derivative of vf as (3w —1)/[(1 +w)(1 + 3w)Vkz]:
Setting initial conditions sufficiently deep into the contracting
phase (7 < 0 and || > 1) then permits to neglect such a term for
all parameterizations.

(7).

we now proceed to solve the mode equation (33) for the two
special cases y — yr and y — yc.

A. Numerical integration

Since the potential V), is known explicitly as a function
of the internal time 7 as shown in Eq. (36), it turns out to be
technically more tractable to switch back to z to solve
Eq. (33), even though, for the sake of clarity, we plot the
results in terms of the conformal time, substituting the
numerical value for z() in the solution. Given the relation-
ship (23) between both times, we have d/dy = Z2d/dr
(we assume, from now on, that Z = Z, ) and therefore,

d? 1 d2 1dz%d
T T AT T 6 A g (44)
dy>  Zz*de> 76 dr dr

so that the perturbation equation of motion for the
Mukhanov-Sasaki variable, namely

— [ =V, =0. (45)

reads, plugging the semiquantum solution (11) for the
generic y-parametrization (with y = F or C),
v 2rpx dof

q 4rg -
a1 +x2a+ [(; : +x2> (14w
20?(1 =3w) y+x2
9(1 —w)? (14 x?)?

]ng =0, (46)

where we set k := k/w as well as x := wz. In what follows,
we drop the index y on the mode as there is no risk of
confusion; we will merely specify when we explicitly
calculate for the fluid or conformal parametrization.

Once the initial conditions (43) are similarly expressed
in terms of the fluid time 7, the numerical integration of
the above equations allows to follow the dynamics of the
stochastic average

(RiRy) = Prlk) (47)

providing the amplitude of curvature perturbations (we
follow the convention of Ref. [28], up to an irrelevant
normalization factor)

where we made use of the definition (4) of the scale factor a
in terms of the variable g. We focus in this section to the
special cases y = yr and y = yc.

Although the amplitude is dynamical, it reaches a plateau
right after the bounce when the perturbations have been
amplified and thus remains roughly constant for a
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FIG. 3. Conformal time development of the perturbation
amplitude (48) for the mode k= 107 and three different
equation of state parameters, namely w = 0.1 (dotted), w = 0.2
(dashed), and w = 0.3 (solid). Both parametrizations, fluid
(bottom, y = yg) and conformal (top, y = yc), are shown. Also
indicated is the time 7., at which the mode exits the potential,
i.e., for which V(57 ) = k*. Here and in the following figures,
the background parameters used are fixed by setting xy — 1,
Hp =2 and & = 100 in (11).

significant fraction of its period; this corresponds to the
constant (or growing) mode when the perturbation is
dominated by the potential. This is illustrated in Fig. 3,
where the dynamics of the amplitude of a selected mode in
both parametrizations and for three different equation of
state parameter w. This constant value of the amplitude
right after the bounce is called the primordial amplitude,
and we shall study its dependence on the wave number k.
We have solved the perturbation equations for many
values of k and calculated their primordial amplitude at
the time of potential crossing (also called “exit” time) #c
at which the mode exits the potential, i.e., for which
V(5c) = k*. The mode evolutions shown in Fig. 3 yield
the full spectrum, plotted in Fig. 4. One finds two different
power laws for the two different parametrizations, as
expected, thereby emphasizing the ambiguity at the pre-
diction level. Our analytic estimates below for the spectral
indices represent very accurate fits for the numerics.

B. Analytical integration

We now follow the calculation made in Ref. [2] for the
case of tensor perturbations, transcribed to the scalar
modes, consisting in setting a piecewise approximation to
the solution of our general differential equation

d2 r\/
SF+ [18 @) }vk =0, (49)
n q

where we set the prefactor in the potential is sent to unity as
we are only interested in the solution for r = rrand r = r¢;
see discussion below Eq. (38). We begin by noticing that
long before the bounce, at times for which the modes are

10710 L
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FIG. 4. Primordial density fluctuation power spectrum
Sk, T(1eross)] measured at the crossing time 7., defined in
Eq. (51) and shown in Fig. 3. Both the fluid F-(bottom) and the
conformal C-(top) parametrizations are displayed for three differ-
ent fluids as in Fig. 3, namely w = 0.1 (circles), w = 0.2
(triangles), and w = 0.3 (squares). The approximate analytical
solutions [Egs. (69) and (68) below] are shown as superimposed
solid lines for each numerical calculation, exemplifying the
validity of the approximation.

free, i.e., when k? > |V, the potential is well approximated
by its classical counterpart (39). In this regime, the modes
are then given by

2
ou(n) = = [er B (k) + e HE (<ka)] . (50)
23((11;3'3) and H, 9’2) are the Hankel functions of the

first and second kinds; the minus signs appearing in
Eq. (50) account for the fact that # < 0 in the contracting
phase. Since, for (—kn)> 1, one has the asymptotic

relations Hl(,l)(—kn)~,/@e—i[kﬂ(v%ﬂ and Hﬁz)(—kn)N
,/%ei[kﬁ(”%)], the initial conditions (43) that impose

the Bunch-Davies vacuum yield ¢; =0 and ¢, =
\/m/2 e"5"T2)_ This implies that at the time 7, =

where v =

Meross
of the potential crossing k*> = V(1155 ), Namely
V2(1-3w) x,
Vv /W R 51
nCI‘OSS (1 + 3W)k k ( )

thereby defining the dimensionless variable x,, depending
only on the equation of state w, the initial conditions for the
following potential domination era read

v (Min) = % and v (n;,) = D\/E (52)

where

C = cry/xyH (x,), (53)
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and
D=2 {% VA A )= HE )] | (59

From the potential crossing conformal time 7., one
can derive the fluid time 7, which depends on the wave
number k of a given mode. In the classical approximation,
i.e., assuming this crossing takes place in a regime for
which the potential is well approximated by the classical
potential (39), one finds

q 2(1-3w) k _3(1-w)
3w 3w
Xeross = WTcross — ( yB> |:Cl)f(W):| s (55)

where f(w) = 1/2(1 =3w)/[3(1 —w?)].

Once a given mode crosses the potential, we assume the
latter to instantaneously take over the dynamics of the
perturbations, so that Eq. (49) becomes (zeroth-order in k):

d2 Y
G o &

whose general solution is found to be

w=lar{a+s ["aamr). o1

where A and B are integration constants, later to depend on
k because of the matching with initial conditions.

In order to use the solution (57), one needs to express the
background motion of ¢ given by Eq. (11) as a function of
the conformal time 7. It turns out that Eq. (23) can be
integrated to yield

_ as\" A1 3
’7—(1+W)<y> Tf|:2a rF929 (a)T) 5

with F an hypergeometric function (see Ref. [1] for
details). We can perform the integrals in fluid time using
the relation (23) and obtain the solutions in terms of t,
absorbing the choice of the initial time 7, into the constants

by = <g>r{Ak+a)1.7:B,r—rF;%;—(an)2] Bk}, (58)

where

B 2(r—rg)
A,=A and B =—— (9B
o(l+w)\ y

are unknown functions of the wave number k.

The solution (58) is valid for both the above para-
metrizations, and setting r — rg (fluid)orr — rc =1 4 rg
(conformal) yields

oF = <g> (AF + BT7) (59)
and
v = (g) ‘ [AS + B arctan(wr)]. (60)

Given the form (48) of the amplitude of curvature pertur-
bations, one needs to evaluate (¢/y)~"¢|v,| in the large time
limit, which yields

| R S
5, o [Ak iﬁwlgk} |z

2 I(r—rg)
B e—2i7r(r—rp) 61
rp—r
e e 1 (61)

in which the = sign in the first line corresponds to the sign
of 7. One notes that for the values of interest » = rr and
r = rc, this amplitude reads (recall rc — rg = 1)

AL | gF
6F:6){F0<m+3k (62)
and
/2 Bg

These two distinct solutions both exhibit a constant mode
and a decaying one and therefore provide a constant
amplitude for the primordial spectrum.

As we assume w < 1/3, the potential (36) is positive
definite for y > 0 with a maximum at # = 0. For y < 0, on
the other hand, this potential has two positive maxima and a
negative minimum at # = 0 so that the modes cross the
potential at four different times (see Fig. 1). Given the
symmetry of V, (1), the relevant modes enter the potential
for the first time at #;, = —#c and exit for the last time at
Nouwr = Nc 1n regions where it behaves classically (i.e., for
|wt| < 1). Figure 1 also shows that for a range of values
of r, including in particular the fluid parametrization, the
modes also exit and reenter the potential another time
between those points, when quantum corrections cannot be
neglected. Due to the shape of the potential, there exist
short periods of time during which the value of k dominates
over the value of V, (1), i.e., in the neighborhoods of £#
defined by V,(+£#,) = 0. It turns out the potential is rather
steep close to those points, with a high negative slope when
the modes exit and a high positive slope when they reenter
later. For the large wavelengths relevant to the cosmologi-
cal framework, this time interval is sufficiently small that
the approximation, assumed in what follows, of neglecting
it altogether, holds. It should be mentioned, however, that in
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that case, the potential becoming negative, the behaviors of
the modes may be quite different; we shall see below how
this should be taken care of.

Combining the matching conditions (52) at the time (55)
with the potential-domination solutions (59) and (60) yields
the coefficients AF, AC, BF, and B€ as functions of k. To
leading order in k < 1, one gets

3(1-w

AT = (QB:’f ) [reC+ (1+w)fD]k T (64)

and

3(1-w)

BF =f ("B;"f ) T rC (14 w) D)K. (65)

We note that A} and BY have inverse k dependence so that,
in the large wavelength limit, A} > BY. For the conformal
case, one finds

—2 o
ag=got e o) W e
14

and B = yAl /g, relations that can also be obtained by
merely equating (59) and (60) and their derivatives at the
matching point; we kept the subdominant term in B in (66)
for further convenience.

The last step consists in substituting the above expres-
sions into the primordial amplitude spectrum (48), keeping
the highest order terms in k < 1, assuming 0 < w < % This
yields

3,(0) = Alw.g)of (1) 0 e

where the amplitudes

Alw.ze) = (7)

and

(re+rc)C+2(1+w)fD| (68)

6w

Aw,zc) = n(qf> eC (14 w)fD], (69)

as well as the spectral indices

3(1+w
n(w, yp) = ﬁ (70)
and
6w
nlne) = o )

differ to yield effectively distinguishable predictions: The
power spectrum being the square of the fractional energy
density, i.e., Pg(k) = 5)2{ x k"s~! one finds two different
power indices, namely that given by the fluid parametriza-
tion n§ — 1 =6(1+wg)/(1 + 3wg) (i.e., wg ~—0.988 to
agree with the CMB Planck data [29]), and ng —-1=
12we/(1 4 3we) for the conformal one (i.e., wc~
—2.9x 1073%); it is the latter expression that is usually
assumed [3]. Figure 4 shows, for various values of the
equation of state parameter w, by superimposing the results,
that the predicted spectra (68) and (69), agree with the
numerical calculation.

IV. A TALE OF TWO INDICES

Solving Eq. (45) for arbitrary values of y is not possible
because of the prefactor in Eq. (37). As discussed there,
there are two cases for which this prefactor is unity, namely
for y = yr and y = yc, and that the analytic solutions (57)
are valid. Given that this parameter comes from the quanti-
zation process and is thus seemingly arbitrary, one may
reasonably worry that the spectral index of scalar pertur-
bations might depend on its exact value, the theory there-
fore loosing its predictive power. Indeed, for the two values
for which one can solve the mode equation, one already
obtains an ambiguity as the two spectral indices (70)
and (71) are both possible predictions.

A. Numerical facts

Figure 5 shows the fluctuation 6, as a function of the
wave number k for various values of y. One immediately
notices that although the amplitude depends on y, decreas-
ing with y until yr and then increasing again for y < yp,

104,

10-12}

10—16 L

10-% 102 107 108
k

FIG. 5. Numerical primordial amplitude power spectrum at the
crossing point for w = 0.1 and various values of y; in that case,
xr = —1.35 and yc ~3.86. From top to bottom: y =9, y = y¢
(thick line), y =2, y = —0.1, y = —1.5 (dashed), and y = —1.3.
This illustrates the fact that although the amplitude depends on y,
the index remains given by (71) provided y # yr (not shown). For
X > xr, the amplitude is seen to decrease as y — yr. It increases
again for y < yp (the dashed line).
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FIG. 6. Ratio 5)(("um> /Oc between the numerical primordial
amplitude power spectrum with its analytic counterpart of the
conformal parametrization given by Eq. (67) as a function of y for
w = 0.1 and three different modes, namely k- = 10~" (circles),
ke = 1072 (squares), and k = 10~ (triangles). The coincidence
of the three curves for all values of y expect y indicates that the
spectral index is indeed n§ given by (71) and independent of . At
x = yr = —1.35, the zoom shows three distinct points, exhibiting
that the spectral index differs, being then given by (70).

we obtain the same power law for the spectral index that in
the special case y = yc (71) for all the possible values that
y can take within the conformal parametrization in its
generic form (36). In order to clarify this point, we plot, in
Fig. 6, the ratio between the numerical spectrum obtained
for whatever value of y and that provided by our analytical
approximation (67) for y = yc. This plot is but an example
for a given value of w, we recovered the same generic image
for all values we investigated.

What is also seen in Fig. 6 is a generalization of Fig. 5,
namely that the spectral index of scalar perturbations is
generically given by (71) except in the case of y = yg. The
fluid parametrization thus corresponds to the minimum
amplitude possible and a different scalar index. In fact,
we find that it is understandable as the situation in which
the conformal amplitude merely vanishes, leading to the
subdominant fluid amplitude being the only one, thereby
dominating the full spectrum.

We tested this hypothesis by calculating the spectrum as
a function of the wave number for various values of y close
to the fluid case yg. The result is illustrated in Fig. 7 in
which the power spectrum is calculated numerically for a
value of the parameter y very close to yg, superimposed
with the analytic solutions for the conformal and the fluid
cases. It can be seen that the full spectrum somehow
interpolates between both cases, following the fluid
power law for large wave numbers and the conformal
power law for smaller wave numbers. This suggests that
the full spectrum contains both power law terms, the
amplitude depending on y — yg for (71): As both power
laws are positive, when k decreases, the contribution
due to nf becomes smaller compared to that due to n§

10—30 -

1071 107

FIG. 7. Primordial density fluctuation spectrum for w = 0.1:
the conformal case (69) y = yc = 3.86 is shown as the thick
line above, and the fluid case y = yp as the thin bottom line.
The dashed line represents a case close to the fluid case with

X =xp—107°

so the latter finally dominates entirely for very small wave
numbers.

B. A sharp transition

A better analytical understanding of the numerical results
of the previous section can be achieved by investigating
more closely the potential (36) seen as a function of
time and y.

Let us first assume that the reference value for y is given
by the conformal one y. The potential for any value of y
can be written as V,, = V¢ + 6V, where

@? 1=3w
—%ﬁéx[lﬂwr)ﬂ* (72)

oV
and 6y = y — yc. Plugging the definition of Z and looking
at the large time limit of the full potential, one finds that
lim,,,_, .6V < lim,,,_, .V, so that the main contribution of
oV is around the bounce time, namely around 7 = 0. As a
function of 7, one indeed finds

2w? gg\ ~*F 1-3w
V= <—B) ———6[1 + (wr)?] 2. (73)

9(1+w)>\ ¥ (1-w)

Since we focus on the cases 0 < w < %, one has % <rc<l,

so that, compared to V-, one can approximate 6V as though
its contribution is localized entirely at the bounce; i.e., we
replace oV by

6Vapprox = Té(”)? (74)

where we assume the coefficient YT takes the form

T:’m/méVdn,
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with w = w(w) ~ 1 (we shall evaluate it below), and the
integral can be calculated to yield

Zv%wﬂ—3W><@g‘”@1zjj2

TZ9U+¢@U—WY v T(re + 1)

w(w)oy, (75)

transforming Eq. (56) into

Cl2 Uy
dy?

[@%y+ram}%za (76)

q'c
whose solution is given by Eq. (60) on both sides of the
bounce, only with different parameters A< = A, B¢~ =
B¢ for the contracting phase [given by Eq. (66)] and A$>,
B¢~ for the expanding phases.

Assuming continuity of v, at n = 0 yields AT~ = AY,
and integrating Eq. (76) around the bounce provides the
discontinuity in the time derivative as

v (07) = v4(07) = Tw(0), (77)
leading to

L(rc +3) wdoy

B> = BS —
¢ ¢ C(rc + 1) xr = xc

, (78)

as can be shown by direct evaluation of yr—yc as a
function of w.

Plugging the above value of B% into the definition (48)
and using the mode solution (60), one finds that the power
spectrum now consists in two contributions, namely 6 =
K*2(D + S), with the dominant term given by

D = aiafl[1 - Lo
g 4 T(re+1)xr—xc

| o

while the subdominant term reads

_ﬁ 3(1-w)
Sz&w(%>?”““ (80)
14

with normalization

SN:[I—

Note that the two modes are obtained only when one keeps
the otherwise negligible contribution in Eq. (66); this is
why we kept it in the first place.

Equation (79) shows that, for a fixed unique parameter
@ (w) of order unity that best approximates Voo to 6V,
there is one and only one value of y, for which the dominant
mode vanishes, thereby explaining our numerical findings.
Therefore, one can assume that the best fit is given by

321 1
Prreer) mi) g,

2 T(re + 1) ge —xc

4 T(re+1)

:ml“(rcﬁ—%)’

@ (w) (82)

leading the dominant term to only vanish for y = yg, in
agreement with the above results. For w in our range, this
lies between w(0) ~ 0.7 and w(1/3) = 0.8, i.e., a number
of order unity as expected.

With the power spectrum (79) vanishing, there remains
the subdominant piece, which happens to lead to 6 «
k"wxe) [see Eq. (70)]. This reproduces exactly the features
observed in the previous section and illustrated in Fig. 7,
namely that as y — yg, the dominant amplitude coefficient
becomes smaller and smaller and thus comes to actually
dominate over the subdominant one only for smaller wave
numbers. In the limit y = yg, the coefficient exactly
vanishes and the subdominant piece, then being the only
one, becomes the only relevant spectrum.

V. CONCLUSION

In this work, we performed a detailed examination of the
dynamical ambiguity that naturally arises in models of the
primordial universe, in which both the cosmological back-
ground and the perturbations are quantized. A previous
paper had found that quantizing the background and writing
a semiquantum trajectory approximation leads to two differ-
ent potentials for the perturbations, thereby rendering the
theory effectively ambiguous and potentially non predictive.

The model presented in this work is only academic in
that it describes a universe whose dynamics is driven by a
fluid at all times and fails at reproducing the CMB data:
To do so, it would require either w ~ —2.9 x 1073 for the
conformal case and w~ —0.988 in the fluid case. Both
being negative, the corresponding models are plagued with
incurable instabilities; the model we have discussed here
assumes 0 <w S% so as to avoid such instabilities. It
merely serves as an illustration of the ambiguity and its
resolution: One can expect that the same techniques using a
scalar field should lead to similar results.

At the classical level, one can build an infinite number of
acceptable and equivalent (i.e., related by canonical trans-
formations) perturbation variables which, upon quantization,
lead to a priori different quantum theories: Obtaining the
Mukhanov-Sasaki variable through performing the canonical
transformation either before quantization or after the semi-
quantum trajectory is obtained yields inequivalent potentials,
and therefore, one would have guessed, to different pre-
dictions for the expected spectrum. We found the astonishing
result that despite the presence of a continuous parameter
describing the various possible potentials, there are only two
possible predictions for the spectral index.

The conformal parametrization reproduces the usual
spectrum with n§, the amplitude depending on the param-
eters of the semiquantum trajectory.
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There exists, because of the ambiguity, another possible
spectral index, stemming from using the fluid parametriza-
tion. We found, however, this prediction to be very special:
Within our family of potentials depending on one param-
eter y, we found that all values of y predict the same
(conformal) spectral index, except when y — y exactly, in
which case, one gets a different spectrum with no parameter
and a single well-defined amplitude.

The fluid case can be explained as leading to the
subdominant contribution in the spectrum, the amplitude
of the dominant term vanishing for the special value
x — yp- In that sense, it represents a set of measure zero
in the general y €R so that one can either deduce that the
conformal case is the generic, and therefore, the correct
one, or, on the contrary, that the fluid case being so special
should represent the correct prediction.

The conformal spectrum depends on the ratio between
the 3D compact manifold and the observable Universe, as
well as on the parameter & coming from quantization of the
background. There exists some amount of degeneracy
between those. The tensor index should be calculated to
raise this degeneracy. It is to be expected that a similar
behavior will be observed.

In quantum bounce models, the Mukhanov variable
belongs to the class of variables that yields the generic
prediction for primordial amplitude spectrum. In this sense,
its use in semiclassical theories like inflation can be given a
deeper justification. On the other hand, it is not the only one
in that class. Moreover, which is the most convenient
choice of variable depends on the choice of internal time
employed in quantization. Hence, the Mukhanov variable
constitutes a valid but no longer a preferred choice in
quantum bounce models.
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APPENDIX: QUANTUM CANONICAL
TRANSFORMATION

Let us start with the Hamiltonian (13) and implement
in a quantum way the canonical transformation taking the
fluid variable ¢y, into its classical conformal-equivalent vy.
In what follows, we assume the fields to be real, or more
precisely, we focus on the real parts of the fields, the
imaginary parts being treated in an exactly similar way so
that the full Hamiltonian is merely obtained by adding the
real and imaginary components. Besides, for the sake of
simplicity, we drop the wave number indices so that our
starting point (13) is

2 1 q 4rp
H;)zi[n;+w(1+w)2<; K¢*|. (A1)

which is quantized through the replacements ¢ — ¢,
7y — 7y, and g — 0, the background Hamiltonian being
taken to be ) = %132 + KQ7%; that is, we set k, — i and
¢op = 2K in this appendix; in any case, these variables do
not enter in the subsequent results and can therefore be
given whichever value to simplify the calculations. As all
the variables are now quantum in what follows, we remove
all the hats over the operators.

Let us now perform the quantum version of the canonical
transformation (17). Switching to a different basis pertur-
bation variable » is achieved by introducing a unitary
transformation U[v(¢,7,), 7,(¢.my)] of Hy @ Hp, the
Hilbert space of states mixing background and perturbation
variables. It can be chosen as

U = ei(Q.P)D, oif(0.P)7, (A2)

with D, =1 (vz, + 7,v) so that [v,D,] = iv; the two
Hermitian operators a and f depend only on the back-
ground variables Q and P and therefore implicitly on time.
Under the transformation (A2), the field becomes
v=UpU' = ¢p=UvU=ev+---, (A3)
where the ellipsis means higher order terms, which we
neglect—in this case, (9(113); as a general matter, from that
point on, we assume the leading order and do not write
explicitly the order of the missing terms.
Similarly, the dilation operator transforms into
D,=UDyU" = Dy=U'D,U =D, +2p0*, (A4)
which, given our choice (A2), happens to be exact at all
orders. One gets the canonical momentum as

(Do +0v7'D,),

T, =

and a similar definition for 7z, in terms of the equivalent
D,. This leads to

Ty =em, + (fe +e"B)v, (AS)
remembering that [a, ] # 0.

The operators ¢ and v obey the usual Heisenberg
equation

d d
d—f = i[H((ﬁz)(tﬁ, m4).¢] and d—: — i[HY (v, 7,), 0],
with the Hamiltonian given by (A1), while its transformed

counterpart H<T2)(v, 7,) needs to be determined.
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Using (A3) and expanding the time derivative, one gets

d au'
L= i|UHPU iU )
dr

" (A6)

thereby defining the transformed Hamiltonian H(Tz). Now,

the time derivative of U reads

so that, from (A6), one gets a cancellation of the first term

to yield the total Hamiltonian H(T2> (v, m,) for the perturba-
tions in terms of the variables v and z,, namely

v

H(TZ)(U,JIU) =iU(v,7,)U' (v, 7,) + H((ﬁz)(vaU, U'r,U),

(A7)

a dot meaning partial derivative with respect to the time =
and the last term being calculable from (A1) through the
replacements (A3) and (AS5).
Expanding (A2) in powers of » and D,, the first term
in (A7) reads
iUU" = —aD, — (B+ap+ pa)v---.  (A8)
We now set a =a(Q)=InZ,, with Z, the operator

counterpart of (20). The time evolution of a is given by
the Heisenberg equation

a=—ila, HO] = —i [a(Q),lPZ +K] (A9)

2 0%’

which yields

an VI (2) | ma=F e 207p). a0

T

a(Q)

in which we used [f(Q), P|] = idf/dQ. This also yields the
commutation relation

1/r
N B e ()]
[, a] = —ir*Q ——er

e/ = gla)  (Al)

between a and its time derivative.

In order for the transformation (A2) to be canonical, the
term proportional to D in the transformed Hamiltonian
must disappear. This requires its coefficient to vanish, a
condition which is fulfilled provided a and f satisfy

a = e*fe’ + % (e?B + pe*). (A12)

Plugging Eq. (A12) into (A11), one gets

g(a) = e*[B.a] + %eza[ﬂ, al + % 1B, ale®,

showing that the commutator [a, ] can only depend on a.
All terms on the rhs of the above equation commuting, it is
easy to solve for the commutator. One gets

1 ir(1+w)l/r
o] = 5ela) = =D

so that = Je™2*@ + fy(a). The function f3, can be found
by replacing the above f into (A12). This yields fy =
—1g(a)e™*, and finally

1 de 2@

1
_ _a2als —
)B_ze [a g(a] 4 dT ’

(A13)

which is expressed in terms of the background operators as

—; Q —2ri r -2 -1
b= (2) T 2007 2078, ary

One finally gets the Hamiltonian H(TZ), namely

j 1 1
ngz) — é LB’ 62”} +562aﬂ% +§ |:(ﬂea 4 euﬂ)Z _ 2(aﬁ+ﬁa)

—2p+w(l +w)2<%)%k2e—2“} W2, (A15)

The first term in Eq. (A15) depends only on the background
variables. It can in fact be evaluated as

7‘2

3t

i

3 8. e*]

which merely implies a correction to the otherwise
unknown parameter K; we neglect this term from now on.
The kinetic term o 72 comes with an overall factor

1e?* =1(1+w)(Q/r)*, which is exactly of the form
obtained in (21), showing that (A2) is indeed the quantum
analog of the classical canonical transformation (17) with Z
given by (20). Indeed, the wavelength term « k>, upon
factorizing (1 +w)(Q/y)*" appearing in (21), yields

exactly the required factor (Q/y)*"r=")wk? as in (22).
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The remaining terms read

per st -2 (Q) [ s anon
+2i(14r)Q7°P + Q—2P2]
and
R A _
Z(Gﬂ +ﬁa) = m (7) [—(47‘2 + 8r + S)Q 4

+8i(14r)Q7°P +4072P?],

which can be directly evaluated using the above expres-
sions, as well as

2p=1 J:W (%) _2r{ {2K+%(1 +r)(1 —|—2r)(3—|—2r)] 0

~2i(1+r)(1+2r)Q3P-(1 —|—2r)Q‘2P2},

obtained by calculating the commutator of f with the
background Hamiltonian.
Finally, the total potential term can be written as

(OO

x Q72 [P?+2i(1 4+ r)Q7'P + g(r)07?] }vz, (A16)

where

8K + 6+ 17r + 1672 + 373
4(r+1)

g(r) =

Comparison with the Hamiltonian (27) reveals that the
canonical transformation provides an equivalent result
provided the choice ¢(—2r —2) — ¢(r) is made, which
may not always be possible.
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