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A generalized Amit-Roginsky vector model in flat space is obtained as the effective dynamics of
pertubations around a classical solution of the Boulatov group field theory for 3D Euclidean quantum
gravity, extended to include additional matter degrees of freedom. By further restricting the type of
perturbations, the original Amit-Roginsky model can be obtained. This result suggests a general link (and
possibly a unified framework) between two types of tensorial quantum field theories; on one hand quantum
geometric group field theories and tensorial models for random geometry, and on the other hand melonic-
dominated vector and tensorial models in flat space, such as the Amit-Roginsky model and the Sachdev-
Ye-Kitaev model.
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I. INTRODUCTION

Random matrix models [1–4] are, in their simplest
formulation, zero-dimensional field theories of an N × N
(Hermitian) matrix Mij successfully employed to define
two-dimensional Euclidean quantum gravity, based on the
fact that their perturbative expansion generates a sum over
random surfaces weighted by purely combinatorial ampli-
tudes corresponding to a simplicial gravity path integral on
the triangulation dual to each matrix Feynman diagram.
They have been generalized to matrix field theories in flat
space, by the addition of suitable flat-space coordinates,
and used to describe, for example, large-N regimes of non-
Abelian gauge theories. Both finite matrix models and
matrix field theories have found innumerable applications
in mathematical and theoretical physics.
A different kind of generalization is to define tensorial

models producing, in their perturbative expansion, a
sum over higher-dimensional lattices. Tensorial models

in d dimensions are obtained by replacing the matrix field
M by a tensor field with d indices Mij → Ti1���id .
Such a tensorial generalization was proposed 30 years ago

in a random geometry context [5–7], and soon adapted to the
quantum geometric one for the description of topological
quantum field theories [8,9], with 3D quantum gravity being
a special case. The same quantum geometric models, under
the label of group field theories, became central to formulate
4D quantum gravity in the context of spin-foam models and
canonical-loop quantum gravity [10–12]. In this quantum
gravity context, both as purely combinatorial random geo-
metric models, and as richer quantum geometric ones, they
represent nowadays averypromisingandquicklydeveloping
area of research [13–18]. The simplest example of such
quantum geometric tensorial field theories is the so-called
Boulatov model [8], where the rôle of the matrix indices is
played here by group elements g1; g2; g3 ∈ SUð2Þ. In these
theories, the tensors Ti1…id of simple tensor models are
replaced by fields Tðg1;…; gdÞ on a Lie group manifoldGd,
having the local symmetries of gravitational theories inmind.
More recently, tensorial field theories have proven to

define very rich and interesting quantum field theories in
flat space, again via the addition of suitable embedding
coordinates; in particular, they define new conformal field
theories, with many potential applications, e.g. to the
AdS=CFT context [19,20].
The key mathematical fact that spurred much develop-

ment in these models was the availability of analytic tools
that allowed control over their perturbative expansion,
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despite the combinatorial intricacies. Tensorial models,
just like matrix models, admit a large-N expansion
[21–27]. The leading order in the tensor large-N expansion
is given by a particular family of Feynman graphs called the
melonic graphs, which correspond to (special triangula-
tions of) spherical topology. This analytic control has made
possible the wealth of results on the renormalization group
flow, both perturbative and nonperturbative, of tensorial
field theories and group field theories [16,28], as well as the
statistical analysis of critical behavior [29,30].
It is worth emphasizing here that the Sachdev-Ye-Kitaev

(SYK) model [31,32] also enjoys the same melonic
dominance in the large-N limit [33], with N the number
of fermionic fields of the SYK model.
The Amit-Roginsky (AR) model [34] (see also [35])

describes a vector field theory whose coupling constant is
proportional to an SUð2Þ 3j symbol. This model also has a
large-N expansion and one can prove that it exhibits a
melonic limit, just like tensor models, where N ¼ 2jþ 1 is
the dimension of the irreducible vector representation, and
can thus be understood as a special (and particularly
simple) element of tensorial vector field theories.
Together, tensorial models of random and quantum

geometry, and tensorial field theories in flat space, can
be seen as part of a broader framework of tensorial group
field theories (TGFTs), sharing key mathematical features
and techniques, while remaining flexible enough to allow
for a large variety of possible physical applications.
However, the two classes of models have remained quite
separate, so far. The present work establishes the first
explicit link between them.
A crucial ingredient will be, from the quantum geometric

side of the story, the addition of matter degrees of freedom
to the quantum geometric ones, also inspired by recent
work on the extraction of a relational cosmological dynam-
ics from group field theory [36–38]. As a candidate of
quantum gravity, the inclusion of matter is of course crucial
for TGFTs. Work in this direction has followed two main
routes, rather disconnected. On the one hand, noncommu-
tative scalar field theories have been extracted, by inter-
preting the Lie group domain of quantum geometric models
as a curved momentum space, as perturbations over
classical solutions of group field theories [39,40], produc-
ing an “emergent matter” description from the same
quantum degrees of freedom having a pregeometric inter-
pretation. On the other hand, matter degrees of freedom (or,
maybe more properly, “prematter” degrees of freedom)
have been added to the quantum geometric ones, so to
produce a lattice path integrals for the coupling of gravity
and matter at the level of the Feynman amplitudes of GFT
models [41–43]. These additional degrees of freedom are
also instrumental for the definition of relational observables
with a local spacetime interpretation, in group field theory
cosmology, as mentioned. Both strategies turn out to be
relevant for linking the quantum geometric Boulatov model

to the Amit-Roginsky model, in this work, with the latter
arising as the effective dynamics of quantum geometric
perturbations, but with the additional degrees of freedom
interpreted as matter frames in the quantum geometric
setting playing the role of flat space coordinates in the
resulting Amit-Rogisnky model.
In this paper, the classical solutions of the equation of

motion of the Boulatov model regularized via a heat-kernel
approach are investigated. We exhibit an explicit solution of
these equations with the 3j symbol of SUð2Þ and study
two-dimensional perturbations around this solution. We
then give explicit conditions on these perturbations to give
rise to an AR-like effective action—with additional sum-
mation over spin indices with respect to the original AR
model. This shows that the AR model can be seen as a
perturbation around classical solutions of the Boulatov
model, thus giving the anticipated explicit link between the
two types of tensorial models.1

The paper is organized as follows. A brief review of the
Boulatov model is given in Sec. II. In the following section
we recall the definition of the AR model; then, we study the
condition on the perturbations of classical solutions of the
equations of motion of the Boulatov model necessary to
recover an AR-like action as an effective action, which is
then explicitly derived. Section IV discusses the existence
of a melonic dominance for our effective action. While it is
unsettled whether melonic dominance is preserved in the
most general setting, we exhibit additional conditions that
ensure this property. Finally, we offer some conclusions
and perspectives.

II. BOULATOV MODEL

A. A short review on the Boulatov GFT model

Quantum geometric TGFTs or GFTs, [14,15,45–47] are
field theories whose dynamical field depends on n points gi
of a Lie group G. The group elements gi can be interpreted
as discrete parallel transports of a gravitational connection,
i.e. of a G-vector bundle. The Boulatov model [8] is a
3D GFT model with field Tðg1; g2; g3Þ∶G3 → C, where
G ¼ SUð2Þ. The field is invariant under

Tðg1h; g2h; g3hÞ ¼ Tðg1; g2; g3Þ ∀ h∈ SUð2Þ; ð1Þ

and satisfies the reality condition [39]

Tðg1; g2; g3Þ ¼ T̄ðg3; g2; g1Þ: ð2Þ

1The possibility of deriving the AR vector model from
perturbations over special solutions of tensorial models was
suggested also in [44]. Although the model considered in is
different from the extended Boulatov TGFT model we analyze
and no direct quantum gravity interpretation is immediately
available, the general mechanism is quite similar to the one
studied here.
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The original Boulatov model [8] further requires cyclic
symmetry in the group elements gi, but this property plays
no role in this paper, so we do not discuss it further.
The action of the Boulatov model is nonlocal and it

reads [8]

S½T� ¼ μ2

2

Z
dg1dg2dg3Tðg1; g2; g3ÞT̄ðg1; g2; g3Þ

−
λ

4!

Z Y6
i¼1

dgiTðg1; g2; g3ÞTðg3; g5; g4Þ

× Tðg4; g2; g6ÞTðg6; g5; g1Þ; ð3Þ

where μ is the mass of the field (simply the coupling of the
quadratic nonderivative term) and λ is the coupling constant
of the quartic interaction. The connection to simplicial
geometries is elucidated by a suitable graphical interpre-
tation of the elements in the action. The field Tðg1; g2; g3Þ
represents a triangle, with three group elements associated
with its three edges, and the interaction contains four

triangles glued along shared edges (thus sharing the same
group element) forming a tetrahedron, which is the building
block of a 3D simplicial lattice, likes those generated as
dual to the Feynman diagrams of the model in its
perturbative expansion.
The equation of motion of the field Tðg1; g2; g3Þ

reads,

μ2Tðg3; g2; g1Þ ¼
λ

3!

Z
dg4dg5dg6Tðg3; g5; g4Þ

× Tðg4; g2; g6ÞTðg6; g5; g1Þ: ð4Þ

This provides a description of the GFT model in a group
representation. By generalized Fourier transforms, GFTs
can also be written in terms of a spin representation.
As a function of SUð2Þ⊗3, the field T can be expanded in

terms of Wigner matrices Dji
miniðgiÞ via the Peter-Weyl

theorem [48,49]. Considering the invariance (1), this
decomposition takes the form,

Tðg1; g2; g3Þ ¼
X

fj;m;ng
Tm1m2m3

j1j2j3

Y3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ji þ 1

p
Dji

miniðgiÞ
�
j1 j2 j3
n1 n2 n3

�
; ð5Þ

with �
j1 j2 j3
n1 n2 n3

�

the Wigner’s 3j symbol of SUð2Þ. The sum on fjg denotes
the summation over j1, j2 and j3 (respectively for fmg and
fng). The coefficients Tm1m2m3

j1j2j3
can be computed using the

orthogonality of Wigner matrices as

Tm1m2m3

j1j2j3
¼
Z

dg1dg2dg3
X
fng

Tðg1; g2; g3Þ
Y3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ji þ 1

p

× D̄ji
miniðgiÞ

�
j1 j2 j3
n1 n2 n3

�
: ð6Þ

Using this decomposition, the integral over the Wigner
matrix can be performed explicitly and the Boulatov

action (3) in the spin representation reads [8],

SB½T� ¼
X

j1;j2;j3

μ2

2
jTm1;m2;m3

j1;j2;j3
j2 − λ

4!

X
j1;…;j6

�
j1 j2 j3
j4 j5 j6

�
T46j ;

ð7Þ

where the kinetic term is

jTm1;m2;m3

j1;j2;j3
j2 ¼

X
j1 ;j2 ;j3

m1 ;m2 ;m3

ð−1Þ
P

3

i¼1
ðji−miÞTm1;m2;m3

j1;j2;j3
T−m1;−m2;−m3

j1;j2;j3
;

ð8Þ

and the term T46j encodes the contraction of the magnetic
indices mi of the field paralleling the contraction pattern of
3j symbols to give the 6j symbol, i.e.

T46j ¼
X
fj;mg

ð−1Þ
P

6

i¼1
ðji−miÞT−m1;−m2;−m3

j1j2j3
Tm3;m5;−m4

j3j5j4
Tm4;m2;−m6

j4j2j6
Tm1;−m5;m1

j6j5j1
: ð9Þ

In this form, the equation of motion (4) now becomes

μ2Tm1;m2;m3

j1;j2;j3
¼ λ

3!

X
j4;j5;j6

�
j1 j2 j3
j4 j5 j6

�
T
46j
fm1;m2;m3g; ð10Þ
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where

T
46j
fm1;m2;m3g ¼

X
m4;m5;m6

ð−1Þ
P

6

i¼4
ðji−miÞTm3;m5;−m4

j3j5j4
Tm4;m2;−m6

j4j2j6
Tm6;−m5;m1

j6j5j1
: ð11Þ

is the field T where the three magnetic indices m1, m2

and m3 are not summed on. In the rest of this article we
will use this spin representation (7) of the Boulatov
action.
Finally, before we discuss how matter degrees of

freedom are included in the Boulatov model, let us
recall some facts concerning its interpretation as a model
for 3D Euclidean quantum gravity. Its Feynman ampli-
tudes are given by lattice gravity path integrals corre-
sponding to a discretization of first-order Palatini 3D
gravity on the lattices dual to the Feynman diagrams.
Equivalently, they correspond to the Ponzano-Regge
spin-foam amplitudes, known to correspond to a state
sum formulation of the same quantum theory. In absence
of matter, this quantum theory only describe flat 3D
geometries and the partition function, for given lattice,
counts the moduli space of flat connections for the given
topology. The Boulatov model extends thus this quan-
tum geometric content with a sum over lattices of all
topologies (all possible gluings of 3-simplices), includ-
ing pseudomanifold configurations. The quantum geo-
metric effect of this additional sum is not fully
understood. While the sum over lattices with the same
topology is most likely irrelevant from the physical point
of view, and, once controlled, should give at most a
rescaling of the amplitudes, the sum over different
topologies may have more interesting physical conse-
quences. Tree-level amplitudes, however, should not
encode such topological effects, thus it is natural to
interpret classical solutions of the Boulatov model as
still corresponding to flat space. Clearly, further work is
needed to improve our understanding of these issues.

B. Matter degrees of freedom

GFTs are not usual QFTs describing a theory on
spacetime, but QFTs of spacetime, tentatively describing
its quantum building blocks and their dynamics [14]. Their
dynamical fields do not live, accordingly, on a manifold
interpreted as spacetime, and on which the usual metric and
matter fields of GR and standard model live. Such
spacetime manifold simply does not appear in the funda-
mental formulation of the theory, as one does not find
coordinates and directions on such manifold.
According to the relational strategy for the construction

of diffeomorphism-invariant observables in classical and
quantum gravity [50,51], spacetime localization should be
defined in terms of appropriately chosen dynamical degrees
of freedom, internal to the theory, rather than absolute
external directions. For example, matter coupled to gravity
can play the role of a physical reference frame [50], i.e. of
rods and clocks. While different choices of matter can be
used to fill that role, the simplest framework is to use free
massless (minimally coupled) scalar fields χi [36,52].
In three dimensions, one needs three scalar fields, and they

can be combined into a vector χ⃗ ¼ ðχ1; χ2; χ3Þ, to be added to
the GFT data to localize in space and time (in a continuum
approximation) GFT observables and their dynamics.
We now exhibit a specific construction extending the

Boulatov model to include such matter degrees of freedom.
Other constructions can be found in the cited GFT
literature. Requiring the theory to be invariant under
translations χi → χi þ ai allows for a kinetic term in the
action (3) defined as ∇ ¼ ð ∂

∂χ1
; ∂

∂χ2
; ∂

∂χ3
Þ and thus extends

Tðg1; g2; g3Þ to Tðg1; g2; g3; χ⃗Þ∶SUð2Þ3 ×R3 → C. The
new action reads2

S½T� ¼
Z

½dg�3d3χ⃗
�
1

2
∇Tðg1; g2; g3; χ⃗Þ∇T̄ðg1; g2; g3; χ⃗Þ þ

μ2

2
Tðg1; g2; g3; χ⃗ÞT̄ðg1; g2; g3; χ⃗Þ

�

−
λ

4!

Z Y6
i¼1

dgid3χ⃗Tðg1; g2; g3; χ⃗ÞTðg3; g5; g4; χ⃗ÞTðg4; g2; g6; χ⃗ÞTðg6; g5; g1; χ⃗Þ: ð12Þ

This yields a modified equation of motion:

∇2Tðg3; g2; g1; χ⃗Þ þ μ2Tðg3; g2; g1; χ⃗Þ ¼
λ

3!

Z
dg4dg5dg6Tðg3; g5; g4; χ⃗ÞTðg4; g2; g6; χ⃗ÞTðg6; g5; g1; χ⃗Þ: ð13Þ

2Note that this action should not be confused with that of a dynamical Boulatov model of [53] where a Laplace-Beltrami operator acts
on the group manifold.
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The corresponding action in spin representation writes

SB½Tðχ⃗Þ� ¼
X

j1;j2;j3

Z
d3χ⃗

�
1

2
j∇Tm1;m2;m3

j1;j2;j3
ðχ⃗Þj2

þ μ2

2
jTm1;m2;m3

j1;j2;j3
ðχ⃗Þj2− λ

4!

X
j1;…;j6

�
j1 j2 j3
j4 j5 j6

�

×
Z

d3χ⃗Tðχ⃗Þ46j
�
; ð14Þ

leading to the following equation of motion:

∇2Tm1;m2;m3

j1;j2;j3
ðχ⃗Þ þ μ2Tm1;m2;m3

j1;j2;j3
ðχ⃗Þ

¼ λ

3!

X
j4;j5;j6

�
j1 j2 j3
j4 j5 j6

�
Tðχ⃗Þ46jfm1;m2;m3g: ð15Þ

Before we take our next step in the derivation, we point
out that TGFT models of the above “extended” type,
including both local and nonlocal (tensorial) directions
have also been analyzed, recently, from the point of view of
their renormalization group flow [54] and their critical
behavior (at mean field level) [55,56].

C. Classical homogeneous solutions to
the Boulatov model

We first exhibit a homogeneous classical solution of the
Boulatov model, independent of χ⃗. In the homogeneous
restriction, Eq. (13) reduces to Eq. (4). The dependence on
the scalar matter degrees of freedom χi will only enter
perturbatively around this solution. This equation is a
nonlinear Fredholm integral equation of the second kind,
a class of equations for which very few explicit solutions
are known. In our case, a one-parameter family of solutions
parametrized by normalized class functions f∶SUð2Þ → C
was proposed in [39], with associated field Tf is given by

Tfðg1; g2; g3Þ ¼ μ

ffiffiffiffi
3!

λ

r Z
dhδðg1hÞfðg2hÞδðg3hÞ; ð16Þ

where δðgÞ is the Dirac delta function over the group SUð2Þ
such thatZ

dhδðhÞ ¼ 1;
Z

dhδðhÞfðhÞ ¼ fðIÞ; ð17Þ

with I is the identity of SUð2Þ group.
The function fðgÞ is normalized, i.e.Z

dhfðhÞ2 ¼ 1: ð18Þ

We can also write this solution in spin representation,
substituting the solution (16) into the general Peter-Weyl

coefficients (6), to obtain

ðTfÞm1;m2;m3

j1;j2;j3
¼ μ

ffiffiffiffi
3!

λ

r ffiffiffiffiffiffiffiffiffiffiffiffi
dj1dj3

q X
l2

fj2m2;l2

�
j1 j2 j3
m1 l2 m3

�
;

ð19Þ

where fjmn is the coefficients in the Peter-Weyl decom-
position of fðgÞ,

fjmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p Z
dgfðgÞD̄j

mnðgÞ; ð20Þ

and the corresponding normalization condition becomesX
j;m;n

ð−1Þm−nfjmnf
j
−m;−n ¼ 1: ð21Þ

Under suitable deformations, the Poincaré transforma-
tions can be implemented into the GFT framework [57].
The solution (16) considered here is invariant under such
transformations. Therefore, the spacetime configuration
corresponding to such solutions is expected to be flat.
Before we move on, let us give some remark on this class

of solutions and its special form which is regularized by
“heat kernel.” First, the classical solution (16) is asymmet-
rical in the group elements gi since g2 plays a preferential
role through f. Restricting attention to this special asym-
metric solutions is thus a form of spontaneous symmetry
breaking of the model. Second, the presence of the Dirac
delta function in (16) leads to divergences. For example, the
action (13) is divergent when evaluated on this solution due
to the factor δðIÞ that appears. This can also be seen from its
Peter-Weyl expansion,

δðgÞ ¼
X
j;m

ð2jþ 1ÞDj
mmðgÞ: ð22Þ

Thus, we need to regularize our solution. This can be
achieved by different methods. For example, one strategy is
to introduce a sharp cutoff parameter J in the Peter-Weyl
expansion of Tðg1; g2; g3Þ, thus making the action finite.
Here, we will instead use a heat kernel regularization to
make all quantities well-defined, at the cost of only having
an approximate solution to the equations of motion. To do
so, we introduce a new real parameter ε. For any function f
of SUð2Þ with coefficients fjmn in its Peter-Weyl expansion,
we define its heat kernel regularization as (dj ¼ 2jþ 1)

fεðgÞ ¼
X
j;m;n

ffiffiffiffiffi
dj

q
fjmnD

j
mnðgÞe−εCj ; ð23Þ

withCj is the Casimir of the spin j representation of SUð2Þ.
This function is well-defined for any ε > 0 and its leading
order when ε → 0 is the initial function f. In particular, for
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the Dirac delta function of SUð2Þ, its heat kernel regulari-
zation is

δεðgÞ ¼
X
j;m

djD
j
mmðgÞe−εCj : ð24Þ

Note that this function is not normalized. If we denote its
norm as α−2ε , the normalized function associated to δε is
(dj ¼ 2jþ 1)

ΔεðgÞ ¼ αε
X
j;m;n

ffiffiffiffiffi
dj

q
ðΔεÞjmnD

j
mnðgÞe−εCj ; ð25Þ

where the Peter-Weyl coefficients ðΔεÞjmn has the form

ðΔεÞjmn ¼ αε
ffiffiffiffiffi
dj

q
δmne−εCj : ð26Þ

Using ΔεðgÞ, we can build now a regularized and
symmetric field

Tεðg1;g2;g3Þ¼ μ

ffiffiffiffi
3!

λ

r Z
dhδεðg1hÞΔεðg2hÞδεðg3hÞ

¼ μαε

ffiffiffiffi
3!

λ

r Z
dhδεðg1hÞδεðg2hÞδεðg3hÞ: ð27Þ

However, Tεðg1; g2; g3Þ is only an approximate solution
of the homogeneous equation of motion, i.e. it is a solution
at leading order in ε. The coefficients of its Peter-Weyl
expansion are given by

ðTεÞm1m2m3

j1j2j3
¼μαε

ffiffiffiffi
3!

λ

r Y3
i¼1

ffiffiffiffiffiffi
dji

q
e−εCji

�
j1 j2 j3
m1 m2 m3

�
: ð28Þ

Note that in the limit ε → 0, the solution under consid-
eration is trivial as it is the only exact symmetric solution of
the form (16).
In the following calculation, we will use the solution (16)

and will briefly illustrate the special case (27) separately.

III. AMIT-ROGINSKY-LIKE MODEL FROM
PERTURBATIONS AROUND CLASSICAL

BOULATOV SOLUTIONS

In this section, we obtain an AR-like action from the
Boulatov GFT action by considering specific perturbations
around the classical solution constructed in the previous
section.
The AR model [34] is a cubic field theory of a vector

field ϕ self-coupled through the 3j symbol for a fixed value
of the spin j. Its action is

SAR½ϕ� ¼
Z

ddx

�
1

2

X
m

ð−1Þj−m½ð∇ϕj
mÞð∇ϕj

−mÞþμϕj
mϕ

j
−m�

þ
X

m1;m2;m3

λ

3!

ffiffiffiffiffiffiffiffiffiffiffiffi
2jþ1

p �
j j j

m1 m2 m3

�

×ϕj
−m1

ϕj
−m2

ϕj
−m3

�
; ð29Þ

where ∇ is the gradient operator.
It was recently pointed out in [35] that the large-

Nð¼ 2jþ 1Þ limit of the AR model is given by the melonic
graphs. As mentioned in the Introduction, this feature is
shared with zero-dimensional tensor models [23,24] and
topological GFTs as well.

A. Perturbations over homogeneous
Boulatov solution

Following [39], we consider two-dimensional perturba-
tions over the Boulatov model, which depend on matter
reference frame χ⃗. The field becomes

Tψðg1; g2; g3; χ⃗Þ ¼ Tfðg1; g2; g3Þ þ ξψðg1; g3; χ⃗Þ; ð30Þ

where Tfðg1; g2; g3Þ is the solution to the equation of
motion given by Eq. (16) with (27) a special case, and
ψðg1; g3; χ⃗Þ is with ξ a real parameter 0 < ξ ≪ 1. Due to the
gauge invariance of the GFT field, this is the simplest
nontrivial type of perturbation and correspond to a two-
dimensional phase of the Boulatov model [39].
The Peter-Weyl coefficients of the perturbation are

given by

ψm1m2m3

j1j2j3
ðχ⃗Þ ¼

X
fng

Z
½dg�3ψðg1; g3; χ⃗Þ

×
Y3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ji þ 1

p
D̄ji

mini

�
j1 j2 j3
n1 n2 n3

�

≡ δj2;0δm2;0δ
j1;j3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 þ 1

p
ψ j1
m1;m3

ðχ⃗Þ: ð31Þ

In order to obtain the equation above, we used the fact that
j2 ¼ 0 [see Eq. (A9) in the Appendix]. The scaling factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 þ 1

p
is introduced for later convenience. The Peter-

Weyl coefficients of the perturbed solution read

ðTψ Þm1m2m3

j1j2j3
ðχ⃗Þ¼Tm1m2m3

j1j2j3
þξδj2;0δm2;0δ

j1;j3ψ j1
m1;m3

ðχ⃗Þ: ð32Þ

Substituting (32) into the action (14), we get the action
for the perturbed solution

SB½Tψ ðχ⃗Þ� ¼ SB½T� þ ξ2 · Seff ½ψ � þOðξ4Þ; ð33Þ
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where the first order in ξ vanishes since Tf is a solution to
the equation of motion. The action Seff ½ψ � represents the
effective action of the perturbation field ψ j

mn and contains
corrections up to ξ. Therefore, ξ2Seff ½ψ � contains correc-
tions up to order ξ3.
In the following subsection, we develop each term

arising from the Boulatov model in the effective action
and give sufficient conditions on the coefficients
ðTεÞm1m2m3

j1j2j3
such that the effective action Seff ½ψ � takes the

form of an AR-like action. Since the AR model involves a
vector field transforming in a representation of SUð2Þ and
thus carrying only one magnetic index m. Hence, we will
specialize the perturbations to

ψ j1
m1m3

ðχ⃗Þ ¼
X
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 þ 1

p
ϕj1
mðχ⃗Þ

�
j1 j1 j1
m1 m m3

�
; ð34Þ

and check that this particular choice of perturbations
satisfies all the required conditions.

B. Conditions for the emergence of an
Amit-Roginsky-like model

In order to simplify the notations, we omit from now on
to explicitly write the dependency on the vector χ⃗, which
should always be assumed.

1. Quadratic terms

Substituting perturbation (32) into the Boulatov action
(14), the quadratic term in ξ receives three kinds of
contributions. The kinetic term of Boulatov model gives
rise to one contribution of the form ψψ . Then, the interaction
term gives two distinct types of contributions, depending on
how the two perturbation fields are connected in the action.
Schematically, these two terms can be represented as

TTψψ when the two perturbation fields ψmamb
share one

magnetic index, and TψTψ represents the terms that share
none. They yield different contributions to the effective
action:

Term ψψ . The kinetic term
P

j1;j2;j3 jðTψÞm1;m2;m3

j1;j2;j3
ðχ⃗Þj2 of

the Boulatov action gives the following contribution to the
effective action:

X
j1 ;j2 ;j3

m1 ;m2 ;m3

ð−1Þ
P

i¼1
ðji−miÞ½δj2;0δm2;0δ

j1;j3ψ j1
m1;m3

�½δj2;0δ−m2;0δ
j1;j3ψ j1

−m1;−m3
�

¼
X

j1 ;m1 ;m3
m;m0

ð−1Þ2j1−m1−m3ϕj1
mϕ

j1
m0 ð2j1 þ 1Þ

�
j1 j1 j1
m1 m m3

��
j1 j1 j1

−m1 m0 −m3

�

¼
X
j1;m1

ð−1Þj1−m1ϕj1
m1
ϕj1
−m1

: ð35Þ

This term is simply the quadratic term of the AR action (29). Note that this contribution is independent of the solution
Tm1m2m3

j1j2j3
and therefore it does not impose any restriction on the homogeneous solution to be considered.

Terms TTψψ . There are four terms of type TTψψ . Each of them contributes to the effective action as

X
m1 ;…;m6
j1 ;…;j6

�
j1 j2 j3
j4 j5 j6

�
ð−1Þ

P
i
ðji−miÞT−m1;−m2;−m3

j1j2j3
Tm3;m5;−m4

j3j5j4

× δj2;0δm2;0δ
j4;j6ψ j4

m4;−m6
δj5;0δm5;0δ

j6;j1ψ j6
m6;m1

¼
X

m1 ;m3 ;m4 ;m6
j1 ;j3 ;j4 ;j6

�
j1 0 j3
j4 0 j6

�
ð−1Þ

P
i≠2;5

ðji−miÞT−m1;0;−m3

j1;0;j3
Tm3;0;−m4

j3;0;j4
δj4;j6δj6;j1ψ j1

m4;−m6
ψ j1
m6;m1

¼
X

j1;m1;m6;m4

�X
m3

ð−1Þ−m3−m4T−m1;0;−m3

j1;0;j1
Tm3;0;−m4

j1;0;j1

�
ð−1Þ2j1−m1−m6ψ j1

m4;−m6
ψ j1
m1;m6

ð36Þ

Thus if the homogeneous solution Tm1m2m3

j1j2j3
is such thatX

m3

ð−1Þ−m3−m4T−m1;0;−m3

j1;0;j1
Tm3;0;−m4

j1;0;j1
¼ c1;j1δm1;−m4

ð37Þ
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for some coefficients c1;j1 then we get

X
m1 ;…;m6
j1 ;…;j6

�
j1 j2 j3
j4 j5 j6

�
ð−1Þ

P
i
ðji−miÞT−m1;−m2;−m3

j1j2j3
Tm3;m5;−m4

j3j5j4

× δj2;0δm2;0δ
j4;j6ψ j4

m4;−m6
δj5;0δm5;0δ

j6;j1ψ j6
m6;m1

¼
X

j1;m1;m6;m4

�X
m3

ð−1Þ−m3−m4T−m1;0;−m3

j1;0;j1
Tm3;0;−m4

j1;0;j1

�

× ð−1Þ2j1−m1−m6ψ j1
m4;−m6

ψ j1
m1;m6

: ð38Þ

And specializing to the perturbation (34) we get

X
m1 ;…;m6
j1 ;…;j6

�
j1 j2 j3
j4 j5 j6

�
ð−1Þ

P
i
ðji−miÞT−m1;−m2;−m3

j1j2j3
Tm3;m5;−m4

j3j5j4

× δj2;0δm2;0δ
j4;j6ψ j4

m4;−m6
δj5;0δm5;0δ

j6;j1ψ j6
m6;m1

¼
X
j1;m1

c1;j1ð−1Þj1−m1ϕj1
m1
ϕj1
−m1

; ð39Þ

which is the kinetic term of the AR model.
Given a homogeneous solution, the proportionality

coefficient c1;j1 can be explicitly computed. Later, we will
obtain another condition given by Eq. (45) that will be
stronger than condition (37) obtained here. Thus, this
condition will be automatically satisfied when Eq. (45)
is satisfied.

Term TψTψ . The remaining two quadratic contributions
from the interaction term of the Boulatov model are of the
form TψTψ . Each of these terms contributes to the effective
action as

X
m1 ;…;m6
j1 ;…;j6

ð−1Þ
P

i
ðji−miÞT−m1;−m2;−m3

j1j2j3
δj5;0δm5;0δ

j3;j4ψ j3
m3;−m4

× Tm4;m2;−m6

j4j2j6
δj5;0δm5;0δ

j1;j6ψ j6
m6m1

�
j1 j2 j3
j4 j5 j6

�

¼
X

m1 ;m3 ;m4 ;m6
j1 ;j3

ð−1Þj1þj3−m4−m6ψ j3
m3;−m4

ψ j1
m6;m1

×
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2j1 þ 1Þð2j3 þ 1Þp X

j2;m2

ð−1Þ
P

3

i¼1
ð2ji−miÞ

× T−m1;−m2;−m3

j1;j2;j3
Tm4;m2;−m6

j3;j2;j1
: ð40Þ

For a general solution of the equation of motion, this term
leads to a nondiagonal kinetic term for the ψ field. If the
homogeneous solution satisfies the condition,

X
j2;m2

ð−1Þ
P

3

i¼1
ð2ji−miÞT−m1;−m2;−m3

j1;j2;j3
Tm4;m2;−m6

j3;j2;j1

¼ c2;j1c2;j3δm1;−m6
δm3;m4

; ð41Þ

then this contribution becomes

X
m1 ;m3 ;m4 ;m6

j1 ;j3

ð−1Þj1þj3−m4−m6ψ j3
m3;−m4

ψ j1
m6;m1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2j1þ1Þð2j3þ1Þp
×
X
j2;m2

ð−1Þ
P

3

i¼1
ð2ji−miÞT−m1;−m2;−m3

j1;j2;j3
Tm4;m2;−m6

j3;j2;j1

¼
�X

j1;m1

ð−1Þj1−m1
c2;j1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1þ1

p ψ j1
m1;−m1

�
2

: ð42Þ

When specializing to the type of perturbation given by
Eq. (34), we get

X
j1;m1

ð−1Þj1−m1
c2;j1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 þ 1

p ψ j1
m1;−m1

¼
X

j1;m1;m

ð−1Þj1−m1c2;j1ϕ
j1
m

�
j1 j1 j1
m1 m −m1

�
;

¼
X
j1

c2;j1ϕ
j1
0 δj1;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 þ 1

p
;

¼ c2;0ϕ0
0; ð43Þ

where we used Eq. (A8). Therefore, the quadratic term
obtained from the TψTψ term can also be made diagonal
under the right choice of homogeneous solution and
perturbations.

2. Cubic terms

There is only one type of cubic contribution which
comes from the interaction term of the Boulatov model.
These terms take the form Tψψψ ; there are four such terms
and they each contribute as follows:

X
fj;mg

ð−1Þ
P

i
ðji−miÞT−m1;−m2;−m3

j1;j2;j3
δj5;0δm5;0ψ

j3
m3;−m4

δj2;0δm2;0ψ
j4
m4;−m6

δj5;0δm5;0ψ
j6
m6;m1

�
j1 j2 j3
j4 j5 j6

�

¼
X

m1 ;m3 ;m4 ;m6
j1

ð−1Þ−
P

i≠2;5
−miT−m1;0;−m3

j1;0;j1

ð−1Þ2j1
2j1 þ 1

ψ j1
m3;−m4

ψ j1
m4;−m6

ψ j1
m6;m1

: ð44Þ
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If we impose that the homogeneous solution T satisfies

T−m1;0;−m3

j1;0;j1
¼ c3;j1ð−1Þ−m3δm1;−m3

; ð45Þ

for some coefficient c3;j1 , this contribution becomes

X
m1 ;m3 ;m4 ;m6

j1

ð−1Þ−
P

i≠2;5
miT−m1;0;−m3

j1;0;j1

ð−1Þ2j1
2j1 þ 1

ψ j1
m3;−m4

ψ j1
m4;−m6

ψ j1
m6;m1

ð46Þ

¼
X

m3 ;m4 ;m6
j1

ð−1Þ2j1−m3−m4−m6
c3;j1

2j1 þ 1
ψ j1
m3;−m4

ψ j1
m4;−m6

ψ j1
m6;−m3

; ð47Þ

and when specializing to perturbation (34), this contribution becomes

X
m1 ;m3 ;m4 ;m6

j1

ð−1Þ−
P

i≠2;5
miT−m1;0;−m3

j1;0;j1

ð−1Þ2j1
2j1 þ 1

ψ j1
m3;−m4

ψ j1
m4;−m6

ψ j1
m6;m1

ð48Þ

¼
X

m3 ;m4 ;m6
j1

ð−1Þ2j1−m3−m4−m6
c3;j1

2j1 þ 1

X
m;m0;m00

ϕj1
mϕ

j1
m0ϕ

j1
m00

×

�
j1 j1 j1
m3 m −m4

��
j1 j1 j1
m4 m0 −m6

��
j1 j1 j1
m6 m00 −m3

�

× ð−1Þj1
X

m3;m4;m6

ð−1Þ3j1−m3−m4−m6

�
j1 j1 j1
m −m4 m3

��
j1 j1 j1
m6 m00 −m3

��
j1 j1 j1

−m6 m4 m0

�

¼
X
m;m0 ;m00

j1

c3;j1
2j1 þ 1

�
j1 j1 j1
j1 j1 j1

�
ϕj1
mϕ

j1
m0ϕ

j1
m00

�
j1 j1 j1
m m0 m00

�
: ð49Þ

Where we have used Eqs. (A4) and (A11), and the fact that
ð−1Þ2j1 ¼ 1 since j1 here has to be an integer for the 3j
symbol not to vanish. Thus, when imposing the condition
(45), we get a contribution that corresponds to the inter-
action term of the AR model.
Furthermore, as mentioned above, when comparing the

two conditions (37) and (45), we see that the former will be
automatically satisfied when the later is as the two
coefficients are related through the relation

c1;j1 ¼ c23;j1 : ð50Þ
Thus, it is sufficient to check that conditions (41) and (45)
are met.
Note that these two conditions are also satisfied by the 3j

symbol. Geometrically, the 3j symbol can be associated to
trivial holonomy and flat spacetime [48]. Therefore, con-
ditions (41) and (45) suggest that for the AR model to
emerge, the classical solution to the Boulatov model should
retain at least some of the features of flat spacetime in the
continuum limit.

C. Emergence of the Amit-Roginsky-like model

Now we are ready to extract AR model from the
Boulatov action (14), based on the two conditions (41)
and (45) we discussed in the last subsection. Our main
result is the effective action (63) and (64) for each mode ϕj

m

of the perturbation field [defined through Eq. (34)]. We can
see that the form of these actions is the same as the AR
one [34,35].

1. The effective action for the perturbation ψ

For a perturbation of the form given by Eq. (34), it
follows from the previous paragraph that the conditions
(41) and (45) are satisfied. The effective action for the
vector perturbation ϕj

mðχ⃗Þ then becomes

S½ϕj
m� ¼ S0½ϕ0

0� þ
X
j>0

Sj½ϕj
m�; ð51Þ

where
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S0½ϕ0
0�¼

Z
d3χ⃗

�
1

2

�
∇ϕ0

0Þ2þ
�
μ2þ λ

3!
ð2c23;0þc22;0Þ

�
ðϕ0

0Þ2
�

−
ξλ

3!
c3;0ðϕ0

0Þ3
�
; ð52Þ

and

Sj½ϕj
m� ¼

Z
d3χ⃗

�
1

2

�
j∇ϕj

nj2 þ
�
μ2 þ λ

3!
c23;j

�
jϕj

nj2
�

−
c3;j1
2dj

ξλ

3!

�
j j j

j j j

� X
m1;m2;m3

ϕj
m1
ϕj
m2
ϕj
m3

×

�
j j j

m1 m2 m3

��
; ð53Þ

where
P

n jϕj
nj2 ¼

P
nð−1Þj−nϕj

nϕ
j
−n. The vector fields

with different spin labels j decouple and each of them
has the form of an AR action with j-dependent mass term
and coupling. And again, the coefficients c2;j and c3;j can
be given explicitly after substituting solutions (19)
and (28).

2. Computing coefficients ci and checking
compatibility conditions

We compute explicitly here the coefficients c1;j,c3;j and
c2;j for the homogeneous solution (16) to check that these
conditions are compatible with our homogeneous solution.
Substituting (16) into condition (45), we have

μ

ffiffiffiffi
3!

λ

r
dj1f

0
00

�
j1 0 j1

−m1 0 −m3

�

¼ μ

ffiffiffiffiffiffiffiffiffiffi
3!dj1
λ

r
f000ð−1Þj1þm3δm1;−m3

¼ c3;j1ð−1Þ−m3δm1;−m3
; ð54Þ

which leads to

c3;j ¼
(
ð−1Þjμ

ffiffiffiffiffiffi
3!dj
λ

q
f000 if j∈N

0 otherwise
: ð55Þ

On the other hand, condition (41) yields

3!μ2

λ

X
j2;m2

ð−1Þ
P

3

i¼1
ð4ji−miÞdj1dj3

X
n2;l2

fj2−m2;−n2f
j2
m2;l2

×

�
j1 j3 j2
m1 m3 n2

��
j1 j3 j2

−m6 m4 l2

�

¼ c2;j1c2;j3δm1;−m6
δm3;m4

; ð56Þ

which leads to the condition for fj2m2n2

X
m2

ð−1Þn2−m2fj2−m2;−n2f
j2
m2;l2

¼ dj2c
2
f;j2

δn2;l2 ; ð57Þ

for some new constants cf;j2 . Together with the normali-

zation condition (18) for fjmn, we get the condition that
these new constants should satisfy,

1 ¼
X

j2;m2;n2;l2

ð−1Þn2−m2fj2−m2;−n2f
j2
m2;l2

δn2;l2 ;

¼
X
j2

d2j2c
2
f;j2

; ð58Þ

and we can get the explicit form (60) of cf;j2 by substituting
the heat kernel regularized solution (28).

3. The heat kernel regularized solution

The check on the extra conditions performed above on
the homogeneous solution (28) still holds at first order in ε
when considering the heat kernel regularized solution (27).
Using its Peter-Weyl coefficients (26), we see that the
constant c3;j is simply

c3;j ¼ ð−1Þjμ
ffiffiffiffiffiffiffiffiffi
3!dj
λ

r
ðΔεÞ000 ¼ ð−1Þjμ

ffiffiffiffiffiffiffiffiffi
3!dj
λ

r
αε: ð59Þ

And the coefficients cf;j would have the form

cf;j ¼ αεe−εCj : ð60Þ

Similarly, the condition (41) is only satisfied approx-
imately at first order in ε. Indeed at first order in ε the
Eq. (A7) gives

X
j;m

dje−2εCj

�
j1 j2 j

m1 m2 m

��
j1 j2 j

m0
1 m0

2 m

�
≈δm0

1
m1
δm0

2
m2
:

ð61Þ

Hence the coefficients c2;j of the condition (41) can then be
determined as

c2;j ¼ μdjαε

ffiffiffiffi
3!

λ

r
: ð62Þ

It follows that the effective action for the heat kernel
regularized homogeneous solution is
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S0½ϕ0
0� ¼

Z
d3χ⃗

�
1

2
½ð∇ϕ0

0Þ2 þ μ2ð1þ 3α2εÞðϕ0
0Þ2�

−
ffiffiffi
λ

p
ξμαεffiffiffiffi
3!

p ðϕ0
0Þ3

�
; ð63Þ

Sj½ϕj
m� ¼

Z
d3χ⃗

�
1

2
½j∇ϕj

nj2 þ μ2ð1þ djα2εÞjϕj
nj2�

−
ð−1Þjffiffiffiffi

3!
p

ffiffiffi
λ

p
ξμαε

2
ffiffiffiffiffi
dj

p �
j j j

j j j

� X
m1;m2;m3

ϕj
m1
ϕj
m2
ϕj
m3

×

�
j j j

m1 m2 m3

��
; ð64Þ

where the second equation is exactly the AR action for spin
j, with mass and interaction coupling dependent on the
fundamental GFT coupling and on the spin index j.
This shows that the AR model can be obtained as a

particular two-dimensional perturbation around classical
solutions of the Boulatov model, provided that the classical
solution satisfies the conditions given by Eqs. (41) and (45).
Before analyzing the resulting generalized AR model

further, let us add a few comments on our result. As recalled
earlier, the AR model is a vector model on flat Euclidean
space. From a quantum gravity point of view, the two key
ingredients of the model that one would consider chal-
lenging to reproduce from the fundamental quantum
dynamics are the background flat space it lives on and
its local nature. This is because the fundamental formu-
lation of the theory, here the extended Boulatov model with
its simplicial quantum gravity underpinning, does not
feature continuum spacetime manifold nor local fields
defined on it, so both have to be somehow reconstructed
in the continuum limit, and the whole framework is
diffeomorphism invariant. In our derivation, these issues
are apparently bypassed in few simple steps: the continuum
limit is encoded in the mean field treatment of the Boulatov
model, effectively resumming an infinite series of pertur-
bative, lattice-dependent amplitudes; the desired flat geom-
etry is provided by the homogeneous background solution
we expand around; the local characterization of the GFT
field perturbations, interpreted as a local vector field in that
flat space, is allowed by the extra frame degrees of freedom,
in turn coming from scalar matter in the discrete gravity
picture, thus a material reference frame. While this ensures
some coherence between the interpretation of all the
various formal ingredients in our derivation and its result,
it is clear that each of them requires further analysis.

IV. MELONIC DOMINANCE

As already mentioned above, an important feature of the
AR model is the dominance of melonic graphs in the large
N ¼ 2jþ 1 limit. However, the main difference between
the effective action (51) and the original AR action is the
presence of the sum over spins j. Thus we have to check

whether or not this new summation spoils the existence
of a melonic regime. Even though the general behavior of
f3njg symbols as functions of j is an open issue [58–61],
one can qualitatively study the behavior of the Feynman
amplitudes of the model and give additional constraints to
ensure the existence of such melonic regime.

A. Feynman amplitudes for the nonregularized
solution

For simplicity, we will drop below the heat kernel
regularization and work with the actions given by
Eq. (53), including the sum over spin labels j. As in the
AR model, each Feynman diagram γ of our new model
consists of isoscalar part Iγ and isospin part Aγ [34,35]:

Aγ ¼
X
j

cγ

�
λf6jg

3!ð2jþ 1Þ
�

v
IγAγ; ð65Þ

where cγ is the combinatorial factor of the diagram. The
isoscalar part yields a space integral, so one needs to study
the isospin part to find how the Feynman amplitude
depends on N.
The melonic graphs are fully 2-particle reducible (F2PR)

diagrams, i.e. they always admit a 2-cut which gives
another melonic graph with fewer vertices, until the trivial
graph is reached. Their contribution reads,

AF2PR ∼
X
j

ð2jþ 1Þ1−3nf6jg2n ≡ ĀF2PR; ð66Þ

with for a graph with v ¼ 2n vertices. For a graphs which is
not F2PR, the Feynman amplitude can be factorized as a
product of 2-particle irreducible graphs,

ANF2PR ∼
X
j

ð2jþ 1Þ−n0−2n
Yk
i¼1

Af3nijgf6jg2n ≡ ĀNF2PR;

ð67Þ

where

n ¼ 1þ n0 − kþ
Xk
i¼1

ni; ð68Þ

and Af3nijg is the amplitude of a three-particle irreducible
diagrams with 2ni vertices.
When N ¼ 2jþ 1 goes to infinity, the amplitudes

ĀNF2PR is conjectured to obey the following bound [34]:

ĀNF2PR ≤
X
j

ð2jþ 1Þ1−3n−αf6jg2n; ð69Þ

for some real number α > 0. Asymptotically, when
N → ∞, both n ≥ 1 and the 6j symbol are small with
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respect to N. Therefore, we get the following bound:

ĀF2PR<
X
j

N1−3n¼
X
j

ð2jþ1Þ1−3n¼ð1−21−3nÞζð3n−1Þ;

ð70Þ

where ζ is the Riemann zeta function, which is a mono-
tonically decreasing finite function of n.
If one assumes that the bound (69) holds for any value of

N, then the amplitude of a NF2PR graphs is also finite. If
the bound (69) fails to hold for values ofN satisfyingN < Nt
for some bound Nt, then the sum from N ¼ 3 (j can only
be an integer no smaller than 1, so N ≥ 3) to N ¼ Nt is still
a finite number, while the sum from N ¼ Nt is finite as
well. Therefore, it is possible thatANF2PR is comparablewith
AF2PR since the maximal value of ζð3n − 1Þ is only
π2=6 ≃ 1.645.
One can thus conclude that the sum over j can dramati-

cally change the amplitude of a Feynman graphs of the AR
model and spoil the melonic limit at large N. However, one
can find ways to rule out this possibility and ensure that the
melonic dominance is preserved. This will be illustrated in
the following subsection.

B. Restoring the melonic dominance

One naive way to restore the melonic dominance is of
course to further specialize the form of the perturbation (32)
in order to enforce the selection of one single value for the
spin j, thus getting rid of the sum over spin labels and
leading to the original AR model:

ðTψ Þm1m2m3

j1j2j3
ðχ⃗Þ ¼ Tm1m2m3

j1j2j3
þ δj1jδj2;0δm2;0ψ

j1
m1;m3

ðχ⃗Þ; ð71Þ

Another, more interesting, way to recover melonic domi-
nance is to work with the approximate solution (27). Indeed,
when j2 ¼ 0 the solution has the form:

ðTεÞm1m2m3

j1j2j3
¼ μαε

ffiffiffiffi
3!

λ

r
e−2εCj1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 þ 1

p
ð−1Þj1−m1

× δj1;j3δm1;−m3
: ð72Þ

For ε ¼ ð2jmaxðjmax þ 1ÞÞ−1, the expression above scales asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 þ 1

p
for j1 < jmax, with jmax a large number. Hence, in

the Peter-Weyl expansion, the coefficients with larger j are
dominant, and the coefficients ðTεÞm1m2m3

j1j2j3
with ji < jmin for

some threshold jmin can be neglected. We require that jmin is
also a large number so that the bound (69) is valid. At first
order in ε one then has

ðTψÞm1m2m3

j1j2j3
ðχ⃗Þ ≃

�
Tm1m2m3

j1j2j3
þ δj1jδj2;0δm2;0ψ

j1
m1;m3

ðχ⃗Þ; jmin ≤ ji ≤ jmax

0; otherwise
:

Such perturbations ϕj
m will lead to the amplitude

Aγ ¼
Xj¼jmax

j¼jmin

cγ

�
λf6jg

3!
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
�

v
IγAγ; ð73Þ

which becomes an infinitesimal again for large jmin and
jmax, while the non-F2PR graphs are higher-order infini-
tesimals as in the original AR model. The melonic
dominance is thus restored.

V. CONCLUDING REMARKS

In this work, we have obtained a generalized version of
the Amit-Roginski model as a (two-dimensional) pertur-
bation around a classical homogeneous solution of the
Boulatov group field theory model for 3D quantum gravity,
extended to include what plays the role, in the discrete
gravity picture, of scalar matter degrees of freedom, which
end up providing a material frame and embedding coor-
dinates in the resulting AR model. This is an interesting
result from a physical point of view, first of all, since it
connects 3D quantum gravity, in a well-studied and
mathematically rich formulation, and the AR model, itself

of great mathematical interest. The main difference
between our effective action for the perturbation and the
usual AR model is the presence of the summation on the
spin index j. While it is still unclear whether this summa-
tion could spoil the dominance of melonic diagram in the
most general framework, it is possible to preserve the
melonic limit by making use of the heat kernel regulari-
zation and taking a double scaling limit.
It is also an interesting result from a more conceptual

point of view since it shows an example of the emergence
of a local field theory (in flat space) from a background
independent quantum gravity formalism based on non-
spatiotemporal structures (meaning, not corresponding
directly to quantized continuum spacetime-based fields),
which is an outstanding challenge for most quantum
gravity approaches. In fact, our result resonates (especially
in the key role played by scalar matter used as a relational
frame) with recent work on GFT cosmology [38].
This result opens the way for at least three different

generalizations. Firstly, a natural follow-up would be to
find other classical solutions to the Boulatov model and to
study perturbations around these solutions to see if they
also admit Amit-Roginski-like perturbations.
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Secondly, as already mentioned in the Introduction, the
holographic SYKmodel is another type of field theory that is
known to enjoy a melonic limit. It thus appears interesting to
us to investigate how the SYKmodel as well can be obtained
within a GFT setup, again in terms of fluctuations over
nonperturbative quantum gravity configurations.
Third, as we have already mentioned, a detailed com-

parison of our 3D quantum gravity setting with the OðNÞ3-
symmetric random tensor model studied in [44], leading to
a similar classical solution and another possible route to
derive the AR model, would be very interesting to perform.
Once more, while exploring generalizations of our

results, many elements in our derivation deserve a deeper
and more extensive analysis. Among these, we mention
again the quantum geometric interpretation and effects of
the sum over topologies in the GFT construction, the
continuum physical interpretation of the classical solutions
of GFT equations of motion, and the renormalization group
flow and continuum limit of the extended TGFT models,
with both local and tensorial directions, that were the
starting point of our analysis.
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APPENDIX: DEFINITIONS AND IDENTITIES
FROM SUð2Þ RECOUPLING THEORY

We give several definitions and properties related to
SUð2Þ recoupling theory used in the article. All those
properties are classical results on recoupling theory of
SUð2Þ, and we refer the interested reader to Ilkka
Mäkinen’s introduction [48] as well as Pierre Martin-
Dussaud’s lively note [49] on this topic for more details.

1. Haar measure and Wigner matrices

From the Peter-Weyl theorem, the Wigner matrices
Dj

mnðgÞ form an orthogonal basis of the functions
f∶SUð2Þ → C. This orthogonality relation is encoded in
the Haar measure via the relation

Z
dgDj

mnðgÞD̄j0
m0n0 ðgÞ ¼

1

ð2jþ 1Þ δ
jj0δmm0δnn0 ; ðA1Þ

where the Wigner matrices satisfy

Dj
mnðgÞ ¼ ð−1Þm−nD̄j

−m;−nðgÞ: ðA2Þ

2. 3j symbol and its properties

The 3j symbol is invariant under the action of SUð2Þ
group,

Dj1
m1n1D

j2
m2n2D

j3
m3n3

�
j1 j2 j3
n1 n2 n3

�
¼

�
j1 j2 j3
m1 m2 m3

�
:

ðA3Þ

It is also invariant under the even permutations of
indices, while it acquires an additional phase under odd
permutations

�
j1 j2 j3
m1 m2 m3

�
¼ð−1Þj1þj2þj3

�
j2 j1 j3
m2 m1 m2

�
: ðA4Þ

The same phase also appear if we replace mi by their
negative

�
j1 j2 j3

−m1 −m2 −m3

�
¼ ð−1Þj1þj2þj3

�
j1 j2 j3
m1 m2 m3

�
:

ðA5Þ

The 3j symbols satisfy two orthonormal relations

ð2j3 þ 1Þ
X
m1;m2

�
j1 j2 j3
m1 m2 m3

��
j1 j2 j03
m1 m2 m0

3

�

¼ δj3;j03δm3;m0
3
; ðA6Þ

X
j3;m3

ð2j3 þ 1Þ
�

j1 j2 j3
m1 m2 m3

��
j1 j2 j3
m0

1 m0
2 m3

�

¼ δm1;m0
2
δm2;m0

2
; ðA7Þ

Finally, when one of the magnetic moment (say m3)
vanishes, then the 3j symbol vanishes unless m1 ¼ −m2

and we have

X
m

ð−1Þj−m
�

j j k

m −m 0

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

p
δk;0; ðA8Þ

and in particular for k ¼ 0 we have

�
j1 0 j3
n1 0 n3

�
¼ δj1;j3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j1 þ 1

p ð−1Þj1þn1δn1;−n3 : ðA9Þ

GENERALIZED AMIT-ROGINSKY MODEL FROM … PHYS. REV. D 109, 066008 (2024)

066008-13



3. 6j symbol and its properties

The 6j symbol is defined as

�
j1 j2 j3
j4 j5 j6

�
¼

X
ji;mi

ð−1Þ
P

6

a¼1
ðja−maÞ

�
j1 j2 j3

−m1 −m2 −m3

��
j1 j5 j6
m1 −m5 m6

�

·

�
j4 j2 j6
m4 m2 −m6

��
j4 j5 j3

−m4 m5 m3

�
: ðA10Þ

It enjoys several symmetries properties that we do not make use of in the main body. We refer the interested reader to [48]
where they are explicitly mentioned.
Using the 6j symbol we have

X
n1;n2;n3

ð−1Þ
P

3

a¼1
ðka−naÞ

�
j1 k2 k3
m1 −n2 n3

��
k1 j2 k3
n1 m2 −n3

��
k1 k2 j3
−n1 n2 m3

�

¼
�
j1 j2 j3
k1 k2 k3

��
j1 j2 j3
m1 m2 m3

�
: ðA11Þ

Finally, when one of the spin index (say j6) vanishes we have

�
j1 j2 j3
j4 j5 0

�
¼ δj1;j5δj2;j4ffiffiffiffiffiffiffiffiffiffiffiffi

dj1dj2
p ð−1Þj1þj2þj3fj1j2j3g: ðA12Þ
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