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It is well known that the entanglement entropies for spacelike subregions, and the associated modular
Hamiltonians play a crucial role in the bulk reconstruction program within anti–de Sitter (AdS) holography.
Explicit examples of the Hamilton-Kabat-Lifschytz-Lowe (HKLL) map exist mostly for the cases where
the emergent bulk region is the so-called entanglement wedge of the given boundary subregion. However,
motivated from the complex pseudoentropy in Euclidean conformal field theories (CFT), one can talk about
a “timelike entanglement” in Lorentzian CFTs dual to AdS spacetimes. One can then utilize this boundary
timelike entanglement to define a boundary “timelike modular Hamiltonian.”We use constraints involving
these Hamiltonians in a manner similar to how it was used for spacelike cases, and write down bulk
operators in regions which are not probed by an RT surface corresponding to a single CFT. In the context of
two-dimensional CFT, we rederive the HKLL formulas for free bulk scalar fields in three examples: in AdS
Poincaré patch, inside and outside of the AdS black hole, and for de Sitter flat slicings. In this method, one
no longer requires the knowledge of bulk dynamics for subhorizon holography.

DOI: 10.1103/PhysRevD.109.066007

I. INTRODUCTION

Quantum entanglement finds many applications in con-
densed matter and high energy theories alike, and it is an
inherent property of many quantum systems including
discretemany body physics and also continuum field theory.
Our work in the present paper will discuss a very particular
application of entanglement, namely its usefulness in under-
standing gravitational systems in the context of gauge/
gravity duality. More concretely, given a holographic
conformal field theory (CFT), how its entanglement struc-
ture leads to an emergent bulk geometry with one extra
dimension. This emergent geometry is often the one con-
taining asymptotically anti–de Sitter (AdS) spacetime.
The present topic has been studied rigorously during the

last decade culminating in a thorough understanding of
how spacelike entanglement leads to bulk Einstein dynam-
ics at the linearized and higher orders. By spacelike
entanglement we mean that given the knowledge of a field
theory state on a spacelike Cauchy slice Σ, we can find the

corresponding reduced density matrix ρA for a given
subregion A of the spacelike surface (in our case,
Σ ¼ A ∪ Ac, where Ac is the complement region). This
density matrix can in turn compute the statistical von-
Neumann entropy which is usually taken as the measure of
the entanglement of the above subregion with the rest.1 The
entanglement entropy is given by

SEE ¼ −TrðρA log ρAÞ ¼ TrðρAHAÞ; ð2Þ

where HA is the so-called subregion modular Hamiltonian
or entanglement Hamiltonian. As is clear from the equation
above, it is an operator-valued measure of entanglement
entropy, thus carrying all the details of the entanglement
structure of the mixed state in question.
Wewould be interested in applying these rich ideas in the

bulk reconstruction program of AdS=CFT duality. Once
again, the history of bulk reconstruction is quite long, almost
spanning the lifetime of the duality itself, but for
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1This statement is already marred with a rich plethora of
subtleties involving partitionability of field theory Hilbert space,
due to its continuum nature and for any gauge symmetries that
might be present. We will ignore all these subtleties for this study.
For a recent review of these aspects, see Ref. [1]. For example, for
a field theory, a better defined quantity is the extended modular
Hamiltonian H̃, which, if the system were bipartitionable like
above, would give

H̃A ¼ HA −HAc : ð1Þ
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concreteness, we will be confining ourselves with the
Lorentzian extrapolate boundary-to-bulk dictionary. A typ-
ical example of such a map was provided by Hamilton et al.
[2–4], following whom it is currently known as the
Hamilton-Kabat-Lifschytz-Lowe (HKLL) map. In its origi-
nal form, the HKLL map provides the bulk to boundary
kernel (by solving bulk field equations and imposing
required boundary valued constraints) for numerous fields
in various asymptotically AdS backgrounds [5–8], which
enables one to write a local bulk field in terms of the dual
boundary operators. To illustrate, for a given bulk fieldΦðxÞ,
located at the bulk point x, one can write down a formula
involving corresponding boundary operator OðXÞ sup-
ported over the intersection between the causal wedge of
the bulk point x, and the boundary:

ΦðxÞ¼
Z
boundary

dX0KðX0jxÞOðX0ÞþOð1=NÞþOðα0Þ: ð3Þ

The free bulk fields require evaluations of bulk dynamics
in the original HKLL approach, whereas the corrections
in CFT’s central charge N, or string length α0 can be
incorporated by considering bulk microcausality. As an
interesting extension, using the bulk dynamics in de Sitter
(dS), a similarmapwaswritten down in [9] (Thiswill also be
a topic of our interest here, although the current status of a
possible dS=CFT duality is much murkier than its AdS
counterpart. See also [10]). For us, any possible dS=CFT
subtleties will not be relevant, as wewill simply assume that
such a duality exists.
Later on, the HKLL formula was rederived for scalar

and gauge fields in [11,12] from a purely algebraic
perspective (for other relevant works along this theme,
see Refs. [13–15]). Following the proposals of Jafferis-
Lewkowycz-Maldacena-Suh (JLMS) [16], which equates
the bulk and boundary modular Hamiltonians within
AdS=CFT duality, they use the predicted behavior of bulk
fields under the flow of extended modular Hamiltonian. In
particular, for a holographic CFT, the free bulk scalar fields
are invariant under the modular flow, if they are located on
the Ryu-Takayanagi (RT) surface [17] corresponding to the
subregion. Such a condition then naturally delivers the
HKLL map as a by-product. While this clearly demon-
strates the power of spacelike entanglement (Hamiltonian)
in answering questions regarding bulk gravity, there are a
few loopholes that remain to be filled. The usual spacelike
H̃ can only produce a modular flow within the entangle-
ment wedge of the dual boundary subregion. Therefore, in
the thermofield double states, e.g., where the AdS black
hole is an entangled product of two copies of maximally
entangled CFTs [18], any given boundary observer can at
most probe up to the horizon of the black hole by means of
a flow produced by their H̃. Indeed, so far, no explicit
subhorizon bulk reconstruction exists, which avoids using
bulk equation of motion. We intend to fill this gap in the

literature utilizing the timelike entanglement, and its ability
to see the bulk regions way past the reach of H̃.

A. Outline of the paper

The plan of the paper is as follows. We start in Sec. II by
reviewing how to construct timelike entanglement entropy for
two-dimensional CFTs by starting from the spacelike entan-
glement entropies and performing some trivial Wick rota-
tions. These Wick rotation techniques can also be applied at
the level of replica trick to obtain the corresponding “timelike
modular Hamiltonians.” This is the topic covered in Sec. III.
In both these two sections, we have covered thevacuum states
at both zero and finite temperature. Later on, in Appendix A
we have studied the flow under these boundary timelike
modular Hamiltonians by mapping the Virasoro symmetry to
the bulk. This above study already provides us with a solid
hindsight for the boundary constraints that we use in themain
part of the paper.
Next we turn to the bulk locality program using these

timelike modular Hamiltonians (with a JLMS type relation
working also in the timelike case). Sections IV–VI are
devoted to bulk reconstruction in respectively Poincaré AdS
vacuum state, outside the Banados-Teitelboim-Zanelli
(BTZ) black hole [19], and inside the BTZ black hole.
Later, Sec. VII deals with the bulk locality in dS flat slices.
These results provide the main outcome of our work and
illustrate the usefulness of the timelikemodularHamiltonian
(and timelike entanglement in general), in the extrapolate
dictionary. Finally, after a brief conclusion and discussions
on the possible future avenues, we have a couple of extra
Appendixes providing some technical results skipped dur-
ing the main texts.

II. TIMELIKE ENTANGLEMENT ENTROPY

A. CFT methods

In this section we will provide a brief review of the
timelike entanglement entropy (EE) that has been a topic of
recent interest especially in the context of pseudoentangle-
ment entropy and its variants. Some references thatwe found
particularly useful are [20–25] (some earlier works discus-
sing timelike entanglement include [26], which were
expanded further in [27,28]). There are various ways to
derive the entanglement entropy for a timelike subregion
within CFT, and inwhat followswewill briefly outline these
various methods by closely following [21,24]. This section
contains published ideas, and has been included here to
make the paper self-contained. The readers who are already
familiar with these works, can skip ahead to Sec. III.2

2It is natural to ask whether the timelike EE also follows from a
density matrix or not. Indeed it does, and this density matrix is
closely related to the transition density matrix discussed in the
context of pseudoentropy. Interested readers may want to look
at [20,21] for a brief discussion on this point.
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1. Rotating the interval

As we review below, the simplest way to extract the
timelike entanglement entropy is to start with the entan-
glement entropy for a general spacelike interval, and then
perform the necessary spacetime rotations to make the
interval timelike (for an illustration, applicable for the case
(ii) below, see Fig. 1). For example, one can start with the
usual replica method to compute the entanglement entropy
(see, e.g., [29] for a review) and study a few well-
known cases.

(i) Intervals in a CFT2 on a plane: Let us begin with a
spacelike subsystem A with the two endpoints
separated by Δx and Δt in spacetime. The nth Renyi

entropy SðnÞA , is computed using the two-point
correlation function of twist operators and in the
limit n → 1, we arrive at the von Neumann entropy

SA ¼ Sð1ÞA ¼ c
3
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔxÞ2 − ðΔtÞ2

p
ϵ

�
: ð4Þ

Here c represents the central charge of the CFT, with
ϵ being the UV cutoff of the theory.
At this stage, to find out the timelike entangle-

ment entropy SðTÞA ,3 in the case when the subsystem
A is timelike, we can simply derive the resulting
equation by making the interval ðΔxÞ2 − ðΔtÞ2
negative in Eq. (4). Doing so, it provides a complex
valued quantity given by

SðTÞA ¼ c
3
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔtÞ2 − ðΔxÞ2

p
ϵ

�
þ cπi

6
: ð5Þ

For most of our considerations below, we will be
interested in a subsystem that is purely timelike with
length 2T0 (i.e., with Δx ¼ 0 and Δt ¼ 2T0). In that
case, we have

SðTÞA ¼ c
3
log

�
2T0

ϵ

�
þ cπi

6
: ð6Þ

(ii) CFT2 intervals on a periodic space: On the other
hand, if the CFT has a compact spatial direction
(denoted by ϕ in this case) with circumference L (at
zero temperature), then the EE for such a subsystem
A is

SA ¼ c
6
log

�
L2

π2ϵ2
sin

�
πðΔϕþ ΔtÞ

L

�

× sin

�
πðΔϕ − ΔtÞ

L

��
: ð7Þ

Once again, we can find out the timelike entangle-

ment entropy SðTÞA by making the subsystem A
timelike, i.e., by imposing ðΔϕ − ΔtÞ < 0. We then
obtain

SðTÞA ¼ c
6
log

�
L2

π2ϵ2
sin

�
πðΔtþ ΔϕÞ

L

�

× sin

�
πðΔt − ΔϕÞ

L

��
þ iπc

6
: ð8Þ

Again, for a purely timelike subsystem A (i.e., with
Δϕ ¼ 0 and Δt ¼ 2T0) we have

SðTÞA ¼ c
3
log

�
L
πϵ

sin
2πT0

L

�
þ iπc

6
: ð9Þ

Of course, the above equation (9) boils down to (6)
in the infinite L limit.

(iii) CFT2 intervals at a finite temperature: If the CFT is
at a finite temperature 1=β on an infinite line, then
for a spacelike subregion A, the corresponding
entanglement entropy is well known (t here is the
Euclidean time) [30]:

SA ¼ c
6
log

�
β2

π2ϵ2
sinh

�
πðΔxþ ΔtÞ

β

�

× sinh

�
πðΔx − ΔtÞ

β

��
: ð10Þ

Once again, rotating the subregion so that it becomes
timelike, we obtain the corresponding timelike

entanglement entropy SðTÞA as

FIG. 1. The green spatial region A (left) has been rotated
to make it a timelike red region (right). Under this rotation,
the spacelike entanglement entropy goes over to its timelike
counterpart.

3We will always use a superscript (T) to denote the timelike
quantities, and the nonsuperscripted ones will denote the usual
spacelike counterparts.
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SðTÞA ¼ c
6
log

�
β2

π2ϵ2
sinh

�
πðΔtþ ΔxÞ

β

�

× sinh

�
πðΔt − ΔxÞ

β

��
þ iπc

6
: ð11Þ

Once more, for a purely timelike subsystem of
length 2T0 we get

SðTÞA ¼ c
3
log

�
β

πϵ
sinh

�
2πT0

β

��
þ iπc

6
: ð12Þ

The similarity of expressions between (12) and (9) is
natural, and quite correctly, under the zero tempera-
ture limit β → ∞, (12) reproduces (6).

2. Wick rotating the coordinates

An alternative way of deriving the above equations for
timelike entanglement entropies is via Wick rotating the
coordinates [21,24]. To be concrete, we would discuss here
the case of a timelike interval for a CFT at zero temperature
with a periodic spatial direction. We will discuss two
different types of Wick rotations, as both of them appear
in the literature and both of them clarify the similarity
between the cases (ii) and (iii) above. Essentially, the Wick
rotation turns the spatial coordinate timelike (and vice
versa), and hence the spacelike interval will now have the
interpretation of a timelike interval.

(i) Wick rotation type I: In this case, we can start with a
CFT at a finite temperature 1=β on an infinite line.
From (10) we know that for a spacelike subregion on
a constant time slice, the resulting EE is given by

SA ¼ c
3
log

�
β

πϵ̃
sinh

�
2πR
β

��
: ð13Þ

We have denoted here the size of the spacelike
region to be 2R, and the UV cutoff to be ϵ̃. If we now
perform the Wick rotation on the Euclidean time
β → −iL, it rotates the CFT cylinder so the resulting
geometry has the interpretation of a zero temperature
CFTon a periodically defined Lorentzian space. See
Fig. 2 for an illustration of this point. However, we
have to simultaneously perform a Wick rotation of
the UV cutoff scale ϵ̃ → −iϵ, so that ϵ is now the
usual UV cutoff in the CFT. Under these analytic
continuations, the subregion automatically becomes
a timelike subregion, and we can identify the spatial
interval 2R as the timelike interval 2T0. The result-
ing entanglement is precisely (9)

SðTÞA ¼ c
3
log

�
L
πϵ

sin

�
2πT0

L

��
þ iπc

6
: ð14Þ

(ii) Wick rotation type II: Alternatively, we can start
with the same system as in the left panel of Fig. 2
and perform the Wick rotations as given below:

x → it and R → iT0: ð15Þ

Clearly the main difference here is that we have
analytically continued the spatial coordinate only (so
it now has an interpretation of timelike direction),
but we had to supplement it with an explicit analytic
continuation of the subregion (without having to
complexify the UV cutoff ϵ, and β identified with the
spatial periodicity L). Once again, under these
changes, (13) boils down to (14).

Of course, we can also obtain the entanglement entropy
for a timelike interval when the CFT is at a finite temper-
ature. In that case, we will simply start with a spacelike
interval for a CFT on a spatially periodic direction, and
perform Wick rotations as discussed above.

B. Holographic methods

We will conclude our review of timelike EE by briefly
discussing the associated bulk extremal surfaces if the CFT
in question is holographic. These extremal surfaces will be
important for us later when performing the bulk
reconstruction. We will consider two examples, one being
the pure AdS3 and the other being the BTZ black hole.4

1. Pure AdS3

We can take the CFT2 in the infinite two-dimensional
plane to be dual to the Poincaré AdS3 with metric

ds2 ¼ l2

z2
ðdz2 − dt2 þ dx2Þ: ð16Þ

l and z here are the usual AdS radius and the bulk radial
coordinates respectively. If we have a timelike subregion A
in CFT2 with endpoints t ¼ �T0 at the x ¼ 0 plane, then

FIG. 2. Timelike entanglement entropy via a Wick rotation.

4We will not discuss the AdS3-Rindler spacetimes separately
from BTZ, as the analysis there essentially follows the BTZ
analysis with minor, tractable differences.
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the associated extremal surface takes the shape depicted in
Fig. 3 (see Ref. [24] for the details of the derivation using
the extremization procedure).5 As we have already seen in
(6), we expect the timelike EE in this case to be

SðTÞA ¼ c
3
log

�
2T0

ϵ

�
þ iπc

6
: ð17Þ

It turns out that the area of the green spacelike surface given
by the equation

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ T2

0

q
; ð18Þ

computes the real part of the above EE, whereas to obtain
the imaginary piece, we need to go to the global patch of
AdS3. Indeed, it turns out that in global AdS3 with metric

ds2 ¼ l2
�
− cosh2 ρdτ2 þ dρ2 þ sinh2 ρdθ2

�
; ð19Þ

the spacelike and the timelike segments join precisely at
global times τ ¼ �π=2, therefore yielding the length of the
red segment to be τ ¼ π. This in turn computes the
imaginary piece going as iπc

6
[21,24]. The green spacelike

parts happen to follow a similar equation as the RT surface,
but appropriate for a timelike interval.

2. BTZ blackhole

As the last topic of our review, we describe the timelike
extremal surfaces for the BTZ black hole. The correspond-
ing metric is given by

ds2 ¼ −
ðr2 − r2þÞ

l2
dt2 þ l2

ðr2 − r2þÞ
dr2 þ r2dϕ2; ð20Þ

where rþ is the horizon radius. Moreover, β ¼ 2πl2
rþ

denotes

the inverse temperature in this case.
Our goal will be to compute the timelike EE of a region

A ≔ ½t ¼ T1; t ¼ T2� on the right boundary with T1 < T2.
Using kruskal coordinates [24], in which the endpoints are
denoted by ðv1; u1Þ ¼ ða1;− 1

a1
Þ and ðv2; u2Þ ¼ ða2;− 1

a2
Þ

(where ai ¼ e
rþTi
l2 ), we have the following shape of the

extremal surface as depicted in Fig. 4.6

The extremal surfaces depicted in Fig. 4 consist of two
spacelike geodesics A2M and A1N, which extend between
the right boundary and future/past singularity, and a time-
like geodesic MN which connects the two spacelike RT
surfaces. For a symmetrically placed (around t ¼ 0) time-
like interval, we have symmetric orientation of the extremal
surface. Given these extremal surfaces, it was rigorously
shown [24] that one obtains the well-known expression of
the timelike entanglement entropy (12),

SðTÞA ¼ c
3
log

�
β

πϵ
sinh

�
π

β
ðT2 − T1Þ

��
þ iπc

6
: ð21Þ

As we will see later, this interesting fact that the corre-
sponding extremal surfaces naturally probe the geometry
beyond the horizon is what enables one to reconstruct bulk
fields in regions that are not causally connected to either of
the CFTs separately.

III. TIMELIKE MODULAR HAMILTONIAN

We now turn to the study of (timelike) modular
Hamiltonians associated to the timelike EE. As we men-
tioned in the introduction, modular Hamiltonians are
natural objects to be used in the context of bulk
reconstruction. For spherical spacelike subregions in holo-
graphic CFTs they implement a geometric flow of bulk
operators within the corresponding bulk entanglement
wedges [31,32]. This is why it has already been used

FIG. 3. The union of the spacelike (green) and timelike (red)
surfaces constitutes the extremal surface for the (blue) timelike
subregion A.

FIG. 4. The (left) right panel surfaces respectively depict the
extremal surfaces for a timelike subregion which is (not)
symmetric around boundary t ¼ 0.

5As we will see shortly, the symmetric nature of the depicted
extremal surface is due to the symmetric alignment of the timelike
region A around the t ¼ 0 slice.

6The Kruskal coordinates at the right boundary (at x ¼ 0 slice)

are written in terms of the Rindler time coordinate as v ¼ e
rþ t

l2 and

u ¼ −e−
rþ t

l2 .
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extensively in the context of tracking bulk fields for
both the pure AdS and AdS black hole backgrounds
[11,13,14,16,33,34], including fields inside black hole
horizons [35–37].
We define the timelike modular Hamiltonian HðTÞ

A in a
manner similar to how we have discussed the derivation of
the timelike entanglement entropy, starting from the space-
like one (as in Sec. II A 2). For example, we can employ the
Wick rotation given by (15) and due to the system of our
interests, we will choose a starting setup with a spacelike
interval in a given CFT. We will illustrate this with two
simple examples of CFTs.
There have been some discussions on the associated

Hamiltonians corresponding to pseudoentropies in [20,21].
For dS=CFT pseudoentropy, the Hamiltonian related
to the non-Hermitian transition matrix is Hermitian,
whereas our definition for a timelike modular Hamiltonian
for Lorentzian CFTs will be non-Hermitian, giving rise to a
non-Hermitian density matrix for a timelike interval.
Indeed, upon a Wick rotation in the Lorentzian CFT, we
will find a Hamiltonian with both real and imaginary
pieces, whereas in the context of dS=CFT, they will be
purely real (discussed later in Sec. VII).

A. Timelike interval in CFT2 on a periodic space

Given that we are interested in figuring out the timelike
modular Hamiltonian for a CFT2 on a periodic space (with
period L), our natural starting point would be a spacelike
subregion for a CFT at finite temperature (with inverse
temperature β). We already know the usual modular
Hamiltonian for the latter case [29]. It is given by7

HA ¼ 2β

Z
A

sinh
�
πðR−zÞ

β

�
sinh

�
πðRþzÞ

β

�
sinh 2πR

β

TzzðzÞdz

þ antichiral part: ð22Þ

This is essentially obtained by implementing the conformal
map z → w ¼ fðzÞ on the Euclidean light cone coordinates
z, which maps the subregion stretched between z ¼ ½−R;R�
to an annulus. The conformal map in this case is given by

fðzÞ ¼ log

 
e
2πz
β − e−

2πR
β

e
2πR
β − e

2πz
β

!
; ð23Þ

yielding the usual entanglement entropy (13) of the space-
like, finite temperature case.
We can now therefore implement the Wick rotation (15)

which maps the subregion to stretch from points z ¼ iT0 to

z ¼ −iT0. The resulting conformal transformation gets
mapped to

fðzÞ ¼ log

 
e
2iπz
L − e−

2iπT0
L

e
2iπT0
L − e

2iπz
L

!
: ð24Þ

Clearly, we have obtained (24) from (23) by identifying the
z as iz, realizing that R must now be replaced by iT0 and
simply replacing β by L. Under this mapping the width of
the annulus goes from

W ¼ fðR − ϵÞ − fð−Rþ ϵÞ ¼ 2 log

�
β

πϵ
sinh

2πR
β

�
ð25Þ

to

W ¼ fðiT0 − ϵÞ − fð−iT0 þ ϵÞ ¼ 2 log

�
L
πϵ

sinh
2πiT0

L

�
;

ð26Þ

and the new entangling points are mapped to e
2iπT0
L and

e
−2iπT0

L respectively.
Finally, the timelike modular Hamiltonian takes the

following form [suppressing the antichiral part and either
using the new annulus width obtained above, or by directly
implementing the Wick rotation in (22)]:

HðTÞ
A ¼ 2L

Z
A

sin
�
πðT0−tÞ

L

�
sin
�
πðT0þtÞ

L

�
sin
�
2πT0

L

� T00ðtÞdt; ð27Þ

where L is now interpreted as the periodicity of space and t
is the Lorentzian time. We have also put x ¼ 0 above, along
which we take the timelike interval. This timelike modular
Hamiltonian is easily generalizable to the case where the
subregion is asymmetric (i.e., for A∈ ½T1; T2� and not
A∈ ½−T0; T0�), and we can also take L → ∞ limit to obtain
the corresponding timelike Hamiltionian for CFT on a
plane [see Ref. (36)]. The width of the annulus is related to
the Renyi and hence the entanglement entropy, which in
this case yields

SðTÞA ¼ c
3
log

�
L
πϵ

sin
2πT0

L

�
þ iπc

6
; ð28Þ

and is precisely the timelike entanglement entropy we
obtained previously in (9) or (14). We will be using this
modular Hamiltonian above when reconstructing the bulk
fields in pure AdS3, where the special features of the
extremal surfaces as discussed in Sec. II B 1 will be clear.

7For subsections III A and III B alone, the coordinate z will
denote a Euclidean boundary light cone coordinate. It is not to be
confused with the Poincaré radial coordinate used elsewhere in
this paper.
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B. Timelike interval in CFT2 at finite temperature

We can carry out a similar manipulation in order to find
out the timelike modular Hamiltonian for a CFT at finite
temperature. In this case, our natural starting point will be a
spacelike subregion of size 2R in a CFT along a compact,
spatial direction (of size L), on which we will implement
the Wick rotation.
In this case, the conformal map from Euclidean space-

time coordinate z to w ¼ fðzÞ is given by

fðzÞ ¼ log

 
e
2πiz
L − e−

2πiR
L

e
2πiR
L − e

2πiz
L

!
; ð29Þ

which maps the entangling points z ¼ R and z ¼ −R to
e
2πiR
L and e

−2πiR
L respectively. In this case, the modular

Hamiltonian takes the form

HA ¼ 2L
Z
A

sin
�
πðR−zÞ

L

�
sin
�
πðRþzÞ

L

�
sin 2πR

L

TzzðzÞdz

þ antichiral part: ð30Þ

If we now perform the type I Wick rotation discussed
before,

L ¼ −iβ and ϵ → −iϵ; ð31Þ

it provides us with the required timelike modular
Hamiltonian for a timelike interval with the subregion size
R identified to T0:

HðTÞ
A ¼ 2β

Z
A

sinh
�
πðT0−zÞ

β

�
sinh

�
πðT0þzÞ

β

�
sinh

�
2πT0

β

� TzzðzÞdz

þ antichiral part: ð32Þ

Once again, the width of the annulus under the con-
formal map changes from

W ¼ fðR − ϵÞ − fð−Rþ ϵÞ

¼ 2 log

�
L
πϵ

sin

�
2πR
L

��
þOðϵÞ ð33Þ

to the corresponding timelike one, to provide the timelike
Renyi entropy as

SðnÞðTÞA ¼ c
6

�
1þ 1

n

��
log

�
β

πϵ
sinh

2πT0

β

�
þ iπ

�
: ð34Þ

For n → 1, we get the timelike entanglement entropy to
be (12)

SðTÞA ¼ c
3
log

�
β

πϵ
sinh

2πT0

β

�
þ iπc

6
: ð35Þ

Once again, we will make use of this timelike modular
Hamiltonian in order to construct bulk fields in BTZ
backgrounds.
An analysis of the resulting modular flows due to

Hamiltonians (27) and (32) has been deferred to
Appendix A. There we have also constructed the corre-
sponding bulk timelike modular Hamiltonians, which will
help us understand the geometric flow of bulk operators
under the action of such Hamiltonians. We will see that the
bulk fields located on the spacelike parts of the corre-
sponding extremal surfaces (i.e., the green parts of the
extremal surfaces in Figs. 3 and 4) remain invariant under
the timelike bulk modular flow, whereas the red timelike
locations are not invariant. This will help us reconstruct the
bulk fields everywhere within the bulk using the timelike
modular Hamiltonians, to which we turn next.

IV. REVISITING AdS3 POINCARÉ
RECONSTRUCTION

Armed with the knowledge of timelike modular
Hamiltonians in the above spacetimes, we are now ready
to formulate the extrapolate bulk dictionary closely follow-
ing the techniques of [11]. As mentioned briefly in the
Introduction, their method utilized the fact that the space-
like RT surface is invariant under the usual (spacelike,
extended) modular Hamiltonian. Therefore, any local, free
bulk scalar field ΦðγÞ located on the RT surface γ must
commute with the corresponding modular Hamiltonian. In
particular, for AdS3, this implies that any bulk scalar sitting
at the crossing point of two intersecting RT surfaces
(corresponding to two overlapping subregions at the
boundary), must commute with both the respective modular
Hamiltonians. Turning this statement to a boundary con-
straint, we can establish the extrapolate dictionary for free
bulk fields. Here, we will refrain from reviewing their work
any further, and rather direct the readers to [11,12,15]
where this method was used in AdS3 to construct bulk
scalars and gauge fields, along with the derivation of the
background bulk spacetime.
Our work here can be understood as a timelike version of

these earlier works, but as we shall see, our boundary
constraints contain far reaching information regarding the
bulk spacetimes, compared to the spacelike counterparts.8

In our case, in order to find out a local bulk field in Poincaré

8This is not really apparent in the example of this section. But
when applied for black holes such as BTZ, as we have done in
later sections, we will see that the extremal surfaces associated to
timelike intervals probe beyond the horizon, whereas the typical
RT surfaces do not (as in Fig. 4). This distinction is important in
understanding the utility of the current formalism involving
extremal surfaces of timelike intervals.
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AdS3 (outside the Poincaré horizon) with metric (16), we
will use the expression of timelike modular Hamiltonian as
is given in (27) (in the limit L → ∞). It takes the form

HðTÞ
A ¼ 2π

Z
A

ðt2 − ξÞðξ − t1Þ
t2 − t1

TξξðξÞdξþ anti-chiral part

ð36Þ

for a timelike subregion A extending from t ¼ t1 to t2 in a
constant spatial (in this case x ¼ 0) slice. ξ and ξ̄ are the
light cone coordinates defined as ξ ¼ t − x and ξ̄ ¼ tþ x.9

We will once again use the extended timelike modular
Hamiltonian, which turns out to be a better defined quantity
to work with as it is once again a simple extension of the
timelike subregion A to all over the spatial slice:

H̃ðTÞ
A ¼ 2π

Z
∞

−∞

ðt2 − ξÞðξ − t1Þ
t2 − t1

TξξðξÞdξþ antichiral part:

ð37Þ

In other words,

H̃ðTÞ
A ¼ HðTÞ

A −HðTÞ
Ac ; ð38Þ

with Ac denoting the complimentary region to A.10 For
future use, we note that (37), combined with the commu-
tator between the CFT2 stress tensor and a CFT boundary
scalar primary O (with chiral conformal dimension
h ¼ Δ=2, and similarly for the antichiral part)

2π½TwwðwÞ;Oðξ; ξ̄Þ� ¼ 2πiðh∂ξδðξ − wÞOþ δðξ − wÞ∂ξOÞ
ð39Þ

yields

½H̃ðTÞ
A ;Oðξ; ξ̄Þ� ¼ 2πi

ðt2 − t1Þ
	
Δðξ̄ − ξÞ − t1t2ð∂ξ − ∂ξ̄Þ

þ ðt1 þ t2Þðξ∂ξ − ξ̄∂ξ̄Þ þ ξ̄2∂ξ̄ − ξ2∂ξ



×Oðξ; ξ̄Þ: ð40Þ

In Appendix A 1, around (A22), we have already
checked that under the flow by the timelike modular
Hamiltonian, the spacelike part of the extremal surface
(corresponding to a timelike interval) remains invariant. We
can test this explicitly by considering the commutator
between a bulk field sitting at this spacelike part of the
slice with the timelike modular Hamiltonian given in (37).
From the HKLL formalism, we know that the bulk scalar
field Φ at a bulk point ðx; t; zÞ in Poincaré coordinates is
given by [4]

Φðx; t; zÞ ¼ ðΔ − 1Þ
π

Z
z2−y02−t02>0

�
z2 − y02 − t02

z

�Δ−2

×Oðtþ t0; xþ iy0Þ: ð41Þ

Here we have used the usual complexified coordinate
representation (bulk spatial coordinates extended to take
complex values), in which the reconstruction formula
becomes manifestly holographic. For our purposes here,
we consider the bulk field at a constant spatial plane (x ¼ 0
for specificity), in which case it can be written as

Φðx ¼ 0; t; zÞ ¼ ðΔ − 1Þ
π

Z
z2−y02−t02>0

�
z2 − y02 − t02

z

�Δ−2

× et
0 d
dtOðt; iy0Þ: ð42Þ

With ðξ ¼ t − iy0; ξ̄ ¼ tþ iy0Þ (as per our definition ear-
lier), we can evaluate the following commutator as

�
H̃ðTÞ

A ;Φðx ¼ 0; t; zÞ� ¼ 2iðΔ − 1Þ
ðt2 − t1Þ

Z
z2−y02−t02>0

�
z2 − y02 − t02

z

�Δ−2
et

0ð ddξþ d
dξ̄
Þ

×
	
Δðξ̄ − ξÞ − t1t2ð∂ξ − ∂ξ̄Þ þ ðt1 þ t2Þðξ∂ξ − ξ̄∂ξ̄Þ þ ξ̄2∂ξ̄ − ξ2∂ξ



Oðξ; ξ̄Þ: ð43Þ

Following [11] closely and introducing new variables ðq ¼ ξþ t0; p ¼ ξ̄þ t0Þ, we find

9We found it easier to use these slightly different notations for light cone coordinates (different from [11]), as using them we get
similar looking equations as in [11], although we are using timelike intervals instead of spacelike intervals. Note that in Appendix A 1,
we have used slightly different light cone coordinates (ω; ω̄) (A2). However, none of the final expressions in the Appendix depend on
these variables, so this change of convention does not really matter.

10We will need to work with H̃ðTÞ
A for technical purposes, as only for such quantities, the integrations run from −∞ to ∞ as in (37).

However, for spacelike entanglement in quantum field theory, such extended modular Hamiltonians (negative logarithm of the so-called
modular operators) are well-defined according to Tomita-Takesaki theory [1], and thus is a natural starting point. It will be interesting to
investigate whether there is such a natural algebraic reason for timelike extended modular Hamiltonians as well.
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�
H̃ðTÞ

A ;Φðx ¼ 0; t; zÞ� ¼ 2iðΔ − 1Þ
ðt2 − t1Þ

Z
z2−ðp−tÞðq−tÞ>0

�
z2 − ðp − tÞðq − tÞ

z

�Δ−2

×
	
Δðp − qÞ − t1t2ð∂q − ∂pÞ þ ðt1 þ t2Þðq∂q − p∂pÞ þ p2

∂p − q2∂q


Oðq; pÞ: ð44Þ

Performing some integrations by parts, we find that in order
for ½H̃ðTÞ

A ;Φ� ¼ 0, we need

z2 − t1t2 þ ðt1 þ t2Þt − t2 ¼ 0: ð45Þ

This is nothing but the geodesic equation for the spacelike
part of the extremal surface corresponding to the timelike
subregion. Indeed, when the subregion is symmetric with
ðt1 ¼ −T0; t2 ¼ T0Þ, (45) becomes

t2 ¼ z2 þ T2
0; ð46Þ

which is what we mentioned in (18) before.

A. AdS3 Poincaré reconstruction using H̃ðTÞ

We can now revert the observations we made in the
previous part of this section, and make it a boundary
constraint involving H̃ðTÞ to rederive the HKLL scalar
fields. In particular, following [11], we start by considering
two nonoverlapping timelike subregions (as in Fig. 5. This
is unlike what happens in the boundary for the spacelike
case), which are extending between ðt1; t2Þ and ðt3; t4Þ
respectively. The intervals are such that the corresponding
extremal surfaces, especially their spacelike parts, intersect
at a point P deep inside the bulk.
Given it is a purely boundary reconstruction, we pick an

ansatz for our bulk field as a nonlocal boundary operator
and located on the boundary spatial x ¼ 0 slice, and a
generic point P as given below11:

ΦðPÞ ¼
Z

dt0dy0gðq; pÞOðq; pÞ: ð47Þ

Here gðq; pÞ is the smearing function we want to evaluate.
If we impose that the above field commutes with the
timelike modular Hamiltonians of both these timelike
subregions, in other words (with some minor changes.
The subscript ðijÞ in H̃ðTÞ denotes the subregion in
question)

ðt2 − t1Þ½H̃ðTÞ
12 ;Φ� − ðt4 − t3Þ½H̃ðTÞ

34 ;Φ� ¼ 0; ð48Þ

then we can reproduce the corresponding HKLL bulk field
located at some time coordinate given by t ¼ t� (defined
below), and at an emergent bulk direction z which is a

certain function of t� and the endpoints (and on the
boundary spatial x ¼ 0 slice). The relation that z will
satisfy, will essentially indicate that the bulk field is on the
spacelike part of the extremal surface associated with the
timelike interval. Indeed, we see that (48) is alternatively
written as

Z
dqdpgðp; qÞ�ðt3t4 − t1t2Þð∂q − ∂pÞ

þ ðt1 þ t2 − t3 − t4Þðq∂q − p∂pÞ
�
Oðq; pÞ ¼ 0: ð49Þ

Carrying out some integrations by parts, we arrive at

�ðt� − qÞ∂q − ðt� − pÞ∂p
�
gðq; pÞ ¼ 0; ð50Þ

where t� ¼ t1t2−t3t4
t1þt2−t3−t4

. This is solved by a general function f
of the form

gðq; pÞ ¼ f
	ðq − t�Þðp − t�Þ



: ð51Þ

If we use this form in, e.g., ½H̃ðTÞ
12 ;Φ� ¼ 0, we can find out

the explicit form of the function g as

FIG. 5. Two nonintersecting timelike subsystems A and B
whose spacelike parts of the corresponding extremal surfaces
intersect at a bulk point P.

11p, q here are defined as p ¼ T þ t0 − iy0 and q ¼ T þ t0 þ
iy0 consistent with our previous definitions.
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gðq; pÞ ¼ cΔðz2 − ðq − t�Þðp − t�ÞÞΔ−2 ð52Þ

with

z2 ¼ t1t2 − ðt1 þ t2Þt� þ t2�: ð53Þ

The coefficient cΔ can be found in exactly the same
way (using normalizable mode condition) as in [11].
Using the equation of the spacelike geodesic (45) and
realizing that t� is the value of the t coordinate at the
intersecting point P in Fig. 5, we conclude that the local
bulk field is located at point Pðz; t�Þ, with z given by (53)
and have the form

ΦðPÞ¼Φðz;t�Þ

¼ cΔ

Z
z2−ðq−t�Þðp−t�Þ>0

dt0dy0ðz2− ðq− t�Þðp− t�ÞÞΔ−2

×Oðt� þ t0; iy0Þ: ð54Þ

Unsurprisingly, this is of course the correct form of the
local bulk field à la HKLL, this time derived entirely from
boundary constraints (48). Therefore, we can conclude that
the boundary constraints (48) gives rise to the HKLL
prescription along with the bulk emergent direction z,
which satisfies the equation of the extremal surface
appropriate for this case.

V. OUTSIDE BTZ HORIZON

We now turn our attention to a construction similar to the
last section, but now in the background of BTZ black holes
(once again, the case for Rindler should follow the same
way). Usually, for local bulk fields placed outside the black
hole horizon, it is sufficient to know the usual (for spacelike
subregions) entanglement entropy and the associated
modular Hamiltonians. But, as we will see, for bulk fields
inside the horizon, the timelike entanglement seems to be a
natural starting point (to be discussed in the next section,
Sec. VI).12

This section will be devoted to bulk reconstruction
outside the BTZ horizon. We have already checked in
Secs. A 2 b and A 2 c that the spacelike parts of the
extremal surface associated to a timelike subregion (located
in one of the boundaries dual to BTZ black hole), is
invariant under the flow of the corresponding timelike
modular Hamiltonian. We will once again check this
explicitly by using the known form of the HKLL bulk

fields, and later on, revert this line of argument to rederive
the HKLL formula.
In other words, our starting point would be a CFT state in

the thermofield double form made up of two maximally
entangled CFTs:

j0iCFT ¼ 1ffiffiffiffi
Z

p
X
i

e−βEi=2jii ⊗ jii: ð55Þ

These CFTs would have to satisfy all the holographic
properties for it to be dual to a BTZ state in the bulk [18].
Therefore, for this state, we are asking whether considering
timelike subregions in either of the CFTs (or both) can lead
to a known form of bulk fields either outside or inside of the
horizons of the dual geometry.
Naturally, we will work in the boundary coordinates that

appear at the boundary of the BTZmetric given by (20). For
this background, the associated spacetime diagram and the
HKLL support regions are given in Fig. 6. Here we will use
a slightly different version of the finite temperature, time-
like modular Hamiltonian than what we wrote down in
(32). In particular, here we have used the fact that the
temperature corresponds to the temperature of the BTZ
black hole (given in Sec. II B 2), and have written the
Hamiltonian in the boundary light cone coordinates (defin-
ing ξ ¼ t − lϕ and ξ̄ ¼ tþ lϕ). We then obtain [going to
the corresponding extended timelike modular Hamiltonian
given in (38)]

H̃ðTÞ
A ¼ c̃

Z
∞

−∞
dξ
�
cosh

�
rþT0

l2

�
− cosh

�
rþξ
l2

��
Tξξ

þ antichiral part ð56Þ

with

c̃ ¼ 2πl2

rþ sinh
�
rþT0

l2

� :
For future use we will also need the commutator [with a
scalar primary O of chiral conformal dimension ðh; h̄Þ]

FIG. 6. Left: BTZ black hole made up of an entangled pair of
the left and right CFTs. Right: HKLL prescription for a bulk
scalar located at a point Q outside the BTZ black hole.

12However, it may be possible to use the entanglement for a
union of the left and right CFT’s spacelike intervals (the
entangled pair of the two CFTs that give rise to the bulk black
hole state) [38], to reconstruct subhorizon regions. We have not
pursued that direction here, although we will have some com-
ments in the Conclusion section.
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�
H̃ðTÞ

A ;O
� ¼ c̃

�
rþh
l2

�
sinh

�
rþξ̄
l2

�
− sinh

�
rþξ
l2

��

þ
�
cosh

�
rþT0

l2

�
− cosh

�
rþξ
l2

��
∂ξ

−
�
cosh

�
rþT0

l2

�
− cosh

�
rþξ̄
l2

��
∂ξ̄

�
Oðξ; ξ̄Þ:

ð57Þ

On the other hand, the HKLL scalar field in this
background takes the form [4]

Φðϕ;t;rÞ

¼cΔ

Z
spacelike

dydx

"
r
rþ

 
cosy∓

ffiffiffiffiffiffiffiffiffiffiffiffi
1−

r2þ
r2

r
coshx

!#Δ−2

×O
�
ϕþ ily

rþ
y;tþ l2x

rþ

�
: ð58Þ

Here∓ denotes whether the bulk field in question is on the

region I or region III of Fig. 6, and cΔ ¼ ðΔ−1Þð2ÞΔ−2lΔ
π .13

For what follows, we redefine the light cone coordinates by

ξ ¼ t −
il2y
rþ

; ξ̄ ¼ tþ il2y
rþ

; ð59Þ

and consequently define

q ¼ ξþ l2x
rþ

; p ¼ ξ̄þ l2x
rþ

: ð60Þ

Upon using (57) we then obtain

�
H̃ðTÞ

A ;Φðϕ ¼ 0; t; rÞ
�
¼ cΔc̃

�
r
rþ

�
Δ−2 Z

spacelike
dq dp

�
cosh

�
rþðp − qÞ

2l2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þ
r2

r
cosh

�
rþðpþ q − 2tÞ

2l2

��Δ−2

×

�
rþΔ
2l2

�
sinh

�
rþp
l2

�
− sinh

�
rþq
l2

��
−
�
cosh

�
rþT0

l2

�
− cosh

�
rþq
l2

��
∂q

þ
�
cosh

�
rþT0

l2

�
− cosh

�
rþp
l2

��
∂p

�
Oðq; pÞ: ð61Þ

A brief analysis shows that for the above commutator to be
zero, we must have

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þ
r2

r
¼

cosh
�
rþT0

l2

�
cosh

�
rþt
l2

� ; ð62Þ

which is nothing but the spacelike part of the extremal
surface in BTZ background as we mentioned in (A48).

A. Outside BTZ using H̃ðTÞ

We are now ready to reverse the argument. The setup we
have in mind is Fig. 7, with the distance between the
intervals being t0. The boundary constraint that is naturally
imposed is given by

½H̃ðTÞ
B ;Φ� ¼ ½H̃ðTÞ

A ;Φ� ¼ 0: ð63Þ

In a given boundary light cone coordinate ðξ; ξ̄Þ, if the
timelike modular Hamiltonian of region A is taken to have a
commutator (57) with the boundary scalar primary, then for

another interval which is t0 time away, we can write the
corresponding commutator as14

h
H̃ðTÞ

B ;O
i
¼ c̃

�
rþh
l2

�
sinh

�
rþðξ̄ − t0Þ

l2

�

− sinh

�
rþðξ − t0Þ

l2

��
þ
�
cosh

�
rþTB

l2

�

− cosh

�
rþðξ − t0Þ

l2

��
∂ξ −

�
cosh

�
rþTB

l2

�

− cosh

�
rþðξ̄ − t0Þ

l2

��
∂ξ̄

�
Oðξ; ξ̄Þ: ð64Þ

Here 2TB is the length of the time interval for region B,
which may or may not be equal to the interval size 2TA for
the region A.
Sure enough, the above commutators in (63) can be

solved using the method of characteristics in a manner

13It seems to us that this overall coefficient was wrong in [4].
14Here the parameters rþ and l in H̃ðTÞ

B are just some length
scales of the boundary CFT, which has its origin on the
temperature of the CFT.
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closely resembling [11]. For this reason, and this con-
struction being for a region outside the black hole (which
was already considered in [11]), we have moved the details
to Appendix B. Indeed we can rigorously show that in the
timelike case as well, we can recover (58) for the bulk field,
when the field Φ is located precisely at a point given by the
intersection point Q of the two spacelike geodesics as
depicted in Fig. 7.

VI. INSIDE THE BTZ BLACK HOLE

We now turn our attention to bulk fields inside the BTZ
horizon. As was discussed in [3,4], from bulk perspective,
we necessarily require boundary operators from both the

left and right CFTs in order to construct such fields. This is
related to the boundary entangled structure of the bulk state,
which in this case is the thermofield double state [18].
However, such a reconstruction is not readily doable using
the spacelike entanglement Hamiltonian even with the
knowledge of the entire left and right CFTs separately.
The knowledge of spacelike entanglement in any given
CFTwill only be able to get us up to the horizon (unless we
have special cases, where entanglement wedge sees the
entanglement shadow regions [39], not probed by RT
surfaces, or unless we know the spacelike entanglement
for a union of left and right CFTs [38]. While the latter
approach is in principle possible, we do not have much to
say about it in this paper). We will however see that, if one
starts with timelike entanglement, and considers two time-
like subregions separately on both left and right CFTs, the
interior reconstruction follows straightforwardly just like it
is done for exterior regions. In other words, one does not
need to go through the complications that arise when one
considers the spacelike entanglement of union of two
intervals (which usually appear in multipartite systems).
This section is divided into two subsections: in the first,

we show that the HKLL interior bulk fields are invariant
under timelike modular Hamiltonian, if located on the
spacelike parts of the extremal surfaces. We have already
found this out by an explicit reconstruction of bulk timelike
modular Hamiltonian in Appendix A 2 c. And in the
second, we will revert this argument to derive a bulk field
for the interior.

A. Timelike modular flow invariance
of interior HKLL fields

We start with the same modular Hamiltonian for timelike
subregions in a BTZ black hole that we have already started
out with in (56). The HKLL bulk fields living inside the
BTZ black hole can be reconstructed in a way described in
Fig. 8. The explicit expression is [4]

Φðϕ; t; rÞ ¼ cΔ

�Z
σ>0

dydx

�
σ−
r0

�
Δ−2

OR

�
ϕþ ily

rþ
; tþ l2x

rþ

�

þ
Z
σ<0

dy0dx0
�
σþ
r0

�
Δ−2

ð−1ÞΔOL

�
ϕþ ily0

rþ
; tþ l2x0

rþ

��
¼ ΦR þΦL ð65Þ

with

σ∓ðt̂; r; ϕ̂jt̂þ x; r0; ϕ̂þ iyÞ ¼ rr0

r2þ

 
cos y ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ
r2

− 1

r
sinh x

!
: ð66Þ

The unprimed and primed ðx; yÞ coordinates above denote right and left boundary coordinates respectively. Moreover,

t̂ ¼ rþt
l2 , ϕ̂ ¼ rþϕ

l and cΔ ¼ ðΔ−1Þð2ÞΔ−2lΔ
π as before. σ here is the bulk to bulk AdS covariant distance with the∓ sign denoting

points for the right/left Rindler wedge (with boundary operatorsOR andOL respectively). An inherent limit of r0 → ∞ has
been taken in the above expression. Also, in the integration limit σ > 0 and σ < 0 will basically denote the spacelike
support over the right and left boundary respectively.

FIG. 7. Two timelike subsystems A and B with interval sizes
2TA and 2TB with an intersection of the spacelike parts of their
corresponding extremal surfaces (the green lines) at point Q.
Choosing the center of the interval A at boundary time t ¼ 0, we
find that Q is located outside the BTZ horizon.
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We have written the two terms on the right hand side
(rhs) of (65) as ΦR and ΦL as they respectively depend on
the right and left boundary operators [although neither of
them denote any sort of local bulk operator at the point
ðϕ; t; rÞ]. We will now compute their commutator with the
corresponding timelike modular Hamiltonian of the right
boundary, and see if we can reproduce the conclusion that
we obtained in Appendix A 2 c mentioned above.
Defining the light cone coordinates ðξ; ξ̄Þ, and ðq; pÞ like

in Sec. V, we can straightforwardly see that at least for the
first term of (65) (in the middle equality) we have an
expression very similar to (61), which is

h
H̃ðTÞ

R ;ΦRðϕ ¼ 0; t; rÞ� ¼ cΔc̃

�
r
rþ

�
Δ−2 Z

spacelike
dq dp

�
cosh

�
rþðp − qÞ

2l2

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ
r2

− 1

r
sinh

�
rþðpþ q − 2tÞ

2l2

��Δ−2

×

�
rþΔ
2l2

�
sinh

�
rþp
l2

�
− sinh

�
rþq
l2

��
−
�
cosh

�
rþT0

l2

�
− cosh

�
rþq
l2

��
∂q

þ
�
cosh

�
rþT0

l2

�
− cosh

�
rþp
l2

��
∂p

�
ORðq; pÞ: ð67Þ

The only change is in the second term in the integrand
above due to the difference between the AdS covariant
distance functions (58) and (66).
We can now impose the condition

�
H̃ðTÞ

R ;Φ
� ¼ 0 ⇒

�
H̃ðTÞ

R ;ΦR

�þ �H̃ðTÞ
R ;ΦL

� ¼ 0; ð68Þ

and evaluate each of the terms separately. Here H̃ðTÞ
R is the

(extended) modular Hamiltonian for a timelike interval at
the right boundary for interval size 2T0. We can naively
expect that the timelike modular Hamiltonian operator of
the right boundary would not flow the left boundary

operator OL, thereby making ½H̃ðTÞ
R ;ΦL� ¼ 0. Then a

computation similar to Sec. V gives an equation of the form

 ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ
r2

− 1

r
sinh

�
rþt
l2

�
þ cosh

�
rþT0

l2

�!

×

�Z
σ>0

�
σ−
r0

�
Δ−3

sinh

�
rþðp − qÞ

l2

�
ORðq; pÞ

�
¼ 0:

This equation is generically satisfied for the following
condition:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ
r2

− 1

r
¼ −

cosh
�
rþT0

l2

�
sinh

�
rþt
l2

� : ð69Þ

This is again the spacelike geodesic for a timelike sub-
region but going inside a BTZ black hole (A55).

Interestingly, it turns out that there is another way of
deriving (69). Knowing the entanglement structure of the
boundary state (55) (in other words, that BTZ is a thermo-
field double state), one may analytically continue the left
boundary operator OL back to the right boundary. This is
often achieved by analytically continuing the time coor-
dinates to complex values [7,40]. Following this argument,

one might be tempted to conclude that ½H̃ðTÞ
R ;ΦL� ≠ 0. We

will show in Appendix C below that even when both the
commutators of (68) are nonzero, (69) still holds.

B. Interior reconstruction from boundary constraints

Our next goal is to construct a local bulk field inside a
BTZ black hole. We again start with an asymmetric two-
CFT system, so that we have two timelike subsystems at
either boundaries, with an intersection point for their
corresponding extremal surfaces behind the black hole
horizon. Let the size of the left subsystems be 2TA, and the
origin of one subregion has an offset by t0. See Fig. 9.
The extended modular Hamiltonian remains the same as

before (56):

H̃ðTÞ
A ¼ c̃

Z
∞

−∞
dξ

�
cosh

�
rþTA

l2

�
− cosh

�
rþξ
l2

��
Tξξ

þ antichiral part; ð70Þ

where for H̃ðTÞ
B , we simply have to shift the light cone

coordinates by an appropriate factor of t0. In other words,
we have (considering the subsystem B is of size 2TB) (64)

FIG. 8. HKLL reconstruction for interior fields at point P
requiring support from both boundaries. Supporting region from
future singularity can be projected to the left boundary region via
an antipodal mapping in this example.
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½H̃ðTÞ
B ;O�¼ c̃

�
rþh
l2

�
sinh

�
rþðξ̄−t0Þ

l2

�
−sinh

�
rþðξ−t0Þ

l2

��

þ
�
cosh

�
rþTB

l2

�
−cosh

�
rþðξ−t0Þ

l2

��
∂ξ

−
�
cosh

�
rþTB

l2

�
−cosh

�
rþðξ̄−t0Þ

l2

��
∂ξ̄

�
×Oðξ;ξ̄Þ: ð71Þ

Even though we are denoting the light cone coordinates of
both boundary’s timelike modular Hamiltonians with (ξ; ξ̄),
note that they define light cone coordinates of different
boundaries. We once again demand that the boundary
constraints are

�
H̃ðTÞ

A ;ΦðPÞ� ¼ �H̃ðTÞ
B ;ΦðPÞ� ¼ 0; ð72Þ

and solve for the boundary field by making an ansatz
like

Φ ¼
Z

dqdpgRðq; pÞORðq; pÞ

þ
Z

dq0dp0gLðq0; p0ÞOLðq0; p0Þ

¼ ΦR þΦL ð73Þ

with q, p defined as in

q ¼ t −
il2y
rþ

þ l2x
rþ

; p ¼ tþ il2y
rþ

þ l2x
rþ

: ð74Þ

ðq0; p0Þ are also defined in the exact same way, but in their
case the space and time coordinates are that of the left
boundary. The reason for including conformal operators
from both sides of the CFT [rather than just from one CFT
as in (B2)] is our knowledge that by using OR alone, we
cannot possibly reconstruct the black hole interior, simply
because of causality (as is also clear from the computa-
tions of the last section). The only other set of operators
that we have at our disposal [because we are considering
CFT states given by (55)] is of the ones from the left
boundary, which we are then naturally adding to our
ansatz.
Working first with the asymmetric interval B, we have

one of the boundary constraints in (72) as

�
H̃ðTÞ

B ;ΦR

�þ �H̃ðTÞ
B ;ΦL

� ¼ 0: ð75Þ

Given ΦL is a left boundary operator, we expect it to

commute with H̃ðTÞ
B (similarly, one expects ΦR to com-

mute with H̃ðTÞ
A that we will use later). However, in (73)

one may want to take the left boundary operators to the
right boundary [as given by (C1)], owing to the entangled
structure of the CFT state (55) [7]. In picture form, it looks
like Fig. 10. The expression of Φ then becomes

Φ ¼
Z

dqdpgRðq; pÞORðq; pÞ

þ
Z

dqnewdpnewgLðqnew; pnewÞORðqnew; pnewÞ

¼ ΦR þ Φ̄R: ð76Þ

Here we have denoted the second term above by Φ̄R
instead of ΦL to emphasize that it is now made up of
boundary operators residing on the right CFT. Also, pnew

and qnew are defined exactly the same way as in (C7).
Under these changes, the boundary constraint (75)
becomes

�
H̃ðTÞ

B ;ΦR

�þ �H̃ðTÞ
B ; Φ̄R

� ¼ 0: ð77Þ

FIG. 9. Two timelike subsystems A and B with an intersection
of their extremal surfaces at a point P inside the BTZ horizon.
Note that we are talking about the spacelike (green) parts. The
timelike (red, dashed) parts also intersect, but it is irrelevant for
our construction.

FIG. 10. Left: initially we have the left and right boundary
operators OL and OR. Right: we continue the time of OL to
imaginary values to bring them to the right region owing to the
thermofield structure of the CFT state. The point P is where the
intersecting point is (as in Fig. 9).
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Even though Φ̄R is made up of the operators on the right boundary (the green supported region on the lower right in

Fig. 10), it still commutes with the operators from the right boundary, such as H̃ðTÞ
B (a similar story will hold for H̃ðTÞ

A and
Φ̄L). See, e.g., Sec. 3.4 of [41]. In other words, the individual commutators appearing xin (77) are zero. This leads to the
following two equations15:		

cosh T̂B − coshðq̂ − t̂0Þ


∂q̂ −

	
cosh T̂B − coshðp̂ − t̂0Þ



∂p̂



gRðq̂; p̂Þ

¼ ðh − 1Þðsinhðp̂ − t̂0Þ − sinhðq̂ − t̂0ÞÞgRðq̂; p̂Þ ð78Þ

and 		
cosh T̂B − coshðp̂new − t̂0Þ



∂p̂new −

	
cosh T̂B − coshðq̂new − t̂0Þ



∂q̂new



gLðq̂new; p̂newÞ

¼ ðh − 1Þðsinhðq̂new − t̂0Þ − sinhðp̂new − t̂0ÞÞgLðq̂new; p̂newÞ: ð79Þ

Once again, we proceed by solving these equations using the method of characteristics. To obtain the corresponding

results for the A region, we set t0 ¼ 0 and TB ¼ TA and demand ½H̃ðTÞ
A ;ΦðPÞ� ¼ 0. After making these substitutions in the

above equations and following an analysis similar to [11] and in Appendix B, the most general solution is found to be16

gRðq̂; p̂Þ ¼ a0f1ðxÞUh−1 and gLðq̂new; p̂newÞ ¼ b0f2ðyÞVh−1; ð80Þ

where

x ¼
sinh

�
T̂Aþq̂
2

�
sinh

�
T̂Aþp̂

2

�
sinh

�
T̂A−q̂
2

�
sinh

�
T̂A−p̂
2

� ; y ¼
sinh

�
T̂Aþq̂new

2

�
sinh

�
T̂Aþp̂new

2

�
sinh

�
T̂A−q̂new

2

�
sinh

�
T̂A−p̂new

2

� ; ð81Þ

and

U ¼ sinh

�
T̂A þ q̂

2

�
sinh

�
T̂A þ p̂

2

�
sinh

�
T̂A − q̂

2

�
sinh

�
T̂A − p̂

2

�
; ð82Þ

V ¼ sinh

�
T̂A þ q̂new

2

�
sinh

�
T̂A þ p̂new

2

�
sinh

�
T̂A − q̂new

2

�
sinh

�
T̂A − p̂new

2

�
: ð83Þ

However, we also impose ½H̃ðTÞ
B ;ΦðPÞ� ¼ 0 with the

solutions obtained above to find out the functions f1ðxÞ and
f2ðyÞ. After some algebra, one can see that f1ðxÞ satisfies
the equation

df1
dx

¼ h − 1

x
x − α

xþ α
f1; ð84Þ

and an equivalent equation for f2ðyÞ becomes

df2
dy

¼ h − 1

y
y − α

yþ α
f2; ð85Þ

with

α ¼ sinh t̂0 sinh T̂A þ cosh t̂0 cosh T̂A − cosh T̂B

sinh t̂0 sinh T̂A − cosh t̂0 cosh T̂A þ cosh T̂B
: ð86Þ

The above equations have solutions as

f1ðxÞ ¼ c1

�ðxþ αÞ2
x

�
h−1

ð87Þ

and

15Once again, for any variable x, the corresponding hatted
variable is defined as x̂ ¼ rþx

l2 .16In writing the equations below, we have redefined q − iπl2
rþ

→
q (and the same with p variables), where q − iπl2

rþ
came naturally

due to dealing with ½H̃ðTÞ
A ;ΦðPÞ� ¼ 0, and for taking the right

boundary variables q back to the left boundary by an imaginary
time translation. We also had to redefine q0 ¼ qnew þ iπl2

rþ
→ qnew

(and the same for p variables).
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f2ðyÞ ¼ c2

�ðyþ αÞ2
y

�
h−1

: ð88Þ

In order to obtain the solution in the required form, one can
define a new variable t̂� which is nothing but the time at
point P [in other words, defined using hindsight and
obtained by solving for the intersection point of two
spacelike parts of the extremal surfaces stretching between
ðt0 − TB; t0 þ TBÞ and ð−TA; TAÞ beyond the horizon of
the BTZ black holes (A55)]:

tanh t̂� ¼
1

cosh t̂0

�
sinh t̂0 −

cosh T̂B

sinh T̂A

�
: ð89Þ

In terms of t̂�, α, gRðq̂; p̂Þ, and gLðq̂new; p̂newÞ take the
following values:

α ¼ sinh t̂� sinh T̂B þ cosh t̂� cosh T̂B

sinh t̂� sinh T̂B − cosh t̂� cosh T̂B
; ð90Þ

gRðq̂;p̂Þ¼c1

�
cosh

�
p̂− q̂
2

�
þcoshT̂A

sinh t̂�
sinh

�
p̂þ q̂
2

− t̂�

��Δ−2

¼c1

�
cosyþcoshT̂A

sinh t̂�
sinhx

�Δ−2
; ð91Þ

and

gLðq̂new; p̂newÞ ¼ c2

�
cosh

�
p̂new − q̂new

2

�

−
cosh T̂A

sinh t̂�
sinh

�
p̂new þ q̂new

2
þ t̂�

��
Δ−2

¼ c2

�
cos y −

cosh T̂A

sinh t̂�
sinh x

�Δ−2
: ð92Þ

The region of integration is determined in the same way
as the exterior case discussed in the last section. Thus for
the right boundary smearing function gRðq̂; p̂Þ, the region
of integration is defined as

cos yþ cosh T̂A

sinh t̂�
sinh x > 0: ð93Þ

However, for the left boundary smearing function, the
boundary support region is given by the following equation

cos y −
cosh T̂A

sinh t̂�
sinh x < 0: ð94Þ

In the above equation (92), we can go back to the
coordinates ðq0; p0Þ by performing an inverse transforma-
tion to what we have done before. This will readily give us
the HKLL prescription for subhorizon bulk fields (65). In

fact, in writing (94) as well, we have converted an
inequality like (93) back to the left boundary.

VII. de Sitter RECONSTRUCTION

We now turn to the issue of bulk reconstruction in de
Sitter (dS) spacetimes using the techniques of modular
Hamiltonians. As we mentioned in the Introduction, the
timelike entanglement in AdS=CFT was originally moti-
vated from the studies of pseudoentropy in dS, which turns
out to be the natural, complex, entropy associated to a
Euclidean boundary subregion. So, it is not a surprise that
pseudoentropies can be a natural candidate when it comes
to bulk reconstruction using the entanglement structure of
the spacetime. We provide a support to this statement by
considering bulk reconstruction in dS flat slicings. The
HKLL reconstruction for some of these patches was
already carried out in [9] for scalars, and for higher spins
in [6]. Our primary aim here will be to rederive these
results, but this time starting from the modular Hamiltonian
corresponding to pseudoentropy. Our computation here is
not completely airtight, in that there are some assumptions,
for which a bulk insight is definitely needed. But we can
nonetheless have a boundary reconstruction in various
slicings of dS. The computation that appears in this section
can also be carried out in the static patch of dS, but we have
excluded them here as they can be carried out in a very
similar manner.

A. Flat slicing

1. Invariance under timelike modular flow

We start with the flat slicing of dS, obtained by
analytically continuing the spacetime from AdS Poincaré
patch (16). One is required to perform a double Wick
rotation

z → −iη; t → −itE; RAdS → −ildS; ð95Þ

under which the metric becomes

ds2 ¼ l2dS
η2

ð−dη2 þ dx2 þ dt2EÞ: ð96Þ

In other words, the radial coordinate now becomes the
emergent time direction η, whereas the boundary coordi-
nates are consisted of ðx; tEÞ, and it is now of Euclidean
signature. As was emphasized in [9], from the point of bulk
microcausality, in dS we are required to consider both the
positive and negative frequency modes of a bulk field.
These are at the same footing as considering the normal-
izable and non-normalizable modes (denoted by Oþ and
O− respectively) for the AdS/CFT case. In particular,
we have
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ΦðtE; x; ηÞ ¼ A
Z
σ>0

dx0dt0E

�
η2 − x02 − t02E

η

�Δ−2
Oþðxþ x0; tE þ t0EÞ

þ B
Z
σ>0

dx0dt0E

�
η2 − x02 − t02E

η

�−Δ
O−ðxþ x0; tE þ t0EÞ ð97Þ

where

A ¼ ΓðΔÞ
πΓðΔ − 1Þ ; B ¼ Γð2 − ΔÞ

πΓð1 − ΔÞ ; ð98Þ

and σ > 0 simply denotes the causal support of the bulk
field, in retarded (or advanced) time. Here σ is the bulk to
bulk dS covariant distance given by

σ ¼ η2 þ η02 − ðx2 − x02Þ − ðt2E − t02EÞ
2ηη0

: ð99Þ

Introducing Euclidean light cone coordinates ξ ¼ tE − ix0

and ξ̄ ¼ tE þ ix0 and taking the x ¼ 0 plane, we get (A, B
are some spacetime and conformal dimension dependent
constants)

ΦðtE; x; ηÞ

¼ A
Z
σ>0

dx0dt0E

�
η2 − x02 − t02E

η

�Δ−2
et

0
E∂tEOþðx0; tEÞ

þ B
Z
σ>0

dx0dt0E

�
η2 − x02 − t02E

η

�−Δ
et

0
E∂tEO−ðx0; tEÞ

¼ Φþ þΦ−: ð100Þ

The next step is to write down the corresponding modular
Hamiltonian of a subregion at the x ¼ 0 slice, and its
endpoints are defined by ðt1E; t2EÞ [29].17 We have

H̃dS¼2π

Z
∞

−∞

ðt2E−ξÞðξ− t1EÞ
ðt2E− t1EÞ

TξξðξÞdξþantichiral part:

ð101Þ

One other way to obtain this could be to start from (30),
which is the spacelike modular Hamiltonian in Lorentzian
CFT (dual to AdS spacetimes), and then consider the
analytic continuation given in (95) (along with the proper
definition of light cone coordinates and taking the L → ∞
limit).18 Because in this section, we will only be talking
about these modular Hamiltonians (these are not really
“timelike,” as they have been defined on Euclidean CFTs.
Maybe a better name for them is pseudomodular Hamil-
tonian or Euclidean modular Hamiltonian), we have
skipped the usual superscript (T) on the H̃ (like we had
for AdS) to avoid clutter. For a primary operator of
conformal weight Δ, which is dual to the bulk field Φ,
the dS=CFT dictionary suggests that Δ is also the dimen-
sion of Oþ. We can then derive

�
H̃dS;Oþðξ; ξ̄Þ

� ¼ 2π

ðt2E − t1EÞ
	
Δðξ̄ − ξÞ − t1Et2Eð∂ξ − ∂ξ̄Þ þ ðt1E þ t2EÞðξ∂ξ − ξ̄∂ξ̄Þ þ ξ̄2∂ξ̄ − ξ2∂ξ



Oþ: ð102Þ

On the other hand, the operator O− has the shadow dimension ð2 − ΔÞ for dS3=CFT2. Using that, we have

�
H̃dS;O−ðξ; ξ̄Þ

� ¼ 2π

ðt2E − t1EÞ
	ð2 − ΔÞðξ̄ − ξÞ − t1Et2Eð∂ξ − ∂ξ̄Þ þ ðt1E þ t2EÞðξ∂ξ − ξ̄∂ξ̄Þ þ ξ̄2∂ξ̄ − ξ2∂ξ



O−: ð103Þ

As in the AdS case, we can now introduce new coordinates q ¼ ξþ t0E and p ¼ ξ̄þ t0E, in terms of which we have

½H̃dS;Φ� ¼ 2π

ðt2E − t1EÞ
�
A
Z �

η2 − ðq − tEÞðp − tEÞ
η

�Δ−2	
Δðp − qÞ − t1Et2Eð∂q − ∂pÞ

þ ðt1E þ t2EÞðq∂q − p∂pÞ þ p2
∂p − q2∂q



Oþ þ B

Z �
η2 − ðq − tEÞðp − tEÞ

η

�−Δ

×
	ð2 − ΔÞðp − qÞ − t1Et2Eð∂q − ∂pÞ þ ðt1E þ t2EÞðq∂q − p∂pÞ þ p2

∂p − q2∂q


O−

�
: ð104Þ

17Of course, there is no a priori distinction between x and tE. However, our choice can be understood as defining which directions we
are calling x and which one tE. Also, as done previously, we have extended the limits of the ξ integrals in the Euclidean timelike modular
Hamiltonians, to give it an “extended” look. It would once again be interesting to investigate its possible algebraic origin.

18One might also think of starting from (22) or (32), which are modular Hamiltonians at finite temperatures, and take the β → ∞ limit.
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We will now see that if we once again impose the boundary constraint that the bulk field commutes
with the corresponding pseudomodular Hamiltonians, one can recover that the dS bulk fields, as given in (100),
must be located on the bulk geodesics emanating from the subregion described above (see Fig. 11). Indeed we
obtain

½H̃dS;Φ� ¼ 2πðη2 − t1Et2E þ ðt1E þ t2EÞtE − tE2Þ
ðt2E − t1EÞ

�
AðΔ − 2Þ

Z �
η2 − ðq − tEÞðp − tEÞ

η

�Δ−3�p − q
η

�
Oþðq; pÞ

− BΔ
Z �

η2 − ðq − tEÞðp − tEÞ
η

�−Δ−1�p − q
η

�
O−ðq; pÞ

�
¼ 0: ð105Þ

It is clear that if

η2 − t1Et2E þ ðt1E þ t2EÞtE − t2E ¼ 0; ð106Þ

then the above equation is satisfied. This turns out to be the
timelike geodesic associated with a spacelike subregion in a
Euclidean CFT dual to dS space [21]. Given a subregion
with endpoints t1E ¼ −T0 and t2E ¼ þT0, the geodesic
equation condenses to the form

η2 þ T2
0 − t2E ¼ 0: ð107Þ

2. Rederiving HKLL in dS

We now turn to use the invariance of timelike
geodesic under the flow of Euclidean modular
Hamiltonian, and set out for deriving the HKLL bulk
fields in dS. We will closely follow the steps that we
performed for its AdS counterpart. We start by placing this

bulk field at the intersection point of two nonoverlapping
spacelike subregions, so that the corresponding timelike
geodesics intersect each other at a point Q in the bulk.
See Fig. 12.
We consider the following ansatz19

ΦðtE; η; x ¼ 0Þ ¼
Z

dx0dt0Eg1ðq; pÞOþðq; pÞ

þ
Z

dx0dt0Eg2ðq; pÞO−ðq; pÞ: ð108Þ

We start off by imposing

ðt1E − t2EÞ½H̃A;dS;Φ� ¼ ðt3E − t4EÞ½H̃B;dS;Φ� ¼ 0; ð109Þ

where the subscripts A and B denotes the names of the
subregions. Evaluating the subtraction between the two
commutators above, we get

Z
dqdpg1ðq; pÞ

	ðt3Et4E − t1Et2EÞð∂q − ∂pÞ þ ðt1E þ t2E − t3E − t4EÞðq∂q − p∂pÞ


Oþ

þ
Z

dqdpg2ðq; pÞ
	ðt3Et4E − t1Et2EÞð∂q − ∂pÞ þ ðt1E þ t2E − t3E − t4EÞðq∂q − p∂pÞ



O− ¼ 0: ð110Þ

We proceed again by doing integration by parts to arrive atZ
Oþ
	ðt3Et4E − t1Et2EÞð∂qg1 − ∂pg1Þ þ ðt1E þ t2E − t3E − t4EÞðg1∂q − g1∂p þ q∂qg1 þ p∂pg1Þ



þ
Z

O−
	ðt3Et4E − t1Et2EÞð∂qg2 − ∂pg2Þ þ ðt1E þ t2E − t3E − t4EÞðg2∂q − g2∂p þ q∂qg2 þ p∂pg2Þ


 ¼ 0: ð111Þ

These are two independent integrals, so the only way the whole term is zero is if they are individually equal to zero. Then the
two solutions are

g1ðq; pÞ ¼ f1ððq − TEÞðp − TEÞÞ; g2ðq; pÞ ¼ f2ððq − TEÞðp − TEÞÞ; ð112Þ

19As we mentioned in the beginning of this section, purely from a boundary perspective, we currently lack an independent argument
behind such a proposal. Any argument which hints that we require two sets of fields O�, hinges on some bulk insights one way or the
other.
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where TE ¼ t1Et2E−t3Et4E
t1Eþt2E−t3E−t4E

. Solving them by a similar
method of characteristics just like in AdS, we finally get

g1ðq; pÞ ¼ cΔðη2 − ðq − TEÞðp − TEÞÞΔ−2 ð113Þ

and

g2ðq; pÞ ¼ c2−Δðη2 − ðq − TEÞðp − TEÞÞ−Δ ð114Þ

along with

η2 − t1Et2E þ ðt1E þ t2EÞTE − T2
E ¼ 0: ð115Þ

The free parameters η and TE define the coordinates of the
local bulk field with η providing the emergent time
direction.
An exact similar analysis (more like what we did for the

outside horizon case of BTZ black holes) can also be
carried out for dS static patches. And unsurprisingly, we
can draw the same conclusions as above for that case as
well. Wewill not include those calculations here as they can
be carried out in the same manner.

VIII. CONCLUSION AND OUTLOOK

The main message of this paper was to show that the
entanglement of the boundary CFT, especially in two
dimensions, can be used to capture the physics of semi-
classical free bulk fields in the dual AdS background. In
particular, we have reconstructed, in examples of BTZ
black holes, the physics behind the black hole horizons
upon knowing only a part of the CFT state and its
associated entanglement structure. The timelike entangle-
ment seems to play a necessary and crucial role in this,
which also elucidates how one can go about reconstructing
local bulk physics in de Sitter. Our work therefore has some

relevance in the black hole information problem in AdS
(and by extension, hopefully, for asymptotically flat ones),
and for cosmological horizons.
There are some immediate aspects that one may wish to

discuss in light of timelike entanglement. In particular, we
relied heavily on the symmetry of CFT2 in order to find out
the bulk timelike modular Hamiltonian. This gave us
confidence to impose the boundary constraint that bulk
fields at certain locations (i.e., on the spacelike part of the
extremal surface homologous to the timelike boundary)
commute with the timelike modular Hamiltonian at the
boundary. While we expect it to be true also in higher
dimensions, it is definitely more nontrivial to argue for such
a property explicitly and purely from the higher dimen-
sional boundary CFT’s perspective. In general, even for
spacelike entanglement, the analysis is technically more
challenging for higher dimensions, as it requires more (than
two) numbers of intersecting RT surfaces to localize a field
in the bulk. We have also assumed states with a transla-
tional symmetry along the boundary spatial directions, and
it will be interesting to try and extend these methods for
more general states.
Another relevant question is the study of modular flow

at the red lined parts of the extremal surface (i.e., the
timelike part). These surfaces are noninvariant under
the timelike modular flow. However, upon knowing how
exactly should one expect the bulk fields to transform, it
should be in principle possible to reconstruct a bulk field at
a point where the green and red line intersects (e.g., in
Figs. 7 and 9). It will also be interesting to see if one can
construct the modular Hamiltonian for a union of sub-
regions (e.g., in the left and right CFTs, much like in [38],
and for an analogous case with timelike subregions), and
use that to evaluate bulk fields in the interior of the horizon.
We leave these questions for future investigations.

FIG. 11. Timelike extremal surfaces in dS3=CFT2 for a sub-
region located at x ¼ 0 and endpoints at t1E and t2E. FIG. 12. Two timelike geodesics intersect each other at a point

Q in the bulk, where the bulk field will be located.
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APPENDIX A: MODULAR FLOW DUE TO
TIMELIKE MODULAR HAMILTONIAN

This Appendix is devoted to an explicit construction of
the boundary and bulk timelike modular Hamiltonians,
utilizing the conformal symmetry generators of CFT2.
This helps us understand the flow of any bulk field under
thesemodularHamiltonianswhichwe have used in themain
part of the paper for the bulk reconstruction of scalar fields.

1. Modular flow for CFT2 in flat space
and AdS3 Poincaré

The construction of modular Hamiltonian for a subre-
gion (either timelike or spacelike) stretched between points
xμ ¼ ða; āÞ and yμ ¼ ðb; b̄Þ in the light cone coordinates of
a CFT in flat spacetime can be written very generally. In
what follows, the CFT is located in the conformal boundary
of the AdS3 Poincaré patch (16)

ds2 ¼ l2

z2
ð−dt2 þ dx2 þ dz2Þ ¼ l2

z2
ðdz2 − dωdω̄Þ ðA1Þ

with the boundary light cone coordinates defined as

ω ¼ tþ x; ω̄ ¼ t − x: ðA2Þ

a. Boundary flow

In this case, the boundary (extended)modular Hamiltonian
and modular momentum take the form [11,42–44]

H̃mod ¼ Kþ þ K− and P̃mod ¼ Kþ − K−; ðA3Þ

where

Kþ ¼ s1L1 þ s0L0 þ s−1L−1 and

K− ¼ t1L̄1 þ t0L̄0 þ t−1L̄−1: ðA4Þ

The si and ti’s are defined in terms of the subregion size as

s1 ¼
2πi

ðb − aÞ ; t1 ¼ −
2πi

ðb̄ − āÞ ; ðA5Þ

s0 ¼ −2πi
�
bþ a
b − a

�
; t0 ¼ 2πi

�
b̄þ ā
b̄ − ā

�
; ðA6Þ

s−1 ¼
2πiða:bÞ
ðb − aÞ ; t−1 ¼ −

2πiðā:b̄Þ
ðb̄ − āÞ ; ðA7Þ

whereas in the Poincaré patch, the representations of Virasoro
generators are usually taken to be of the form

L−1 ¼ i∂ω; L0 ¼ −ω∂ω and L1 ¼ −iω2
∂ω; ðA8Þ

with

L̄−1 ¼ i∂ω̄; L̄0 ¼ −ω̄∂ω̄ and L̄1 ¼ −iω̄2
∂ω̄: ðA9Þ

b. Bulk flow

Written in this way, we can now immediately uplift the
boundary (extended) modular Hamiltonian and modular
momentum to their corresponding bulk counterparts. They
take the form [45–48]

H̃bulk
mod ¼ Kbulkþ þ Kbulk

− and P̃bulk
mod ¼ Kbulkþ − Kbulk

− ;

ðA10Þ

where

Kbulkþ ¼ s1Lb;1 þ s0Lb;0 þ s−1Lb;−1 and

Kbulk
− ¼ t1L̄b;1 þ t0L̄b;0 þ t−1L̄b;−1: ðA11Þ

Lb;n’s are the bulk AdS3 isometry generators corresponding
to the boundary Virasoro generators Ln’s. They take the
form20

Lb;−1 ¼ i∂ω; Lb;0 ¼ −
z
2
∂z − ω∂ω and

Lb;1 ¼ −iðωz∂z þ ω2
∂ω þ z2∂ω̄Þ; ðA12Þ

with

L̄b;−1 ¼ i∂ω̄; L̄b;0 ¼ −
z
2
∂z − ω̄∂ω̄ and

L̄b;1 ¼ −iðω̄z∂z þ ω̄2
∂ω̄ þ z2∂ωÞ: ðA13Þ

c. Intervals on spatial and temporal slices

Given these general formulas it is now straightforward to
write down the boundary and bulk extended modular
Hamiltonians for subregions of various types.

(i) Spacelike intervals: For a purely spacelike interval
stretched between two endpoints Pðx ¼ −R; t ¼ 0Þ
andQðx ¼ þR; t ¼ 0Þ, using the above formulas we
immediately obtain the boundary operators

20The subscript b in Lb above will always denote “bulk,” and it
is not to be confused with the endpoint coordinates b; b̄.
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H̃mod ≔
πi
R

�ðL1 þ L̄1Þ − R2ðL−1 þ L̄−1Þ
�

¼ π

R

�ðR2 − x2 − t2Þ∂t − 2xt∂x
� ðA14Þ

and

P̃mod ≔
πi
R

�ðL1 − L̄1Þ − R2ðL−1 − L̄−1Þ
�

¼ π

R

�
−ðR2 − x2 − t2Þ∂x þ 2xt∂t

�
: ðA15Þ

Similarly the corresponding bulk operators are

H̃bulk
mod ≔

πi
R

�ðLb;1 þ L̄b;1Þ − R2ðLb;−1 þ L̄b;−1Þ
�

¼ π

R

�ðR2 − x2 − t2Þ∂t − 2xt∂x − z2∂t − 2zt∂z
�

ðA16Þ

and

P̃bulk
mod≔

πi
R

�ðLb;1− L̄b;1Þ−R2ðLb;−1− L̄b;−1Þ
�

¼ π

R

�
−ðR2−x2− t2Þ∂xþ2xt∂t−z2∂x−2zx∂z

�
:

ðA17Þ
These results are of course known, and they clearly
indicate that for t ¼ 0, x ¼ �R points remain
invariant under the boundary modular flow [using
(A14) and (A16)], while the bulk RT surfaceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
¼ R remains invariant under bulk modular

flow. One can also check that the action of H̃mod and
P̃mod are orthogonal to each other by computing
½H̃mod; P̃mod� ¼ 0 [using (A14) and (A15)].

(ii) Timelike intervals: On the other hand, for a purely
timelike interval with two endpoints Pðt ¼
−T0; x ¼ 0Þ and Qðt ¼ þT0; x ¼ 0Þ, the resulting
boundary modular Hamiltonian and modular mo-
mentum are given by

H̃ðTÞ
mod ≔

πi
T0

�ðL1 − L̄1Þ − T2
0ðL−1 − L̄−1Þ

�
¼ π

T0

½ðT2
0 − x2 − t2Þ∂x − 2xt∂t� ðA18Þ

and

P̃ðTÞ
mod ≔

πi
T0

�ðL1 þ L̄1Þ − T2
0ðL−1 þ L̄−1Þ

�
¼ π

T0

½−ðT2
0 − x2 − t2Þ∂t þ 2xt∂x�: ðA19Þ

We clearly see that the endpoints of the timelike
intervals are invariant under this Hamiltonian. Their
counterparts in the bulk then take the form

H̃bulkðTÞ
mod ≔

πi
T0

�ðLb;1− L̄b;1Þ−T2
0ðLb;−1− L̄b;−1Þ

�
¼ π

T0

½ðT2
0−x2− t2Þ∂x−2xt∂tþz2∂xþ2zx∂z�

ðA20Þ

and

P̃bulkðTÞ
mod ≔

πi
T0

�ðLb;1þL̄b;1Þ−T2
0ðLb;−1þL̄b;−1Þ

�
¼ π

T0

½−ðT2
0−x2−t2Þ∂tþ2xt∂xþz2∂tþ2zt∂z�:

ðA21Þ

This time, we see that the spacelike parts of the
extremal surface for a timelike subregion (i.e., the
green lines in Fig. 3)

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
0 þ z2

q
ðA22Þ

remain invariant under the bulk modular flow, but
not the timelike parts (i.e., the red line). This
information will help us formulate the bulk
reconstruction problem using timelike modular
Hamiltonian in the main part of the paper.

2. Modular flow for thermal CFT2 and in BTZ

a. Boundary flow

It is straightforward to carry out a similar computation
for a thermal CFT. Here we will only describe the case for
BTZ black holes using the metric given in (20), from which
the AdS3 Rindler case can follow quite simply. In this case
the resulting formulas are [44,46]

H̃mod ¼ Kþ þ K−; P̃mod ¼ Kþ − K− ðA23Þ

with

Kþ ¼ s1L1 þ s0L0 þ s−1L−1 and

K− ¼ t1L̄1 þ t0L̄0 þ t−1L̄−1: ðA24Þ

The standard representation to use for the global Virasoro
generators is21

L−1 ¼ −e−x̂þ∂þ; L0 ¼ −∂þ and L1 ¼ −ex̂þ∂þ
ðA25Þ

21Here we have defined dimensionless temporal and angular
coordinates t̂ ¼ rþt

l2 and ϕ̂ ¼ rþϕ
l , with the boundary light cones

defined in terms of them. In particular, x̂þ ¼ t̂þ ϕ̂ and
x̂− ¼ t̂ − ϕ̂.
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and

L̄−1 ¼ −e−x̂−∂−; L̄0 ¼ −∂− and L̄1 ¼ −ex̂−∂−:

ðA26Þ

The s, t coefficients are given by22

s1 ¼
2β coth

�
2π
β

bþ−aþ
2

�
e
2π
β a

þ þ e
2π
β b

þ ; t1 ¼ −
2β coth

�
2π
β

b−−a−
2

�
e
2π
β a

− þ e
2π
β b

− ;

ðA27Þ

s0¼−2βcoth
�
2π

β

bþ−aþ

2

�
; t0¼2βcoth

�
2π

β

b−−a−

2

�
;

ðA28Þ

s−1 ¼
2β coth

�
2π
β

bþ−aþ
2

�
e−

2π
β a

þ þ e−
2π
β b

þ ; t−1 ¼ −
2β coth

�
2π
β

b−−a−
2

�
e−

2π
β a

− þ e−
2π
β b

− :

ðA29Þ
Our next goal is to uplift the Virasoro generators to the

bulk in order to write the corresponding extended bulk
modular Hamiltonians. Becausewe are using the coordinates
as in (20),wewill derive the expressions for themodular flow
at points inside and outside the horizon separately.

Once again, we discuss the two types of intervals
separately:

(i) Spacelike intervals: For a spatial subregion stretched
between two points Pðϕ ¼ −R=l; t ¼ 0Þ andQðϕ ¼
þR=l; t ¼ 0Þ, the resulting s, t coefficients yield a
boundary modular Hamiltonian (and momentum)
given by

H̃mod ≔
β

sinh rþR
l2

�
ðL1 þ L−1Þ þ ðL̄1 þ L̄−1Þ − 2 cosh

rþR
l2

ðL0 þ L̄0Þ
�

and ðA30Þ

P̃mod ≔
β

sinh rþR
l2

�
ðL1 þ L−1Þ − ðL̄1 þ L̄−1Þ − 2 cosh

rþR
l2

ðL0 − L̄0Þ
�
: ðA31Þ

Using (A25) and (A26), these take the following form:

H̃mod ≔
β

sinh rþR
l2

��
cosh

rþR
l2

− cosh t̂ cosh ϕ̂

�
∂t −

1

l
sinh t̂ sinh ϕ̂∂ϕ

�
ðA32Þ

and

P̃mod ≔
β

sinh rþR
l2

�
−
	
cosh rþR

l2 − cosh t̂ cosh ϕ̂



l
∂ϕ þ sinh t̂ sinh ϕ̂∂t

�
: ðA33Þ

Clearly for a constant time slice t ¼ 0 at the boundary, (A32) gives ðcosh rþR
l2 − cosh ϕ̂Þ ¼ 0, which implies that ϕ ¼ �R=l

points remain invariant under the boundary modular flow generated by the boundary modular Hamiltonian.
(ii) Timelike intervals: Similarly, for a purely timelike subregion stretched between Pðϕ ¼ 0; t ¼ −T0Þ and

Qðϕ ¼ 0; t ¼ þT0Þ, the modular Hamiltonian and momentum take the forms

H̃ðTÞ
mod ≔

β

sinh rþT0

l2

�
ðL1 þ L−1Þ − ðL̄1 þ L̄−1Þ − 2 cosh

rþT0

l2
ðL0 − L̄0Þ

�
and ðA34Þ

P̃ðTÞ
mod ≔

β

sinh rþT0

l2

�
ðL1 þ L−1Þ þ ðL̄1 þ L̄−1Þ − 2 cosh

rþT0

l2
ðL0 þ L̄0Þ

�
: ðA35Þ

Once again, using (A25) and (A26), these take the form

H̃ðTÞ
mod ≔

β

sinh rþT0

l2

"�
cosh rþT0

l2 − cosh t̂ cosh ϕ̂
�

l
∂ϕ − sinh t̂ sinh ϕ̂∂t

#
and ðA36Þ

22Definition of aþ and a− is a� ¼ t� lϕ. And similarly for b.
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P̃ðTÞ
mod ≔

β

sinh rþT0

l2

�
−
�
cosh

rþT0

l2
− cosh t̂ cosh ϕ̂

�
∂t

þ 1

l
sinh t̂ sinh ϕ̂∂ϕ

�
: ðA37Þ

Clearly the �T0 endpoints are also invariant for the
ϕ̂ ¼ 0 slice.

b. Bulk flow: Outside BTZ horizon

For the bulk points outside of horizon, the bulk isometry
generators are respectively given by [44,46]

Lb;0 ¼ −∂þ; L̄b;0 ¼ −∂−; ðA38Þ

Lb;�1¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−r2þ

p
2r

e�x̂þ
�
2r2−r2þ
r2−r2þ

∂þþ
r2þ

r2−r2þ
∂−∓ r

l
∂r

�
;

ðA39Þ
and

L̄b;�1¼−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−r2þ

p
2r

e�x̂−
�
2r2−r2þ
r2−r2þ

∂−þ
r2þ

r2−r2þ
∂þ∓ r

l
∂r

�
:

ðA40Þ
They are related to the bulk modular Hamiltonian and
momentum in a manner similar to (A10) and (A11).

(i) Spacelike intervals: For a spatial subregion at a
t ¼ 0 slice of size 2R (symmetric around x ¼ 0), we
will now obtain

H̃bulk
mod ≔

β

sinh rþR
l2

�
ðLb;1 þ Lb;−1Þ þ ðL̄b;1 þ L̄b;−1Þ − 2 cosh

rþR
l2

ðLb;0 þ L̄b;0Þ
�

and ðA41Þ

P̃bulk
mod ≔

β

sinh rþR
l2

�
ðLb;1 þ Lb;−1Þ − ðL̄b;1 þ L̄b;−1Þ − 2 cosh

rþR
l2

ðLb;0 − L̄b;0Þ
�
: ðA42Þ

In particular, using (A38)–(A40), the extended bulk modular Hamiltonian takes the form

H̃bulk
mod ≔

β

sinh rþR
l2

��
cosh

rþR
l2

−
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − r2þ
p cosh t̂ cosh ϕ̂

�
∂t −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ

p
rl

sinh t̂ sinh ϕ̂∂ϕ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − r2þ

p
l

sinh t̂ cosh ϕ̂∂r

�
:

ðA43Þ
We can see clearly that the surface defined by t̂ ¼ 0 and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þ
r2

r
¼ cosh rþϕ

l

cosh rþR
l2

ðA44Þ

will be invariant under the modular flow. This is the well-known equation for the RT surface for BTZ [11].
(ii) Timelike intervals: Similarly, for a timelike interval located symmetrically around ϕ̂ ¼ 0 and of size 2T0, the

resulting bulk operators are

H̃bulkðTÞ
mod ≔

β

sinh rþT0

l2

�
ðLb;1 þ Lb;−1Þ − ðL̄b;1 þ L̄b;−1Þ − 2 cosh

rþT0

l2
ðLb;0 − L̄b;0Þ

�
and ðA45Þ

P̃bulkðTÞ
mod ≔

β

sinh rþT0

l2

�
ðLb;1 þ Lb;−1Þ þ ðL̄b;1 þ L̄b;−1Þ − 2 cosh

rþT0

l2
ðLb;0 þ L̄b;0Þ

�
: ðA46Þ

Once again, using (A38)–(A40), we find the modular Hamiltonian taking the following form:

H̃bulkðTÞ
mod ≔

β

sinhrþT0

l2

2
64
�
coshrþT0

l2 −
ffiffiffiffiffiffiffiffiffi
r2−r2þ

p
r cosh t̂coshϕ̂

�
l

∂ϕ−
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2−r2þ
p sinh t̂sinhϕ̂∂tþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−r2þ

p
l

cosh t̂sinhϕ̂∂r

3
75: ðA47Þ

Clearly, for ϕ̂ ¼ 0, the surface ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þ
r2

r
¼ cosh rþT0

l2

cosh rþt
l2

ðA48Þ
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will be invariant under the modular flow. This turns
out to be the spacelike (green) part of the extremal
surface as depicted in Fig. 4 (for points outside the
horizon) [21].

c. Bulk flow: Inside BTZ horizon

For points inside the horizons of the BTZ black hole we
have the following bulk generators:

Lb;0 ¼ ∂þ; L̄b;0 ¼ ∂−; ðA49Þ

Lb;�1¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ−r2

p
2r

e�x̂þ
�
2r2−r2þ
r2−r2þ

∂þþ
r2þ

r2−r2þ
∂−∓ r

l
∂r

�
;

ðA50Þ

and

L̄b;�1¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ−r2

p
2r

e�x̂−
�
2r2−r2þ
r2−r2þ

∂−þ
r2þ

r2−r2þ
∂þ∓ r

l
∂r

�
:

ðA51Þ

These, accompanied by equations like (A10) and (A11)
reproduce the corresponding actions due to modular
Hamiltonians at the inside points.

(i) Timelike intervals: For our purposes it is sufficient to
look into the modular flow inside BTZ due to a
timelike subregion with endpoints ðt ¼ −T0; t ¼ T0Þ
(for ϕ̂ ¼ 0). In this case, we have

H̃bulkðTÞ
mod ≔

β

sinh rþT0

l2

�
ðLb;1 þ Lb;−1Þ − ðL̄b;1 þ L̄b;−1Þ − 2 cosh

rþT0

l2
ðLb;0 − L̄b;0Þ

�
; ðA52Þ

P̃bulkðTÞ
mod ≔

β

sinh rþT0

l2

�
ðLb;1 þ Lb;−1Þ þ ðL̄b;1 þ L̄b;−1Þ − 2 cosh

rþT0

l2
ðLb;0 þ L̄b;0Þ

�
: ðA53Þ

Using (A49) to (A51), the extended timelike modular Hamiltonian takes the following form:

H̃bulkðTÞ
mod ≔

β

sinh rþT0

l2

2
64
�
−cosh rþT0

l2 −
ffiffiffiffiffiffiffiffiffi
r2þ−r2

p
r sinh t̂cosh ϕ̂

�
l

∂ϕ−
rffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þ− r2
p cosh t̂sinh ϕ̂∂tþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ− r2

p
l

sinh t̂sinh ϕ̂∂r

3
75: ðA54Þ

In this case as well, we see that for the ϕ̂ ¼ 0 slice,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ
r2

− 1

r
¼ −

cosh rþT0

l2

sinh rþt
l2

ðA55Þ

surface is invariant under the resulting bulk modular flow.
This is again the spacelike part of the extremal surface
(green lines in Fig. 4, but inside the horizon) associated
with the timelike boundary interval. Hence, once again,
only the spacelike parts of the surface remain invariant
under the bulk modular flow, but not the timelike part (red
line in Fig. 4). This will play a key role in the bulk
reconstruction for the BTZ background.

APPENDIX B: FURTHER DETAILS FOR
OUTSIDE BTZ BULK RECONSTRUCTION

In this Appendix, we will briefly sketch how to perform
bulk reconstruction outside the BTZ black hole using the
boundary constraints (63). The entire analysis closely
follows [11], with almost an interchange between spatial
and temporal coordinates.

To begin with, we need to define slightly modified p, q
variables as

q ¼ t −
il2y
rþ

þ l2x
rþ

; p ¼ tþ il2y
rþ

þ l2x
rþ

; ðB1Þ

and start with an ansatz for the bulk scalar field at a point
Q as

ΦðQÞ ¼
Z

dq̂dp̂gðq̂; p̂ÞOðq̂; p̂Þ; ðB2Þ

where for a variable x, x̂ ¼ rþx
l2 . Starting with

½H̃ðTÞ
B ;ΦðQÞ� ¼ 0 ðB3Þ

and doing integration by parts, we get an equation

½ðcoshT̂B−coshðp̂− t̂0ÞÞ∂p̂−ðcoshT̂B−coshðq̂− t̂0ÞÞ∂q̂
þðh−1Þðsinhðp̂− t̂0Þ−sinhðq̂− t̂0ÞÞ�gðq̂;p̂Þ¼0: ðB4Þ
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To obtain ½H̃ðTÞ
A ;ΦðQÞ�, we simply need to put t0 ¼ 0

and replace TB by TA (the half-length of the time

interval A). Solving ½H̃ðTÞ
A ;ΦðQÞ� ¼ 0 using the method

of characteristics, we obtain a general solution (a0 below is
a constant),

gðq̂; p̂Þ ¼ a0fðxÞUh−1; ðB5Þ

where

x ¼
sinh

�
T̂Aþq̂
2

�
sinh

�
T̂Aþp̂

2

�
sinh

�
T̂A−q̂
2

�
sinh

�
T̂A−p̂
2

� ðB6Þ

and

U ¼ sinh

�
T̂A þ q̂

2

�
sinh

�
T̂A þ p̂

2

�

× sinh

�
T̂A − q̂

2

�
sinh

�
T̂A − p̂

2

�
: ðB7Þ

One can now impose ½H̃ðTÞ
B ;ΦðQÞ� ¼ 0 with the solution

obtained above in order to find out the function fðxÞ. After
some algebra, one can see that fðxÞ satisfies the following
equation:

df
dx

¼ h − 1

x
x − α

xþ α
f; ðB8Þ

with

α ¼ sinh t̂0 sinh T̂A þ cosh t̂0 cosh T̂A − cosh T̂B

sinh t̂0 sinh T̂A − cosh t̂0 cosh T̂A þ cosh T̂B
: ðB9Þ

The above equation has a solution,

fðxÞ ¼ c1

�ðxþ αÞ2
x

�
h−1

: ðB10Þ

In order to obtain the solution in the required form, one can
define a new variable t̂�, which is nothing but the time at
pointQ. This definition has been written using hindsight; in
other words, it can be obtained by solving for the
intersection point of two spacelike parts of the extremal
surfaces in the BTZ background (A48), one part stretching
from the top point of interval A, and the other from the
bottom point of interval B thereby giving rise to an
emergent bulk direction (see Fig. 7). In terms of this
new variable, we have

tanh t̂� ¼
1

sinh t̂0

�
cosh t̂0 −

cosh T̂B

cosh T̂A

�
: ðB11Þ

In terms of this t̂�, α and gðq̂; p̂Þ take the following values:

α ¼ cosh t̂� sinh T̂A þ sinh t̂� cosh T̂A

cosh t̂� sinh T̂A − sinh t̂� cosh T̂A
and ðB12Þ

gðq̂;p̂Þ¼c1

�
cosh

�
p̂þ q̂
2

− t̂�

�
−
coshT̂A

cosh t̂�
cosh

�
p̂− q̂
2

��Δ−2

¼c1

�
cosy−

coshT̂A

cosh t̂�
coshx

�Δ−2
: ðB13Þ

(B13) is indeed the smearing function of a local bulk field
Φðr;ϕ ¼ 0; t�Þ outside the horizon of a BTZ black hole if
the bulk field is located at a radial value r given by (A48).
In other words, we have an emergent bulk direction arising
out of boundary constraints. The fact that the boundary
support in (B2) is over a spacelike separation

cos y > cosh T̂A
cosh t̂�

cosh x, arises from requiring that there are
no boundary terms when we integrate by parts in (B4).

APPENDIX C: FURTHER DETAILS
ON INTERIOR BTZ RECONSTRUCTION

To calculate ½H̃ðTÞ
R ;ΦL�, we will need to realize the

thermofield double (TFD) structure of the CFT state (55)
(or, in the bulk, that of the BTZ black hole) [40] which
implies that at the level of expectation values

hOLðt̂; ϕ̂Þ…iTFD ≡

OR

�
−t̂ −

iβ̂
2
; ϕ̂

�
…

�
TFD

: ðC1Þ

Of course, from a boundary perspective β̂ is just 2π,
which will ultimately provide the HKLL BTZ fields for
a certain choice of β̂, namely for β̂ ¼ rþβ

l2 , where β is the
inverse temperature of theBTZblack hole. This is sketched in
Fig. 13 below. This essentially takes the operators from the
right boundary to the left and vice versa [1,49–51].
Remembering the HKLL formula for the interior fields

FIG. 13. Analytic continuations (in time) between different
quadrants of the BTZ black hole.
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Φðϕ; t; rÞ ¼ cΔ

�Z
σ>0

dydx

�
σ

r0

�
Δ−2

OR

�
ϕþ ily

rþ
; tþ l2x

rþ

�
þ
Z
σ<0

dydx

�
−σ
r0

�
Δ−2

ð−1ÞΔOL

�
ϕþ ily

rþ
; tþ l2x

rþ

��
¼ ΦR þΦL; ðC2Þ

and that the relevant timelike modular Hamiltonian is

H̃ðTÞ
R ¼ c̃

Z
∞

−∞
dξ

�
cosh

�
rþT0

l2

�
− cosh

�
rþξ
l2

��
Tξξ þ antichiral part; ðC3Þ

we have already written down
�
H̃ðTÞ

R ;ΦRðϕ ¼ 0; t; rÞ� in (67). For the second term, we can use (C1) above and define new light
cone variables related to the usual ones [in (60)] in the following way23:

ξnew ¼ −t −
il2y
rþ

−
iπl2

rþ
¼ −ξ̄ −

iπl2

rþ
ðC4Þ

and

ξ̄new ¼ −tþ il2y
rþ

−
iπl2

rþ
¼ −ξ −

iπl2

rþ
: ðC5Þ

Using this new set of variables, we find that the
�
H̃ðTÞ

R ;OLðξ; ξ̄Þ
�
can be evaluated to be

½H̃ðTÞ
R ;ORðξnew; ξ̄newÞ� ¼ c̃

�
−
Δrþ
2l2

�
sinh

�
rþξ̄new

l2

�
− sinh

�
rþξnew

l2

��
−
�
cosh

�
rþT0

l2

�
− cosh

�
rþξ̄new

l2

��
∂ξ̄new

þ
�
cosh

�
rþT0

l2

�
− cosh

�
rþξnew

l2

��
∂ξnew

�
Oðξnew; ξ̄newÞ: ðC6Þ

Finally, redefining ðq; pÞ slightly [compared to (60)] by

pnew ¼ ξnew þ l2x
rþ

and qnew ¼ ξ̄new þ l2x
rþ

; ðC7Þ

we have

�
H̃ðTÞ

R ;ORðξnew; ξ̄newÞ
� ¼ c̃

�
Δrþ
2l2

�
sinh

�
rþqnew

l2

�
− sinh

�
rþpnew

l2

��
−
�
cosh

�
rþT0

l2

�
− cosh

�
rþqnew

l2

��
∂qnew

þ
�
cosh

�
rþT0

l2

�
− cosh

�
rþpnew

l2

��
∂pnew

�
Oðqnew; pnewÞ: ðC8Þ

Putting everything together, we have

�
H̃ðTÞ

R ;ΦLðϕ ¼ 0; t; rÞ� ¼ C
Z
σ<0

dqdp

�
cosh

�
rþðqnew − pnewÞ

2l2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ
r2

− 1

r
sinh

�rþðpnew þ qnew þ 2tþ 2il2π
rþ

Þ
2l2

��
Δ−2

×

�
Δrþ
2l2

�
sinh

�
rþqnew

l2

�
− sinh

�
rþpnew

l2

��
−
�
cosh

�
rþT
l2

�
− cosh

�
rþqnew

l2

��
∂qnew

þ
�
cosh

�
rþT0

l2

�
− cosh

�
rþpnew

l2

��
∂pnew

�
ORðqnew; pnewÞ ðC9Þ

23In writing the formulas below and applying them in HKLL equations, we have in mind evaluating correlators as in (C1).
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with C ¼ cΔc̃ð−1Þ2Δ−2. This time

�
H̃ðTÞ

R ;ΦR

�þ �H̃ðTÞ
R ;ΦL

� ¼ 0 ðC10Þ

gives [adding the above to (67)] ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ
r2

− 1

r
sinh

�
rþt
l2

�
þ cosh

�
rþT0

l2

���Z
σ>0

�
σ−
r0

�
Δ−3

sinh

�
rþðp − qÞ

l2

�
ORðq; pÞ

−
Z
σ<0

ð−1Þ2Δ−2
�
σþ
r0

�
Δ−3

sinh

�
rþðqnew − pnewÞ

l2

�
ORðqnew; pnewÞ

�
¼ 0: ðC11Þ

Once again this generically implies the same geodesic equation,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ
r2

− 1

r
¼ −

cosh
�
rþT0

l2

�
sinh

�
rþt
l2

� : ðC12Þ
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