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We consider the Witten-Sakai-Sugimoto model in the approximation of smeared instantons at finite
density via a homogeneous ansatz, which is known to be discontinuous in order to be able to contain a
nonvanishing baryon density. The discontinuity at the infrared tip of the bulk spacetime gives rise to
subtleties of discarding boundary terms that are normally discarded in the literature. We propose a reason
for discarding this boundary term, by scrutinizing the currents and topological properties of the model.
Along the way, we find a very effective and simple condition to compute the point of thermodynamic
equilibrium.
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I. INTRODUCTION

Chern-Simons (CS) terms exist in field theories of odd
(spacetime) dimensions, most famously perhaps in three
dimensions. The CS theory by itself seems at first glance to
be quite uninteresting, since it is a topological theory and
possesses no dynamics. This property changes, however,
once the theory is coupled to Yang-Mills (YM) (or
Maxwell) theory [1,2] or even just to a scalar field theory
[3]. The coupling of CS theory induces immediately new
behavior into the theory with which one couples it to; for
example, the traditional Gauss law is modified and if CS
and YM theories are both present, the gauge-field propa-
gator will have a richer pole structure, yielding a topo-
logically massive theory [1,2].
Another aspect of CS terms is that they are not

manifestly gauge invariant, unlike the YM (trF ∧ �F) or
Maxwell (F and hence F ∧ �F) counterparts, where F is
g-valued with g being the algebra corresponding to the Lie
group G [for Maxwell the generator of Uð1Þ is just a real
number]. This is immediately clear from the fact that the CS
term contains the gauge field A in addition to the field
strength F ¼ dAþ iA ∧ A, and since A transforms like
A → Aþ dAη under an infinitesimal gauge transform η,
where dAη ¼ dηþ i½A; η� is the gauge covariant derivative
and η is also g-valued. The field strength transforms
covariantly and hence the trace of any power of the field

strength is invariant under gauge transformations. In
particular, YM theory is manifestly gauge invariant. The
CS term, on the other hand, transforms into (itself plus) a
total derivative and plus a winding number of the gauge
fields. For suitably chosen integer coefficients (when the
CS term is appropriately normalized), the latter winding
number term yields a contribution of 2πk to the action,
under which eiS does not change. The total derivative term
is normally not causing any trouble in field theories for two
reasons; physicists often work on infinite Cartesian spaces
like R3 or R5 and the fields are almost always assumed to
be continuous and differentiable.
A counterexample to the first reason, leads to beautiful

results in condensed matter theory when the CS term is
utilized for the fractional quantum Hall effect [4] and there
exists a boundary, where the fields are not necessarily pure
gauge, the boundary effects give rise to a phenomenon
of edge modes living on the boundary (circle) of the
material [5].
A counterexample to the latter reason, on the other hand

is what we are concerned with in this paper. We are
interested in holographic nuclear matter, which is the
situation in which we have large densities of matter in
holographic QCD [6]. To be specific, we are considering
the popular top-down holographic QCD model, namely
that of Witten-Sakai-Sugimoto (WSS) [7,8].1 This model at
low energies is indeed described by five-dimensional YM
and CS terms coupled together in a curved anti–de Sitter-
like spacetime. This particular theory has a conformal
boundary with a finite curvature, which is known as the UV
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1See also Refs. [9,10] for a derivation of the chiral effective
action from the WSS model, as well as an estimate of the axial
coupling, magnetic dipole moments, electromagnetic form fac-
tors and vector dominance.
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boundary where the UV degrees of freedom live. The
holographic principle states that the theory in the bulk is
dual to the field theory living on the conformal boundary
and observables of the bulk fields can be read off of the tails
of the fields near the conformal boundary. This should
already raise concern for the astute reader, since nontrivial
or nonpure gauge behavior on a boundary could spell
trouble for the theory. It turns out that this gauge variance is
welcome, as it reproduces the chiral anomaly of QCD [8].2

The above-mentioned second issue with CS, is when the
fields are not continuous. This issue arises only in the limit
of finite density baryonic matter in the approximation of
homogeneous matter in the bulk, where it has been proved
that no such continuous configurations can exist [12]. It is
possible, however, to describe homogeneous nuclear matter
at finite/large densities if we allow the gauge field configu-
rations to be discontinuous at the IR tip of the cigar-shaped
spacetimeof theWSSmodel [13].3 Thiswould correspond to
a smeared configuration of baryons/instantons.
This is where we meet the issue with the CS term, in

particular because the most convenient form of the CS term
for use in the baryonic sector, as written down in Ref. [15]
as the Abelian “electric” field multiplied by trF ∧ F. This
formulation of the five-dimensional CS term turns out to be
natural for homogeneous nuclear matter, but differs with
the full CS term ω5ðAÞ by a boundary term. In this paper,
we explore the difference of the WSS model when taking
this boundary term into account or discarding it. It turns out
that the holographic dictionary and the thermodynamical
laws are well-defined in either case, but that there is a
preferred choice if we scrutinize the currents of the theory.
In particular, matching the baryon charge and the behavior
of the fields at the conformal boundary provides a way to
choose which boundary terms to discard. We additionally
find that the same choice of the CS term, makes this term
invariant under the SUð2Þ gauge transformation that is
needed to show the equivalence between isospin realized
by isorotations of the fields and turning on a chemical
potential at infinity.
This paper is organized as follows. Section II reviews

the derivation of the CS term from the point of view of the
WSS model in string theory. In Sec. III, we set up the
notation for the homogeneous ansatz for nuclear matter in
the model at hand. In Sec. IV, we present a systematic way
to derive the thermodynamic equilibrium conditions, which
turns out to be very useful for numerics. In Sec. V, we show
via the energy momentum tensor that the standard thermo-
dynamic relations work, regardless of whether the boun-
dary term in CS is included or not. In Sec. VI, we illustrate
the difference between taking the boundary term in the CS

term into account or not, by computing a range of
observables. We conclude the paper in Sec. VII with a
discussion. Details of the equivalence between SUð2Þ-
isospin rotation of the fields and the introduction of an
external chemical potential at infinity are shown in
Appendix A, whereas the details on how the chiral anomaly
of QCD is unchanged by our proposal are delegated to
Appendix B.

II. CHERN-SIMONS TERM
FROM STRING THEORY

Dp branes are described by the Dirac-Born-Infeld action,

SDBI ¼ −Tp

Z
dpþ1ξe−Φ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðγab þ Bab þ 2πα0FabÞ

p
;

ð1Þ

where F, B, γ, are respectively the gauge field strength, the
Kalb-Ramond form and the induced metric on the (pþ 1)-
dimensional world volume. The overall brane tension
Tp can be given terms of in string parameters as

Tp ¼ ð2πÞ−pα0−pþ1
2 . We are interested in the Bab ¼ 0

scenario, and we will employ the Yang-Mills approxima-
tion of this action, obtained by expanding the square root
and keeping the quadratic order in the field strength.
Following Refs. [8,16,15], we write the resulting Yang-
Mills action in the form

SYM¼−κ Tr
Z

d4xdz

�
1

2
hðzÞF 2

μνþkðzÞF 2
μz

�
;

κ¼ λNc

216π3
: ð2Þ

The other coupling present in the case of a stack of Dp
branes is given by world volume coupling to the Ramond-
Ramond (RR) forms. As argued in Ref. [17], in the
presence of a D brane background inducing a nontrivial
flux of an RR form, the correct expression of this coupling
to be considered, is the one after integration by parts,
where the RR field strength appears explicitly. Since we
will work in a setup with only the flux of F4 turned on, we
take the coupling to be

SCS ¼
1

48π3

Z
D8

F4 ∧ ω5ðAÞ;

ω5ðAÞ ¼ Tr

�
A ∧ F 2 −

i
2
A3 ∧ F −

1

10
A5

�
; ð3Þ

where powers of forms are understood with the wedge
product. Assuming now dependence of the gauge fields
only on coordinates transverse to S4, we can integrate out
F4 using its flux to obtain

2There are subtleties for gauge invariance of the CS term when
topologically nontrivial gauge configurations are considered and
when the gauge group is SUðNÞ with N > 2, see Ref. [11].

3Instead of employing a discontinuity in the fields, it is possible
to impose asymmetric boundary conditions on the fields [14].
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SCS ¼
Nc

24π2

Z
5D

ω5ðAÞ: ð4Þ

In the general case, we will have an arbitrary number Nf

of flavor branes (although for Nf > Nc it would be
appropriate to include the backreaction of the branes onto
the geometry), hence it is possible to write SCS separating
out the SUðNfÞ part,

SCS ¼ Nc

24π2

Z
5D

Tr

�
ω
SUðNfÞ
5 þ 3Â ∧ F2 þ Â ∧ F̂2

þ d

�
Â ∧

�
2F ∧ A −

i
2
A3

���
; ð5Þ

where F ¼ F þ F̂ splits the field strength into the non-
Abelian and Abelian part, respectively, and similarly for
the gauge field A. Since we consider the Nf ¼ 2 case,
accounting only for the existence of two light flavors (of

quarks), the first term proportional to ωSUð2Þ
5 vanishes,

leaving us with the simpler expression,

SCS ¼
Nc

24π2

Z
5D

Tr

�
3Â ∧ F2 þ Â ∧ F̂2

þ d

�
Â ∧

�
2F ∧ A −

i
2
A3

���
: ð6Þ

Ifwe assume theSUð2Þ fields,Aa, to be continuous functions
vanishing at spatial infinity fast enough for the configuration
to have a finite energy, then the total-derivative term vanishes
andweare leftwith the commonlyused expression for theCS
action in the Witten-Sakai-Sugimoto model. If we employ
the field expansion,

A¼ Aa
αTadxα; Â¼ Âα

1
2
dxα;

α;β;…¼ 0;M; M;N;…¼ i; z; i; j;…¼ 1;2;3;

ð7Þ
then the resulting action term reads,

SCS ¼
Nc

384π2
ϵα1α2α3α4α5

×
Z

d4x dzÂα1 ½3Fa
α2α3F

a
α4α5 þ F̂α2α3F̂α4α5 �: ð8Þ

Themain focus of this article is to study a particular situation,
the homogeneous ansatz, in which the assumptions for
reducing the CS term as above, are not justified, leading
to a nonvanishing contribution from the total-derivative term
in Eq. (6).

III. THE HOMOGENEOUS ANSATZ

In holographic QCD, baryons are realized as topological
solitons of the bulk theory, whose holonomy produces

skyrmions of the boundary theory [18]. A system of baryons
like a nucleus or in general nuclearmatter is then realized as a
many-soliton configuration in a five-dimensional curved
spacetime; this problem is in general very difficult to solve
even using numerical methods, and a variety of approxima-
tions are usually employed to make it more treatable. Note
that topological solitons in this model are indeed smooth
configurations of the gauge fields, with the exception of a
singularity at ξ ¼ 0, with ξ2 ≡ ðx⃗ − X⃗Þ2 þ ðz − ZÞ2, which
is however a gauge artifact. Hence, dealing with this
description of baryons we can safely drop the total derivative
term in the CS action.
The homogeneous ansatz is an approximation employed

inmanyholographic setups to describematter at high density.
We employ the approximation of forming a homogeneous
fluid, where the single baryons are no longer identifiable,
smeared along the three dimensions of space of the boundary
theory. To realize this,we assume the fields to depend only on
z, and in the static scenario only the following fields are
turned on [see Ref. [19] for a generalization including time
dependence in the form of a slow SUð2Þ rotation]4:

Ai ¼ −
HðzÞ
2

τi; Â0 ¼ â0ðzÞ; ð9Þ

where we use the Az ¼ 0 gauge as done in Ref. [13].5 The
complicated many-soliton problem in four-dimensional
space is now substituted by the simpler physics of continuous
matter in one dimension. The price we pay for this great
simplification is the loss of any information on the properties
of the individual baryons, and their configuration in space
(e.g., we lose information about the favored lattice configu-
ration at a certain density). In particular, we compute the
baryon number, whichwill be infinite given the homogeneity
of the system, butmost of all will not be quantized in integers.
The only meaningful quantity within this ansatz is then the
baryon density; usually this quantity is encoded in the field
strengths, FMN , whereas now it will be encoded in the
function HðzÞ as

d ¼ 1

32π2

Z
dzϵMNPQTrFMNFPQ

¼ −
1

8π2

Z
dz∂zðH3Þ

¼ −
1

8π2
½H3�z¼þ∞

z¼0þ −
1

8π2
½H3�z¼0−

z¼−∞: ð10Þ

4The homogeneous ansatz has also been employed in bottom-
up holographic QCD models, such as VQCD [20,21] and the
hard-wall model [22].

5A general gauge transformation consistent with the require-
ment of homogeneity AM → UðzÞðAM − i∂MÞUðzÞ−1 alters only
Az whereas the field strengths transform covariantly. The topo-
logical charge and the YM action remain invariant, but so does
the Chern-Simon action since Fi0 vanishes in the static homo-
geneous ansatz.
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For the energy density to be finite, the function HðzÞ has to
vanish at z → �∞, so that we remain with

d ¼ 1

8π2
½H3ðz → 0þÞ −H3ðz → 0−Þ�: ð11Þ

We see that the only way to have a finite density, and so to
describe nuclear matter with this ansatz, is for the function
HðzÞ to have a discontinuity; we choose the value z ¼ 0 for
the location of this discontinuity because it is the energeti-
cally favored position at low densities, as can be inferred by
the semiclassical value of the pseudomodulus Zcl ¼ 0 of the
single baryon configuration [15], but in principle the location
of the discontinuity should be determined byminimization of
the free energy.
Requiring HðzÞ to be odd, thus leading to a continuous

field strength, we finally obtain that the density is given by
its infrared boundary condition as

Hðz → 0�Þ ¼ �ð4π2dÞ13: ð12Þ

From this result, we are brought to the conclusion that we
cannot drop the total-derivative term in Eq. (6), which will
instead in principle contribute to the energy and free energy
of the system. Before moving to the discussion regarding
the physical effects of this term, we write the full action of
the flavor fields when the static homogeneous ansatz is
employed:

S ¼ SYM þ SbulkCS þ S∂CS; ð13Þ

SYM¼−κ
Z

d4x
Z

∞

0

dz½3hH4þ3kðH0Þ2−kðâ00Þ2�; ð14Þ

SbulkCS ¼ −
3Nc

8π2

Z
d4x

Z
∞

0

dz â0H0H2; ð15Þ

S∂CS ¼
3Nc

32π2

Z
d4x

Z
∞

0

dz ∂zðâ0H3Þ

¼ −
3Nc

32π2

Z
d4x â0ð0ÞH3ð0Þ; ð16Þ

where we have turned every integration over z∈ ½−∞;∞�
into one over z∈ ½0;∞� with a factor of two coming from
the other halves of the branes. Adopting this “folding”, on
top of making it more convenient to deal with integrations
since we can avoid handling discontinuous functions, also
makes the necessity of S∂CS more manifest as we effectively
have a “boundary” at z ¼ 0 which will give a nonvanishing
contribution [while the UV contribution will still vanish
due to the boundary condition Hð∞Þ ¼ 0]. The equations
of motion derived from this action are

∂zðkðzÞH0Þ − 2hðzÞH3 þ Nc

16π2κ
H2â00 ¼ 0; ð17Þ

∂zðkðzÞâ00Þ þ
3Nc

16π2κ
H2H0 ¼ 0: ð18Þ

Note that S∂CS, being a boundary term, does not contribute
to the equations of motion, but as we will see it enters
physics via a different mechanism.

IV. THERMODYNAMIC EQUILIBRIUM

Solving the equations of motion by itself does not
guarantee that the system is in its equilibrium configura-
tion. Boundary conditions encode physical quantities;
quark chemical potential μ and baryon density d are
introduced as

â0ð∞Þ ¼ μ; Hð0Þ ¼ ð4π2dÞ13: ð19Þ

We are left with two more boundary conditions to impose;
for the field HðzÞ we require Hð∞Þ ¼ 0 to have finite
energy density, while for the field â0ðzÞ usually a Neumann
condition is employed at z ¼ 0 since it is an even and
continuous function. However, this choice is not always
justified; we will show that the new term introduced in the
CS action can change this prescription. We start by
requiring our field configuration to extremize the action;
this procedure includes imposing the equations of motion,
but is not limited to it, as boundary term arise when we
integrate by parts to make the equations of motion manifest.
These boundary terms are in many cases vanishing when
requiring Dirichlet or Neumann conditions for the fields,
but our new effective boundary at z ¼ 0 introduces a
nontriviality in this process.
When we vary the fields as H → H þ δH and

â0 → â0 þ δâ0, the action is varied as S → S ¼ δS with

δS¼
Z

d4xdz½ðE:o:M:ÞHδHþðE:o:M:Þâ0δâ0�þδSboundary;

ð20Þ

where the first term (in the bracket) vanishes upon
imposition of the equations of motion. The explicit form
of the second term is for now omitted as we will review first
the case in which we neglect the presence of S∂CS, to then
move to the analysis of the full CS.

A. Without S∂CS
If we assume that the part of the CS term, δS∂CS, vanishes

then the boundary term in the variation of the action is
given by
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δSboundary ¼ 2κ

Z
d4x

�
kðzÞâ00δâ0 − 3

�
kðzÞH0 þ Nc

16π2κ
â0H2

�
δH

�
z¼∞

z¼0

: ð21Þ

We now proceed, as with the equations of motion terms, to
require these two terms (proportional to δâ0 and δH) to
vanish separately. As a first simplification we note that the
contribution at z ¼ ∞ vanishes: In fact δâ0ð∞Þ ¼ 0
because we work at a fixed â0ð∞Þ ¼ μ, and δHð∞Þ ¼ 0
for the energy density to be finite. We are thus left with two
additional equations to satisfy on top of the equations of
motion to truly extremize the action,

â00ð0Þδâ0ð0Þ ¼ 0; ð22Þ
�
H0ð0Þ þ Nc

16π2κ
â0ð0ÞH2ð0Þ

�
δHð0Þ ¼ 0: ð23Þ

To solve Eq. (22) we can simply enforce Neumann
boundary conditions â00ð0Þ ¼ 0, consistently with common
practice. At first sight it would also seem that Eq. (23) is
satisfied with our choice Hð0Þ ¼ ð4π2dÞ13 which seems to
imply δHð0Þ ¼ 0. However, we have to keep in mind that
we are not working at fixed density, but rather at fixed
chemical potential, hence dðμÞ is a dynamical quantity that
should be determined from the minimization of the action
itself. This leads us to enforce the condition

H0ð0Þ þ Nc

16π2κ
â0ð0ÞH2ð0Þ ¼ 0: ð24Þ

We recognize the above equation as the condition that was
only numerically verified in Appendix D of Ref. [22] as
part of (D.16); we now see that indeed the condition is
exactly satisfied upon extremization of the action, which
corresponds to the equilibrium configuration, at least for
every μ ≥ μonset.

6 Since the field â0 carries information on
μ, whileH carries information about the density, we can see
this equation as giving us the relation between these two
quantities at equilibrium. It is easier to see it as defining
μðdÞ; to make it explicit, we write â0 as

â0ðzÞ ¼ μ −
Z

∞

z
dz0 â00ðz0Þ;

â00 ¼ −
Nc

16π2κ

1

kðzÞ ðH
3ðzÞ −H3ð0ÞÞ; ð25Þ

where the second relation comes from the integration of the
equation of motion. After rearranging to isolate μ [which
does not enter the equations of motion, so it does not affect
the values of â00ð0Þ or H0ð0Þ], we find

μðdÞ¼−
4κ

Nc

�
4π2

d2

�1
3

H0ð0ÞþNcd
4κ

Z
∞

0

dz
1

kðzÞ
�
1−

H3ðzÞ
H3ð0Þ

�
;

ð26Þ

which allows us to compute μðdÞ for every given field
configuration satisfying the equations of motion. In the
baryonic phase (μ ≥ μonset) the relation is invertible (the
inversion has to be performed numerically) giving us a
simple way to compute dðμÞ. What we found is that
requiring not only the equations of motion to be satisfied,
but the more general extremization of the action including
nontrivial boundary terms, we obtain the thermodynamic
equilibrium condition on top of the field configuration. Note
that we have no information about what phase is favored, so
the equilibriumfound thiswaymayverywell be unstable; the
baryonic phasewill be the stable onlywhenΩB < 0, withΩB
being the grand canonical potential in the baryonic phase
(and we made use of the trivial Ωvacuum ¼ 0).
One more detail we need to pay attention to, is the

identification of the parameters we choose to describe the
chemical potential, the baryonic density, and the physical
quantities; from the holographic dictionary we can read off
the physical baryon density dB from the expansion of â0
near the boundary. This task is straightforward since we
have an explicit expression for â00ðzÞ, so that we can
directly use the formula derived in Ref. [23],

dB ¼ 2

Nc
κ½kðzÞâ00�∞−∞ ¼ 4

Nc
κ½kðzÞâ00�z¼∞ ¼ d; ð27Þ

so in this case the parameter d, introduced as a boundary
condition, really coincides with the physical baryon den-
sity. With this result, we now extract the physical expres-
sion of the baryon chemical potential μB in terms of μ; we
do so by looking at the action terms linear in μ. Since μ
appears only as an overall shift of â0, only the CS action
contains such a term, which reads

μBdB ¼ −
Nc

8π2
μ

Z
∞

0

dz ∂zðH3Þ ¼ Nc

2
μd; ð28Þ

from which follows the identification:

μB ¼ Nc

2
μ: ð29Þ

6In Ref. [22] the relation is obtained for the hard-wall model. It
can be mapped to relation (24) in the Witten-Sakai-Sugimoto via
M5 → κ, hðzÞ → aðzÞ, kðzÞ → aðzÞ and a change in sign due to
different conventions adopted and the different orientation of the
integration domain. All considerations we make for the Witten-
Sakai-Sugimoto model translate directly to the hard-wall model,
where however the formalities concerning the choice of the CS
term are less stringent given the bottom-up nature of the model.
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B. Including S∂CS
We now wish to include the presence of S∂CS in our

considerations. We again wish to extremize the action; the
equations of motion (unchanged from the previous section)
will take care of the bulk contribution, leaving us again
with the need to satisfy a pair of equations on the IR
boundary. The novelty with respect to the previous section
is that now S∂CS will provide additional boundary terms,
modifying Eqs. (22) and (23),

�
â00ð0Þ þ

3Nc

64π2κ
H3ð0Þ

�
δâ0ð0Þ ¼ 0; ð30Þ

�
H0ð0Þ þ Nc

16π2κ
â0ð0ÞH2ð0Þ − 3Nc

64π2κ
â0ð0ÞH2ð0Þ

�

× δHð0Þ ¼ 0: ð31Þ

Both equations acquire a new term, but most notably the
new boundary equation for â0 is no longer satisfied by a
Neumann boundary condition, which has to be modified to

â00ð0Þ ¼ −
3Nc

64π2κ
H3ð0Þ; ð32Þ

which in turn leads to a different solution to the integrated
equation of motion (18),

â00 ¼ −
1

kðzÞ
Nc

16π2κ

�
H3ðzÞ −H3ð0Þ

4

�
: ð33Þ

As a consequence, also the thermodynamic equilibrium
relation μðdÞ gets modified, both by the new term in
Eq. (31) and the new solution (33),

μðdÞ¼−
16κ

Nc

�
4π2

d2

�1
3

H0ð0ÞþNcd
4κ

Z
∞

0

dz
1

kðzÞ
�
1

4
−
H3ðzÞ
H3ð0Þ

�
:

ð34Þ

Repeating the argument from the previous section, we
now want to map the parameters d, μ to the physical
quantities μB, dB, again we can compute the baryon density
from the asymptotics of the â0 field according to the
formula for the current,7 which however now yields a
different result because of the new expression (33),

dB ¼ 2

Nc
κ½kðzÞâ00�∞−∞ ¼ 4

Nc
κ½kðzÞâ00�z¼∞ ¼ d

4
: ð35Þ

Since the asymptotic leading order for â0 is unchanged, we
expect μB to be unchanged, and this is confirmed by
looking at the action terms proportional to μ, now coming
both from SbulkCS and S∂CS, amounting to a contribution,

Sμ ¼ −
Nc

8
μd ¼ −

Nc

2
μdB; ð36Þ

hence, we can still rely on the identification (29).

V. FREE ENERGY, ENERGY, AND PRESSURE

In Appendix D of Ref. [22] the computation of the
energy density and pressure from the stress-energy tensor
of the flavor fields was presented; the computation illus-
trated a number of nontrivialities, including contributions
of boundary terms for both quantities, and the use of the
newly formulated boundary equations (23) and (31). Here,
we repeat the calculation in both the cases with S∂CS ¼ 0

and with S∂CS ≠ 0, showing how everything comes con-
sistently together and keeping the holographic dictionary
entry Ω ¼ −Lon−shell.
It starts with the definition of the stress-energy tensor,

Tν
μ ¼ −2gνρ

∂Lm

∂gμρ
þ δνμLm; ð37Þ

Lm ¼ −κTr
�
1

2
F μνF ρσgμρgνσ þ F μzF νzgμνgzz

�
; ð38Þ

where the metric gμν is the full metric of the Witten-Sakai-
Sugimoto model. We note that only the Yang-Mills part of
the action appears, since the CS term is independent of the
metric.
From the stress-energy tensor we can extract the pres-

sure, P, and energy density E as

E ¼ −
Z

∞

−∞
dz

ffiffiffiffiffiffi
−g

p
T0
0; P ¼ 1

3

Z
∞

−∞
dz

ffiffiffiffiffiffi
−g

p
Ti
i; ð39Þ

which when used together with the holographic prescrip-
tionΩ ¼ −Lon-shell should give the familiar thermodynamic
relations for homogeneous systems,

E ¼ −Pþ μBdB; PV ¼ −Ω: ð40Þ

A. Without S∂CS
As before, we start by considering the situation in which

S∂CS ¼ 0. We can compute the pressure P by dividing it into
two contributions, corresponding to the two terms in the
stress-energy tensor (37), P ¼ Pð1Þ þ Pð2Þ, with

7A naive approach to the calculation of this charge is to trade
the evaluation at the boundary for the integral over z of the
derivative of the expression, and then use Eq. (18) to obtain
exactly the instanton number density d. However, since kâ00 is not
continuous in this scenario, we cannot exchange the function
evaluated at the UV boundary for the bulk integral of the
derivative, as it would pick up IR contributions that do not
belong to the definition of the current.
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Pð1Þ ¼ 2κ

3

Z
∞

−∞
dzTrðhðzÞF2

ij þ kðzÞF2
izÞ;

Pð2Þ ¼ LYM ¼
Z

∞

0

dzLYM; ð41Þ

where LYM indicates the integrand of SYM in Eq. (14) and
the terms displayed in Pð1Þ are the only nonvanishing terms
upon insertion of the homogeneous ansatz (9).
Since Pð2Þ is trivial and already gives manifestly a part of

the Lagrangian density, we only need to compute Pð1Þ;
substituting the homogeneous ansatz, performing the
traces, and accounting for a factor of two after trading
the whole integration domain for only half of the brane, we
end up with

Pð1Þ ¼ 2κ

Z
∞

0

dz ½2hðzÞH4 þ kðzÞH02�; ð42Þ

whose second term we can integrate by parts in order to
make the equation of motion (17) manifest, leaving us with
a boundary term as a result,

Pð1Þ ¼ Nc

8π2

Z
∞

0

dz â00H
3 þ 2κ½ðkðzÞH0HÞ�∞0 : ð43Þ

We can integrate by parts again to make the (bulk) CS term
(15) appear, at the price of obtaining a second boundary
term,

Pð1Þ ¼
Z

∞

0

dzLbulk
CS −2κ

��
kðzÞH0 þ Nc

16π2κ
â0H2

�
H

�����
z¼0

;

ð44Þ

where we made use of the fact that the boundary term only
contributes in the IR (z ¼ 0). In the boundary term, we now
recognize Eq. (23), so that it vanishes on-shell at equilibrium
(since kð0Þ ¼ 1). In the end we obtain the expected result,

P ¼ LYM þ Lbulk
CS ¼ L; ð45Þ

and since from holography at T ¼ 0, we identify the on-shell
Lagrangian with the grand-canonical potential, we obtain
PV ¼ −Ω.
The next quantity we need to compute is the energy

density E. Again, we can divide the expression into two
contributions, corresponding to the two terms of Eq. (37)
and again the latter will trivially give minus the Yang-Mills
Lagrangian,

Eð2Þ ¼ −
Z

∞

−∞
dz

ffiffiffiffiffiffi
−g

p
Lm ¼ −LYM; ð46Þ

while the first term requires more attention as it will also
produce boundary terms in the effort to make the presence

of LCS manifest. We start by computing the derivative with
respect to g00 to obtain,

Eð1Þ ¼ 2κ

Z
∞

0

dz kðzÞF̂2
0z ¼ 2κ

Z
∞

0

dz kðzÞðâ00Þ2; ð47Þ

where the term after the first equality is the only non-
vanishing one upon insertion of the homogeneous ansatz
(9). Again we can proceed to integrate by parts obtaining
the kinetic term of the equation of motion in exchange for a
boundary term,

Eð1Þ ¼ 2κ½kðzÞâ0â00�∞0 − 2κ

Z
∞

0

dz ∂zðkðzÞâ00Þâ0: ð48Þ

This time the only contribution from the boundary term
comes from z ¼ ∞, as also noted in the hard-wall model in
Ref. [22]. Making use of Eqs. (18) and (25), the bulk CS
term and the chemical potential coupled to the baryon
density appear,

Eð1Þ ¼ −Lbulk
CS þ Nc

2
μd: ð49Þ

In the end, for the total energy density we obtain

E ¼ −LYM − Lbulk
CS þ Nc

2
μd: ð50Þ

By making use of Eqs. (45), (29), and (27) we obtain the
correct thermodynamic relation,

E ¼ −Pþ μBdB: ð51Þ

B. Including S∂CS
We now want to include the effects of the boundary term

S∂CS. Of course, the holographic dictionary still has to be
valid, and the system is still a homogeneous one, so
consistency requires us to still find the relation PV ¼
−Ω ¼ L on-shell at equilibrium.
To obtain the result (44), we only used the definition of

Tμν, which is sensitive only to the Yang-Mills action, and the
equations of motion, which are insensitive to boundary
terms. Hence, the entire derivation is not altered by the
presence of a boundary term in theCSaction andEq. (44) still
holds. However, this time the boundary term in Eq. (44) does
not vanish, but gives a contribution according to Eq. (31),

Pð1Þ ¼
Z

∞

0

dzLbulk
CS þ 3Nc

32π2
½â0H3�jz¼0 ¼ Lbulk

CS þ L∂

CS;

ð52Þ

so that in the end we again end up with the pressure equating
the full on-shell Lagrangian density at equilibrium,
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complying with the holographic dictionary and the homo-
geneity of the system,

P ¼ LYM þ Lbulk
CS þ L∂

CS ¼ L; PV ¼ −Ω: ð53Þ

Let us now turn to the energy density; here too the
derivation from the previous section holds up to the evalu-
ation of the boundary terms, since again only the Yang-Mills
action and the equations of motion are involved, so we only
need to take a better look at

Eð1Þ ¼ −2κ
Z

∞

0

dz∂zðkðzÞâ00Þâ0 þ 2κ½kðzÞâ0â00�∞0 : ð54Þ

The integral still provides Lbulk
CS upon insertion of the

equations of motion, but we note that â00ðz ¼ 0Þ ¼ 0 no
longer holds; hence, both boundaries will contribute now. At
both z ¼ ∞ and z ¼ 0we use of the explicit expression (33)
to obtain,

Eð1Þ ¼ −Lbulk
CS þ Nc

8
μdþ 3Nc

32π2
H3ð0Þâ0ð0Þ; ð55Þ

where we notice that the infrared contribution amounts
exactly to −L∂

CS. The term proportional to μd instead
provides again the correct quantity μBdB once we make
use of the dictionary entries (35) and (29). Combining Eð1Þ

and Eð2Þ, we obtain the correct thermodynamic formula
accounting for the presence of S∂CS,

E ¼ −LYM − Lbulk
CS − L∂

CS þ
Nc

8
μd ¼ −Pþ μBdB: ð56Þ

VI. EFFECTS ON OBSERVABLES

In this section, see how much impact the boundary term
S∂CS has on a few selected observables relevant for physics
at finite densities; i.e. we will compare the observables with
and without the presence of the boundary term, recalling
that the top-down model with the definition from string
theory, should contain this boundary term as part of the
CS term.

A. Saturation density

Let us begin with evaluating the saturation density at the
phenomenological value (as derived from fitting the ρ
meson mass and the pion-decay constant [8]) of the ’t Hooft
coupling, i.e., λ ¼ 16.63. We simply vary the density d and
determine μ by the thermodynamic equilibrium [i.e.,
Eq. (26) or (34)], until we find the same value of the
canonical potential Ω for the baryon phase, as for the
vacuum (which is Ω ¼ 0); this is the onset of the baryon
phase and we define the corresponding density as the
nuclear saturation density, d0. We find

dbulk0 ¼ 0.436

�
MKK

949 MeV

�
3

fm−3; ð57Þ

dbulkþ∂

0 ¼ 0.601

�
MKK

949 MeV

�
3

fm−3; ð58Þ

where dbulk0 is computed with only the bulk CS term,
whereas dbulkþ∂

0 is computed with the full CS term. The
mesonic fit of the model sets MKK ¼ 949 MeV, hence we
can immediately see that the result closer to the phenom-
enological dph0 ¼ 0.15 fm−3 is the one in which we neglect
the presence of S∂CS. In order to obtain the nuclear saturation
density of experiments [24], the Kaluza-Klein scale would
have to be adjusted as

dbulk0 ¼ 0.15 fm−3 ⇒ MKK ¼ 665.0 MeV;

dbulkþ∂

0 ¼ 0.15 fm−3 ⇒ MKK ¼ 597.6 MeV; ð59Þ

for the bulk and full CS terms, respectively.

B. Speed of sound

We will now compute the speed of sound for the two
cases, i.e., with and without the boundary term in the CS
action taken into account, which is given by

c2s ¼
dB
μB

∂μB
∂dB

¼ d
μ

∂μ

∂d
; ð60Þ

and the only relation needed is μðdÞ given by Eqs. (26)
and (34), for the bulk CS and the bulkþ boundary CS term,
respectively. The result is shown in Fig. 1 for both cases.
Notice that the speed of sound does not depend on the
calibration of the KK scale.

FIG. 1. Sound speed squared for the two cases of the CS term
without the boundary contribution (bulk) displayed with a solid
black line and with it (full) displayed with a red solid line. The
results are independent of MKK.
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C. Equation of state

Next, we will turn to the equation of state, which is a
fundamental relation for physics at finite density, with
applications ranging from heavy ion physics to neutron
stars. The equation of state (EOS) is a relation between the
energy and the pressure of a physical system and by the
familiar thermodynamic relations, P ¼ −E þ μBdB, where
the chemical potential can again be computed from Eqs. (26)
and (34), for the bulk CS and the bulkþ boundary CS term,
respectively. For the thermodynamic relation, we have to
recall the conversion between the model parameters μ, d and
the physical quantities μB, dB, by Eqs. (27) and (35) for the
density for the bulk CS and the bulkþ boundary CS term,
respectively, and Eq. (29) for the chemical potential.
The results for the EOS for symmetric nuclear matter are

shown in Fig. 2. The panel (a) shows the dimensionless
pressure and energy relation (EOM) both normalized by the
KK scale to the fourth power. By using the calibration of
having physical values of the saturation density (59), the
EOM is shown in physical units with solid lines in panel (b)
of the figure. Using instead the mesonic fit of Ref. [8], viz.
MKK ∼ 949 MeV, the EOM is shown with dashed lines.

D. Symmetry energy

Next, we consider the nuclear symmetry energy, which
measures the energy cost in having more neutrons than
protons, or vice versa. For computing the symmetry energy,
we follow Ref. [19], but we show the equivalence between
using a chemical isospin potential according to the tradi-
tional holographic dictionary in Appendix A. Rotating all
gauge fields in isospin space A → aAa† with a time-
dependent SU(2) rotation, a ¼ aðtÞ, and angular velocity
χ ¼ −iTrða†ȧτÞ, we obtain the new time-dependent ansatz
for the gauge fields,

A0 ¼ Gaχ · τa† þ 1

2
â0; Ai ¼ −

1

2
ðHaτia† þ LχiÞ;

Az ¼ 0; ð61Þ

where the field L has been turned on in order to satisfy the
equations of motion [19]. Notice that χ · τ is the angular
velocity, whereas aχ · τa† is the isospin angular velocity.
We want to study the theory without external fields turned
on, while the effects of isospin chemical potential have
been already accounted for by the rotating ansatz as shown
in Ref. [19], so the UV boundary conditions for the new
fields, G and L are

Gð∞Þ ¼ 0; ð62Þ

Lð∞Þ ¼ 0: ð63Þ

Computing the energy contribution arising from the new
terms and the isospin rotation, we find that they correspond
to a kinetic term for the Hamiltonian,

Hkin ¼
1

2
VΛχ · χ ¼ IðI þ 1Þ

2VΛ
;

Λ ¼ κ

Z
dz ð2hH2ð2Gþ 1Þ2 þ k½ðL0Þ2 þ 4ðG0Þ2�Þ;

ð64Þ

where in the second equality, zeromode quantization has
been performed on the coordinates a ¼ a0 þ iaiτi on the
3-sphere, yielding πm ¼ ∂H

∂ȧm
¼ 4VΛȧm, π2m ¼ 4IðI þ 1Þ,

with I ∈ 1
2
Zþ being the isospin quantum number. Using

the relation between isospin and the difference between the
number of neutrons (N) and protons (Z),

(a) (b)

FIG. 2. (a) The EOS in dimensionless units and (b) in calibrated units, for densities d∈ ½1.1; 20�d0 in the two cases of not including the
boundary contribution in the CS term (black line) and with including it (red line). In (b) the solid lines correspond to the case thatMKK is
calibrated after Eq. (59) such that the saturation density is physical, whereas the dashed lines correspond to the meson calibrated value of
MKK ∼ 949 MeV [8].
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2I ¼ Z − N ¼ −βB; ð65Þ

with B being the total number of nucleons, the symmetry
energy can readily be extracted from the Hamiltonian (64) as

SðdBÞ ¼
dB
8Λ

; ð66Þ

where dB is the physical nucleon density, given by Eqs. (27)
and (35) for the bulk CS and the bulkþ boundary CS term,
respectively.
To consistently compute the IR boundary conditions we

again follow the method of vanishing IR boundary terms in
the variation of the action, the same as imposing thermo-
dynamic equilibrium as previously shown. The additional
terms that appear in the Yang-Mills and CS actions because
of the rotation in SU(2) (ignoring second-order time
derivatives) are given by

Sχ ¼ SχYM þ SbulkχCS þ S∂χCS; ð67Þ

SχYM ¼ −κχ 2
Z

d4x
Z

∞

0

dz

�
kðL0Þ2 − 4kðG0Þ2

− 8hH2

�
Gþ 1

2

�
2
�
; ð68Þ

SbulkχCS ¼
Nc

4π2
χ 2

Z
d4x

Z
∞

0

dz

�
H2LG0 þ2

�
Gþ1

2

�
LHH0

�
;

ð69Þ

S∂χCS ¼
3Nc

16π2
χ 2

Z
d4xH2ð0ÞLð0Þ

�
Gð0Þ þ 4

9

�
: ð70Þ

The equations of motion for all the fields do not depend on
boundary terms in the action, and they read

hH3 −
1

2
∂zðkH0Þ − Nc

32π2κ
H2â00 ¼ 0; ð71Þ

∂zðkâ00Þ þ
3Nc

16π2κ
H2H0 ¼ 0; ð72Þ

∂zðkG0Þ − 2hH2

�
Gþ 1

2

�
þ Nc

32π2κ
H2L0 ¼ 0; ð73Þ

∂zðkL0Þ þ Nc

8π2κ
H½HG0 þ ð1þ 2GÞH0� ¼ 0: ð74Þ

To determine the IR boundary conditions, we perform a
variation of the action and look at the IR boundary terms,
imposing them to vanish. It is now that we have to take into
account whether S∂χCS is present or not. As before, we
consider first the situation inwhichwe get rid of it, so that the

action at order χ 2 is given only bySχ ¼ SχYM þ SbulkχCS. The IR
boundary terms that have to vanish are then given by

�
G0ð0Þ þ Nc

32π2κ
H2ð0ÞLð0Þ

�
δGð0Þ ¼ 0; ð75Þ

L0ð0ÞδLð0Þ ¼ 0: ð76Þ

The second equation of this set is trivially solvedby imposing
Neumann boundary conditions for L, exactly as it happened
for â0. Sincewe expectL to have odd parity with respect to z,
it will be a discontinuous function if Lð0Þ ≠ 0. If in turn
Lð0Þ ≠ 0,G0ð0Þ ≠ 0will be a nonvanishing derivative at the
IR tip and hence its derivative will not be continuous due to
the positive parity in z.
We can integrate the equation of motion (74) once

obtaining,

kL0 þ Nc

8π2κ
H2

�
Gþ 1

2

�
¼ const; ð77Þ

where the right-hand side constant is a constant of motion,
which can be determined by using Eq. (76), yielding

kL0 þ Nc

8π2κ
H2

�
Gþ1

2

�
¼ Nc

8π2κ
H2ð0Þ

�
Gð0Þþ1

2

�
; ð78Þ

which when evaluated at z → ∞ yields a nonvanishing
axial U(1) current

κ½kL0�z¼∞ ¼ Nc

8π2
H2ð0Þ

�
Gð0Þ þ 1

2

�
: ð79Þ

Let us now include the presence of S∂χCS; in this case the
IR boundary terms that have to vanish are

�
G0ð0Þ þ Nc

128π2κ
H2ð0ÞLð0Þ

�
δGð0Þ ¼ 0; ð80Þ

�
L0ð0Þ þ 3Nc

32π2κ
H2ð0Þ

�
Gð0Þ þ 4

9

��
δLð0Þ ¼ 0: ð81Þ

As can be seen, the IR boundary condition for L is no
longer a Neumann condition. Evaluating the constant of
motion in the integrated equation of motion for L, (77), we
obtain now

kL0 þ Nc

8π2κ
H2

�
Gþ1

2

�
¼ Nc

32π2κ
H2ð0Þ

�
Gð0Þþ2

3

�
; ð82Þ

which when evaluated at z → ∞ yields a different but still
nonvanishing axial U(1) current
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κ½kL0�z¼∞ ¼ Nc

32π2
H2ð0Þ

�
Gð0Þ þ 2

3

�
: ð83Þ

We note that both in the case of discarding the boundary
term in Eq. (6) to arrive at the CS action (8) and in the case
of keeping it, the axial U(1) current is turned on. We have
turned on isospin by isorotating the baryons and it is in fact
equivalent to using a chemical potential, see Appendix A.
We expect on general grounds that isorotation will induce a
nonvanishing U(1) current. If, however, we would like to
switch it off we can perform another integration by parts at
the level of χ 2 in the action, writing the CS bulk and
boundary terms at this order as

Sbulk;no-currentχCS ¼ −
Nc

4π2
χ 2

Z
d4x

Z
∞

0

dzH2L0
�
Gþ 1

2

�
;

ð84Þ

S∂;no-currentχCS ¼ Nc

16π2
χ 2

Z
d4xH2ð0ÞLð0Þ

�
Gð0Þþ2

3

�
: ð85Þ

The integration by parts has been performed such that the
field LðzÞ is removed in favor of its derivative. In this case,
the IR boundary terms that have to vanish are then given by

G0ð0ÞδGð0Þ ¼ 0; ð86Þ
�
L0ð0Þ þ Nc

8π2κ
H2ð0Þ

�
Gð0Þ þ 1

2

��
δLð0Þ ¼ 0: ð87Þ

The first equation of this set is trivially solved by imposing
a Neumann boundary condition for G, exactly as it
happened for â0. We note that in this case the IR boundary
equation for L0ð0Þ reduces to the same form of the
integrated equation of motion (77), with the constant of
integration to be determined by the boundary conditions.
The condition (87) forces the constant to be zero; as done
with â0 and the associated charge, we can now use Eq. (77)
to compute the current associated with Âi, [an axial current
since ÂiðzÞ is an odd function of z]. To do so, we evaluate
Eq. (77) at the UV boundary to find

κ½kL0�z¼∞ ¼ 0; ð88Þ

and since the left-hand side of the equation above is
proportional to the current, we conclude that we are
working at zero axial U(1) current. Note that by fixing
the derivative L0ð0Þ we no longer have the freedom of
choosing the function LðzÞ to be continuous at z ¼ 0; the
value Lð0Þ is now determined by the equations of motion
and the two boundary conditions, so LðzÞ, just like HðzÞ is
in general discontinuous and odd.
We note that in all cases, the boundary conditions

Lð0Þ ¼ 0 and G0ð0Þ ¼ 0 are consistent with the variational

principle, as the Dirichlet boundary condition Lð0Þ ¼ 0
eliminates the possibility of the variation. G0ð0Þ ¼ 0 is also
consistent in this case, since it is always proportional to
Lð0Þ, which when vanishing implies a Neumann condition
for G in the IR. The boundary conditions found here,
however, are expected to lower the free energy slightly with
respect to the simplistic, but consistent boundary condi-
tions Lð0Þ ¼ G0ð0Þ ¼ 0.
In Appendix A, we have shown the result of Ref. [19]

adapted to the three cases of different CS terms utilized in
this section; the bulk CS, the full (bulkþ boundary) CS and
the last ad hoc construction that eliminates the U(1) axial
current. The summary of the analysis in the appendix, is
that only the bulk CS term, SbulkCS , remains invariant under
the specific gauge transformation that connects the rotation
of the isospin moduli to the introduction of a finite isospin
chemical potential as the UV boundary value of the field
Aa¼3
0 , as prescribed per usual in the holographic dictionary.

We are then led to conclude that, also in this case, it is
preferable to neglect S∂CS, in order to preserve the equiv-
alence between angular velocity in isospin space and the
isospin chemical potential.
The results for the symmetry energy in the two cases of

including the boundary term in the CS action and not
including it, are shown in Fig. 3 with red and black colors,
respectively. Additionally, the ad-hoc choice of setting the
U(1) axial current to zero, according to the boundary
conditions (86) and (87) is shown with orange curves. In
Fig. 3(b) two calibrations are shown; viz. that correspond-
ing to Eq. (59) such that the saturation density is physical
and that for which the standard rho meson calibrated value
of MKK ∼ 949 MeV [8]. Finally, the phenomenologically
expected region extracted from many experiments via a fit
[25], is shown with a light-blue shaded area.

E. Neutron stars

Our final observable to consider here, are the masses and
radii of neutron stars, ignoring fine details as the crust—
which however are crucially important to obtain correct
radii, that are approximately 1 or more kms larger than
predicted by dense neutron matter at masses around 1.4
solar masses—and neglecting also isospin asymmetry,
whose contribution in the gauge fields (the same we
presented in the previous section) is suppressed as N−1

c .
The mass and radius of a single neutron star is obtain by

solving the Tolman-Oppenheimer-Volkoff equations, which
are given by

dP
dr

¼ −GðE þ PÞ mþ 4πr3P
rðr − 2GmÞ ; ð89Þ

dm
dr

¼ 4πr2E; ð90Þ

where the nuclear physics input is in the form of the equation
of state, ormore precisely, the inverse is needed;EðPÞ. Due to
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the astronomical units in this system of equations, it will
prove useful to rescale the variables to dimensionless
quantities, for which the equations read

dP̃
dr̃

¼ ðẼ þ P̃Þ m̃þ Ar̃3P̃
r̃ð2m̃ − r̃=BÞ ; ð91Þ

dm̃
dr̃

¼ Ar̃2Ẽ; ð92Þ

with the dimensionless conversion quantities,

A ¼ 4πr20E0

m0

≃ 1.188911

�
MKK

949 MeV

�
4

; ð93Þ

B ¼ Gm0

r0
≃ 1.477063; ð94Þ

where the physical and the dimensionless quantities are
related as P ¼ E0P̃, r ¼ r0r̃, E ¼ E0Ẽ, and m ¼ m0m̃, and
for convenience, we have chosen E0 ¼ M4

KK, r0 ¼ 1 km,
and m0 ¼ M⊙ (1 solar mass). Finally, we denote by R the
radius rðPÞ with P ¼ 0 and correspondingly M the mass
mðPÞ with P ¼ 0.
In Fig. 4, we show the results of the masses and radii for

the two cases of including the boundary term in the CS
action and not including it. In the figure, two calibrations
are shown; viz. that corresponding to Eq. (59) such that the
saturation density is physical and the standard meson
calibrated value of MKK ∼ 949 MeV [8]. Since there is
not taken any crust (softer matter at the surface of the star)
into account, the radius must be at least about 1 km smaller
than the upper bound of the constraint from J0740þ 6620
(violet bar). The maximum mass should be around
∼2.35M⊙ but probably smaller than ∼2.5M⊙. The

sensitivity of the mass/radius curves to the ’t Hooft
coupling is quite large, so even an order one change in
the coupling from λ ¼ 16.63, could make viable neutron
star phenomenology. In Ref. [26], it was found that indeed
it is possible to fit the model to properties of nuclear matter
at saturation density, and obtain realistic neutron stars; there
the Dirichlet boundary condition Lð0Þ ¼ 0 was used, so the
problem of choosing the correct CS term does not arise, as
any boundary term that we can choose is proportional to
Lð0Þ. Imposing the Neumann boundary conditionL0ð0Þ ¼ 0

and neglecting S∂CS is expected to provide corrections to the

(a) (b)

FIG. 3. Symmetry energy in (a) dimensionless and (b) physical units, in the cases of not including the boundary contribution in the CS
term (black line) and with including it (red line), as well as the choice of setting the external U(1) axial current to zero (orange line). In
(b) the solid lines correspond to the case that MKK is calibrated after Eq. (59) such that the saturation density is physical, whereas the
dashed lines correspond to the meson calibrated value of MKK ∼ 949 MeV [8]. In (b) fitted data from the survey [25] is shown with a
light-blue shaded area. In this figure, λ ¼ 16.63.

FIG. 4. Neutron star mass and radius, in the two cases of not
including the boundary contribution in the CS term (black line)
and with including it (red line). For the solid lines, MKK is
calibrated after Eq. (59) such that the saturation density is
physical, whereas the dashed lines correspond to the meson
calibrated value of MKK ∼ 949 MeV [8]. The constraints on the
radius at 1.4M⊙ come from J0740þ 6620, whereas the maxi-
mum observed stable mass at ∼2.35M⊙ is measured from PSR
J0952-0607.
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results obtained; here we restricted ourselves to the analysis
of the general problem created by the presence of boundary
terms, so we leave the detailed computation of more realistic
neutron stars to a future work.

VII. CONCLUSION AND DISCUSSION

In this paper, we have considered the subtle issue of a
boundary term in the CS action, that is usually discarded in
the literature although the reason for discarding/ignoring it
has not been clear. We propose a reason for discarding it, so
that the baryon density defined by the topological integral
matches with the density that is read off of the tails of the
fields at the conformal boundary and enters the thermo-
dynamic relations of energy and pressure. This method can
straightforwardly be extended to other observable quan-
tities, at least in principle. We have also shown that when
the above matching holds, the CS action is invariant under a
gauge transformation that relates the method of describing
isospin via rotation of the moduli being the orientation in
SUð2Þ ⊂ SUðNfÞ, and that of introducing a chemical
potential as dictated by the standard holographic dictionary.
As a byproduct of our analysis, we find a very precise

way of computing the conditions for the thermodynamic
equilibrium, without even evaluating the action on field
configurations. We find that the thermodynamics relations
can be made sense of both with and without including the
mentioned boundary term. Nevertheless, for the above-
mentioned formal reasons, we argue that a single form of
the CS action is preferred over the others possible; namely,
the one dubbed CS bulk.
We have shortly mentioned that the CS term is known in

the WSS model to be subtle in the literature already.
Elaborating a little on this, Hata and Murata made a
proposal for changing the CS term in order to reproduce
a constraint on wave functions coming from a Wess-
Zumino-Witten term for SUðNfÞ with Nf > 2 [27], but
their proposal was pointed out by Lau and Sugimoto to be
well defined only on a compact 5-manifold and furthermore
not being able to reproduce the chiral anomaly of QCD [11]
(see Appendix B for an explanation on why the anomaly is
safe in our proposal). The proposal of Lau and Sugimoto
fixed this issue with a more complicated expression for an
alternative CS term. A natural question would be whether
the proposal of Lau and Sugimoto would cancel the
boundary term, that we are proposing to cancel in the
context of the homogeneous nuclear matter in the WSS
model. The answer is negative. The proposal of Lau and
Sugimoto is very simply put to split the holographic
direction up into two parts and add a total derivative term
that would correspond to what would come from a gauge
transformation of transforming the left-hand gauge fields
into the right-hand gauge fields, as well as an integral over a
5-cycle that gives rise to the WZW term. Since we consider
only SUð2Þ, the integral of the 5-cycle vanishes and it is
straightforward to show that the difference between our CS

terms at z > 0 and z < 0 is not a total derivative. This
means that there is no unitary gauge transformation that
connects the field configurations, which is not unexpected
since the fields are by construction made discontinuous.
Finally, let us observe that the ambiguity arises from the

lack of a rigorous derivation of the homogeneous ansatz
itself; one can imagine that in the rigorous setup, where an
infinite multi-instanton configuration is built, no IR boun-
dary term would be generated due to the smoothness of the
fields, the extra dimensions of R3 would provide the
winding number and the limit of very high density would
not break this topological feature. When formulating the
homogeneous ansatz, the opposite is done: The fields are
taken to be in the high density regime, where some kind of
“spatial average” has been performed, and the instanton
number is then restored by hand by means of a disconti-
nuity. Despite intuitive arguments in favor of the presence
of the discontinuity [21], no rigorous derivation with true
nonlinear solutions in the large density limit has been
performed. We leave such a laborious task for future work.

ACKNOWLEDGMENTS

We thank Matti Järvinen for discussions. The work of
L. B. is supported by the National Natural Science
Foundation of China (Grant No. 12150410316). S. B. G.
thanks the Outstanding Talent Program of Henan University
and the Ministry of Education of Henan Province for partial
support. The work of S. B. G. is supported by the National
Natural Science Foundation of China (Grants No. 11675223
and No. 12071111) and by the Ministry of Science and
Technology of China (Grant No. G2022026021L).

APPENDIX A: EQUIVALENCE BETWEEN SUð2Þ
ISOSPIN ROTATION AND EXTERNAL

CHEMICAL POTENTIAL

We start with the ansatz (61) and perform a time-
dependent gauge transformation in SUð2Þ,

A → bAb† − ibdb†; b ¼ bðtÞ∈SUð2Þ; ðA1Þ

and since we want to eliminate the rotation matrices a from
the ansatz, we choose b ¼ a−1. Using that −ia†ȧ ¼ 1

2
χ · τ,

we obtain the gauge fields

A0 ¼
�
Gþ 1

2

�
χ · τ þ 1

2
â0; Ai ¼ −

1

2
ðHτi þ LχiÞ;

Az ¼ 0: ðA2Þ

The function G still has the UV boundary condition
Gð∞Þ ¼ 0, but a simple change of variables is convenient

G̃ ¼ Gþ 1

2
; G̃ð∞Þ ¼ 1

2
; ðA3Þ
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which leads to the theory with an isospin chemical potential
turned on,

A0ð∞Þ ¼ 1

2
χ · τ ¼ 1

2
μIτ

3; ðA4Þ

where in the last equality, we have identified the isospin
angular velocity as χ ¼ ð0; 0; μIÞ. The τ3 direction of a spin
(or isospin) system is conventional.
Since the difference between using the isospin angular

rotation and the isospin chemical potential dictated by the
holographic dictionary is merely a gauge transformation;
this changes nothing for the Yang-Mills part of the action
nor for the equations of motion as they remain unchanged.
Now the CS term is not gauge invariant and therefore the

different versions of the CS terms will change differently
when performing this gauge transformation. Ideally we
want the CS term not to change under this gauge trans-
formation so as to keep the free energy and boundary
conditions of the system invariant.
We start with the case of the bulk CS term (69) and find

by explicit computations that it does not change under the
above-described gauge transformation. This can readily be
inferred from Eq. (15), where we can see that the trace of
Fα2α3Fα4α5 is invariant since the non-Abelian field strength
transforms covariantly as F → bFb† ¼ a†Fa, the Abelian
field strength F̂ does not transform, and the only dependence
onAμ is on theAbelian part,which is untouchedby anSUð2Þ
gauge transformation. Hence, the action is unchanged, the
equations of motion are unchanged, and the IR boundary
conditions remain exactly those of Eqs. (75) and (76).
Moving to the case of including the boundary term in the

CS action, i.e., using the full CS term, it is clear from
Eq. (15) that A dependence is unavoidable. An explicit
computation reveals that the full CS term changes by

Nc

96π2

Z
d4x

Z
∞

0

dz ∂zðLH2Þχ 2; ðA5Þ

which in turn changes the IR boundary condition for L
from Eq. (81) to

�
L0ð0Þ þ 3Nc

32π2κ
H2ð0Þ

�
Gð0Þ þ 1

2

��
δLð0Þ ¼ 0: ðA6Þ

Since the bulk CS term is invariant under the gauge
transformation between the isospin rotation and the isospin
chemical potential interpretation of the theory, it is in that
sense preferred compared to the full CS term.
Finally, let us note that the CS term (84) is also not

invariant under the gauge transformation that is necessary
for switching from the isospin rotation to the isospin
chemical potential realization of the theory. This can be
seen from writing down the CS term, in the gauge Az ¼ 0,
in the form

Nc

32π2
ϵMNKL½TrðA0FMNFKLÞ − Â0TrðFMNFKLÞ�: ðA7Þ

Clearly, the first term changes under the gauge trans-
formation as it contains the non-Abelian gauge potential.
We find that it gives rise to the CS action (84) for the gauge
transformed fields, but changes to

−
Nc

4π2
χ 2

Z
d4x

Z
∞

0

dzH2L0G; ðA8Þ

when transforming back to the original gauge and hence
differs from Eq. (84).

APPENDIX B: QCD ANOMALY
AND CHERN-SIMONS FORMS

Here we want to show that each of the CS terms we
presented in this work reproduces the QCD global
anomaly: The discussion follows Appendix C of
Ref. [28] closely, but specialized to our notation. Since
it can be thought that correctly reproducing the anomaly
could be used as a criterion for determining the “physical”
CS term, it is useful to show that this is not the case.
First of all, we start by recalling the full CS term,

SCS ¼
Nc

24π2

Z
5D

ω5ðAÞ: ðB1Þ

with ω5 being the standard CS five-form given by

ω5 ¼ Tr

�
3Â ∧ F2 þ Â ∧ F̂2 þ d

�
Â ∧

�
2F ∧ A −

i
2
A3

���
; ωSUð2Þ

5 ¼ 0: ðB2Þ

A variation of (B1) with gauge function αðzÞ whose boundary values reduce to the parameters of a chiral transformation
ðαL; αRÞ is given by the formula,

δαSCS ¼
Nc

24π2

Z
d4xf½ω4ðαðzÞ; AÞ�þ∞

0þ − ½ω4ðαðzÞ; AÞ�−∞0− g; ðB3Þ
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where we introduced the four-form

ω4ðαðzÞ; AðzÞÞ ¼ Tr

�
αd

�
AdA −

i
2
A3

��
: ðB4Þ

We can rearrange the terms into UV and IR contributions,
keeping in mind that the UV values of the gauge fields
are holographically mapped to the sources for the four-
dimensional theory as Aðþ∞Þ ¼ l, Að−∞Þ ¼ r. The result-
ing expression for the variation of the CS term is

δαSCS ¼
Nc

24π2

Z
d4xf½ω4ðαL; lÞ − ω4ðαR; rÞ�

− ½ω4ðαðzÞ; AðzÞÞ�z¼0þ
z¼0−g: ðB5Þ

The vanishing of the z ¼ 0 term together with the IR
variation of the Yang-Mills action will determine the IR
boundary conditions as we have explained, while the UV
boundary term correctly reproduces the QCD anomaly in its
symmetric form.
We can now divide the standard five-form ω5 in two

terms as before, a bulk and a boundary termω5 ¼ ω̄5 þ dX.
This separation is completely arbitrary, but to illustrate the
procedure we will use the choice we employed throughout
the paper,

ω̄5 ≡ Tr½3Â ∧ F2 þ Â ∧ F̂2�; ðB6Þ

dX ≡ dTr

��
Â ∧

�
2F ∧ A −

i
2
A3

���
: ðB7Þ

If we discard the boundary term dX, we are choosing a
nonstandard form of the CS term; if the fields were

continuous this would not affect any physics, but for our
discontinuous fields, we argued that this choice has
observable consequences. However, as far as the anomaly
is concerned, we can see that everything proceeds in the
same fashion; we can perform a variation of SbulkCS to obtain,

δαSbulkCS ¼ Nc

24π2

Z
d4xf½ω̄4ðαL; lÞ − ω̄4ðαR; rÞ�

− ½ω̄4ðα; AÞ�z¼0þ
z¼0−g; ðB8Þ

where we have introduced ω̄4 that reads

ω̄4ðα; AÞ ¼ Tr½3α̂ ∧ F2 þ α̂ ∧ F̂2�: ðB9Þ

Once again, the IR terms will determine the boundary
conditions, which will be different than the ones deter-
mined before (hence all the different physics), while the
UV term reproduces again the anomaly in another form; to
see that the two forms are equivalent it is sufficient to note
that they only differ by the addition of a local counterterm,
the variation δαX of the four-form X. The difference
between the two forms of the anomaly is then given by

Nc

24π2

Z
d4xf½ω4ðαL; lÞ − ω4ðαR; rÞ�

− ½ω̄4ðαL; lÞ − ω̄4ðαR; rÞ�g

¼ Nc

24π2

Z
d4x½δαLXðlÞ − δαRXðrÞ�: ðB10Þ

Since X only depends on the sources l, r, which are taken to
have vanishing physical value, the form in which we cast
the anomaly has no consequences.
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