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Modifications to the Mukhanov-Sasaki equation in loop quantum cosmology (LQC) have been
phenomenologically explored using polymerization of the connection and related variables in the classical
expressions in order to capture the quantum gravity effects in cosmological perturbations which replace the
classical big bang by a big bounce. Examples of this strategy include the dressed metric and the hybrid
approaches whose interrelationship at an effective level was demonstrated by the authors recently. In this
manuscript, we propose a new family of the effective mass functions in the modified Mukhanov-Sasaki
equation of LQC by investigating the polymerization of a particular form of the classical mass function in
terms of variable zsð¼ aϕ̇=HÞ which relates the Mukhanov-Sasaki variable with the comoving curvature
perturbation. Using a generalized Ansatzmotivated by quantum gravity effects in the background dynamics
we find alternative effective mass functions which are distinct from those used in the dressed metric and the
hybrid approaches with differences originating from the noncommutativity of the evaluation of the Poisson
brackets and the polymerization procedures. The new effective mass functions acquire four correction terms
in the effective potential whose exact forms are closely tied up with the Ansatz used for polymerizing the
inverseHubble rate. In contrast to earlier works, one of these correction terms can in principle produce sizable
effects even when the bounce is kinetic dominated. Our investigation opens a new window to explore the
phenomenological implications of a large family of effective mass functions in LQC which can potentially
lead to significant departures from the dressed metric and the hybrid approaches in the bounce regime.
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I. INTRODUCTION

Loop quantum cosmology (LQC) [1–4] which is a non-
perturbative quantization of cosmological spacetimes using
techniques of loop quantum gravity (LQG) generically
resolves the strong singularities encountered in various
classical cosmological spacetimes [5–14] and provides a
consistent framework to extend one of the most popular
scenarios in classical cosmology, namely the inflationary
paradigm, to the Planck regime [15,16]. This extension is
concerned with at least two aspects: a nonsingular evolution
of the background spacetime extending the past-incomplete
inflationary phase beyond the big-bang singularity which in
LQC is replaced by a big bounce and the evolution of the
cosmological perturbations across the quantum background
spacetimes in the Planck regime. In LQC literature, the
physics of quantum background spacetime minimally
coupled with an inflaton field with different inflationary
potentials has been thoroughly investigated (see for e.g.
[16–30]) while the investigation of the perturbation theory

in LQC has culminated in four approaches, namely the
dressed metric approach [15,31,32], the hybrid approach
[33–38], the deformed algebra approach [39–41] and the
separate universe approach [42]. The third approach results in
a divergence in the primordial scalar power spectrum at small
scales [43–45] which can be severely constrained and the
fourth approach is tailored to the long wavelength modes
only, more interest has been attached to the first two
approaches in the recent years to search possible quantum
gravity signals in the CMB data.
The dressed metric approach is based on Langlois’ work

on Hamiltonian formulation of cosmological perturbations
which heavily relies on using spatially flat gauge [46]. On
the other hand, the hybrid approach uses gauge-invariant
treatment of Halliwell and Hawking [47]. Although the
dressed metric and the hybrid approaches have been
developed independently by two separate groups and
appear to be distinct, our recent work found that a very
close relationship exists between them [48]. From the
perspective of the construction of the perturbation theory,
both approaches are based on the classical formulation of
the linear perturbation theory in cosmology. Besides, the
quantization of the classical linear perturbation theory in
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both the approaches is implemented in a hybrid way.
Specifically, the background dynamics is loop quantized
in the improved dynamics (the μ̄ scheme) of LQC [8] while
the perturbative degrees of freedom are Fock quantized.
Moreover, when it comes to the practical computations of
the primordial power spectra, both approaches make use of
the effective dynamics of LQC but ignore the backreaction
of the perturbations on the background spacetimes. These
approaches lead to very similar modified Mukhanov-Sasaki
equations in two approaches whose differences become
manifest in the different forms of the effective mass
functions.
As discussed extensively in our recent paper [48], at the

level of the effective dynamics, the different effective mass
functions in the dressed and the hybrid approaches origi-
nate from different sets of canonical variables used to Fock
quantize the perturbations. In particular, the dressed metric
approach uses the Mukhanov-Sasaki variable Qk⃗ while t he
hybrid approach utilizes its rescaled version νk⃗ ¼ aQk⃗. At
the classical level, the use of the different variables results
in the equivalent expressions of the classical mass function
which only differ by a term proportional to the zeroth order
Hamiltonian constraint that is vanishing on the classical
dynamical trajectories. However, when the classical mass
functions are polymerized in LQC, these two equivalent
expressions lead to different effective mass functions due
to the noncommutativity between the evaluation of the
Poisson brackets and the polymerization procedure. As a
result, although the effective mass functions in two
approaches have the same classical limit in the low
curvature regime which recovers the Mukhanov-Sasaki
equation in classical cosmology, they actually exhibit
distinct behavior in the bounce regime. In particular, the
effective mass function in the hybrid approach turns out to
be positive near the bounce while the one in the dressed
metric approach is not [49,50]. The different behavior of
the effective mass functions in the bounce regime can in
principle determine to which extent the quantum gravity
effects can potentially affect the observations. This also
provides a potential method to test the physical significance
of different polymerization Ansätze as well as the approach
itself, especially when one explores non-Gaussianities.
As is well known, due to the diffeomorphism invariance

of GR, the classical Mukhanov-Sasaki equation can be
derived in different gauges, such as the spatially flat gauge,
the longitudinal gauge etc., and given the subtleties in the
canonical perturbations on the choice of gauge-fixing and
reference fields [51–53] one might think that the difference
in effective mass functions in the dressed metric and the
hybrid approach might have some root in the way gauge
fixing is implemented along with polymerization procedure
used for studying quantum gravity effects in cosmological
perturbations. Indeed, the choice of different gauge fixing
conditions can result in different equivalent forms of the
mass functions in classical cosmology. In the hybrid

approach, it has been shown that different gauges can lead
to the same modified Mukhanov-Sasaki equation in effec-
tive LQC [33]. Therefore, the difference between the
effective mass functions in the hybrid and the dressed
metric approaches does not originate from the use of
different gauges. The fundamental reason for such a
difference is owing to the different treatment of the effective
potential and acceleration terms in the effective mass
function. Unlike in the hybrid approach where both these
terms are expressed in terms of phase space variables and
then polymerized, in the dressed metric approach phase
space variables are used only in the effective potential term
whereas modified Raychaudhuri equation is used for the
acceleration term. These different ways of polymerization
result in different effective mass functions. This difference
essentially is owing to the noncommutativity between the
evaluation of the Poisson brackets and the polymerization.
Once the origin of the difference between two approaches is
well understood, it is then possible to look for other
alternative effective mass functions which result from the
polymerization of the classical mass function.
In addition to the forms of the classicalmass function used

in the dressed metric and the hybrid approaches, there exists
another form of the classical mass function which is
obtained from the action of a spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) universe minimally
coupled with a scalar field in the comoving gauge [54].
This third form of the classical mass function can be
expressed solely in terms of zsð¼ aϕ̇=HÞ, with scale factor
a, the homogeneous field ϕ, and the Hubble rate H. This
definition of zs relates the Mukhanov-Sasaki variable νk⃗ to
the comoving curvature perturbation Rk⃗ via νk⃗ ¼ zsRk⃗.
Therefore, it is a form of the classical mass function
expressed completely without using phase space. In LQC,
in the dressed metric and the hybrid approaches the Ansatz
used for the polymerization of 1=π2a and 1=πa terms are
equally important. Here πa denotes the momentum of the
scale factor. In contrast to the polymerization of the classical
mass functions in the dressed metric and the hybrid
approaches, the polymerization based on zs variable relies
solely on the Ansatz for polymerizing the inverse Hubble
rate which is proportional to 1=πa in the classical limit.
Therefore, the resulting effective mass function from this
third form of the classical mass function can be quite
different from those already found in the dressed metric
and the hybrid approaches. Our investigation confirms this
observation. We find that the polymerization of this third
mass function can result in alternative effective mass
functions that have so far been never encountered in the
existing approaches.
Let us contrast the properties of effective mass function

we find in this manuscript using the variable zs with earlier
approaches in LQC. The effective mass functions in either
the dressed metric and the hybrid approaches consist of
linear and quadratic terms of the energy density plus an
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effective potential which depends on the inflationary
potential and its derivatives [see Eqs. (3.2) and (3.3) in
Sec. III A for their exact expressions]. The new effective
mass function acquires four correction terms in the effective
potential whose expressions solely depend on the Ansatz
for polymerizing the inverse Hubble rate. Besides, one of
the four correction terms can also contribute dominantly
in the bounce regime even when the bounce is dictated
by the kinetic energy of the scalar field. Since there is an
ambiguity in polymerizing the inverse Hubble rate, differ-
ent Ansätze can in general lead to distinctive effective mass
functions. Therefore, we make use of a general Ansatz
parameterized by a general function fðρÞ which only
needs to satisfy a few general conditions. These conditions
require that the resulting effective mass functions should be
finite during the entire evolution of the universe, and that
the classical mass functions must be recovered in the low
curvature limit. The above two conditions highly restrict
the form of the function fðρÞ and its asymptotic behavior.
In this way, the new effective mass functions are expressed
in terms of fðρÞ which can be fixed in any specific
polymerization Ansatz. As concrete examples, we have
studied in turn the consequences of the polymerization
Ansatz of the inverse Hubble rate effectively employed in
the dressed metric approach and the hybrid approach and
find that the former can lead to a well-behaved new
effective mass function while the latter can only yield an
effective mass function which blows up right at the bounce.
However, neither of these effective mass functions result in
correction terms which still contribute in the bouncing
regime. Our approach allows one to explore polymer-
izations which allow significant contributions from the
bounce regime. For this, we find a tentative phenomeno-
logical polymerization of the inverse Hubble rate which
yield an alternative effective mass function that contains
correction terms which still contribute in the bouncing
regime. Our investigation shows by concrete examples that
even though the dressed metric and the hybrid approaches
are two of the most popular perturbation theories in LQC,
there still exist viable phenomenological choices which can
potentially lead to distinct signatures in the bounce regime.
This manuscript is organized as follows. In Sec. II, we

briefly review the three equivalent forms of the classical
mass function in the Mukhanov-Sasaki equation of linear
perturbation theory in cosmology, one of which forms the
starting point of dressed metric approach usingQk⃗ variable,
another for the hybrid approach using νk⃗ variable and the
third one for the new effective mass studied here using zs
variable. Note that in spite of their different expressions,
they are all actually equivalent on the classical dynamical
trajectories. In Sec. III, we analyze the polymerization of
the classical mass functions. In particular, we reemphasize
that the first two forms can give rise to the effective mass
functions used in the dressed metric and the hybrid
approach while the third form after polymerization yields

new alternative mass function. We then adopt a general
Ansatz for polymerizing the inverse Hubble rate and obtain
the correction terms in the new mass function as compared
with those used in the dressed metric approach. Then
we specialize to three possible options to polymerize the
inverse Hubble rate when using the zs variable. Here the
first two Ansätze are adopted respectively in the dressed
metric and the hybrid approach and discuss the viability of
the resulting effective mass functions. Finally, we summa-
rize our main findings in Sec. IV. In the following, we use
the Planck units ℏ ¼ c ¼ 1 and keep Newton’s constant G
implicitly in κ with κ ¼ 8πG.

II. THE EQUIVALENT FORMS OF THE
CLASSICAL MASS FUNCTION IN THE

MUKHANOV-SASAKI EQUATION

In this section, we briefly review the classical
Mukhanov-Sasaki (MS) equation in the linear perturbation
theory of cosmology with an emphasis on presenting three
equivalent forms of the mass function in the Mukhanov-
Sasaki equation. Although these mass functions exhibit no
difference on the trajectories of the classical dynamics, after
polymerization they can show potential differences in the
bounce regime of LQC. In the following, we present three
equivalent forms of the classical mass functions that are
frequently encountered in the literature.
Here we only consider the scalar sector of the classical

phase space of a spatially flat FLRW universe filled
with a massive scalar field which consists of four homo-
geneous degrees of freedom that can be parameterized by
ða; πa;ϕ; πϕÞ, with a and πa standing for the scale factor and
its conjugate momentum and ϕ, πϕ for the homogeneous
part of the scalar field and its conjugate momentum.
Following the approach used in our previous paper [48],
assuming a noncompact R3 topology of the spatial sections,
we choose a fiducial cell with thevolumeVo to formulate the
perturbation theory in the Hamiltonian formalism in which
the zeroth-order homogeneous degrees of freedom satisfy
the background Hamiltonian constraint [48]

Hð0Þ ¼ NVo

�
−
κπ2a
12a

þ π2ϕ
2a3

þ a3U

�
; ð2:1Þ

where N denotes the lapse function and U represents the
potential of the scalar field. With the standard Poisson
bracket fa; πag ¼ fϕ; πϕg ¼ 1=Vo, it is straightforward to
derive the corresponding Hamilton’s equations for the
background dynamics which give rise to the classical
Friedmann and Raychaudhuri equations in cosmology.
Regarding the scalar perturbations over the homo-

geneous background, one of the most straightforward
approaches to obtaining the Mukhanov-Sasaki equation
is to employ the spatially flat gauge in which the pertur-
bations of the metric components are gauged to vanish
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while the linear perturbation of the scalar field turns out to
be the Mukhanov-Sasaki variable. After performing a time-
dependent canonical transformation to remove the cross
term in the second-order Hamiltonian for the perturbed
scalar field and its conjugate momentum, one can obtain the
second-order Hamiltonian for the gauge invariant
Mukhanov-Sasaki variable Qk⃗, which takes the form [48]

Hð2Þ ¼ NVo

X
k⃗þ

�jPQk⃗
j2

a3
þ aðk2 þΩ2ÞjQk⃗j2

�
: ð2:2Þ

Here in order to avoid double counting of the physical
degrees of freedom, we sum over only the k⃗þ modes with
its first nonvanishing component of the wave vector being
strictly positive and

Ω2 ¼ 3κπ2ϕ
a4

− 18
π4ϕ
π2aa6

− 12a
πϕU;ϕ

πa
þ a2U;ϕϕ; ð2:3Þ

where U;ϕ and U;ϕϕ stand for the first and second order
derivatives of the potential with respect to the scalar field.
From the Hamiltonian, one can then derive the Mukhanov-
Sasaki equation in terms of Qk⃗, yielding

Q̈k⃗ þ 3HQ̇k⃗ þ
k2 þ Ω2

a2
Qk⃗ ¼ 0: ð2:4Þ

In order to write it as an harmonic oscillator with a time-
dependent mass, we need to remove the first order
derivative term in the above equation. This can be achieved
by using the rescaled variable νk⃗ ¼ aQk⃗ whose equation of
motion can be shown as

ν00
k⃗
þ
�
k2 þΩ2 −

a00

a

�
νk⃗ ¼ 0; ð2:5Þ

where a prime denotes differentiation with respect to the
conformal time dη ¼ dt=a. This defines a time-dependent
mass function

m2
SF ¼ Ω2 −

a00

a
; ð2:6Þ

where the index “SF” implies the mass function is obtained
within the spatially flat gauge. Since Eqs. (2.4) and (2.5)
contain the same information of the linear perturbations, we
will also refer to the latter as the Mukhanov-Sasaki
equation in the rest part of the paper.
An equivalent form of the Mukhanov-Sasaki equation

can be obtained by working in νk⃗ from the very beginning
when a time-dependent canonical transformation is per-
formed. Instead of obtaining the Hamiltonian of Qk⃗, one
can make a new transformation to arrive at the Hamiltonian
of νk⃗ and then work out its corresponding equation of

motion. These procedures can lead directly to the form
(more details can be found in [48])

ν00
k⃗
þ ðk2 þ m̃2

SFÞνk⃗ ¼ 0: ð2:7Þ

with the mass function given explicitly by

m̃2
SF ¼ −

27π4ϕ
2π2aa6

þ 5κπ2ϕ
2a4

þ 9π2ϕU

π2a
− 12aU;ϕ

πϕ
πa

−
κ2π2a
72a2

þ a2U;ϕϕ −
κ

2
a2U; ð2:8Þ

which is a function of the canonical variables in the phase
space. It turns out that twomass functionsm2

SF and m̃
2
SF only

differ by a term proportional to the backgroundHamiltonian
constraint and thus they are equivalent on the physical
solutions of the classical background dynamics [48].
In addition to the above two forms of the mass function,

its third equivalent form in the classical theory can be
obtained from the Einstein-Hilbert action in GR by using
the comoving gauge as discussed in detail in [54]. In the
comoving gauge, the perturbation of the scalar field is set to
vanish and the spatial metric up to the linear order in the
scalar perturbation can be written as

gij ¼ a2ð1 − 2RÞδij; ð2:9Þ

where R stands for the comoving curvature perturbation
whose magnitude remains constant for the modes outside
the comoving Hubble horizon during inflation. Using the
relation between the comoving curvature perturbation and
the Mukhanov-Sasaki variable νk⃗, namely νk⃗ ¼ zsRk⃗ with
zs ¼ aϕ̇=H, one can truncate the action to the second order
in νk⃗ and then find the Mukhanov-Sasaki equation in term
of νk⃗, which takes the form [54]

ν00
k⃗
þ
�
k2 −

z00s
zs

�
νk⃗ ¼ 0: ð2:10Þ

Thus, we end up with the third form of the mass function,
namely,

m2
CG ¼ −

z00s
zs
; ð2:11Þ

here the index “CG” implies that the above mass function is
derived in the comoving gauge. It is straightforward to
check that the third form of the classical mass function is
also equivalent to the first two forms on the classical
trajectories. Although the above three forms of the mass
functions are equivalent in the classical dynamics, they can
give rise to different effective mass functions that exhibit
distinct properties in the Planck regime when they
are polymerized in the effective description of LQC.
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In particular, the first two forms yield respectively the
effective mass functions in the dressed metric and the
hybrid approaches [48,49] while the third form can lead to
new forms of the effective mass functions as will be
discussed in detail in the next section.

III. THE ALTERNATIVE MASS FUNCTIONS
IN LOOP QUANTUM COSMOLOGY

In this section, we first briefly review the thumb rules
used to promote the first two classical mass functions to the
effective mass functions of the Mukhanov-Sasaki equation
in the dressed metric and the hybrid approaches in LQC.
Since this part has already been discussed in detail in our
earlier paper [48], we skip some steps in the calculations
and refer the reader to above paper. The second part of the
section is the gist of the manuscript: based on the third form
of the classical mass function given in (2.11), a set of
alternative effective mass functions are proposed by apply-
ing some justifiable polymerization schemes at the level of
effective LQC. Some criteria to generate well-behaved
effective mass functions throughout the whole evolution
of the background are also discussed.

A. The effective mass functions in the dressed
metric and the hybrid approaches

In the dressed metric and the hybrid approaches for the
linear perturbations in LQC, the classical Hamiltonian
constraint is first truncated to the second order in the
perturbations and then a hybrid way of quantization is
carried out with respect to the background and the linear
perturbations. Specifically the background dynamics gov-
erned by the homogeneous Hamiltonian constraint (2.1) is
polymerized in the μ̄ scheme in LQC [8] while the linear
perturbations are Fockquantized.At the level of the effective
dynamics, the effective mass functions in the dressed metric
and the hybrid approaches can be obtained from their
classical counterparts by using the following substitutions

1

πa
→ −

H

2v2=3ρ
;

1

π2a
→

κ

12v4=3ρ
; ð3:1Þ

which once plugged into (2.6) and (2.8) lead to the exact
expressions of the effective mass functions in the dressed
and hybrid approaches, namely

m2
dressed ¼ −

4πG
3

a2ρ

�
1þ 2

ρ

ρc

�

þ 4πGa2P

�
1 − 2

ρ

ρc

�
þU; ð3:2Þ

m2
hybrid ¼ −

4πG
3

a2ðρ − 3PÞ þU; ð3:3Þ

with

U ¼ a2
�
U;ϕϕ þ 48πGU þ 6H

ϕ̇

ρ
U;ϕ −

48πG
ρ

U2

�
: ð3:4Þ

These two effective mass functions coincide and tend
to the same classical limit in the low curvature regime and
their differences become manifest only in the bounce
regime. Moreover, it has been found in the previous
work [49] that their difference essentially arises from the
noncommutativity of the polymerization and the evaluation
of the Poisson brackets. Finally, it is worth pointing out that
the polymerization of 1=πa mentioned in (3.1) originates
from the hybrid approach. It has been proposed in [55] to
extend this Ansatz to the dressed metric approach since such
a polymerization respects the superselection rules for the
background quantum dynamics while the original Ansatz
used in the dressedmetric approach does not. However, with
regard to the phenomenological investigations, different
polymerization Ansätze of 1=πa would not result in detect-
able effects if the bounce is dictated by the kinetic energy of
inflaton field as is generally the case, as a result ofwhichU is
negligible. As we will show, this negligible role of the
effective potential will be changed when we consider the
polymerization of the third form of the classical mass
function given in (2.11). There the properties of the effective
mass function near the bounce also rely on the polymeri-
zation Ansätze of 1=πa even when the bounce is dominated
by the kinetic energy of the scalar field.

B. Alternative effective mass functions in LQC

In the above subsection, we discussed the way
polymerization of the mass functions given in (2.6) and
(2.8) can result in the effective mass functions of the
Mukhanov-Sasaki equation in the dressed metric and the
hybrid approach. Now let us investigate the analogs
of the classical mass function (2.11) in the effective
LQC. Since the classical mass function (2.11) is a func-
tional of zsð¼ aϕ̇=HÞ, its polymerization can be imple-
mented by directly polymerizing zs. Therefore, as zs
diverges at the quantum bounce where the Hubble rate
vanishes, we must polymerize the inverse Hubble rate to
make the resulting effective mass function finite at the
bounce point. Here let us note that the effective dynamics of
μ̄ scheme in LQC [7] can be obtained from the polymeri-
zation of the momentum variable b which in the classical
regime is proportional to the Hubble rate.1 Therefore, the

1In the background LQC, the variable b ¼ c=
ffiffiffiffiffiffijpjp

where c
denotes the symmetry reduced connection and p denotes the
symmetry reduced triad variable which is square of the scale
factor (modulo volume of the fiducial cell). Classical Hamilton’s
equations yield c ¼ γȧwhere γ is the Barbero-Immirzi parameter.
Thus, in the classical theory, b ¼ γH. In the effective dynamics
encoding polymerization terms of connection, this relation gets
complicated but surprisingly the modified Friedmann equation
takes a simple form: H2 ¼ 8πG

3
ρð1 − ρ

ρc
Þ (for details see for

e.g. [2]).
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polymerization of the square of the Hubble rate in the
classical mass functions of the Mukhanov-Sasaki equation
should be carried out in the same way as for the polym-
erization of the square of the b squared in the background
homogeneous Hamiltonian constraint. While the back-
ground effective dynamics guides us directly toward the
polymerization of Hubble rate, there are ambiguities when
one deals with the inverse Hubble rate and different choices
are possible. Inspired by the Ansatz employed to yield the
effective mass functions in the dressed metric and the
hybrid approaches, in particular the one related with
polymerizing 1=πa as given in (3.1), we adopt a general
Ansatz at the phenomenological level with an attempt to
exhaust all the possible forms of the alternative effective
mass functions resulting from the polymerization of the
classical mass function (2.11). The general Ansatz takes a
very simple form

zs →
aϕ̇fðρÞ

H
; ð3:5Þ

with fðρÞ being a function of only energy density that must
satisfy the following asymptotic conditions2

fðρÞffiffiffiffiffiffiffiffiffiffiffiffiffi
ρc − ρ

p
����
ρ¼ρc

¼ const; fðρÞjρ≪ρc
→ 1; ð3:6Þ

here ρc ¼ 3=ð8πGγ2λ2Þ ≈ 0.41 denotes the maximum
energy density in LQC at which the quantum bounce takes
place (see footnote 1). Note that this Ansatz certainly
includes the one used for polymerizing 1=πa in (3.1) as
a particular case as long as we choose f ¼ 1 − ρ=ρc. The
first condition in (3.6), ensures the finiteness of the
polymerized zs right at the bounce point while the second
condition is to recover the classical limit in the low
curvature regime. With the Ansatz (3.5), it is straightfor-
ward to show that the classical mass function (2.11) can be
polymerized into

m2
z ¼ Ũ −

a00

a
; ð3:7Þ

where

Ũ ¼ a2
�
U;ϕϕ þ ð48πGþ δaÞU þ

�
6H

ϕ̇

ρ
þ δb

�
U;ϕ

þ
�
δc −

48πG
ρ

�
U2 þ δdρ

2

�
; ð3:8Þ

with the correction terms given explicitly by

δa ¼
192πGρ2f;ρρ

f

�
1 −

ρ

ρc

�
þ 48πGρf;ρ

f

�
1þ ρ

ρc

�

−
96πGρ2

ρcðρ − ρcÞ
; ð3:9Þ

δb ¼ −12Hϕ̇
f;ρ
f

−
6Hϕ̇

ρc − ρ
; ð3:10Þ

δc ¼ −
96πGρf;ρρ

f

�
1 −

ρ

ρc

�
þ 48πGf;ρ

f

�
1 − 2

ρ

ρc

�

−
48πGð2ρ − ρcÞ
ρcðρc − ρÞ ; ð3:11Þ

δd¼−
96πGρf;ρρ

f

�
1−

ρ

ρc

�
−
48πGf;ρ

f

�
2−

ρ

ρc

�
þ48πG
ρ−ρc

:

ð3:12Þ

It is important to note that the a00=a term in the effective
mass (3.7) should be evaluated on the trajectories of the
effective dynamics in LQC. Therefore, when all the
correction terms vanish, the above effective potential
(3.8) reduces to the one given in (3.4). Correspondingly,
the effective mass function (3.7) reduces to the one in the
dressed metric approach. However, it can be shown that one
cannot find a viable f satisfying (3.6) to make all the
correction terms vanish at the same time. To be specific,
from the condition δb ¼ 0, one can solve for f which turns
out to be

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρ

ρc

r
: ð3:13Þ

Substituting the above expression into δa, one can immedi-
ately find that

δa ¼ −
24πGρ
ρc

: ð3:14Þ

As a result, demanding δa ¼ δb ¼ 0 at the same time is
impossible, implying that the effective mass function (3.7)
cannot reduce to the one used in the dressed metric
approach. Similarly, in order to obtain the effective mass
function in the hybrid approach from (3.7), we need

δa¼−
16πGρ
ρc

; δb¼0; δc¼0; δd¼
32πG
3ρc

; ð3:15Þ

2Note that in the separate universe approach when applied to
LQC, the classical Mukhanov-Sasaki equation still holds for the
long-wavelength modes. Hence in principle one can assume zs
can be treated unpolymerized for long wavelength modes and
equivalently f ¼ 1. Although this leads to a divergent zs at the
bounce point, the resulting comoving curvature perturbation is
still finite [42]. Above assumption is not valid if one does not
make a separate universe approximation. In this manuscript, we
discuss the general case beyond this approximation when zs is
polymerized and well behaved in the evolution.
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which is also impossible since for a vanishing δb, the value
of δa has to be given by (3.14). As a result, any feasible
effective mass functions from (3.7) would be different from
the one used in either the dressed metric or the hybrid
approach.
Therefore, by choosing different forms of f, one can end

up with other alternative effective mass functions in the
Mukhanov-Sasaki equation of LQC. Moreover, it is impor-
tant to note that the correction terms listed in (3.9)–(3.12)
are not all dependent on the potential of the scalar field. In
particular, the last term δdρ

2 can become dominant in the
Planck regime. As a result, unlike in the dressed metric
approach or the hybrid approach, the effective potential
(3.8) can still play an important role in the Planck regime
even for the kinetic-energy-dominated bounce as long as δd
does not vanish. On the other hand, with a vanishing δd, the
predictions on the observations by using our new effective
mass function will be expected to be of no substantial
difference from those obtained in the dressed metric
approach when the bounce is dominated by the kinetic
energy density of the scalar field. Therefore in the follow-
ing we are more interested to search for new effective mass
functions that have nonvanishing δd with well-behaved
correction terms throughout the nonsingular evolution of
the background spacetime.
As expected the asymptotic condition (3.6) and the

finiteness of the correction terms throughout the whole
evolution impose very strict restrictions on the possible
forms of the function f. Firstly, it should be noted that in
the expressions of the correction terms (3.9)–(3.12) there
are individual terms which will become divergent right at
the quantum bounce. Therefore, a reasonable choice of f
should make all these correction terms finite at the bounce
and meanwhile satisfy the asymptotic condition given
in (3.6). Further analysis becomes more manageable if
we start with the δb term given in (3.10). In order to get rid
of the divergence at ρ ¼ ρc which originates from the
second term on the right-hand side of (3.10), the only
feasible choice of f turns out to be

f ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρc − ρ

p
gðρÞ; ð3:16Þ

where g can in principle be any well-behaved function of
the energy density which satisfies the following asymptotic
conditions

gðρÞjρ¼ρc
¼ const and gðρÞjρ≪ρc

→
1ffiffiffiffiffi
ρc

p : ð3:17Þ

The simplest choice of g which satisfies the above con-
dition is

g1 ¼
1ffiffiffiffiffi
ρc

p : ð3:18Þ

This Ansatz corresponds to the original polymerization
Ansatz of 1=πa which was used in the original dressed
metric approach initially proposed in [31]. It can lead to the
following correction terms

δa1 ¼ −24πG
ρ

ρc
; δb1 ¼ 0; δc1 ¼

24πG
ρc

; δd1 ¼ 0;

ð3:19Þ

where the subscripts a1, b1, c1, and d1 refer to the choice
g1, and these correction terms are finite in the whole range
ρ∈ ½0; ρc�. Although it gives rise to the first alternative
effective mass function other than those used in the dressed
metric and the hybrid approach, due to a vanishing δd, we
expect the corresponding effective potential is negligible in
the bouncing regime for the kinetic-dominated bounce. As
a result, this new effective mass function is not very
interesting to us.
Our second Ansatz stems from the hybrid approach. In

particular, the polymerization of 1=πa prescribed in (3.1)
corresponds to the choice

g2 ¼
1ffiffiffiffiffi
ρc

p
�
1 −

ρ

ρc

�
1=2

; ð3:20Þ

which results in the new correction terms

δa2 ¼−48πG
ρ

ρc
; δb2 ¼

6Hϕ̇

ρ−ρc
; δc2 ¼0; δd2 ¼

48πG
ρc

;

ð3:21Þ

where the subscripts a2, b2, c2, and d2 refer to the choice
g2. One can then immediately find from the above results
that the second Ansatz fails to yield a viable effective mass
function due to the divergence of δb2 at the bounce point.
Besides, we find that as long as the form of the function g is
chosen to be g ¼ 1ffiffiffiffi

ρc
p ð1 − ρ

ρc
Þα, then the only viable value of

α that can result in finite correction terms in the range
ρ∈ ½0; ρc� is α ¼ 0. Moreover, it turns out that this result
can also be extended to a more general setting where the
function g takes the form

gðρÞ ¼ 1ffiffiffiffiffi
ρc

p
�
1 −

ρ

ρc

�
α

g̃ðρÞ; ð3:22Þ

with g̃ðρÞ being a differentiable function of the energy
density and meanwhile satisfying the condition g̃ðρcÞ ≠ 0.
With this Ansatz, it can be shown that in order to make δb
finite at the bounce point, the only possible choice is still
α ¼ 0. Thus, we conclude that in order to ensure a
nondivergent δb at the bounce point, the necessary con-
dition is gðρÞ ¼ g̃ðρÞ= ffiffiffiffiffi

ρc
p

with gðρÞ nonvanishing.
Correspondingly, in terms of gðρÞ, the resulting correction
terms turn out to be
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δa ¼ −
24πGρ
ρcg

ðg − 2ðρc − 3ρÞg0 þ 8ρðρ − ρcÞg00Þ; ð3:23Þ

δb ¼ −12Hϕ̇
g0

g
; ð3:24Þ

δc ¼
24πG
ρcg

ðgþ 2ρcg0 þ 4ρðρ − ρcÞg00Þ; ð3:25Þ

δd ¼ −
48πG
ρcg

ðð2ρc − 3ρÞg0 þ 2ρðρc − ρÞg00Þ; ð3:26Þ

where a prime denotes differentiation with respect to the
energy density. Since gðρcÞ ≠ 0, the above correction terms
are all finite at the bounce point. The exact form of gðρÞ is
directly related with the construction of the quantum
theory, in particular, the way to polymerize the inverse
momentum 1=b (or equivalently 1=πa). For example, if the
inverse momentum is polymerized as

1

b
→

λ cosϵ ðλbÞ
sin ðλbÞ ; ð3:27Þ

with ϵ ¼ 0 corresponding to the first case mentioned in
(3.18) and ϵ ¼ 1 to the second case in (3.20), then the
inverse Hubble rate is correspondingly polymerized as

1

H
¼ γ

b
→

λγcosϵðλbÞ
sin ðλbÞ ¼ cosϵþ1ðλbÞ

H
¼ ð1 − ρ=ρcÞðϵþ1Þ=2

H
:

ð3:28Þ

In the above derivation, on the left-hand side of the arrow
we have used the relation between the Hubble rate and the
momentum b in the classical theory which is b ¼ γH
while on the right-hand side of the arrow we have used
the relations valid in the effective dynamics, namely,
H ¼ sin ðλbÞ cos ðλbÞ=ðλγÞ and ρ ¼ ρc sin2ðλbÞ. Hence,
given the Ansatz (3.27), the function f is given by
f ¼ ð1 − ρ=ρcÞðϵþ1Þ=2 and the corresponding gðρÞ turns
out to be

gðρÞ ¼ 1ffiffiffiffiffi
ρc

p
�
1 −

ρ

ρc

�
ϵ=2

: ð3:29Þ

Combining with the requirement gðρcÞ ≠ 0, we can con-
clude that with regard to the polymerization Ansatz (3.27),
only ϵ ¼ 0 can result in well-behaved correction terms and
thus is the only feasible choice. The resulting correction
terms are exactly those given in (3.19).
In principle, other ways of polymerization can lead to

different forms of gðρÞ. A correct polymerization should
originate from the cosmological sector of LQG. Since it is
still an open question to extract the cosmological sector
from full LQG, here we present a phenomenological
example to illustrate the possibility that the well-behaved

correction terms with a nonvanishing δd can arise when the
inverse momentum is properly polymerized. For example,
we can consider the following polymerization Ansatz

1

b
→

λ

sin ðλbÞ
�
1þ ξsin2ðλbÞ�; ð3:30Þ

where the parameter ξ satisfies the condition ξ > −1.
Following the procedure presented in (3.28), it is straight-
forward to show that the above Ansatz leads to the choice

gðξÞ ¼ 1ffiffiffiffiffi
ρc

p
�
1þ ξ

ρ

ρc

�
; ð3:31Þ

which in turn results in the following correction terms in the
effective mass function

δa¼−
24πGρ
ρcþξρ

�
1−2ξþ7ξ

ρ

ρc

�
; δb¼−12Hϕ̇

ξ

ρcþξρ
;

δc¼
24πG
ρcþξρ

�
1þ2ξþξ

ρ

ρc

�
; δd¼−

48πGξ
ρcðρcþξρÞð2ρc−3ρÞ:

ð3:32Þ

Therefore, as long as ξ > −1, all the correction terms are
finite and well-behaved in the interval ρ∈ ½0; ρc�. Besides,
for a large range of the parameter space of ξ, δd is nonzero.
Moreover, one can estimate the magnitude of the effective
mass function near the bounce. When the bounce is
dominated by the kinetic energy of the scalar field, only
the δd term in the potential (3.8) plays the dominant role. As
a result, near the bounce the effective mass function can be
approximated by

m2
z≈−

4πG
3

a2ρ

�
1þ2

ρ

ρc

�
þ4πGa2P

�
1−2

ρ

ρc

�
þa2δdρ2;

ð3:33Þ

where the contributions from the potential are ignored. In
particular, right at the bounce, the effective mass function
becomes

m2
z jρ¼ρc

≈ 8πGa2ρc

�
5ξ − 1

1þ ξ

�
: ð3:34Þ

Therefore, the sign of the effective mass function at the
bounce depends on the magnitude of the parameter ξ. From
this example, we can see the property of the alternative
effective mass function in the Planck regime is closely
related with the polymerization of the inverse momentum
1=b (or equivalently 1=πa). This is a novel property of the
alternative effective mass function given in (3.7)–(3.12) as
compared with those in the dressed metric and the hybrid
approach.
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IV. CONCLUSIONS

In this manuscript, we have derived a general form of the
alternative effective mass functions, given explicitly by
Eqs. (3.7) and (3.8), in the Mukhanov-Sasaki equation of
LQC by applying a general polymerization Ansatz of the
inverse Hubble rate in the classical expression of zs. It
originates from an equivalent form of the classical mass
function which differs from those used in the dressed metric
and the hybrid approach. Our investigation starts with a
brief review of the Hamiltonian formulation of the linear
perturbation theory in cosmology with the purpose of
presenting two forms of the classical mass functions which
after polymerization are promoted respectively to the
effective mass functions used in the dressed metric and
the hybrid approach. The third form of the classical mass
function given in (2.11) can be obtained from the action by
using the comoving gauge. Although these three forms of
the classical mass function turn out to be equivalent on the
trajectories of the classical Friedmann dynamics, they
actually lead to the distinct effective mass functions when
the same hybrid way of quantization is implemented,
namely, the background dynamics is loop quantized while
the perturbations are Fock quantized. The modified
Mukhanov-Sasaki equation for all these approaches is
obtained by polymerizing the background quantities in
its classical counterpart.
The quantum gravity effects in the Mukhanov-Sasaki

equation of LQC are taken into account by polymerizing the
classical mass functions. At the level of the effective
dynamics, polymerization of the classical mass function
is implemented by polymerizing the terms related with 1=πa
and 1=π2a in the dressed metric and the hybrid approach.
When it comes to the third form of the classical mass
function, based on zs (2.11), only the polymerization of 1=πa
is required. Thus, the properties of the alternative effective
mass functions resulting from (2.11) are closely related with
the polymerization Ansatz of 1=πa. From our analysis we
have shown that the classical mass function (2.11) cannot
lead to the effective mass function in either the dressed
metric approach or the hybrid approach, implying that (2.11)
can only result in the alternative forms of the effective mass
functions. In particular, the polymerization of (2.11) can
give rise to additional four correction terms in the effective
potential (3.8) which are denoted respectively by δa, δb, δc,
and δd. Among them, the correction terms δa and δb cannot
vanish at the same time. Moreover, for the bounce which is
dominated by the kinetic energy of the scalar field, only the
δd term will become important in the Planck regime which
has the potential to yield different predictions other than
those in the dressed metric or the hybrid approach.
Combined with the criteria that the effective mass function
should bewell-behaved throughout the whole evolution and
meanwhile tend to its classical counterpart in the low
curvature regime, we have in particular tested three polym-
erization Ansätze of 1=πa (or equivalently inverse

momentum 1=b or inverse Hubble rate) which are employed
in the original dressed metric approach, in the hybrid
approach and the one given as a phenomenological model
in (3.30). It turns out that the first Ansatz can yield well-
behaved effective mass function in the whole range
ρ∈ ½0; ρc� but with a vanishing δd which makes this
Ansatz less interesting since it is expected to lead to the
similar predictions as those in the dressed metric approach.
On the other hand, the second Ansatz from the hybrid
approach can only result in an ill-behaved δb term which
becomes divergent right at the quantum bounce and thus
fails towork at all. Finally, our lastAnsatz successfully leads
towell-behaved effectivemass functionwith a nonvanishing
δd. Its properties in the Planck regime near the quantum
bounce is completely determined by a phenomenological
parameter ξ. Themain problemwith such anAnsatz is lack of
understanding of its quantum origin. In principle, polym-
erization of 1=πa should come from the cosmological sector
of full LQG which is currently unavailable. Finally, it is
worth noting that the difference between our new alternative
effectivemass functions and those used in the dressedmetric
and the hybrid approaches is due to the noncommutativity
between the evaluation of the Poisson brackets and the
polymerization procedures. As discussed in our previous
paper [48], the same reason results in the different effective
mass functions used in the dressed metric and the hybrid
approach.
In summary, our investigation shows that the precise form

of the effective mass function for perturbations in LQC is far
from completely settled. Due to quantization ambiguities,
different forms of the classical mass functions which are
equivalent in the classical dynamics can be polymerized into
physically distinct effective mass functions once quantum
gravity effects are taken into account. The effective mass
functions used in the dressedmetric and the hybrid approach
are just two examples of these effective mass functions.
More alternatives to these twomass functions are possible to
be discovered when equivalent forms of the classical mass
functions are polymerized in certain ways. Moreover, the
phenomenological impacts of these effectivemass functions
on the CMB observations are far from being thoroughly
explored. When matching the CMB observations, one
should numerically investigate the full parameter space of
the model before drawing any conclusions on the feasibility
of the different perturbation approaches and this is one of the
topics worthy of future investigations.
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