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Order parameter and spectral function in d-wave holographic superconductors
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We consider the d-wave holographic superconductor model with full backreaction on the metric,
addressing a missing part in the literature. We have identified the gap function by comparing the fermionic
spectral function with the momentum-dependent order parameter. By numerical investigations of the
fermionic spectral function in the presence of a tensor condensate, we find the Fermi arc and the gapped
behavior, which closely resembles angle resolved photoemission spectrum data. Moreover, we have
examined the influence of the coupling constant, chemical potential, and temperature on the spectral function.
We find that d-wave fermionic spectral function can be obtained through p, and p, condensates combined

with two fermion flavors. Similarly, combining d»
leads to a g-wave spectral function.

DOI: 10.1103/PhysRevD.109.066004

I. INTRODUCTION

Angle resolved photoemission spectrum (ARPES) data
[1] indicates that most unconventional superconductors
exhibit d-wave orbital symmetry. However, understanding
the theoretical aspects of these systems remains elusive
due to the limitations of conventional methods in describ-
ing strongly coupled systems. To address this, the gauge/
gravity duality [2—4] offers an approach by employing a
weakly coupled dual system in one higher dimension
[5-13]. The relationship between the energy gap and the
critical temperature of high 7', superconductors [14] has
been given in [15] in the simplest dual gravitational system
[16] with scalar hair. This system exhibits a second-order
phase transition from anti—de Sitter (AdS)-Schwarzchild
geometry to hairy black hole geometry and is referred to as
s-wave holographic superconductors, characterized by an
isotropic energy gap. To include anisotropic gap function in
holographic superconductors, we need p-wave and d-wave
gaps that had been realized in spin-one fields [17-19]) and
tensor fields [20-26], respectively.

Considerable amount of works [27-48] have been done
using gravitons and photons in the bulk. Although less
attention has been paid to the fermionic side, there have been
some works on the fermion spectral function, exhibiting
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> and d,, orbitals symmetry with two fermion flavors

distinct spectral features in the presence of the scalar [49,50],
vector [18,51], and tensor [20,21,52,53] condensations. The
presence of some of such condensations gives rise to the Fermi
arc for p- and d-wave holographic superconductors. In the
case of spin-two fields, the Lagrangian density becomes
somewhat intricate. The initial formulation of d-wave holo-
graphic superconductivity [21] did not treat the number of
degrees of freedom properly. Based on earlier investigations
on the spin two fields [54,55], the formulation of an proper
action for a massive charged spin two field was accomplished
by Benini, Herzog, Rahman, and Yarom in [20], by employing
the Einstein condition that forbids the backreaction, so that in
their setup we have to investigate d-wave holographic super-
conductors in the probe limit only. However, the full back-
reacted geometry [41,56,57] can play an important role [58].

In this paper, we reformulate the Benini, Herzog,
Rahman, and Yarom Lagrangian by replacing the Einstein
condition with the traceless condition in the constraint
equation for spin-two fields. This allows the presence of
the backreaction of tensor condensate to the metric. Another
concern in d-wave holographic superconductors is about the
momentum dependence of the order parameter, which
should be consistent with that of the fermion spectral
function. In all previous computations, the order parameter
was considered as B,,, which is independent of the
momentum direction. One of our aims here is to identify
the precise d-wave order parameter that has angular depend-
ence in momentum space consistent with that of the fermion
spectral function. We will identify the correct d-wave order
parameter as B,,, where p is the radial direction in the xy
plane. The detailed analysis of the Fermi arc in the presence
of the d-wave gap and full backreaction is presented here for
various orbital symmetries. We also examine the effect of
coupling strength, the chemical potential and temperature on
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the spectral function. We have shown that the d-wave
spectral function can be obtained from the two different
p-wave condensates with two fermion flavors. Similarly,
two fermion flavors with condensates of two different tensor
fields lead to g-wave spectral function. These may be useful
to describe higher orbital superconductivity.

This paper is organized as follows. In Sec. II, we argue
that one can construct a Lagrangian density without
imposing the Einstein condition. This allows the presence
of the backreaction of matter fields on the background
geometry. In Sec. III, we numerically investigate the critical
temperature and all bosonic configurations. In Sec. IV, we
describe how to calculate the boundary fermion Green’s
function using the flow equation. In Sec. V, we analyze the
spectral function of various cases. We summarize and
conclude in Sec. VI.

II. BASIC SETUP FOR SPIN-TWO FIELD

The Fierz-Pauli Lagrangian for a spin-two field in flat
space, presented in [59], is given by

1
£=[~0,B,,0’B" +2B,B" — 2B0,B", +0,B"," B,

- m*(B,,B* — B*,B%,)|. (2.1)

where B, = 0”B,,,. Since the tensor field B, represents a
spin-two field, it naturally follows that B,, is symmetric
tensor field. For d = 4, the number of independent compo-
nents of B, are 10. The physical degree of freedom of a
field with spin s is 2s + 1 assuming that the field is massive.
Therefore, we need five constraints equation for B,,. The
Fierz-Pauli Lagrangian is designed such that the necessary
constraints are obtained as the consequence of the equations
of motion (EOMs) and their derivatives. It is good idea to
remind that for a massive spin one field A, the constraint
equation V,A* =0 is derived by taking a derivative of
equation of motion of A,, which results in three physical
degree of freedom of spin one field. In similar fashion, we
can derive the constraint equations for a spin-two field. The
EOM from the Fierz-Pauli Lagrangian is given as follows:

dzBﬂ,, — 0,0,B%, — 0,0,B%, + 9,0,B%, + n,,yaaaﬂBa,,

- nﬂ'ﬁa2Ba!1 —m? (B;w - n;tuBaa) =0, (22)
where M is the flat space metric. By taking divergence on
Eq. (2.2), we derive

|

B, —0,B%, = 0. (2.3)
Substituting Eq. (2.3) in Eq. (2.2), we get
0’B,, — 9,0,B%, — m*(B,, —n,,B%) =0. (24)

Contracting with 7,, in the above equation leads to the
traceless condition of spin-two field B*, = 0. Substituting
the traceless condition into Eq. (2.3), we get the transverse
condition ¢#B,, = 0. We now have five constraints equa-
tions, which are traceless and transverse conditions, as a
consequence of EOMs. This yields five independent com-
ponents of the symmetric tensor field B,,, which is the
physical degree of freedom of spin-two field. The final
equation of motion of spin-two field along with constraints
in flat space reads

0"0,B,, — m*B,, =0, (2.5)

9,B% =0, and B*,=0. (2.6)

This yields the correct number of degrees of freedom for the
dynamics of a spin-two field in flat space. The generaliza-
tion of the above procedure in curved spacetime is nontrivial
since the noncommutativity of the covariant derivatives
introduces curvature dependent terms. The Lagrangian
construction for a neutral massive spin-two field in curved
spacetime with correct counting of the degrees of freedom
was developed in [55] using two distinct methods. In one
approach, the condition of vanishing Einstein tensor,
G,, = 0, was employed. In this scenario, all matter fields
cannot exert a backreaction on the metric. In the alternate
method, the static background condition was adopted to
ensure the consistency of constraint equations, allowing
matter fields to affect the metric. A detailed analysis of the
Reissner-Nordstrom black hole solution was presented in
[55]. We closely follow the procedure in [55] where the
Lagrangian for a charged massive spin-two field in AdS
spacetime was formulated under the Einstein condition, as
described in [20]. We argue that the Einstein condition
can be replaced by the traceless condition of the field, which
is one of the constraints equation of the field. Then the
backreaction of matter fields can be considered. The
Lagrangian for a symmetric tensor in curved space can
be expressed as follows [20]:

L =-|D,B,,|* +2|D,B*|* + |D,B’,|* — (D,B*D,B’, + H.c.) — m*(|B,,|* — |B*,|*)
+ ¢1R, B*B" + 3R, ,B* B, + ¢3R|B,, | + iqcyF,,B** BY + csR|B? ,|*

+ ¢(e"’R,,B**B’, + H.c.),

where B, = D*B,, and R,
respectively. The corresponding equation of motion

(2.7)

R,,, R are the Riemann tensor, Ricci curvature, and Ricci scalar of the background spacetime,
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E,, = (D*D,—m?)B,

— 9u(D*Dy —m )B” —l—CIRWMB —I— >

1
v_(D Bu+DUB)+

2(D D,B’,+ D,D,B’ )+gMDD”Ba

2 (R,uBS + R,uB2) + c3RB,,

q . s
+esy (F,B? + F,uB%) + ¢59,,RB’ , + c6(e'’R,, B’ , + g, R, ;B¥) = 0. (2.8)
We now try to calculate all the coefficient c; from the constraint equation D*D”E,,, = 0, which gives [20]
(¢; =2)R*“’D,D,B,5 + c,R*D,B, + (c;R — m*)D*B, + iq(1 + ¢4, )F* DB,
+ (¢sR +m*)D*D,B’ , + cce " "R*¥ DD, B s + (1 + ce'?)R*D,D B’ , + - -- = 0, (2.9)
|
where the ellipsis denotes terms that contain at most a single ~ where A is the cosmological constant and x> is the

derivative of the spin-two field. Since no second derivative
term exists in any constraint equation, all terms involved in
second-order derivatives in the above equation must vanish.
This leads to contradictory equations for c¢g. To remove this
contradiction, we use the traceless condition of the spin
two field (B”, =0) instead of the Einstein condition.
Substituting B”, = 0 in the above equation, we get

(¢y = 2)R*“PD, DB,y + c,R**D,B, + (c;R — m*)D"B,,
+ lq(l + C4)FaﬂDaBﬂ + C6€_i¢RaﬂDﬂDﬂBaﬂ + ce = 0
(2.10)

The above equation becomes a constraint equation when all
second derivative terms are eliminated, which leads
Cyr = 0, Cy = —1,

C1:2, C3:0,

=0, and m?>=0. (2.11)
In the above method, we have not used Einstein condition to
determine c¢;. Therefore, we can consider the backreaction
of the matter field on the background geometry. The
Lagrangian for a traceless symmetric spin-two field with
Maxwell’s term then is given by

ﬁm = _|D aB

+2|D,B"|* + 2R,,, B’ B**

|2
Hv

1
~iqF,, BB} = F,,F*". (2.12)

III. HOLOGRAPHIC d-WAVE
SUPERCONDUCTOR

The action for d-wave holographic superconductors
reads

1
S = d*x\/=g[R = 2A + 262L,,),

= (3.1)

gravitational Newton constant. The equation of motions
for the tensor field and gauge field yield

DBaﬂ - (D Bﬂ + DﬂB ) + 2Ra;4ﬂz/
2 Y (F B+ Fy,Bh) =0, (3.2)

D, F* — [igB},(D*BY — D“B*) + igB,B* + H.c.] = 0
(3.3)

The Einstein field reads

1
Raﬂ - _gaﬁR + Aga[;’ = 2K2Ta[jv

: (3.4)

where Ty = 5 gaﬂﬁ Considering the backreacted

59(1/}
four-dimensional metric in the following simplified form:

d2:L—2_ dr? d_22 dx2 + dv?
st = f(z)g(z)dt +f(z)+ x* + dy

where L is the AdS radius. For this given black hole
geometry, the Hawking temperature is

7. _ @)V g(zn)
H iy4 '

(3.5)

(3.6)

To introduce both symmetry d,>_,» and d,, in the system,
we consider the tensor field in followmg form:

L*¢(z)
\/_ 2
When a=0 (#=0), we will get only d,, (d_,)
symmetry. The matter field ansatz in general reads

B = la(dx? — dy*) + 2fdxdy]. (3.7)

B = B, (z)dx* + B,,(z)dxdy + B,,(z)dydx + B,,(z)dy*.
(3.8)
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Using the symmetric and traceless condition of the spin-
two field, the above matter field ansatz in polar coordinate
becomes

B = B/)/)dp2 -I— 2B/)9dpd9 + ngd@z, (39)
where
B,, = cos20B,, +sin20B,,,
B
# = —c0s20B,, + sin260B,,,
0 )
B/}H .
= —sin20B,, + cos 20B,,. (3.10)
P

Since Bgyy and B,y have coordinate singularity, the angle
dependent order parameter for d-wave superconductor is
B,,. With the tensor field ansatz (3.7), the corrected order
parameter reads

_ L*¢(z)
722

With gauge field ansatz A = A,(z)dt, equation of motion
of all fields are

B

[acos 20 + fsin 20)]. (3.11)

29(11;/)(2)2 N

quf(Z)zfﬁ(Z)T
f(z)?
(3.12)

g (z) +2c*2d;, {Q(Z)fﬁ/(Z)z +
= ()’

_3f(2)

Z
A=)
4L%d%g(z)

J(2)
29(2)

vor 7

3 f)d (@) 2
Z

£ -4 2 L7820 | ey

=0, (3.13)

2¢°L2d2%,p(2)?
2f(2)

g 2], 7*A,(2)? _
*200) J“”+L@%@P@ 0.

Al(z) - Al(z) - Az) =0, (3.14)

(3.15)

where d2, = |a|*> + ||*>. The horizon condition f(z;) =0
and Eq. (3.13) lead us to determine the Hawking temper-
ature, which reads

At the boundary of this spacetime should be an asymp-
totically AdS spacetime that imposes the boundary con-
dition on g(z = 0) = 1. Therefore the field equations at the
boundary becomes

A’(z) =0 and qb”(z)—%qb’(z)zo, (3.17)

which gives the asymptotic behavior of the gauge field and
vector field in terms of quantities of boundary theory in
following way:

A(z)=p—-pz and ¢(z)=C,+C.25, (3.18)
where u,p,C,, C. are the chemical potential, charge
density, source term, and expectation value of angle
independent condensation of the boundary theory, respec-
tively. From Eq. (3.11), the angle dependent order param-
eter for the d-wave holographic superconductor can be
mapped with the condensation value of the boundary theory
in following way:

L*p(2)
B = V272

when the source (C,) is zero. Therefore, the angle depen-
dent condensation operator reads

[@cos20 + fsin20] = (O)z  (3.19)

L2C, L?>C,l
0) = ¢ [acos20 + fsin 20| = < cos(20—6,),

(3.20)

where /> = o + f* and tan 6, = £ are determined from the
given value of real value a and . The above expression
clearly shows that the mixing of d,>_,> and d,, symmetry in
system rotates the gap structure. In order to determine the
angle dependent condensation operator value, we now need
to calculate the C. value in the full backreacted system.
This gives us momentum dependent gap structure in
Fourier space (k,.k,) with help of the following identi-
fication:

1 a [2n . .
Ak = FT[<O>] :—2”612 A /0 <C’)>e—t(kxpcosﬂ+k),psmb’)pdpde’

(3.21)

where a is the sample size and FT][...] is the two-
dimensional Fourier transformation.

A. The critical temperature and momentum dependent
order parameter

In this subsection, we will employ the Shooting method
to numerically solve the system of coupled equations, given
by Eqgs. (3.12)-(3.15). With help of scaling symmetry
[53,57] of the equation of motion of all fields, we can
set L = 1 and 2«x? = 1. To successfully solve these equa-
tions, it is essential to provide appropriate boundary
conditions for all fields, which are
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A,(Zh> = 0, f(Zh) = 0, CS =0. (322)
By specifying (7, u) parameters, we are able to obtain
solutions for all the equations in the system. To unveil the
near-horizon behavior of the fields, we employ a Taylor
series expansion, allowing us to express the fields as

follows:

(Vy(2) A, (2). £(2).9(2)) & D~ (Vyis Ay 1) (1 ) £>

i=0 Zn
(3.23)

By substituting the aforementioned expansion into the field
equations, as given by Egs. (3.12)—(3.15), we establish a
relation between the coefficients (V,;, A, f;, g;) and the
horizon data (V9. A, 2. o). Through the imposition of
the boundary conditions and the subsequent solution of the
equations of motion for the fields, we can determine the
horizon data for a given combination of (7, u), denoted as
(To, Ho)- The utilization of these field equations, as pre-
sented in Eq. (3.23), in conjunction with the solution for the
horizon data, yields the complete configurations of all
fields for a desired ratio %

With the choice of the charge of the tensor field g = 2,
and utilizing Eq. (3.16), we have determined that
T. =~ 0.02u. Remarkably, this critical temperature remains
consistent regardless of the symmetry parameter, whether it
is for d,,-wave (@ =0, = 1) superconductivity, or for
dy_p-wave (a=1,p=0) superconductivity, or for
(do_yp + dyy)-wave (a = \/LE p= %) superconductivity.
Furthermore, for a fixed temperature, the condensation
value is approximately C,. ~ 0.0552243 for all three types
of superconductivity: d,, wave, d,»_» wave, and d,2_,» +
d,, wave. The field configurations are illustrated in Fig. 1.
Moving forward, we employ this field solution and
Eq. (3.21) to plot the momentum-dependent gap structure
at T = 0.125T ., as depicted in Fig. 2. Subsequently, in a
subsequent section, we will explore the fermionic spectral
function, which will exhibit a Fermi arc at a 45° angle in

momentum space for the d,._.-wave symmetry. This
analysis will provide support for the proposition that the
order parameter in d-wave holographic superconductors
should be B,, instead of B,, or B,,.

IV. FERMION WITH TENSOR CONDENSATION

A. Fermionic setup

The fermionic action can be expressed as [20]

Sy = /d4x\/—g[i1[/(F”Dﬂ —my)y

- il/_/c(l—wD; - mf)Wc + Cint}v
‘Cim = W*BZDV;CF”DDW - WWFMDD(BW/%)- (41)
Here, n represents the coupling constant. The spinor’s
covariant derivative is denoted by D, =9, + iwﬂﬁF ap
iqsA,. Additionally, the field y. = y* corresponds to the
complex charge conjugate field of the fermion, which is
treated as an independent field throughout the computa-
tions in this framework. The boundary action for standard
quantization [60,61] is given by

Shdy = i/dsx v —h(li/l// + l/_/cl//c)- (42)

For this formulation, we adopt the following set of bulk
gamma matrices:

: .
=0, ® ioy,
F§:63 ®60,

I'*=o0, ® oy, I =0, ® o3,

(4.3)

where underline indices represent tangent space indices.
We obtain the Dirac equation [20]
(F”Dﬂ - mf)w + iZintl//c =0, (44)

where Z;, = 2nB,, I D" + nB,I'*. To simplify the analy-
sis, we express the fermionic field as follows:

01 02 03 04 05 06 072 02 04 06
z
(a) T =0.975T, (b) T =057, () T =0.125T,
FIG. 1. Backreacted profiles at three different temperatures.
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2
i - o -
ky 0
y & o .
-2
-2 -t 0 T2 -2t -t 0 T2 -2 - 0 T2
kx kx kx

(@) dy2_,2 wave (b) dgy wave (©) dy2_y2 + dyy wave

FIG. 2. Momentum dependent order parameter at 7 = 0.1257 . for different symmetries.

w(tx,y.2) = e—iwt+ikxx+ikyyl]§l(z)_ (4.5)

(—gg=)/*

This form allows us to eliminate the spin connection term in
the spinor’s equation of motion. By substituting the
aforementioned spinor into the Dirac equations, we derive
the following expressions:

I, — i ,/ (4 gpA)T - 1/gxer 1/szry

Nzl

j'-intlpc(z) = 0’ (46)

where T, = — % (g’”‘)%[a(kfo — k) + p(k, I +
k,I'*)] since the metric is isotropic xy plane. The field
equation for conjugate fermion is

I, + i ,/ZZ(w gA)T 1/g;er ,/Zkry
- \/F \PC(Z) _\/? mt (Z) =0. (47)

We express the four-component spinor as

v (i) weere=(yl) s

which allows us to formulate the Dirac equation as follows:

0.7 T W) = £ ik, o)

2 X
n \/_779;245(2) (aKﬂy/(ta)
PRl e 2| (49
where K, = gz (0 +qfA,), \/7]%— ) =

(i02,61,0'3),7/’(‘a) = (0,0,,—0 =(0,03,0).Ina
similar manner, we can reformulate the equation of motion
for the conjugate fermion. In the asymptotic limit as z — 0,
we consider ¢ — 72", where n** is the Minkowski
metric. Consequently, the behavior of the spinor in this

regime is given by

o). and vy,

¥, (z) = A" + B!, Y_(z) = Dz7™ + Cz!*m,
(4.10)

W, (z) = A"z + B!,
P._(z) = Dz 4 Crglhm. (4.11)

Here, A, B, C, D are two-component spinors that are
determined by solving the complete bulk Dirac equations.
For |m| < 1, the leading term yields the boundary spinor
solutions as follows:

v (o),

Dz

Arzm
¥ () ~ <]~)*Zz_mf ) (4.12)

Remarkably, we have found that the leading order of the
asymptotic behavior of the fields is always z*" for
Img| <1, and this behavior remains independent of the
interaction. The two-component spinor captures the in-
fluence of the interactions. Following same procedure as
in [51], we can write down the boundary action in
following form:
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Shay = / PAECTES) 4 EITFEC] (413)

where the boundary gamma matrix I' = 6, ® (—6,) and
the source and condensation are given by

o= (2 )2 ()
Y._ D* 7

Y_\.oo/ Dz
\Pc-‘r A vl

This is the Namubu-Gorkov spinor representation, which
represents the particle-hole symmetry.

(4.14)

B. Green function from flow equation

Rearranging all components of Egs. (4.6) and (4.7), we
can recast the Dirac equations in the following structure:
0.E0) + M ES) + MO =0, (4.15)

0.E€) + MO + M) = 0, (4.16)

where 4 x 4 matrix M;,i = 1,2, 3,4 are determined from
(4.6), (4.7). We have calculated those M;, which are

(e ) e (0 i)

M3 - _Ml’ M4 — —Mz, (417)
where
N " 4
1= 2%25
2/ f(2)
2 —k, k, k. k,
Plzfmﬁ(@ {a( y >+ﬂ< ) )}
f(Z> ky ky ky —k,
ky _ (0tgA(2))
i x f(2)g(2)
No(q) =—== (4.18)
f(z) k + (m+qA,(z)) —k
T V@) Y

Following the procedure in [50,51], we get flow equation of
bulk Green’s function in the following form:
9.6(z) + TM3I'G(z) - G(2)M; — G(z)M,['G(z)

+ 1M, = 0. (4.19)

From the horizon behavior of spinor, we can find the
horizon value of the bulk Green’s function [50]

G(z)) = il (4.20)

The boundary retarded Green’s function is determined the
solution of bulk Green’s function at the boundary as
follows:

G, = ii_r)%U(z)G(z)U(z), (4.21)

where U(z) = diag(z",z™,z7",z7") and G, is the retarded
Green function, defined from the boundary action [60]. For
the numerical evaluation of the Green function, we will fix
the mass of the fermion to be zero (m; = 0) and charge of
fermion to be 1 since g =2q;. The fermionic spectral
function is defined as

Aw, ky, ky) = Tr[Im[G,]]. (4.22)
In the presence of fully backreacted bosonic fields, we will
study the spectral function and will compare the spectral

function in probe limit case with backreaction case in the
next section.

V. FERMIONIC GAP IN THE PRESENCE
OF TENSOR CONDENSATION

To incorporate the Fermi arc characteristic into holo-
graphic superconductors, we need to examine the fermionic
spectral function within the framework of holographic
superconductors. To acquire the fermionic spectral func-
tion, we employ numerical methods to solve the flow
equation (4.19), utilizing the bulk Green function (4.20)
evaluated at the horizon. In the probe limit, we examine the
fermionic spectral function in the AdS-Schwarzschild
background, wherein the influence of the bosonic matter
field on the underlying spacetime is disregarded. In the
absence of any bosonic condensate, the holographic fer-
mion setup unveils a Fermi surface, whose Fermi momen-
tum is dictated by the chemical potential. The emergence of
the gap feature necessitates the introduction of interactions
between the fermion field and a bosonic field.

By considering the tensor field interaction with fermions,
we derive the d-wave fermionic spectral function, as
depicted in Fig. 3, for the d,._.-orbital symmetry with
the coupling constant # = 1 at 7 = 0.125T,.. In the plot of
w versus k, = k, = k (at the 45° angle), no gap is observed,
while a nonzero fermionic gap is evident in the @ versus k,
plot. This arises due to the order parameter being zero at 45°
and maximal at 0° in momentum space. Consequently, the
k,-versus-k, plot displays a Fermi arc along the 45° angle in
momentum space for the d,._ . symmetry. The spectral
function’s band represents the particle and hole bands,
where the fermionic gap is defined as the gap in @ within
these two bands. For d,, symmetry, the position of the
Fermi arc is shifted by approximately 45° from that of
dxz_yz. Moreover, a mixture of both symmetries leads to an
additional rotation of the Fermi arc by approximately 22.5°
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at

N
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-1
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FIG. 3. Spectral function for d,._

y

ky=ky,=k

() dy2_,2 wave:

(a, 8) = (1,0)

(b) dyy wave:

(a,ﬂ) = (07 1)

» condensate (a =1,4=0,y=1) at T = 0.125T,..

s wave gap

-4 -2 0 2 4
L

(d) dy2_y2 +idyy wave:
(@,8) = (45, =)

(©)  dp2_y2 + dyy Wave:

(@,8) = (L5, L)

FIG. 4. Fermi arc in spectral function at 7 = 0.1257. with different d-wave symmetries. The d,>_» + id,, wave gives a s-wave

fermionic spectral function.

compared to d,»_, as demonstrated in Eq. (3.20) and
Figs. 2, 4. Therefore, we can confirm that, in this holo-
graphic setup, the corrected angle-dependent order param-
eter is B, rather than B, or B,,.

Now we provide a comparative analysis of the fer-
mionic spectral function between the probe limit scenario
in our model and the case with backreaction, depicted in
Fig. 5, considering 7 = 1 at T = 0.125T .. Here, we have
considered Schwarzschild-AdS black hole as a fixed
background for the probe limit case. The probe limit in
our Lagrangian leads to the same solution as in previous
literature [20] for the same set of parameters. This

Backreaction

(a) Probe limit (b)

FIG. 5. Spectral function in probe limit case and backreacted
cases at T = 0.125T ...

illustration vividly demonstrates that the presence of back-
reaction exerts a substantial influence on the fermionic
spectral function. Notably, the introduction of backreaction
helps nullify the nonzero values of the spectral function
inside the arc region.

We also aim to explore the impact of the temperature-to-
chemical-potential ratio on the fermionic spectral function.
We have investigated the @ gap manifested in the fermionic
spectral function, which directly correlates with the mag-
nitude of the order parameter. Through the examination of
bosonic configuration, we know that the value of the order
parameter decreases as the temperature rises, eventually
reaching zero at the critical temperature 7, and beyond.
Correspondingly, the fermionic gap decreases as the
temperature increases, eventually vanishing at 7., as
illustrated in Fig. 6. Figure 7 shows the influence of the
tensor interaction strength on the fermionic gap. It is
apparent that the Fermi arc deform little bit for higher
value of coupling strength. The gap amplifies in magnitude
as the coupling strength increases. The ARPES data [1]
shows that the structure of Fermi arc depends on the doping
strength. Therefore, the coupling strength can be related
with the doping parameter in the boundary theory.

To know the role of two flavor fermions in this setup,
which is related to sublattice symmetry in real materials, we
have explored two flavor fermions with two different
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-4 -2

(a) T=0.5T,

(b) T =0.875T,

0 2 4
kx

© T>T.

FIG. 6. Effect of temperature on spectral function with d,>_,>-condensate for # = 1.

(a) 1=0.5

(b)y n=2

(c) n=5

FIG. 7. Evolution of spectral function with the coupling strength at 7 = 0.125T...

condensate in the Appendix. We have found that two
fermion flavors with condensates of two different tensor
fields lead to higher orbital spectral function.

VI. DISCUSSION

In this paper, we have done a comprehensive examina-
tion of the fermionic spectral function under the influence
of a fully backreacted tensor condensation. We have
determined the critical temperature to be 7. = 0.02u for
the scaling dimension three and obtained all backreacted
field configurations below this critical temperature. By
employing these field configurations along with tensor
interactions of different orbital symmetries, specifically
dy_y2, dyy, and a combination of d,>_,» and d,,, we have
conducted numerical investigations into the fermionic
spectral function. This has been accomplished by solving
the flow equation for the bulk Green function. Our analysis
has unveiled the presence of a d-wave Fermi arc in the
presence of the tensor field.

The momentum dependent order parameter, denoted as
Ay, is identified as angle-dependent tensor field component
B,, in momentum space. Comparing the momentum
dependence of the order parameter (Fig. 2) with that of
the fermion spectral function (Fig. 4), we confirm the
correct order parameter for d-wave holographic super-
conductors. The (d,»_,» + d,y)-wave condensation rotates

the Fermi arc position which confirms the d-wave order

parameter (3.20). We compare the spectral function in the
probe limit case with the backreacted case. The (d + id)-
wave condensation leads the s-wave fermionic gap that
exactly matches with previous findings [53]. Similarly, the
(p + ip)-wave condensation creates the s-wave fermionic
spectral function.

The higher value of the coupling constant decreases the
convexity of the Fermi arc. We have observed that as the
temperature increases, the condensation value decreases,
leading to a reduction in the fermionic gap. When the system
reaches its critical temperature, it undergoes a transition to
the normal phase. This transition is characterized by the
emergence of a Fermi surface in the spectral function,
attributed to the closure of the superconducting gap. The
spectral function closely aligns with the experimental find-
ings for high 7. superconductors mentioned in [1].
Furthermore, we have analyzed the role of two-flavor
fermions in the presence of a vector field and a tensor field,
resulting in a higher orbital symmetric fermionic spectral
function. The vector condensate in the p, and p, directions,
combined with two-flavor fermions, leads to a d-wave
fermionic spectral function. Moreover, the combination of
two d-wave symmetries (d,>_» and d,,) with two-flavor
fermions results in a g-wave-like fermionic spectral function.
This may have implications for the discovery of super-
conductivity with higher orbital symmetry. For the study of
the unconventional superconductors within a holographic
framework, the constructing the superconducting dome
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through an examination of the spectral function is an
intriguing avenue, which is our future direction.
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APPENDIX: TWO FLAVOR FERMIONS: HIGHER
ORBITAL SPECTRAL FUNCTION

Here, we delve into the investigation of two-flavor
fermions within the context of vector and tensor conden-
sation. The underlying motivation for exploring this sce-
nario is to know whether the combination of two
condensates with two-flavor fermions results in a spectral
function exhibiting higher or lower orbital symmetry.

1. With tensor field

For tensor field, we have considered dxz_yz condensate
with flavor one fermion and d,, condensate with another

= > BT Dy — T D (B,
i=1,2

(A1)
=3 e

» symmetry and B?) = 2ﬂf—< >dxdy has d,, symmetry.

where i is the flavor index, and B(!

dp

XT=y
We can easily promote our previous calculation (one flavor)
to two flavor by promoting the source and condensation in
following form

— dy?] has

w) gl
p2) 2)
9=\ | and 9= lP* (A2)
vl )
v y?

The above expression is defined from following boundary
action:

Shdy — l/

Using above setup, one can find a similar flow equation

PRy [

i=1,2

0 47, 0yl). (A3)

flavor fermion. The corresponding interaction Lagrangian aZG(ZZ +IM;IG(2) — G(2)M); — G(2)MLI'G(z)
density is +TM, =0, (A4)
|
where G(z) is 8 x 8 bulk Green function matrix and all M; are given by
N P N 0
M, = ( 1 1 )7 M, = ( 2(‘]) >’ My = —M, M, = —M,, (AS)
P N, 0 Ny(—q)
where
—ak, ak, 0O 0
mg D V2np(z) | ake ak, 0 0
1= : 4x4> 1=
2/ f(2) 1(z) 0 0 pk. Pk,
0 0 ﬁky _ﬂkx
Paq) 0 b ko)
! 2\ Y Ve
Na(q) = ( > and Py(q) . (A6)
f\ 0 Paq) k, + <w7 >,<(z>)> —k,
2)g(z -

The horizon value of the bulk green function is G(z;,) = ilg,g. With this, we numerically calculated the spectral function in
presence of backreaction that shows a g-wave like fermionic gap in the Fig. 8.
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4

kX
(a) No interaction n=0

(b) With both interactions n=1

FIG. 8. The g-wave spectral function from two flavor fermions
with two d-wave (d,>_,» and d,,) condensate at T = 0.125T.
(a) Fermi surface: when no interaction or one of interaction turn
off (@ = 0 or # = 0). (b) The g wave: when both interactions turn
on n=1,a= \/%,[} = \/%, which means that flavor one is
coupling with d,>_,» condensate and another flavor is coupling

with d,, condensate.

2. With vector field

Here, we start with one flavor fermion with p ,-wave and
py-wave vector condensates. We will show that the p, + p,
wave rotates the Fermi arc position in momentum space.
The Lagrangian for vector condensates reads

s, = / dx /= [217 (R-20)+L,|. (A7)

where the matter Lagrangian density is

field ansatz V = ¢, (z)[adx + Bdy], we obtain

2K2 73 a1 AT by
g+ P [g¢§3+ f; . } =0, (A9)
3 3 d Z2Al2
= S f =z mPphdy + 5| =0, (A10
r-2rede Lol S5 <o (a0)
g
A?—%Aé—%pm:o, (AL1)
4 g A7 m*L?
" o T S — =0, Al2
v L o |- g, 0. (a2

where p2, = |@* + |B|>. Using horizon and boundary
condition of the vector field [51], we solve all the fours
fields for a given value of % The interaction between vector

field and fermion is given by L, =wV,[*y.+ H.c.
Using this interaction, we find the flow equation

0.G(z) + I'MTG(2) — G(2)M; — G(z)M,I'G(z)

+IMy, =0, (A13)

where the matrix M; is given by

1 Los
Lo== 3 FuP" =S ViV = m2ViVE.  (A8)
M3 = _Ml M4 = _Mz, (A14)
The covariant derivative of the vector field is defined as
Vw=9,V,-0oV,-iq,AV,+iq,AV, With vector  where
|
. j 0 -1 /=1 0
b P =N (0 ) (1 0]
2/ f(2) fL =1 0 0 1
o n et
i ’ f(2)9(z
N = Al5
2(‘1) f(z) kx + (w+qA,(z)) _kv ( )

The spectral function at 7 = 0.2337 .. is shown in Fig. 9 for
A =2(m*>=0) and m; = 0. The p, + ip, wave rotates
the Fermi arc position which confirms again that the p-
wave order parameter [51]is V,, = ¢, (z)[@cos & + fsin 0)].
An s-wave fermionic spectral function can be derived from
the (p, + ip,)-wave order parameter, similar to how we
obtained it from the (d,>_,» + id,,)-wave order parameter.

a. Two flavor fermions with vector field

The interaction term of two flavor fermion with p, and
py vector condensate can be expressed in the following
form:

L= Y POV + Hc),
i=1,2

(A16)
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s wave gap

(@) po wave: (b) py wave: (¢) Pz +~py wave: (d) P+ ipy wave: ‘
(@.8) = (1,0) (&.6) = (0,1) @8) = (5. 5) (@.8) = (L. &)

FIG.9. One flavor fermionic spectral function with vector condensate at 7 = 0.2337T,.. The plot (d) shows a s-wave fermionic spectral
function from (p, + ip,)-wave order parameter.

FIG. 10. Spectral function in the presence of the interaction of one flavor fermion with p,-wave condensate and the interaction of
another flavor fermion with p,-wave condensate at T = 0.233T . shows a d-wave spectral function.

where V() = @¢,(z)dx and V) = B¢, (z)dy. The flow equation becomes
0.G(z) +TMsI'G(z) — G(2)M, — G(z)M,T'G(z) +TM, =0, (A17)

where G(z) is 8 x 8 matrix and the matrix M, is given by

Ny Py N2 (q) 0
Ml - N Mz - N M3 - _Ml M4 - —Mz. (A18)
P =N 0 Ny(—q)

All 4 x 4 matrices in the above expression are given by

0O —-a 0 0
m ip ()| -a 0 0 o0
Nl == _7fl4><47 Pl = [7( ) . ,

2/ f(2) fo)1 0 0 -5 0
0 0 0 p

k. k. — (@tdA(2)

i (Pale) O ! RV/IErE

’ f(2) 0 P, (q) ? k. + (0+¢A,(2) —k

f(2)g(z) Y
The resulting spectral function is given in Fig. 10. This shows a clear d-wave fermionic spectral function from the

interaction of flavor one with p,-wave condensate and another flavor with p-wave condensate at T = 0.233T ... Therefore,
combining two condensates with two-flavor fermions gives a spectral function exhibiting higher orbital symmetry.
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