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We consider the d-wave holographic superconductor model with full backreaction on the metric,
addressing a missing part in the literature. We have identified the gap function by comparing the fermionic
spectral function with the momentum-dependent order parameter. By numerical investigations of the
fermionic spectral function in the presence of a tensor condensate, we find the Fermi arc and the gapped
behavior, which closely resembles angle resolved photoemission spectrum data. Moreover, we have
examined the influence of the coupling constant, chemical potential, and temperature on the spectral function.
We find that d-wave fermionic spectral function can be obtained through px and py condensates combined
with two fermion flavors. Similarly, combining dx2−y2 and dxy orbitals symmetry with two fermion flavors
leads to a g-wave spectral function.
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I. INTRODUCTION

Angle resolved photoemission spectrum (ARPES) data
[1] indicates that most unconventional superconductors
exhibit d-wave orbital symmetry. However, understanding
the theoretical aspects of these systems remains elusive
due to the limitations of conventional methods in describ-
ing strongly coupled systems. To address this, the gauge/
gravity duality [2–4] offers an approach by employing a
weakly coupled dual system in one higher dimension
[5–13]. The relationship between the energy gap and the
critical temperature of high Tc superconductors [14] has
been given in [15] in the simplest dual gravitational system
[16] with scalar hair. This system exhibits a second-order
phase transition from anti–de Sitter (AdS)-Schwarzchild
geometry to hairy black hole geometry and is referred to as
s-wave holographic superconductors, characterized by an
isotropic energy gap. To include anisotropic gap function in
holographic superconductors, we need p-wave and d-wave
gaps that had been realized in spin-one fields [17–19]) and
tensor fields [20–26], respectively.
Considerable amount of works [27–48] have been done

using gravitons and photons in the bulk. Although less
attention has been paid to the fermionic side, there have been
some works on the fermion spectral function, exhibiting

distinct spectral features in the presence of the scalar [49,50],
vector [18,51], and tensor [20,21,52,53] condensations. The
presence of someof such condensations gives rise to the Fermi
arc for p- and d-wave holographic superconductors. In the
case of spin-two fields, the Lagrangian density becomes
somewhat intricate. The initial formulation of d-wave holo-
graphic superconductivity [21] did not treat the number of
degrees of freedom properly. Based on earlier investigations
on the spin two fields [54,55], the formulation of an proper
action for a massive charged spin two field was accomplished
byBenini,Herzog,Rahman, andYarom in [20], by employing
the Einstein condition that forbids the backreaction, so that in
their setup we have to investigate d-wave holographic super-
conductors in the probe limit only. However, the full back-
reacted geometry [41,56,57] can play an important role [58].
In this paper, we reformulate the Benini, Herzog,

Rahman, and Yarom Lagrangian by replacing the Einstein
condition with the traceless condition in the constraint
equation for spin-two fields. This allows the presence of
the backreaction of tensor condensate to the metric. Another
concern in d-wave holographic superconductors is about the
momentum dependence of the order parameter, which
should be consistent with that of the fermion spectral
function. In all previous computations, the order parameter
was considered as Bxx, which is independent of the
momentum direction. One of our aims here is to identify
the precise d-wave order parameter that has angular depend-
ence in momentum space consistent with that of the fermion
spectral function. We will identify the correct d-wave order
parameter as Bρρ where ρ is the radial direction in the xy
plane. The detailed analysis of the Fermi arc in the presence
of the d-wave gap and full backreaction is presented here for
various orbital symmetries. We also examine the effect of
coupling strength, the chemical potential and temperature on
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the spectral function. We have shown that the d-wave
spectral function can be obtained from the two different
p-wave condensates with two fermion flavors. Similarly,
two fermion flavors with condensates of two different tensor
fields lead to g-wave spectral function. These may be useful
to describe higher orbital superconductivity.
This paper is organized as follows. In Sec. II, we argue

that one can construct a Lagrangian density without
imposing the Einstein condition. This allows the presence
of the backreaction of matter fields on the background
geometry. In Sec. III, we numerically investigate the critical
temperature and all bosonic configurations. In Sec. IV, we
describe how to calculate the boundary fermion Green’s
function using the flow equation. In Sec. V, we analyze the
spectral function of various cases. We summarize and
conclude in Sec. VI.

II. BASIC SETUP FOR SPIN-TWO FIELD

The Fierz-Pauli Lagrangian for a spin-two field in flat
space, presented in [59], is given by

L ¼ 1

4
½−∂ρBμν∂

ρBμν þ 2BμBμ − 2Bμ
∂μBα

α þ ∂μBα
α∂

μBα
α

−m2ðBμνBμν −Bα
αBα

αÞ�; ð2:1Þ
where Bμ ¼ ∂

αBαμ. Since the tensor field Bμν represents a
spin-two field, it naturally follows that Bμν is symmetric
tensor field. For d ¼ 4, the number of independent compo-
nents of Bμν are 10. The physical degree of freedom of a
field with spin s is 2sþ 1 assuming that the field is massive.
Therefore, we need five constraints equation for Bμν. The
Fierz-Pauli Lagrangian is designed such that the necessary
constraints are obtained as the consequence of the equations
of motion (EOMs) and their derivatives. It is good idea to
remind that for a massive spin one field Aμ, the constraint
equation ∇μAμ ¼ 0 is derived by taking a derivative of
equation of motion of Aμ, which results in three physical
degree of freedom of spin one field. In similar fashion, we
can derive the constraint equations for a spin-two field. The
EOM from the Fierz-Pauli Lagrangian is given as follows:

∂
2Bμν − ∂α∂μBα

ν − ∂α∂νBα
μ þ ∂μ∂νBα

α þ ημν∂
α
∂
βBαβ

− ηαβ∂
2Bα

α −m2ðBμν − ημνBα
αÞ ¼ 0; ð2:2Þ

where ημν is the flat space metric. By taking divergence on
Eq. (2.2), we derive

∂
μBμν − ∂νBα

α ¼ 0: ð2:3Þ

Substituting Eq. (2.3) in Eq. (2.2), we get

∂
2Bμν − ∂μ∂νBα

α −m2ðBμν − ημνBα
αÞ ¼ 0: ð2:4Þ

Contracting with ημν in the above equation leads to the
traceless condition of spin-two field Bα

α ¼ 0. Substituting
the traceless condition into Eq. (2.3), we get the transverse
condition ∂

μBμν ¼ 0. We now have five constraints equa-
tions, which are traceless and transverse conditions, as a
consequence of EOMs. This yields five independent com-
ponents of the symmetric tensor field Bμν, which is the
physical degree of freedom of spin-two field. The final
equation of motion of spin-two field along with constraints
in flat space reads

∂
α
∂αBμν −m2Bμν ¼ 0; ð2:5Þ

∂μBμν ¼ 0; and Bμ
μ ¼ 0: ð2:6Þ

This yields the correct number of degrees of freedom for the
dynamics of a spin-two field in flat space. The generaliza-
tion of the above procedure in curved spacetime is nontrivial
since the noncommutativity of the covariant derivatives
introduces curvature dependent terms. The Lagrangian
construction for a neutral massive spin-two field in curved
spacetime with correct counting of the degrees of freedom
was developed in [55] using two distinct methods. In one
approach, the condition of vanishing Einstein tensor,
Gμν ¼ 0, was employed. In this scenario, all matter fields
cannot exert a backreaction on the metric. In the alternate
method, the static background condition was adopted to
ensure the consistency of constraint equations, allowing
matter fields to affect the metric. A detailed analysis of the
Reissner-Nordstrom black hole solution was presented in
[55]. We closely follow the procedure in [55] where the
Lagrangian for a charged massive spin-two field in AdS
spacetime was formulated under the Einstein condition, as
described in [20]. We argue that the Einstein condition
can be replaced by the traceless condition of the field, which
is one of the constraints equation of the field. Then the
backreaction of matter fields can be considered. The
Lagrangian for a symmetric tensor in curved space can
be expressed as follows [20]:

L ¼ −jDρBμνj2 þ 2jDμBμνj2 þ jDμBρ
ρj2 − ðDμB�μνDνBρ

ρ þ H:c:Þ −m2ðjBμνj2 − jBμ
μj2Þ

þ c1RμνρλB�μρBνλ þ c2RμνB�μρBν
ρ þ c3RjBμνj2 þ iqc4FμνB�μρBν

ρ þ c5RjBρ
ρj2

þ c6ðeiϕRμνB�μνBρ
ρ þ H:c:Þ; ð2:7Þ

where Bμ ¼ DαBαμ and Rμνρλ; Rμν; R are the Riemann tensor, Ricci curvature, and Ricci scalar of the background spacetime,
respectively. The corresponding equation of motion
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Eμν ¼ ðDαDα −m2ÞBμν − ðDμBν þDνBμÞ þ
1

2
ðDμDνBρ

ρ þDνDμBρ
ρÞ þ gμνDαBα

− gμνðDαDα −m2ÞBρ
ρ þ c1RμρνλBρλ þ c2

2
ðRμαBα

ν þ RναBα
μÞ þ c3RBμν

þ c4
iq
2
ðFμαBα

ν þ FναBα
μÞ þ c5gμνRBρ

ρ þ c6ðeiϕRμνBρ
ρ þ e−iϕgμνRαβBαβÞ ¼ 0: ð2:8Þ

We now try to calculate all the coefficient ci from the constraint equation DμDνEμν ¼ 0, which gives [20]

ðc1 − 2ÞRμανβDμDνBαβ þ c2RμαDμBα þ ðc3R −m2ÞDαBα þ iqð1þ c4ÞFαβDαBβ

þ ðc5Rþm2ÞDμDμBρ
ρ þ c6e−iϕRαβDμDμBαβ þ ð1þ c6eiϕÞRμαDμDαBρ

ρ þ � � � ¼ 0; ð2:9Þ

where the ellipsis denotes terms that contain at most a single
derivative of the spin-two field. Since no second derivative
term exists in any constraint equation, all terms involved in
second-order derivatives in the above equation must vanish.
This leads to contradictory equations for c6. To remove this
contradiction, we use the traceless condition of the spin
two field ðBρ

ρ ¼ 0Þ instead of the Einstein condition.
Substituting Bρ

ρ ¼ 0 in the above equation, we get

ðc1 − 2ÞRμανβDμDνBαβ þ c2RμαDμBα þ ðc3R−m2ÞDαBα

þ iqð1þ c4ÞFαβDαBβ þ c6e−iϕRαβDμDμBαβ þ � � � ¼ 0:

ð2:10Þ

The above equation becomes a constraint equation when all
second derivative terms are eliminated, which leads

c1 ¼ 2; c2 ¼ 0; c3 ¼ 0; c4 ¼ −1;

c6 ¼ 0; and m2 ¼ 0: ð2:11Þ

In the above method, we have not used Einstein condition to
determine ci. Therefore, we can consider the backreaction
of the matter field on the background geometry. The
Lagrangian for a traceless symmetric spin-two field with
Maxwell’s term then is given by

Lm ¼ −jDαBμνj2 þ 2jDμBμνj2 þ 2RμνρλB�μρBνλ

− iqFμνB�μλBν
λ −

1

4
FμνFμν: ð2:12Þ

III. HOLOGRAPHIC d-WAVE
SUPERCONDUCTOR

The action for d-wave holographic superconductors
reads

S ¼ 1

2κ2

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2Λþ 2κ2Lm�; ð3:1Þ

where Λ is the cosmological constant and κ2 is the
gravitational Newton constant. The equation of motions
for the tensor field and gauge field yield

□Bαβ − ðDαBβ þDβBαÞ þ 2RαμβνBμν

− iq
2
ðFαμB

μ
β þ FβμB

μ
αÞ ¼ 0; ð3:2Þ

DμFμν − ½iqB�
αβðDνBαβ −DαBνβÞ þ iqB�

αBνα þ H:c:� ¼ 0

ð3:3Þ

The Einstein field reads

Rαβ −
1

2
gαβRþ Λgαβ ¼ 2κ2Tαβ; ð3:4Þ

where Tαβ ¼ 1
2
gαβLm − δLm

δgαβ. Considering the backreacted

four-dimensional metric in the following simplified form:

ds2 ¼ L2

z2

�
−fðzÞgðzÞdt2 þ dz2

fðzÞ þ dx2 þ dy2
�
; ð3:5Þ

where L is the AdS radius. For this given black hole
geometry, the Hawking temperature is

TH ¼ jf0ðzhÞj
ffiffiffiffiffiffiffiffiffiffiffi
gðzhÞ

p
4π

: ð3:6Þ

To introduce both symmetry dx2−y2 and dxy in the system,
we consider the tensor field in following form:

B ¼ L2ϕðzÞffiffiffi
2

p
z2

½αðdx2 − dy2Þ þ 2βdxdy�: ð3:7Þ

When α ¼ 0 (β ¼ 0), we will get only dxy (dx2−y2)
symmetry. The matter field ansatz in general reads

B ¼ BxxðzÞdx2 þ BxyðzÞdxdyþ ByxðzÞdydxþ ByyðzÞdy2:
ð3:8Þ
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Using the symmetric and traceless condition of the spin-
two field, the above matter field ansatz in polar coordinate
becomes

B ¼ Bρρdρ2 þ 2Bρθdρdθ þ Bθθdθ2; ð3:9Þ

where

Bρρ ¼ cos 2θBxx þ sin 2θBxy;

Bθθ

ρ2
¼ − cos 2θBxx þ sin 2θBxy;

Bρθ

ρ
¼ − sin 2θBxx þ cos 2θBxy: ð3:10Þ

Since Bθθ and Bρθ have coordinate singularity, the angle
dependent order parameter for d-wave superconductor is
Bρρ. With the tensor field ansatz (3.7), the corrected order
parameter reads

Bρρ ¼
L2ϕðzÞffiffiffi

2
p

z2
½α cos 2θ þ β sin 2θ�: ð3:11Þ

With gauge field ansatz A ¼ AtðzÞdt, equation of motion
of all fields are

g0ðzÞ þ 2κ2zd2m

�
gðzÞϕ0ðzÞ2 þ 2gðzÞϕðzÞ2

z2
þ q2AtðzÞ2ϕðzÞ2

fðzÞ2
�

¼ 0; ð3:12Þ

f0ðzÞ − 3fðzÞ
z

þ 3

z
þ fðzÞg0ðzÞ

2gðzÞ þ 2κ2

z
d2m

�
fðzÞϕðzÞ2

−
z4A0

tðzÞ2
4L2d2mgðzÞ

�
¼ 0; ð3:13Þ

A00
t ðzÞ −

g0ðzÞ
2gðzÞA

0
tðzÞ −

2q2L2d2mϕðzÞ2
z2fðzÞ AtðzÞ ¼ 0; ð3:14Þ

ϕ00ðzÞ þ
�
f0ðzÞ
fðzÞ þ

g0ðzÞ
2gðzÞ −

2

z

�
ϕ0ðzÞ þ

�
q2AtðzÞ2
fðzÞ2gðzÞ

�
ϕðzÞ ¼ 0;

ð3:15Þ

where d2m ¼ jαj2 þ jβj2. The horizon condition fðzhÞ ¼ 0
and Eq. (3.13) lead us to determine the Hawking temper-
ature, which reads

TH ¼ 3
ffiffiffiffiffiffiffiffiffiffiffi
gðzhÞ

p
4πzh

�
1 −

κ2

3

�
z3hA

0
tðzhÞ2

2L2gðzhÞ
��

: ð3:16Þ

At the boundary of this spacetime should be an asymp-
totically AdS spacetime that imposes the boundary con-
dition on gðz ¼ 0Þ ¼ 1. Therefore the field equations at the
boundary becomes

A00ðzÞ ¼ 0 and ϕ00ðzÞ − 2

z
ϕ0ðzÞ ¼ 0; ð3:17Þ

which gives the asymptotic behavior of the gauge field and
vector field in terms of quantities of boundary theory in
following way:

AtðzÞ ¼ μ − ρ̃z and ϕðzÞ ¼ Cs þ Ccz3; ð3:18Þ

where μ; ρ̃; Cs; Cc are the chemical potential, charge
density, source term, and expectation value of angle
independent condensation of the boundary theory, respec-
tively. From Eq. (3.11), the angle dependent order param-
eter for the d-wave holographic superconductor can be
mapped with the condensation value of the boundary theory
in following way:

Bρρ ¼
L2ϕðzÞffiffiffi

2
p

z2
½α cos 2θ þ β sin 2θ� ¼ hOiz ð3:19Þ

when the source (Cs) is zero. Therefore, the angle depen-
dent condensation operator reads

hOi ¼ L2Ccffiffiffi
2

p ½α cos 2θ þ β sin 2θ� ¼ L2Cclffiffiffi
2

p cosð2θ − θ1Þ;

ð3:20Þ

where l2 ¼ α2 þ β2 and tan θ1 ¼ β
α are determined from the

given value of real value α and β. The above expression
clearly shows that the mixing of dx2−y2 and dxy symmetry in
system rotates the gap structure. In order to determine the
angle dependent condensation operator value, we now need
to calculate the Cc value in the full backreacted system.
This gives us momentum dependent gap structure in
Fourier space ðkx; kyÞ with help of the following identi-
fication:

Δk¼FT½hOi�¼ 1

2πa2

Z
a

0

Z
2π

0

hOie−iðkxρcosθþkyρsinθÞρdρdθ;

ð3:21Þ

where a is the sample size and FT½…� is the two-
dimensional Fourier transformation.

A. The critical temperature and momentum dependent
order parameter

In this subsection, we will employ the Shooting method
to numerically solve the system of coupled equations, given
by Eqs. (3.12)–(3.15). With help of scaling symmetry
[53,57] of the equation of motion of all fields, we can
set L ¼ 1 and 2κ2 ¼ 1. To successfully solve these equa-
tions, it is essential to provide appropriate boundary
conditions for all fields, which are
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AtðzhÞ ¼ 0; fðzhÞ ¼ 0; gð0Þ ¼ 1; Cs ¼ 0: ð3:22Þ

By specifying ðT; μÞ parameters, we are able to obtain
solutions for all the equations in the system. To unveil the
near-horizon behavior of the fields, we employ a Taylor
series expansion, allowing us to express the fields as
follows:

ðVyðzÞ; AtðzÞ; fðzÞ; gðzÞÞ ≈
X5
i¼0

ðVyi; Ati; fi; giÞ
�
1 −

z
zh

�
i
:

ð3:23Þ

By substituting the aforementioned expansion into the field
equations, as given by Eqs. (3.12)–(3.15), we establish a
relation between the coefficients ðVyi; Ati; fi; giÞ and the
horizon data ðVy0; At1; zh; g0Þ. Through the imposition of
the boundary conditions and the subsequent solution of the
equations of motion for the fields, we can determine the
horizon data for a given combination of ðT; μÞ, denoted as
ðT0; μ0Þ. The utilization of these field equations, as pre-
sented in Eq. (3.23), in conjunction with the solution for the
horizon data, yields the complete configurations of all
fields for a desired ratio T

μ.
With the choice of the charge of the tensor field q ¼ 2,

and utilizing Eq. (3.16), we have determined that
Tc ≈ 0.02μ. Remarkably, this critical temperature remains
consistent regardless of the symmetry parameter, whether it
is for dxy-wave ðα ¼ 0; β ¼ 1Þ superconductivity, or for
dx2−y2-wave ðα ¼ 1; β ¼ 0Þ superconductivity, or for
ðdx2−y2 þ dxy)-wave ðα ¼ 1ffiffi

2
p ; β ¼ 1ffiffi

2
p Þ superconductivity.

Furthermore, for a fixed temperature, the condensation
value is approximately Cc ≈ 0.05522μ3 for all three types
of superconductivity: dxy wave, dx2−y2 wave, and dx2−y2 þ
dxy wave. The field configurations are illustrated in Fig. 1.
Moving forward, we employ this field solution and
Eq. (3.21) to plot the momentum-dependent gap structure
at T ¼ 0.125Tc, as depicted in Fig. 2. Subsequently, in a
subsequent section, we will explore the fermionic spectral
function, which will exhibit a Fermi arc at a 45° angle in

momentum space for the dx2−y2-wave symmetry. This
analysis will provide support for the proposition that the
order parameter in d-wave holographic superconductors
should be Bρρ instead of Bxy or Bxx.

IV. FERMION WITH TENSOR CONDENSATION

A. Fermionic setup

The fermionic action can be expressed as [20]

Sψ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½iψ̄ðΓμDμ −mfÞψ

− iψ̄cðΓμD�
μ −mfÞψc þ Lint�;

Lint ¼ η�B�
μνψ̄cΓμDνψ − ηψ̄ΓμDνðBμνψcÞ: ð4:1Þ

Here, η represents the coupling constant. The spinor’s

covariant derivative is denoted by Dμ ¼ ∂μ þ 1
4
ωμαβΓ

αβ−
iqfAμ. Additionally, the field ψc ¼ ψ� corresponds to the
complex charge conjugate field of the fermion, which is
treated as an independent field throughout the computa-
tions in this framework. The boundary action for standard
quantization [60,61] is given by

Sbdy ¼ i
Z

d3x
ffiffiffiffiffiffi
−h

p
ðψ̄ψ þ ψ̄cψcÞ: ð4:2Þ

For this formulation, we adopt the following set of bulk
gamma matrices:

Γt ¼ σ1 ⊗ iσ2; Γx ¼ σ1 ⊗ σ1; Γy ¼ σ1 ⊗ σ3;

Γz ¼ σ3 ⊗ σ0; ð4:3Þ

where underline indices represent tangent space indices.
We obtain the Dirac equation [20]

ðΓμDμ −mfÞψ þ iI intψc ¼ 0; ð4:4Þ

where I int ¼ 2ηBμνΓμDν þ ηBμΓμ. To simplify the analy-
sis, we express the fermionic field as follows:

FIG. 1. Backreacted profiles at three different temperatures.

ORDER PARAMETER AND SPECTRAL FUNCTION IN d-WAVE … PHYS. REV. D 109, 066004 (2024)

066004-5



ψðt; x; y; zÞ ¼ 1

ð−ggzzÞ1=4 e
−iωtþikxxþikyyΨðzÞ: ð4:5Þ

This form allows us to eliminate the spin connection term in
the spinor’s equation of motion. By substituting the
aforementioned spinor into the Dirac equations, we derive
the following expressions:

2
64Γz

∂z − i

0
B@

ffiffiffiffiffiffi
gtt

gzz

s
ðωþ qfAtÞΓt −

ffiffiffiffiffiffi
gxx

gzz

s
kxΓx −

ffiffiffiffiffiffi
gyy

gzz

s
kyΓy

1
CA

−
mfffiffiffiffiffiffi
gzz

p

3
75ΨðzÞ þ iffiffiffiffiffiffi

gzz
p Ĩ intΨcðzÞ ¼ 0; ð4:6Þ

where Ĩ int ¼ −
ffiffi
2

p
iηϕðzÞ
z2 ðgxxÞ32½αðkxΓx − kyΓ

yÞ þ βðkxΓy þ
kyΓxÞ� since the metric is isotropic xy plane. The field
equation for conjugate fermion is

2
64Γz

∂z þ i

0
B@

ffiffiffiffiffiffi
gtt

gzz

s
ðω − qfAtÞΓt −

ffiffiffiffiffiffi
gxx

gzz

s
kxΓx −

ffiffiffiffiffiffi
gyy

gzz

s
kyΓ

y

1
CA

−
mfffiffiffiffiffiffi
gzz

p

3
75ΨcðzÞ −

iffiffiffiffiffiffi
gzz

p Ĩ intΨðzÞ ¼ 0: ð4:7Þ

We express the four-component spinor as

ΨðzÞ ¼
�ΨþðzÞ
Ψ−ðzÞ

�
; where Ψ� ¼

�Ψ�1

Ψ�2

�
; ð4:8Þ

which allows us to formulate the Dirac equation as follows:

�
∂z ∓ mfffiffiffiffiffiffi

gzz
p

�
Ψ�ðzÞ ¼ �

�
iKμγ

μΨ∓ðzÞ

þ
ffiffiffi
2

p
ηgxxϕðzÞ
z2

ðαKμγ
μ
ðαÞ

þ βKμγ
μ
ðβÞÞΨc∓ðzÞ

�
; ð4:9Þ

where Kμ ¼
� ffiffiffiffi

gtt

gzz

q
ðωþ qfAtÞ;−

ffiffiffiffiffi
gxx

gzz

q
kx;−

ffiffiffiffiffi
gyy

gzz

q
ky

�
, γμ ¼

ðiσ2; σ1; σ3Þ; γμðαÞ ¼ ð0; σ1;−σ3Þ, and γμðβÞ ¼ ð0; σ3; σ1Þ. In a
similar manner, we can reformulate the equation of motion
for the conjugate fermion. In the asymptotic limit as z → 0,
we consider gμν → z2ημν, where ημν is the Minkowski
metric. Consequently, the behavior of the spinor in this
regime is given by

ΨþðzÞ ¼ Azmf þ Bz1−mf ; Ψ−ðzÞ ¼ Dz−mf þCz1þmf ;

ð4:10Þ

ΨcþðzÞ ¼ Ã�zmf þ B̃�z1−mf ;

Ψc−ðzÞ ¼ D̃�z−mf þ C̃�z1þmf : ð4:11Þ

Here, A, B, C, D are two-component spinors that are
determined by solving the complete bulk Dirac equations.
For jmfj < 1

2
, the leading term yields the boundary spinor

solutions as follows:

ΨðzÞ ≈
�

Azmf

Dz−mf

�
; ΨcðzÞ ≈

�
Ã�zmf

D̃�z−mf

�
: ð4:12Þ

Remarkably, we have found that the leading order of the
asymptotic behavior of the fields is always z�mf for
jmfj < 1

2
, and this behavior remains independent of the

interaction. The two-component spinor captures the in-
fluence of the interactions. Following same procedure as
in [51], we can write down the boundary action in
following form:

FIG. 2. Momentum dependent order parameter at T ¼ 0.125Tc for different symmetries.

GHORAI, YUK, and SIN PHYS. REV. D 109, 066004 (2024)

066004-6



Sbdy ¼
Z

d3x½ξðCÞ†Γ̃ξðSÞ þ ξðSÞ†Γ̃ξðCÞ�; ð4:13Þ

where the boundary gamma matrix Γ̃ ¼ σ0 ⊗ ð−σ2Þ and
the source and condensation are given by

ξðSÞ ¼
� Ψþ
Ψc−

�
¼z→0

�
Azmf

D̃�z−mf

�

and ξðCÞ ¼
� Ψ−

Ψcþ

�
¼z→0

�
Dz−mf

Ã�zmf

�
: ð4:14Þ

This is the Namubu-Gorkov spinor representation, which
represents the particle-hole symmetry.

B. Green function from flow equation

Rearranging all components of Eqs. (4.6) and (4.7), we
can recast the Dirac equations in the following structure:

∂zξ
ðSÞ þM1ξ

ðSÞ þM2ξ
ðCÞ ¼ 0; ð4:15Þ

∂zξ
ðCÞ þM3ξ

ðCÞ þM4ξ
ðSÞ ¼ 0; ð4:16Þ

where 4 × 4 matrix Mi; i ¼ 1; 2; 3; 4 are determined from
(4.6), (4.7). We have calculated those Mi, which are

M1 ¼
�

N1 P1

−P1 −N1

�
; M2 ¼

�
N2ðqÞ 0

0 N2ð−qÞ

�
;

M3 ¼ −M1; M4 ¼ −M2; ð4:17Þ

where

N1 ¼−
mf

z
ffiffiffiffiffiffiffiffiffi
fðzÞp 12×2;

P1 ¼
ffiffiffi
2

p
ηϕðzÞffiffiffiffiffiffiffiffiffi
fðzÞp �

α

�−ky kx
kx ky

�
þ β

�
kx ky
ky −kx

��

N2ðqÞ ¼
iffiffiffiffiffiffiffiffiffi
fðzÞp

0
B@ ky kx−

ðωþqAtðzÞÞffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞgðzÞ

p

kxþðωþqAtðzÞÞffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞgðzÞ

p −ky

1
CA: ð4:18Þ

Following the procedure in [50,51], we get flow equation of
bulk Green’s function in the following form:

∂zGðzÞ þ Γ̃M3Γ̃GðzÞ − GðzÞM1 − GðzÞM2Γ̃GðzÞ
þ Γ̃M4 ¼ 0: ð4:19Þ

From the horizon behavior of spinor, we can find the
horizon value of the bulk Green’s function [50]

GðzhÞ ¼ i14×4: ð4:20Þ

The boundary retarded Green’s function is determined the
solution of bulk Green’s function at the boundary as
follows:

Gr ¼ lim
z→0

UðzÞGðzÞUðzÞ; ð4:21Þ

whereUðzÞ ¼ diagðzm; zm; z−m; z−mÞ andGr is the retarded
Green function, defined from the boundary action [60]. For
the numerical evaluation of the Green function, we will fix
the mass of the fermion to be zero (mf ¼ 0) and charge of
fermion to be 1 since q ¼ 2qf. The fermionic spectral
function is defined as

Aðω; kx; kyÞ ¼ Tr½Im½Gr��: ð4:22Þ

In the presence of fully backreacted bosonic fields, we will
study the spectral function and will compare the spectral
function in probe limit case with backreaction case in the
next section.

V. FERMIONIC GAP IN THE PRESENCE
OF TENSOR CONDENSATION

To incorporate the Fermi arc characteristic into holo-
graphic superconductors, we need to examine the fermionic
spectral function within the framework of holographic
superconductors. To acquire the fermionic spectral func-
tion, we employ numerical methods to solve the flow
equation (4.19), utilizing the bulk Green function (4.20)
evaluated at the horizon. In the probe limit, we examine the
fermionic spectral function in the AdS-Schwarzschild
background, wherein the influence of the bosonic matter
field on the underlying spacetime is disregarded. In the
absence of any bosonic condensate, the holographic fer-
mion setup unveils a Fermi surface, whose Fermi momen-
tum is dictated by the chemical potential. The emergence of
the gap feature necessitates the introduction of interactions
between the fermion field and a bosonic field.
By considering the tensor field interaction with fermions,

we derive the d-wave fermionic spectral function, as
depicted in Fig. 3, for the dx2−y2-orbital symmetry with
the coupling constant η ¼ 1 at T ¼ 0.125Tc. In the plot of
ω versus kx ¼ ky ¼ k (at the 45° angle), no gap is observed,
while a nonzero fermionic gap is evident in the ω versus kx
plot. This arises due to the order parameter being zero at 45°
and maximal at 0° in momentum space. Consequently, the
kx-versus-ky plot displays a Fermi arc along the 45° angle in
momentum space for the dx2−y2 symmetry. The spectral
function’s band represents the particle and hole bands,
where the fermionic gap is defined as the gap in ω within
these two bands. For dxy symmetry, the position of the
Fermi arc is shifted by approximately 45° from that of
dx2−y2 . Moreover, a mixture of both symmetries leads to an
additional rotation of the Fermi arc by approximately 22.5°
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compared to dx2−y2 , as demonstrated in Eq. (3.20) and
Figs. 2, 4. Therefore, we can confirm that, in this holo-
graphic setup, the corrected angle-dependent order param-
eter is Bρρ rather than Bxx or Bxy.
Now we provide a comparative analysis of the fer-

mionic spectral function between the probe limit scenario
in our model and the case with backreaction, depicted in
Fig. 5, considering η ¼ 1 at T ¼ 0.125Tc. Here, we have
considered Schwarzschild-AdS black hole as a fixed
background for the probe limit case. The probe limit in
our Lagrangian leads to the same solution as in previous
literature [20] for the same set of parameters. This

illustration vividly demonstrates that the presence of back-
reaction exerts a substantial influence on the fermionic
spectral function. Notably, the introduction of backreaction
helps nullify the nonzero values of the spectral function
inside the arc region.
We also aim to explore the impact of the temperature-to-

chemical-potential ratio on the fermionic spectral function.
We have investigated the ω gap manifested in the fermionic
spectral function, which directly correlates with the mag-
nitude of the order parameter. Through the examination of
bosonic configuration, we know that the value of the order
parameter decreases as the temperature rises, eventually
reaching zero at the critical temperature Tc and beyond.
Correspondingly, the fermionic gap decreases as the
temperature increases, eventually vanishing at Tc, as
illustrated in Fig. 6. Figure 7 shows the influence of the
tensor interaction strength on the fermionic gap. It is
apparent that the Fermi arc deform little bit for higher
value of coupling strength. The gap amplifies in magnitude
as the coupling strength increases. The ARPES data [1]
shows that the structure of Fermi arc depends on the doping
strength. Therefore, the coupling strength can be related
with the doping parameter in the boundary theory.
To know the role of two flavor fermions in this setup,

which is related to sublattice symmetry in real materials, we
have explored two flavor fermions with two different

FIG. 3. Spectral function for dx2−y2 condensate ðα ¼ 1; β ¼ 0; η ¼ 1Þ at T ¼ 0.125Tc.

FIG. 4. Fermi arc in spectral function at T ¼ 0.125Tc with different d-wave symmetries. The dx2−y2 þ idxy wave gives a s-wave
fermionic spectral function.

FIG. 5. Spectral function in probe limit case and backreacted
cases at T ¼ 0.125Tc.
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condensate in the Appendix. We have found that two
fermion flavors with condensates of two different tensor
fields lead to higher orbital spectral function.

VI. DISCUSSION

In this paper, we have done a comprehensive examina-
tion of the fermionic spectral function under the influence
of a fully backreacted tensor condensation. We have
determined the critical temperature to be Tc ¼ 0.02μ for
the scaling dimension three and obtained all backreacted
field configurations below this critical temperature. By
employing these field configurations along with tensor
interactions of different orbital symmetries, specifically
dx2−y2 , dxy, and a combination of dx2−y2 and dxy, we have
conducted numerical investigations into the fermionic
spectral function. This has been accomplished by solving
the flow equation for the bulk Green function. Our analysis
has unveiled the presence of a d-wave Fermi arc in the
presence of the tensor field.
The momentum dependent order parameter, denoted as

Δk, is identified as angle-dependent tensor field component
Bρρ in momentum space. Comparing the momentum
dependence of the order parameter (Fig. 2) with that of
the fermion spectral function (Fig. 4), we confirm the
correct order parameter for d-wave holographic super-
conductors. The (dx2−y2 þ dxy)-wave condensation rotates
the Fermi arc position which confirms the d-wave order

parameter (3.20). We compare the spectral function in the
probe limit case with the backreacted case. The ðdþ idÞ-
wave condensation leads the s-wave fermionic gap that
exactly matches with previous findings [53]. Similarly, the
ðpþ ipÞ-wave condensation creates the s-wave fermionic
spectral function.
The higher value of the coupling constant decreases the

convexity of the Fermi arc. We have observed that as the
temperature increases, the condensation value decreases,
leading to a reduction in the fermionic gap. When the system
reaches its critical temperature, it undergoes a transition to
the normal phase. This transition is characterized by the
emergence of a Fermi surface in the spectral function,
attributed to the closure of the superconducting gap. The
spectral function closely aligns with the experimental find-
ings for high Tc superconductors mentioned in [1].
Furthermore, we have analyzed the role of two-flavor
fermions in the presence of a vector field and a tensor field,
resulting in a higher orbital symmetric fermionic spectral
function. The vector condensate in the px and py directions,
combined with two-flavor fermions, leads to a d-wave
fermionic spectral function. Moreover, the combination of
two d-wave symmetries (dx2−y2 and dxy) with two-flavor
fermions results in a g-wave-like fermionic spectral function.
This may have implications for the discovery of super-
conductivity with higher orbital symmetry. For the study of
the unconventional superconductors within a holographic
framework, the constructing the superconducting dome

FIG. 6. Effect of temperature on spectral function with dx2−y2 -condensate for η ¼ 1.

FIG. 7. Evolution of spectral function with the coupling strength at T ¼ 0.125Tc.
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through an examination of the spectral function is an
intriguing avenue, which is our future direction.
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APPENDIX: TWO FLAVOR FERMIONS: HIGHER
ORBITAL SPECTRAL FUNCTION

Here, we delve into the investigation of two-flavor
fermions within the context of vector and tensor conden-
sation. The underlying motivation for exploring this sce-
nario is to know whether the combination of two
condensates with two-flavor fermions results in a spectral
function exhibiting higher or lower orbital symmetry.

1. With tensor field

For tensor field, we have considered dx2−y2 condensate
with flavor one fermion and dxy condensate with another
flavor fermion. The corresponding interaction Lagrangian
density is

Lint ¼
X
i¼1;2

½η�B�ðiÞ
μν ψ̄c

ðiÞΓμDνψ ðiÞ − ηψ̄ ðiÞΓμDνðBðiÞ
μνψ

ðiÞ
c Þ�;

ðA1Þ

where i is the flavor index, and Bð1Þ ¼ αϕðzÞffiffi
2

p
z2
½dx2 − dy2� has

dx2−y2 symmetry and Bð2Þ ¼ 2
βϕðzÞffiffi
2

p
z2
dxdy has dxy symmetry.

We can easily promote our previous calculation (one flavor)
to two flavor by promoting the source and condensation in
following form

ξðCÞ ¼

0
BBBBB@

Ψð1Þ
−

Ψð2Þ
−

Ψð1Þ
cþ

Ψð2Þ
cþ

1
CCCCCA; and ξðSÞ ¼

0
BBBBB@

Ψð1Þ
þ

Ψð2Þ
þ

Ψð1Þ
c−

Ψð2Þ
c−

1
CCCCCA: ðA2Þ

The above expression is defined from following boundary
action:

Sbdy ¼ i
Z

d3x
ffiffiffiffiffiffi
−h

p X
i¼1;2

½ψ̄ ðiÞψ ðiÞ þ ψ̄c
ðiÞψ ðiÞ

c �: ðA3Þ

Using above setup, one can find a similar flow equation

∂zGðzÞ þ Γ̃M3Γ̃GðzÞ − GðzÞM1 − GðzÞM2Γ̃GðzÞ
þ Γ̃M4 ¼ 0; ðA4Þ

where GðzÞ is 8 × 8 bulk Green function matrix and all Mi are given by

M1 ¼
�

N1 P1

−P1 −N1

�
; M2 ¼

�
N2ðqÞ 0

0 N2ð−qÞ

�
; M3 ¼ −M1 M4 ¼ −M2; ðA5Þ

where

N1 ¼ −
mf

z
ffiffiffiffiffiffiffiffiffi
fðzÞp 14×4; P1 ¼

ffiffiffi
2

p
ηϕðzÞffiffiffiffiffiffiffiffiffi
fðzÞp

0
BBB@

−αky αkx 0 0

αkx αky 0 0

0 0 βkx βky
0 0 βky −βkx

1
CCCA

N2ðqÞ ¼
iffiffiffiffiffiffiffiffiffi
fðzÞp �

P2ðqÞ 0

0 P2ðqÞ

�
and P2ðqÞ ¼

0
BBB@

ky kx −
ðωþqAtðzÞÞffiffiffiffiffiffiffiffiffiffiffiffi

fðzÞgðzÞ
p

kx þ ðωþqAtðzÞÞffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞgðzÞ

p −ky

1
CCCA: ðA6Þ

The horizon value of the bulk green function is GðzhÞ ¼ i18×8. With this, we numerically calculated the spectral function in
presence of backreaction that shows a g-wave like fermionic gap in the Fig. 8.
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2. With vector field

Here, we start with one flavor fermion with px-wave and
py-wave vector condensates. We will show that the px þ py

wave rotates the Fermi arc position in momentum space.
The Lagrangian for vector condensates reads

Sb ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
ðR − 2ΛÞ þ Lv

�
; ðA7Þ

where the matter Lagrangian density is

Lv ¼ −
1

4
FμνFμν −

1

2
V†
μνVμν −m2V†

μVμ: ðA8Þ

The covariant derivative of the vector field is defined as
Vμν ¼ ∂μVν − ∂νVμ − iqvAμVν þ iqvAνVμ. With vector

field ansatz V ¼ ϕpðzÞ½α̃dxþ β̃dy�, we obtain

g0 þ 2κ2z3

L2
p2
m

�
gϕ02

p þ q2vA2
tϕ

2
p

f2

�
¼ 0; ðA9Þ

f0 −
3

z
f þ 3

z
þ g0

2g
f − κ2z

�
m2p2

mϕ
2
p þ

z2A02
t

2L2g

�
¼ 0; ðA10Þ

A00
t −

g0

2g
A0
t −

2q2vϕ2
p

f
p2
mAt ¼ 0; ðA11Þ

ϕ00
p þ

�
f0

f
þ g0

2g

�
ϕ0
p þ

�
q2vA2

t

f2g
−
m2L2

z2f

�
ϕp ¼ 0; ðA12Þ

where p2
m ¼ jα̃j2 þ jβ̃j2. Using horizon and boundary

condition of the vector field [51], we solve all the fours
fields for a given value of Tμ. The interaction between vector
field and fermion is given by Lint ¼ ψVμΓμψc þ H:c.
Using this interaction, we find the flow equation

∂zGðzÞ þ Γ̃M3Γ̃GðzÞ − GðzÞM1 − GðzÞM2Γ̃GðzÞ
þ Γ̃M4 ¼ 0; ðA13Þ

where the matrix Mi is given by

M1 ¼
�
N1 P1

P1 −N1

�
; M2 ¼

�
N2ðqÞ 0

0 N2ð−qÞ

�
;

M3 ¼ −M1 M4 ¼ −M2; ðA14Þ

where

N1 ¼ −
mf

z
ffiffiffiffiffiffiffiffiffi
fðzÞp 12×2; P1 ¼

iϕpðzÞffiffiffiffiffiffiffiffiffi
fðzÞp �

α̃

�
0 −1
−1 0

�
þ β̃

�−1 0

0 1

��

N2ðqÞ ¼
iffiffiffiffiffiffiffiffiffi
fðzÞp

0
BB@

ky kx −
ðωþqAtðzÞÞffiffiffiffiffiffiffiffiffiffiffiffi

fðzÞgðzÞ
p

kx þ ðωþqAtðzÞÞffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞgðzÞ

p −ky

1
CCA: ðA15Þ

The spectral function at T ¼ 0.233Tc is shown in Fig. 9 for
Δ ¼ 2ðm2 ¼ 0Þ and mf ¼ 0. The px þ ipy wave rotates
the Fermi arc position which confirms again that the p-
wave order parameter [51] is Vρ ¼ ϕpðzÞ½α̃ cos θ þ β̃ sin θ�.
An s-wave fermionic spectral function can be derived from
the (px þ ipy)-wave order parameter, similar to how we
obtained it from the (dx2−y2 þ idxy)-wave order parameter.

a. Two flavor fermions with vector field

The interaction term of two flavor fermion with px and
py vector condensate can be expressed in the following
form:

Lint ¼
X
i¼1;2

½ψ̄ ðiÞVðiÞ
μ Γμψ ðiÞ

c þ H:c:�; ðA16Þ

FIG. 8. The g-wave spectral function from two flavor fermions
with two d-wave (dx2−y2 and dxy) condensate at T ¼ 0.125Tc.
(a) Fermi surface: when no interaction or one of interaction turn
off (α ¼ 0 or β ¼ 0). (b) The g wave: when both interactions turn
on η ¼ 1; α ¼ 1ffiffi

2
p ; β ¼ 1ffiffi

2
p , which means that flavor one is

coupling with dx2−y2 condensate and another flavor is coupling
with dxy condensate.
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where Vð1Þ ¼ α̃ϕpðzÞdx and Vð2Þ ¼ β̃ϕpðzÞdy. The flow equation becomes

∂zGðzÞþ Γ̃M3Γ̃GðzÞ−GðzÞM1−GðzÞM2Γ̃GðzÞþ Γ̃M4¼0; ðA17Þ

where GðzÞ is 8 × 8 matrix and the matrix Mi is given by

M1 ¼
�
N1 P1

P1 −N1

�
; M2 ¼

�
N2ðqÞ 0

0 N2ð−qÞ

�
; M3 ¼ −M1 M4 ¼ −M2: ðA18Þ

All 4 × 4 matrices in the above expression are given by

N1 ¼ −
mf

z
ffiffiffiffiffiffiffiffiffi
fðzÞp 14×4; P1 ¼

iϕpðzÞffiffiffiffiffiffiffiffiffi
fðzÞp

0
BBB@

0 −α̃ 0 0

−α̃ 0 0 0

0 0 −β̃ 0

0 0 0 β̃

1
CCCA;

N2ðqÞ ¼
iffiffiffiffiffiffiffiffiffi
fðzÞp �

P2ðqÞ 0

0 P2ðqÞ

�
; P2ðqÞ ¼

0
BB@

ky kx −
ðωþqAtðzÞÞffiffiffiffiffiffiffiffiffiffiffiffi

fðzÞgðzÞ
p

kx þ ðωþqAtðzÞÞffiffiffiffiffiffiffiffiffiffiffiffi
fðzÞgðzÞ

p −ky

1
CCA: ðA19Þ

The resulting spectral function is given in Fig. 10. This shows a clear d-wave fermionic spectral function from the
interaction of flavor one with px-wave condensate and another flavor with py-wave condensate at T ¼ 0.233Tc. Therefore,
combining two condensates with two-flavor fermions gives a spectral function exhibiting higher orbital symmetry.

FIG. 10. Spectral function in the presence of the interaction of one flavor fermion with px-wave condensate and the interaction of
another flavor fermion with py-wave condensate at T ¼ 0.233Tc shows a d-wave spectral function.

FIG. 9. One flavor fermionic spectral function with vector condensate at T ¼ 0.233Tc. The plot (d) shows a s-wave fermionic spectral
function from (px þ ipy)-wave order parameter.
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