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Chiral form fields in d dimensions can be effectively described as edge modes of topological Chern-
Simons theories in dþ 1 dimensions. At the same time, manifestly Lorentz-invariant Lagrangian
description of such fields directly in terms of a d-dimensional field theory is challenging and requires
introducing nontrivial auxiliary gauge fields eliminated on shell with extra gauge symmetries. A recent
work by Arvanitakis et al. demonstrates (emphasizing the case of 2d chiral bosons) that the two approaches
are related, and a peculiar reduction on the (dþ 1)-dimensional topological Lagrangian automatically leads
to d-dimensional Lagrangians with appropriate sets of auxiliary fields. We develop this setup in three
distinct directions. First, we demonstrate how arbitrary Abelian self-interactions for chiral forms can be
included using nonlinear boundary terms in the Chern-Simons theory. Second, by generalizing the Chern-
Simons theory to the BF-theory, we obtain an analogous democratic description of nonchiral form fields,
where electric and magnetic potentials appear as explicit dynamical variables. Third, we discuss the effects
of introducing topological interactions in the higher-dimensional bulk, which produce extra interaction
terms in the boundary theory. When applied to a topological 4-form field in 12 dimensions, this
construction results in a democratic description of the 3-form gauge field of the eleven-dimensional
supergravity.
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I. INTRODUCTION

It has been known for a long time [1–5] that the
topological Chern-Simons theory and its BF generaliza-
tions can describe (chiral) p-form degrees of freedom on
the boundary. However, the generality and systematics of
this approach is not fully understood yet.
While the description of chiral fields as edge modes of

topological theory is graceful and simple, the fact that one
inevitably starts in a fictitious spacetime of one dimension
higher may be seen as a drawback. Attempts to describe
chiral fields as Lagrangian theories without introducing

extra dimensions, on the other hand, have met difficulties of
their own. Early ventures in this direction sacrificed
manifest Lorentz invariance [6–8]. The elegant Pasti-
Sorokin-Tonin (PST) approach [9–11] offers an economical
Lorentz-invariant formulation, but suffers from nonpoly-
nomial dependence of the action on an auxiliary scalar
field, and furthermore encounters difficulties when includ-
ing self-interactions [11]. We mention additionally the
approach of [12], where chiral fields are necessarily
accompanied by decoupled but propagating additional
degrees of freedom; See also [13,14].
Recently [15], Lorentz-covariant Lagrangians for arbi-

trary self-interacting chiral p-forms were found. The
description includes a doubled set of gauge fields and an
auxiliary scalar, which are gauged on shell to a single
propagating self-interacting chiral p-form [16].
The topological field theory approaches to chiral forms

have been pursued historically rather independently of the
line of research that builds Lagrangian descriptions of chiral
forms using auxiliary fields without introducing extra space-
time dimensions. A bridge connecting the two approaches
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was set up in a recent work by Arvanitakis et al. [19] who
found a reduction procedure [20] that allows deriving the
boundary theory from the Chern-Simons theory in the bulk.
The procedure naturally leads to a boundary theory in the
form of [15].
Our present purpose is to extend and generalize the

formulation of [19] in a few different directions. First,
arbitrary Abelian self-interactions can be introduced to the
setup of [19] by adding nonlinear boundary terms to the
Chern-Simons action. One thus recovers the full scope of
self-interacting theories in [15]. Second, the problem of
Lagrangian description of chiral forms is often discussed
side-by-side with the problem of “democratic” description
of ordinary (nonchiral) forms, where the dual electric and
magnetic potentials appear as explicit dynamical variables.
As we shall see, such democratic theories emerge from
boundary reductions of the topological BF-theory, a cousin
of the Chern-Simons theory evoked in [19]. Finally, in the
BF setup, it is possible to introduce topological interactions
in the bulk. This, correspondingly, affects the boundary
theory inducing self-interactions that essentially involve the
gauge potential (as opposed to being expressible through
the field strength alone). In this way, in particular, one
obtains a democratic description of the self-interacting
3-form appearing in the eleven-dimensional supergravity.

II. CHIRAL FIELDS

Here, we give a short derivation similar to that undertaken
in [19] for free chiral forms, adding Abelian interactions.
The starting point is the Chern-Simons theory given by

the action

S ¼
Z
M
H ∧ dH ð1Þ

(for our purposes the overall factor, also known as the
Chern-Simons level, does not have to be explicit) whereM
is a dþ 1 ¼ 2pþ 3 (p is even) dimensional manifold with
a boundary ∂M and H is a (pþ 1)-form field.
The variation of this Lagrangian contains a boundary

term
R
∂M δH ∧ H, which would be incompatible with the

least action principle. To remedy for this inconsistency, we
add a boundary term − 1

2
H ∧ ⋆H to the action to obtain

Sfree ¼
Z
M
H ∧ dH −

1

2

Z
∂M

H ∧ ⋆H: ð2Þ

The variation is then

δSfree ¼ 2

Z
M
δH ∧ dH −

1

2

Z
∂M

δHþ ∧ H−: ð3Þ

Here and in what follows, we use the shorthand notation

H� ¼ H � ⋆H; ð4Þ

and the pullback of H onto the boundary is denoted by the
same symbol H. Note that ⋆ shall denote throughout
the Hodge dual associated with an arbitrary metric on the
boundary with Lorentzian signature (the bulk Hodge dual
will not appear in the formalism we consider, hence there is
no danger of confusion).
We may impose the Dirichlet boundary condition,

δHþ ¼ 0 or the Neumann one H− ¼ 0: Hþ and H− play
the roles of “position” and “momentum,” respectively. The
Neumann condition can be also viewed as the dynamical
equation with respect to the boundary variation. We shall
take the latter point of view as it is more convenient for
introducing interactions.
As discussed in [15,18], general equations describing

self-interactions of a chiral field are given as

H− ¼ fðHþÞ; dH ¼ 0; ð5Þ

where f∶ Λþ → Λ− is an antiself-dual form valued func-
tion of a self-dual variable (here Λþ and Λ− represent the
space of self-dual and antiself-dual forms respectively).
In order to reproduce these equations, one can introduce

a boundary term to the Chern-Simons theory, given by an
arbitrary function of Hþ as

S ¼
Z
M
H ∧ dH −

Z
∂M

1

2
H ∧ ⋆H þ gðHþÞ: ð6Þ

The function gðHþÞ is a top form function of the self-dual
argument Hþ. The addition of gðHþÞ is analogous to the
addition of an arbitrary potential term to a free
Hamiltonian. The bulk equations of motion stemming from
the action (6) are simply dH ¼ 0, describing pure gauge
configurations, while the boundary equations reproduce
(5), where fðYÞ ¼ ∂gðYÞ=∂Y is an antiself-dual (pþ 1)-
form function of a self-dual variable Y ¼ Hþ.
The action (6) describes arbitrary Abelian interacting

theories of a single chiral 2k-form field in d ¼ 4kþ 2
dimensional spacetime (the boundary ∂M) endowed with a
metric of Lorentzian signature [22].

III. DEMOCRATIC DESCRIPTION
FOR p-FORMS

We will use now the same logic to derive democratic
Lagrangians for arbitrary p-forms (including arbitrary
Abelian interactions from [15]). The starting point is the
topological theory given by the action (occasionally
referred to as the BF-theory)

SBulk ¼
Z
M
ð−1Þd−pG ∧ dF þ dG ∧ F; ð7Þ

where M is a (dþ 1)-dimensional manifold with
d-dimensional boundary, F is a ðpþ 1Þ-form and G is a
ðd − p − 1Þ-form. Here, both d and p are arbitrary, as
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opposed to the previous section. The gauge symmetry is
given by

δF ¼ dα; δG ¼ dβ: ð8Þ

The Lagrangian is gauge invariant up to boundary terms.
The bulk equations of motion are dF ¼ 0 ¼ dG, implying
that these fields are pure gauge, therefore there are no bulk
degrees of freedom. The boundary term in the variation of
the bulk Lagrangian is given by

R
∂M δG ∧ F −G ∧ δF.

Adding to the action (7) the boundary term

−
Z
∂M

1

2
ðF ∧ ⋆F þ G ∧ ⋆GÞ ð9Þ

modifies the boundary variation as

Z
∂M

δF ∧ �ð−1ÞpþdþpdG − ⋆F
�þ δG ∧ ðF − ⋆GÞ

¼ ð−1Þpþdþpd

Z
∂M

⋆δðF þ ⋆GÞ ∧ ðF − ⋆GÞ: ð10Þ

Here, again, we take the Neumann boundary condition
F − ⋆G ¼ 0, which can be viewed as the dynamical
equations with respect to the boundary variation, so that
the variational principle gives the equations dF ¼ 0 ¼ dG
supplemented with these boundary conditions. The boun-
dary term (9) again uses a metric with Lorentzian signature.
Generalization to the self-interacting case is given as

S ¼
Z
M
ð−1Þd−pG ∧ dF þ dG ∧ F

−
Z
∂M

1

2
ðF ∧ ⋆F þG ∧ ⋆GÞ þ gðF þ ⋆GÞ; ð11Þ

which gives the same bulk equations dF ¼ 0 ¼ dG and the
following modified boundary conditions:

F − ⋆G ¼ fðF þ ⋆GÞ: ð12Þ

Here again, fðYÞ ¼ ∂gðYÞ=∂Y for a (pþ 1)-form argument
Y. This reproduces the democratic theory of general
Abelian self-interactions for p-forms (the reduction to
the democratic Lagrangians of [15] will be demon-
strated below).
An interesting observation [23] is that, as opposed to the

chiral case, now we also have the option to describe the
boundary theory in a nondemocratic manner by simply
integrating out one of the fields. For example, we can solve
the bulk equation for G, that is dF ¼ 0, which implies
F ¼ dA. Substituting this into the action reduces the whole
system to a boundary Lagrangian that is algebraic in
F ¼ dA, while the only field variable is now A. In the
case of free theory, we will simply get the Maxwell
Lagrangian F ∧ ⋆F. Instead, for nontrivial gðYÞ, we get

a nonlinear algebraic equation expressing G in terms
of F, similar to those discussed in [15,24]. Such relations
are not always easy to solve explicitly even for nonlinear
electrodynamics in 3þ 1 dimensions, where some sim-
plifications occur compared to general d and p. These
equations, however, explicitly capture the essence of the
conversion procedure between democratic and ordinary
single-field formalisms. Note that we could equally well
integrate out F instead of G arriving at different but
equivalent d-dimensional descriptions. The two theories,
corresponding to two different reductions (either integrat-
ing out G or F), are related by duality [23]. This is
somewhat similar to the dualization procedure where we
integrate out the field A and F from the action S¼R
∂M−1

2
F∧⋆FþG∧ ðF−dAÞ. In the non-Abelian case,

this procedure leads to a nonpolynomial action in terms of
the variable G, with no smooth free limit [25].
The democratic action (11) for p ¼ 2k-forms in d ¼

4kþ 2 dimensions can be diagonalized by introducing new
variables C ¼ ðF þ GÞ= ffiffiffi

2
p

and D ¼ ðF −GÞ= ffiffiffi
2

p
as

S ¼
Z
M
C ∧ dC −D ∧ dD

−
Z
∂M

1

2
ðC ∧ ⋆CþD ∧ ⋆DÞ þ gðCþ þD−Þ; ð13Þ

thus explicitly describing one chiral and one antichiral
p-forms. Note that the Abelian interaction term gðCþþD−Þ
can be viewed as a function of two independent variables
Cþ andD−, which are simply the self-dual and antiself-dual
projections of Cþ þD−, which means that (13) actually
represents the most general interactions for one chiral and
one antichiral field C and D.
Note that the normalization of the fields in the demo-

cratic setup is not unique; one can rescale the fields F andG
in an opposite manner, arriving at the action

S ¼
Z
M
ð−1Þd−pG ∧ dF þ dG ∧ F

−
Z
∂M

�
1

2
ðλ−2F ∧ ⋆F þ λ2G ∧ ⋆GÞ

þ gðλ−1F þ λ⋆GÞ
�

ð14Þ

with the boundary equations of motion

dF¼ 0¼ dG; λ−1F−λ⋆G¼ fðλ−1Fþλ⋆GÞ: ð15Þ

When coupled to charged matter (see for example [26]),
this rescaling is related to the change in the coupling
constant, which requires opposite rescaling for electric and
magnetic couplings [27].
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A. Nonlinear electrodynamics
and SOð2Þ duality

When d ¼ 4k, and both F and G are pþ 1 ¼ 2k-forms,
it is convenient to label them as F ¼ H1 and G ¼ H2. The
Abelian nonlinear p-form theory in the democratic form,
given in [24], can be derived from a dþ 1 ¼ 4kþ 1-
dimensional topological action with the boundary term

S ¼
Z
M
ϵbcHb ∧ dHc

−
Z
∂M

1

2
Hb ∧ ⋆Hb þ gð⋆Hb þ ϵbcHcÞ: ð16Þ

This action transmutes under the reduction procedure
of [19] to that of [24].
The function gðYÞ is further restricted [24] if we require

the SOð2Þ duality symmetry rotating H1 and H2. When
d ¼ 4, the duality-symmetric theories of nonlinear
electrodynamics are given by the five-dimensional action
of type (16) where the Abelian interaction term is reduced
to a function of a single variable, gðWabWabÞ. Here, Wab

is the duality covariant Lorentz scalar,

Wab ¼ ⋆½ð⋆Ha þ ϵacHcÞ ∧ ⋆ð⋆Hb þ ϵbdHdÞ�;

whose trace vanishes identically: Wa
a ¼ 0 [28].

IV. REDUCTION TO BOUNDARY THEORIES

We now proceed to the dimensional reduction procedure
introduced in [19] to show that the action (6) can be
reduced to the nonlinear chiral p-form actions of [15]. For
that, one introduces a closed one-form v (and correspond-
ing vector which we will denote with the same letter) and
decomposes the bulk field as

H ¼ Ĥ þ v ∧ Ȟ; ð17Þ

with a gauge redundancy

δĤ¼−v∧ α; δȞ¼ α; ð18Þ

which was fixed by the choice ivĤ ¼ 0 in [19]. Plugging
this decomposition into the Lagrangian, we notice that the
field Ȟ becomes a Lagrange multiplier enforcing a con-
straint on the field Ĥ,

v ∧ dĤ ¼ 0; ð19Þ
which can be solved following Appendix C of [29],
arriving at

H ¼ dAþ v ∧ R; ð20Þ
where A and R are p-forms. Then, one can see that the bulk
Chern-Simons term of the action becomes a total derivative

taking into account that dv ¼ 0. Therefore, the full action
reduces to a bulk term contribution to the boundary dA ∧
v ∧ R plus boundary terms, where the field H is replaced
by dAþ v ∧ R. Thus, the final boundary action is given as

S¼
Z
∂M

−
1

2
H∧⋆HþdA∧ v∧Rþgð⋆HþHÞ; ð21Þ

where H ¼ dAþ v ∧ R.
Equation (21) reproduces the Lagrangian for a general

interacting theory of chiral p-form given in [15] with one
small difference: in the (boundary) theories of [15], the v is
parametrized as v ¼ da with a dynamical field a, thus
avoiding the need for a prescribed one-form in the theory
that naively breaks the Lorentz symmetry. The shift
symmetry of the field a, which we call henceforth “PST
symmetry” due to its close relation to a similar symmetry
featured in the PST theory [9], is hard to anticipate from the
Chern-Simons point of view [30]. This symmetry, however,
is crucial for the consistency of the theory and furthermore
makes it possible to gauge-fix the field a to a nondynamical
fixed function, at the expense of manifest Lorentz sym-
metry (thus making contact with the Chern-Simons deri-
vation above). One may add a top-form term J ∧ dv to the
Lagrangian (where J is a Lagrange multiplier) and keep the
field v unconstrained. This formulation (for the free theory)
was the starting point in [17] (where the one-form v was
denoted as c) [31].
Within the boundary theory, the expression ⋆H þH is

gauge-invariant with respect to the enlarged set of gauge
symmetries shifting the auxiliary fields [15]. Thus, these
gauge symmetries guide us to the action (21) in the
language of the boundary theory of [15], while in the
Chern-Simons language, the structure of the corresponding
boundary terms is guessed so that they give rise to self-
interacting chiral edge modes.
Now that we reviewed the derivation of [19] and

generalized it to include Abelian interactions of chiral
forms, we will proceed to the democratic formulation for
arbitrary p-forms. Using the same reduction procedure as
in the chiral case, one can show that (11) leads to the
general Abelian self-interactions for the p-forms, with the
democratic boundary Lagrangian given in [15]. For that,
one decomposes the fields F andG using a closed one-form
v (and corresponding vector which we will denote with the
same letter):

F ¼ F̂ þ v ∧ F̌; G ¼ Ĝþ v ∧ Ǧ: ð22Þ
Substituting this in the bulk Lagrangian, we can see that the
fields F̌ and Ǧ are Lagrange multipliers, imposing the
constraints on the fields F̂ and Ĝ,

v ∧ dF̂ ¼ 0 ¼ v ∧ dĜ; ð23Þ

which can be solved as earlier.
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Substitution of the latter expressions in the action leads
to a purely boundary theory with the Lagrangian

L ¼ v ∧ S ∧ dA − dB ∧ v ∧ R

−
1

2
ðF ∧ ⋆F þG ∧ ⋆GÞ − gð⋆Gþ FÞ; ð24Þ

where H1 and H2 are given by

F ¼ dAþ v ∧ R; ð25Þ

G ¼ dBþ v ∧ S: ð26Þ

This Lagrangian coincides with the construction of [15]
after solving the constraint dv ¼ 0 as v ¼ da and a simple
field redefinition discussed in [29].

V. BULK-INDUCED INTERACTIONS

The interactions introduced above only enter the higher-
dimensional topological description through the boundary
terms. Consequently, the interactions in the resulting
boundary theory are expressed through the field strength
alone, but not through the gauge potential. It is possible to
construct more general interactions by considering topo-
logical interactions in the bulk. The simplest example of
such interactions would be the non-Abelian Chern-Simons
Lagrangian discussed in [19]. More generally, one can add
bulk interaction terms that are top-form wedge products of
the fields involved. Such interactions are very limited for a
single field, which we will discuss here, completing the
discussion on Abelian self-interactions, and leaving the less
constrained cases with multiple fields for future work.
For the chiral case, the only field is the (pþ 1)-form H,

so the interactions may have the form H ∧ H ∧ H. Such a
term is only legitimate in three bulk dimensions, whereH is
a one-form, and even there, it is trivial for a single field H.
For higher dimensions, self-interactions of a single chiral
field can only be introduced via the boundary terms
discussed earlier.
For democratic fields, the situation is different. In special

cases, there is a possibility to add interacting terms for a
single field. This happens when d ¼ 3pþ 2 for odd p, and
the corresponding bulk term is F ∧ F ∧ F (we recall that F
is a (pþ 1)-form and therefore the latter term is nontrivial
for odd p and is a top form in dþ 1 ¼ 3ðpþ 1Þ dimen-
sions). Therefore, the full action is given as

S ¼
Z
M
G ∧ dF þ dG ∧ F þ 2

3
λ3F ∧ F ∧ F

−
Z
∂M

1

2
ðF ∧ ⋆F þG ∧ ⋆GÞ þ gðF þ ⋆GÞ: ð27Þ

In the first nontrivial case, p ¼ 1, the λ3 term in the
action (27) describes Abelian Chern-Simons interactions

for five-dimensional nonlinear electrodynamics. This can
be quickly verified by integrating out the field G, most
easily done in the case gðYÞ ¼ 0, leading to Maxwell-
Chern-Simons theory.
In the next case, p ¼ 3, the λ3 term describes the Chern-

Simons interactions for the three-form in eleven dimen-
sions. This interaction is essential for the 11d supergravity
and was the missing element for the democratic formu-
lation of the latter in the same line as type II supergravities
in ten dimensions [32].
More generally, bulk Abelian interactions are possible in

the dimensions d ¼ npþ n − 1 (assuming that p is odd)
and are given by a wedge product of n copies of F [33].
The reduction procedure of [19] works smoothly also in

the presence of the bulk interaction (27). The same
procedure as performed above (in the case of λ3 ¼ 0) leads
to a neat cancellation of all bulk terms and leaves a
boundary theory with the Lagrangian

L ¼ v ∧ S ∧ dA − dB ∧ v ∧ R −
λ3
3
A ∧ dA ∧ dA

−
1

2
ðF ∧ ⋆F þ G ∧ ⋆GÞ − gð⋆Gþ FÞ; ð28Þ

where F takes the same form as in (25) while G is
modified to

G ¼ dBþ v ∧ S − λ3A ∧ dA: ð29Þ
This Lagrangian describes democratically nonlinear
Maxwell-Chern-Simons theory in five dimensions for
1-form A and 2-form B. The same Lagrangian describes
democratically the 3-form A in eleven-dimensions on equal
footing with its dual 6-form B.

VI. MAXIMAL SUPERGRAVITIES IN d = 10; 11

We can now quickly derive the type II supergravities in
the democratic form of [32] from a topological theory in
eleven dimensions. The starting point is the Chern-Simons
action on the eleven-dimensional manifold M with a
Lorentzian 10d boundary ∂M,

SRR ¼
Z
M
G ∧ DG −

Z
∂M

1

2
ðG;⋆GÞ; ð30Þ

where ⋆ is defined with a factor ⋆α ¼ ð−1Þbdeg α2
cþdeg α � α

compared to Hodge star denoted in this section as �, and we
use the Mukai pairing ðα; βÞ ≔ ð−1Þbdegα2

cðα ∧ βÞtop, and
finallyD ¼ dþH ∧, whereH is a closed 3-form curvature
of the Kalb-Ramond field (see details in [32]).
Here, G encodes all the curvatures of Ramond-Ramond

(RR) fields:

G¼G2þG4þG6þG8þG10; ðIIA caseÞ ð31Þ
G¼G1þG3þG5þG7þG9: ðIIB caseÞ ð32Þ
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The action (30) can be reduced to ten dimensions via the
procedure of [19] to reproduce the RR sector actions
of [32]. It is straightforward to add the NSNS sector
(NS stands for Neveu-Schwarz) and gravity, which are
not described democratically.
An analogous description can be proposed for the

eleven-dimensional supergravity [34]. Here, we introduce
a twelve-dimensional BF-theory with an eleven-dimen-
sional boundary term and describe democratically the
3-form field with 4-form curvature F and its dual 7-form
curvature G of the 6-form potential. Therefore, the action
takes the form of (27) where the coupling constant is fixed
by supersymmetry as λ3 ¼ 1, whose value is responsible
for the remarkable exceptional symmetries of the dimen-
sional reductions of 11d supergravity [35]. When
gðYÞ ¼ 0, we can integrate out the G field from (27)
to recover the standard 11d action involving a single
three-form potential field. Instead, if we reduce the 12d
action (27) via the procedure of [19], we find the demo-
cratic description of the 11d Lagrangian of the form (28).
Integrating out the auxiliary fields R and S, we recover

the PST form of the action from [36]. Note that deforma-
tions similar to α0-corrections in string theory are suggested
by a nontrivial interaction term gð⋆Gþ FÞ.

VII. DISCUSSION

We have provided a simple derivation of arbitrary self-
interacting Abelian p-form theories with first-order equa-
tions of motion—democratic or chiral—starting from
familiar topological theories, making use of the ideas
introduced in [19]. We also introduced large classes of
Abelian self-interactions for these fields. The last missing
piece of the puzzle was the Abelian interactions that cannot
be written in terms of curvatures and are given by Abelian
Chern-Simons terms that are only gauge invariant up to
boundary terms. This setup builds a connection between
Lagrangian formulations for the nonlinear (twisted) self-
duality equations [15] and other influential considerations in
the literature (see, e.g. [6,7,37–44] for a sample of historical
references). More general interactions between multiple
different fields will be studied systematically elsewhere.
The topological description of the RR fields in ten-

dimensional supergravities discussed in this article also

provides supporting explanations on the resolution [32,45]
of the puzzles of supergravity on shell actions [45],
which have to be contrasted with the expectations from
holography. This resolution,which does not rely on a specific
vacuum solution, is made at the level of the democratic
d-dimensional Lagrangians with a unique (d − 1)-
dimensional boundary term protected by the PST symmetry.
From the perspective of the (dþ 1)-dimensional topological
theories, this boundary term lives on the boundary of the
boundary, and hence it is not surprising that any ambiguity in
such a term is resolved. We expect that the analogous puzzle
of 11d supergravity related to the electric solution [46]
admits a similar resolution.
The democratic descriptions discussed here require a

Lorentzian metric on the boundary because the (twisted)
self-duality equations with signature ðt; d − tÞ admit non-
trivial solutions only for þ1ð−1Þ values of the Hodge star
squared ⋆2 ¼ ð−1Þpðd−pÞþt. Gravitational theories involv-
ing such actions may use path integral over the metric with
arbitrary signature (see for example [47]). Then, the
degrees of freedom described by the democratic (or chiral)
formulations of p-forms will be switched off in even-time
signatures, going to a lower-dimensional phase space
compared to the Lorentzian signature.
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