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Bondi-Metzner-Sachs (BMS) algebra in three spacetime dimensions can be deformed into a two
parameter family of algebra known as Wða; bÞ algebra. For a ¼ 0, we show that other than Wð0;−1Þ, no
other Wð0; bÞ algebra admits a nondegenerate bilinear and thus one cannot have a Chern-Simons gauge
theory formulation with them. However, they may appear in a three-dimensional gravity description, where
we also need to have a spin 2 generator, that comes from the ða ¼ 0; b ¼ −1Þ sector. In the present work,
we have demonstrated that the asymptotic symmetry algebra of a spin-3 gravity theory on flat spacetime
has both the Wð0;−1Þ and Wð0;−2Þ algebras as subalgebras. We have also constructed a dual boundary
field theory for this higher spin gravity theory by using the Chern-Simons/Wess-Zumino-Witten
correspondence.
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I. INTRODUCTION

Bondi-Metzner-Sachs (BMS) symmetry group describes
the behavior of gravitational fields at null infinity, which is
the asymptotic boundary for all massless fields in flat
spacetimes [1–3]. In the framework of flat space holography,
BMS symmetry plays a significant role. It is generated by
killing vector fields which preserve the fall-off conditions of
massless fields at null infinity. It encompasses both large
gauge transformations, which involve supertranslations and
superrotations. These symmetries are associated with an
infinite number of conservation laws [4,5] and physical
observables at null infinity [6,7]. The recent formulation of
celestial conformal field theory (CFT) with underlying
BMS symmetry explores the dualities between four dimen-
sional gravitational theories in flat spacetime and certain

codimension two conformal field theories (CFTs) defined
on the celestial sphere at null infinity [8]. It provides a
powerful framework to analyze the asymptotic symmetries
of spacetime [9,10]. In parallel to celestial holography, there
also exists another interesting formulation known as
Carrollian holography [11–13]. In this construction, gravi-
tational theories on 4D asymptotically flat spacetime has a
dual representation as 3D Carrollian CFTs residing at null
infinity. These Carrollian CFTs can be obtained from
standard relativistic CFTs by setting the speed of light to
zero and are associated with BMS symmetries.
Similar aspects however are not well explored in the

context of three space-time dimensions. Since in three
spacetime dimensions, any Fronsdal gauge field with
“spin” s > 1 has no dynamical degrees of freedom, thus
for a theory of gravity, we do not have bulk graviton and
hence no scattering phenomenon is possible. However,
there exist nontrivial boundary gravitons and one can
construct the dual field theory of asymptotically flat gravity
(or in the presence of a cosmological constant) utilizing a
gauge theory formulation, namely the Chern-Simons for-
mulation on a compact manifold [14–19]. In the Chern-
Simons formulation of gravity, by imposing suitable
boundary conditions, one can further obtain a Wess-
Zumino-Witten (WZW) theory at the boundary from the
bulk Chern-Simons theory with a (non) compact gauge
group [16,20–22]. For pure gravity in asymptotically flat
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spacetime, one has to choose ISO(2, 1) gauge group and
impose suitable boundary conditions at null infinity to
obtain the dual WZW model invariant under infinite
dimensional BMS symmetries [17,23,24]. This analysis
has further been extended to three dimensional asymptoti-
cally flat gravity theories in the presence of (extended)
supersymmetries in [25–32].
BMS algebra in three spacetime dimensions can be

deformed into a family of algebra called Wða; bÞ algebra
with two arbitrary real parameters a and b [33]. The
deformation is introduced in the commutator between
supertranslation and superrotation since it cannot be com-
puted from the Hochschild-Serre factorization theorem
known for deformations of finite dimensional algebras.
The parameter b in Wða; bÞ algebra can be interpreted as a
higher spin representation of Witt algebra and can be any
real number. a changes the periodicity of primary fields
and ranges between 0 and 1=2. For different values of a and
b, we get different classes of algebras which may be
associated with completely different asymptotic sym-
metries in two or three spacetime dimensions. In particular,
Wð0;−1Þ;Wð0; 0Þ, and Wð0; 1Þ algebras correspond
to bms3 algebra [34], (centerless) Virasoro-Kac-Moody
algebra [35] and bms2 algebra [36]. Imposing different
boundary conditions on the fields may give different
asymptotic symmetries in a theory for an algebra with
the same values of parameters. For instance, while Wð0; 0Þ
algebra can be obtained as an asymptotic symmetry algebra
of AdS3 with Compère-Song-Strominger boundary con-
ditions [37], it can also be realized as near horizon
symmetry of BTZ black holes [38]. One can obtain
Wð0; bÞ algebra as symmetries of Galilean field theories
[39,40]. If one further deforms the Wða; bÞ algebra and its
central extension for generic values of the parameters, one
gets back the same algebra with shifted parameters imply-
ing the rigidity of this algebra.
Although some classes ofWða; bÞ algebra are realized as

physical symmetries, our first goal is to put constraints on
the parameters a and b such that they admit a gauge theory
formulation. For this purpose, we find which class of
Wða; bÞ algebra contains a closed global subalgebra and
further admits a nondegenerate invariant bilinear or quad-
ratic Casimir for arbitrary a, b, thus allowing a Chern-
Simons formulation with the corresponding gauge group.
Interestingly, we ended up with a no-go result with only
Wð0;−1Þ being the possible candidate. On the other hand,
if one wants to obtain the three dimensional asymptotically
flat Einstein gravity from the Chern-Simons theory it
inevitably requires a spin 2 generator. It is well known
that for a ¼ 0; b ¼ −1, we have a spin 2 supertranslation
generator and the asymptotic symmetries are BMS sym-
metries with appropriate boundary conditions imposed on
the Chern-Simons gauge field. Thus one can possibly
realize Wð0; bÞ algebra with integer values of b as a
subalgebra of higher spin extension of Wð0;−1Þ algebra.

Here we consider the next simple possible integer value of
b ¼ −2, i.e., Wð0;−2Þ algebra and study its appearance in
the asymptotic symmetries for spin-3 generalization of
Einstein’s gravity theory.
Higher spin theory in four and higher dimensional curved

spacetime was introduced by Vasiliev as a way to avoid all
no-go theorems [41]. This theory is a higher spin extension
of general relativity in which, in a constant curvature
background, an infinite tower of massless higher spin fields
are coupled together in a consistent manner. Higher spin
theories in flat and AdS spacetime have connections to
various areas of physics, including string theory, conformal
field theory, and holography and are also expected to have
important implications in cosmology [42–50]. However,
three space time dimensions are special, since the Weyl
curvature vanishes for any gravitational background and is
simpler in technical aspects. This suggests that in three space
time dimensions, one can possibly avoid the no-go results
for minimal coupling and can truncate the theory with a
finite number of higher spin couplings [51–53].Moreover in
three dimensions one can construct asymptotically flat
higher spin gravity theories from an Inönü-Wigner con-
traction of the Vasiliev’s theory in AdS space [54]. One does
not have to worry about the no-go theorems and higher spin
theories can be constructed just by generalizing the Chern-
Simons formulation of gravity [55–58].
Building on the above idea, in this paper we have

constructed a dual field theory for spin-3 generalizations
of pure Einstein’s gravity in the bulk. The dual theory lies
on the asymptotic null boundary of the bulk space time. We
have utilized the equivalence between the theory of flat
gravity, a Chern-Simons theory with ISO(2, 1) gauge group
and a chiral WZW model on the boundary of a three
dimensional flat spacetime to write the dual theory. We
have further gauged the WZW model and expressed it
using the reduced phase space formalism. The resultant
theory is a spin-3 generalization of a flat limit of the
Liouville theory. To our best knowledge, this is the first
ever result on the dual description of a three dimensional
higher spin generalization of Einstein’s gravity.
The paper is organized as follows. In Sec. II we analyze

constraints on the class ofWða; bÞ algebra which can admit
a gauge theory formulation. In Sec. III we revisit the Chern-
Simons formulation of three dimensional gravity and
construct the asymptotic charge algebra for flat space
spin-3 gravity. We find that the asymptotic charge algebra
contains Wð0;−2Þ as a subalgebra. In addition, we also
verify the charge algebra with that of the Inönü-Wigner
contraction of two copies of AdS3 spin-3 asymptotic charge
algebras, presented in [54] and find a perfect agreement.
Finally, we compare our results with that in the existing
literature [56]. Section IV contains the main result of the
paper, where we have presented the construction of the dual
theory of spin-3 extensions of Einstein’s gravity. The
resultant theory is a simple generalization of the flat limit
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of Liouville theory. We conclude with a discussion and
outlook in Sec. V. The Appendices contain relevant
computational details.

II. COMMENTS ON Wða;bÞ AS ASYMPTOTIC
SYMMETRY ALGEBRA OF 3D FLAT GRAVITY

Previous works [59,60] have studied deformations of
the bms3 algebra, dubbed as Wða; bÞ algebra where the
deformation is encoded in the parameters a and b. The
Wða; bÞ algebra can be written out explicitly as follows

½Jm; Jn� ¼ ðm − nÞJmþn;

½Jm; Pn� ¼ −ðnþ bmþ aÞPmþn;

½Pm; Pn� ¼ 0; ð2:1Þ

where Jn and Pn physically correspond to superrotation and
supertranslation generators respectively. The index of super-
rotations Jm can take only integer valueswhile that ofPm can
be integer or half-integer. The first relation above in (2.1) is
the centerless Virasoro algebra which admits a closed
subalgebra consisting of J�1; J0. Further, if (2.1) admits
closure of finitely many supertranslation generatorsPn; n ¼
N1;…; Nk; N1 < Nk, then those along with J�1; J0 will
form a global subalgebra. To explore the possibility, we
focus on the commutator ½Jm; Pn� for m ¼ �1, 0.

(i) For m ¼ 0, we get, ½J0; Pn� ¼ −ðnþ aÞPn. Thus,
the action of J0 on the supertranslation generator
keeps the index invariant.

(ii) For m ¼ 1, we get, ½J1; Pn� ¼ −ðnþ bþ aÞPnþ1.
Thus at the level of the algebra, J1 essentially
increases the index of the supertranslation by one.
Demanding the existence of a global subalgebra
implies, we must have ½J1; PNk

� ¼ 0 which leads us
to Nk ¼ −a − b.

(iii) For m ¼ −1, we get, ½J−1; Pn� ¼ −ðn − bþ aÞPn−1
demonstrating that J−1 reduces index of Pn by one.
Thus, for n ¼ N1, we must have, N1 − bþ a ¼ 0
implying N1 ¼ −aþ b.

Since by assumption, N1 < Nk, we must have b < 0
and thus the so-called global subsector will consist of
2ðjbj þ 2Þ elements—2jbj þ 1 supertranslation labeled as
P−aþb;…; P−a−b and 3 superrotations J−1; J0 and Jþ1.
Thus, we see that existence of a global subalgebra of
Wða; bÞ algebra is subject to the deformation parameters
a and b being integer or half-integer while b must also be
strictly negative. As discussed in the introduction, presently
we are interested in the particular Wð0;−2Þ deformation.
The algebra is given as,

½Lα; Lβ� ¼ ðα − βÞLαþβ;

½Lα;Vq� ¼ ð2α − qÞVαþq;

½Vp;Vq� ¼ 0; ð2:2Þ

This is an infinite dimensional algebra. The global sector
consisting of L�1; L0;V�2;V�1;V0 forms a close sub-
algebra. In the next section, we will explore the importance
of this algebra in the context of three dimensional asymp-
totically flat theories. Our root to understand this aspect
would be a three dimensional Chern-Simons formulation of
gravity theories.

A. Invariant bilinear for global sector
of Wða;bÞ algebra: A no-go theorem

The global sector of theWða; bÞ algebra defined in (2.1)
can be realized as a symmetry group of a Chern-Simons
gauge theory provided it admits a nondegenerate quadratic
Casimir for the same. The presence of the nondegenerate
quadratic Casimir in turn dictates the existence of so-called
symmetric supertrace elements of the theory. These super-
trace elements are required while we express the standard
Chern-Simons action on the gauge manifold, by expanding
the Chern-Simons gauge field in terms of component fields
along the gauge group generators.
The most general ansatz for a possibly nondegenerate

Casimir can be written as,

C2 ¼
Xþ1

r¼−1

Xþ1

s¼−1
αrsJrJs þ

X−a−b
M¼−aþb

X−a−b
N¼−aþb

βMNPMPN

þ
X−a−b

M¼−aþb

Xþ1

r¼−1
γMrPMJr; ð2:3Þ

where α and β are 3 × 3 and ð2jbj þ 1Þ × ð2jbj þ 1Þ square
matrices while γ is ð2jbj þ 1Þ × 3 matrix. Note that γ is
square matrix for bms3 case (a ¼ 0; b ¼ −1). From now
on, for all our subsequent calculations, we will use small
Latin indices, i.e., r, s, p, q to denote the labels of the
global sector of superrotations composed of fJ�1; J0g and
capital Latin indices K, L, M, N to denote the 2jbj þ 1 a
number of global generalized supertranslation genera-
tors PM.
Alternatively, one could have also written the Casimir as

C2 ¼ �
PM Jr

�� βM;N γM;s

γr;N αrs

��
PN

Js

�

≡
�
PM Jr

��
Gab

��PN

Js

�
; ð2:4Þ

where the metric in the field space Gab must be non-
degenerate (nonvanishing determinant) in order for the
gravity theory to admit a Chern-Simons description. Our
goal is to determine the most generic form of the matrices
α, β and γ such that the matrix Gab has a nonzero
determinant.
By definition, since Casimir commutes with all gener-

ators, we must have
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½C2; Jp� ¼ ½C2; PL� ¼ 0 ∀ p∈ f−1; 0;þ1g and L∈ f−aþ b;…;−a − bg: ð2:5Þ

These relations boils down to the following,Xþ1

r¼−1

Xþ1

s¼−1
αrs

�ðs − pÞJrJsþp þ ðr − pÞJrþpJs
�

þ
X−a−b

M¼−aþb

X−a−b
N¼−aþb

βMN
�ðN þ bpþ aÞPMPNþp þ ðM þ bpþ aÞPMþpPN

�

þ
X−a−b

M¼−aþb

Xþ1

r¼−1
γMr

�ðr − pÞPMJrþp þ ðM þ bpþ aÞPMþpJr
� ¼ 0; ð2:6Þ

and

Xþ1

r¼−1

Xþ1

s¼−1
αrs

�ðLþ brþ aÞPrþLJs þ ðLþ bsþ aÞJrPsþL

	

þ
X−a−b

M¼−aþb

Xþ1

r¼−1
γMrðLþ brþ aÞPMPrþL ¼ 0: ð2:7Þ

Equation (2.6) dictates that α and β satisfy the following
conditions,

Xþ1

r;s¼−1
ðαrs þ αsrÞðs − pÞJrJsþp

þ
Xþ1

r;s¼−1
αsrðs − pÞðs − rþ pÞJrþsþp ¼ 0 ð2:8Þ

X−a−b
M;N¼−aþb

ðβMN þ βNMÞðN þ bpþ aÞPMPNþp ¼ 0 ð2:9Þ

Since Gab is symmetric, hence αwill always be vanishing to
satisfy (2.8) while nonzero components of β can exist for
specific values of a and b. Considering the case of a ¼ 0,
(2.9) for p ¼ 0;�1 implies that some components of β1

remains nonvanishing for integer values of b. Previously
we have realized that for a genericWða; bÞ algebra, b has to
be negative for finding a well defined global subalgebra.
Hence for finding a nontrivial β matrix, we are restricted to
only the choice of b being a negative integer with vanishing
a. But since α is zero, having a nonvanishing β does not
imply the existence of a nondegenerate bilinear for the
corresponding algebra unless we have a nonvanishing γ
matrix. In fact, since components of α are zero for any
Wða; bÞ algebra, Gab can still be nonsingular with (non)
vanishing β if some symmetric components of γ exist. In
this context, one can find the nonvanishing γ components
from (2.7) if the following relation holds:

X−a−b
M¼−aþb

Xþ1

r¼−1
γMrðLþ brþ aÞPMPrþL ¼ 0: ð2:10Þ

For a ¼ 0, from (2.10) with L taking values between −b
to b one finds that γ only exist for b ¼ −1. Hence the
absence of nondegenerate Gab for other values of b poses
obstruction in a gauge theory formulation with the gauge
symmetry algebra being the global Wða; bÞ where b ≠ −1.
Thus we have established the following no-go theorem:
Other thanWð0;−1Þ, no otherWð0; bÞ algebra admits a

closed global subalgebra with nondegenerate invariant
bilinears and hence cannot be used as a gauge group of a
three dimensional Chern-Simons theory.
However one can realize Wð0; bÞ algebras with arbitrary

negative integer valued b even other than −1 as a
subalgebra of the bigger symmetry group of a gauge
theory. We discuss this possibility in the following sections.

III. Wð0;bÞ ALGEBRA IN 3D ASYMPTOTICALLY
FLAT GRAVITY

In three dimensional asymptotically flat spacetime one
always requires a spin-2 generator along with the gener-
ators of Witt algebra to obtain Poincaré symmetry in the
bulk. Hence one can realize any Wð0; bÞ algebra with
b < −1 as a higher spin generalization of Wð0;−1Þ or
equivalently the bms3 algebra. Next, we will construct the
Chern-Simons action for spin-3 generalizations of isoð2; 1Þ
algebra following a basis change.

A. Chern-Simons formulation of 3D asymptotically
flat spin-3 gravity

In the Chern-Simons formulation of gravity, a 2þ 1

dimensional (super)gravity theory can be expressed in
terms of Chern-Simons action as:

ICS½A� ¼ k
4π

Z
M



A; dAþ 2

3
A2

�
: ð3:1Þ1Particularly β−n;n;…; β−11; β00, where n is any integer, are

nonzero.
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with an appropriate gauge symmetry group, suitable for
(super) gravity. Here the gauge field A is a Lie-algebra-
valued one form and h; i represents metric in the field space
that one obtains from the supertrace elements on the Lie
algebra space. M is a three dimensional manifold and k is
the level for the Chern-Simons theory. For a theory of
gravity, it takes the value k ¼ 1

4G where G is Newton’s
constant. We express A ¼ Aa

μTadxμ where Ta are a
particular basis of the Lie-algebra associated with bulk
symmetries. The equation of motion for the gauge field A is
given as: F≡ dAþA ∧ A ¼ 0.
Conventionally, it is easiest to think of flat space-times as

the infinite radius limit of AdS spacetimes. In spirit, this
is precisely what the İnönü-Wigner contraction achieves,
in the context of the corresponding symmetry algebras.
Asymptotic symmetry algebra of three-dimensional AdS
gravity with spin-3 fields, [essentially given by two inde-
pendent copies of the slð3;CÞ, i.e., slð3;CÞ ⊗ slð3;CÞ] has
been studied earlier in [43] where each copy of slð3;CÞ is
written as

½Lα;Lβ� ¼ ðα − βÞLαþβ;

½Lα;Wq� ¼ ð2α − qÞWαþq;

½Wp;Wq� ¼
σ

3
½ðp − qÞð2p2 þ 2q2 − pq − 8ÞLpþq: ð3:2Þ

Here the Greek indices associated with the slð2;CÞ
generators ðα; βÞ∈ f−1; 0;þ1g while those associated
with the spin-3 fields are denoted by the Latin indices
ðp; qÞ∈ f−2;−1;…;þ2g and σ is a nonzero parameter, that
denotes the higher spin coupling. Performing a linear
transformation as

Lα ¼ Lα − L̄−α; ð3:3Þ

Mα ¼
1

l
ðLα þ L̄−αÞ; ð3:4Þ

Up ¼ Wp − W̄−p; ð3:5Þ

Vp ¼ 1

l
ðWp þ W̄−pÞ: ð3:6Þ

[the generators L̄α and W̄p are the ones associated to the
second copy of slð3;CÞ] and subsequently taking the l → ∞
limit leads us to

½Lα; Lβ� ¼ ðα − βÞLαþβ;

½Lα;Mβ� ¼ ðα − βÞMαþβ;

½Lα; Uq� ¼ ð2α − qÞUαþq;

½Lα; Vq� ¼ ð2α − qÞVαþq;

½Mα; Uq� ¼ ð2α − qÞVαþq;

½Up;Uq� ¼
σ

3
ðp − qÞð2p2 þ 2q2 − pq − 8ÞLpþq;

½Up; Vq� ¼
σ

3
ðp − qÞð2p2 þ 2q2 − pq − 8ÞMpþq; ð3:7Þ

which is the form used in the analysis of asymptotically flat
higher spin gravity theories [56]. We will call this algebra
fhsð3Þ (with fhs denoting flat-space higher spin). Here, Lα

and Vp form a subalgebra which is exactly the same as the
global sector ofWð0;−2Þ algebra discussed in the previous
section. For the sake of brevity, we will be calling the above
basis as the slð2;RÞ embedding of fhsð3Þ or fhsð3Þslð2Þ in
short. The nomenclature of this basis is obvious from the first
relation in (3.7) which is precisely the slð2;RÞ algebra.
Interestingly, the above algebra (3.7) has a nondegenerate
invariant bilinear given as [56],

hLα;Mβi ¼ −
1

2
ραβ; hUp; Vqi ¼ −

σ

2
κpq; ð3:8Þ

whereραβ ¼ antidiagonalð1;− 1
2
; 1Þ and κpq ¼ antidiagonal

ð−4; 1;− 2
3
; 1;−4Þ. Further, this is the most generic possible

nondegenerate invariant bilinear possible for the given
algebra.
Although an asymptotic symmetry analysis was done

in [56] by imposing appropriate boundary conditions in
terms of an equivalent Chern-Simons theory describing the
higher spin gravity theory, the final gravity action seems to
take a complicated form when written in the first-order
formalism. There is in fact a different basis for fhsð3Þ
which can be written by embedding the soð2; 1Þ algebra,
i.e., (algebra of Lorentz group in 3 spacetime dimensions).
The advantage of working on this basis is that one can
manifestly see the conventional first-order gravity term
ea ∧ Ra on writing the Chern-Simons action appropriately
in terms of vielbeins and spin connections. Explicitly, this
basis of fhsð3Þ, i.e., fhsð3Þsoð1;2Þ can be written as

½Ja; Jb� ¼ ϵabcJc; ½Ja; Pb� ¼ ϵabcPc; ½Pa; Pb� ¼ 0;

½Ja; Jbc� ¼ ϵmaðbJcÞm; ½Ja; Pbc� ¼ ϵmaðbPcÞm; ½Pa; Jbc� ¼ ϵmaðbPcÞm; ½Pa; Pbc� ¼ 0;

½Jab; Jcd� ¼ σðηaðcϵdÞbm þ ηbðcϵdÞamÞJm; ½Jab; Pcd� ¼ σðηaðcϵdÞbm þ ηbðcϵdÞamÞPm;

½Pab; Pcd� ¼ 0; ð3:9Þ
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where the indices ða; b; cÞ∈ f0; 1; 2g. Again, the first
relation in the above basis makes the soð2; 1Þ subalgebra
manifest. The two-index operators Jab and Pab correspond
to higher spin generators. In the above, ϵ012 ¼ −ϵ012 ¼ 1
while the indices a and b are raised/lowered with respect to
the metric ηab ¼ diagð−1;þ1;þ1Þ. Both operators Jab and
Pab are symmetric in its indices and follows the trace-
lessness conditions, i.e.,

J00 ¼ J11 þ J22 and P00 ¼ P11 þ P22: ð3:10Þ

In this basis, one can express the Chern-Simons gauge field
as,

A ¼ EaPa þΩaJa þ EabPab þ ΩabJab: ð3:11Þ

Here ðEa;ΩaÞ denotes the fields of the usual spin two
sector whereas ðEab;ΩabÞ denotes the fields of the spin-3
sector. The supertrace elements of the generators are
given by

hPa; Jbi ¼ ηab; hPab; Jcdi ¼ −2σηabηcd: ð3:12Þ

The Chern-Simons action can be written in terms of the
so-called vielbeinsEa, spin connectionsΩa and higher-spin
fields Eab;Ωab as,

ICS ¼
k
4π

Z
M



A; dAþ 2

3
A2

�
ð3:13Þ

¼ k
4π

Z
M

�
2Ea

�
dΩa þ

1

2
ϵabcΩbΩc − 2σϵabcΩbdΩc

d

�
ð3:14Þ

− 4σEabðdΩabþϵcdaΩcΩb
dþϵcdbΩcΩa

dÞ

: ð3:15Þ

The above action describes the coupling of spin-3 field that
of gravity in asymptotically flat three space time dimen-
sions [43]. Here σ denotes the coupling constant of the
higher spin interactions. The equations of motion following
from the above action are given by,

dEa þ ϵabcΩbEc − 4σϵabcEbdΩc
d ¼ 0;

dΩa þ 1

2
ϵabcΩbΩc − 2σϵabcΩbdΩc

d ¼ 0;

dEab þ ϵcdaΩcEd
b þ ϵcdbΩcEd

a þ ϵcdaecΩd
b þ ϵcdbEcΩd

a ¼ 0;

dΩab þ ϵcdaΩc
b þ ϵcdbΩcΩd

a ¼ 0: ð3:16Þ

The two basis (3.7) and (3.9) are related by

Lα ¼ Uα
aJa and Mα ¼ Uα

aPa; ð3:17Þ

where

Uα
a ¼

0
B@

−1 −1 0

0 0 1

−1 1 0

1
CA: ð3:18Þ

In the above α∈ f−1; 0;þ1g label the row indices while
a∈ f0; 1; 2g label the column indices. The higher spin
generators Up and Vp also have a nice structure since the
Up generators mix the Jab generators while the Vp

generators mix exclusively between the Pab generators.
The linear transformation connecting these two sets of
generators can be explicitly written as

0
BBBBBB@

U−2

U−1

U0

Uþ1

Uþ2

1
CCCCCCA

¼

0
BBBBBB@

2 0 2 0 1

0 −1 0 −1 0

0 0 0 0 1

0 −1 0 1 0

−2 0 2 0 1

1
CCCCCCA

0
BBBBBB@

J01
J02
J11
J12
J22

1
CCCCCCA

and

0
BBBBBB@

V−2

V−1

V0

Vþ1

Vþ2

1
CCCCCCA¼

0
BBBBBB@

2 0 2 0 1

0 −1 0 −1 0

0 0 0 0 1

0 −1 0 1 0

−2 0 2 0 1

1
CCCCCCA

0
BBBBBB@

P01

P02

P11

P12

P22

1
CCCCCCA: ð3:19Þ

In the following, we will revisit the construction of
charge algebra corresponding to the asymptotic sym-
metries associated with spin-3 gravity by imposing
suitable fall-off conditions on the Chern-Simons gauge
field. A similar analysis was carried on in [56]. We shall
comment on the results obtained toward the end of this
section.
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B. Construction of asymptotic charge algebra

The presence of boundary in a theory always enhances
the boundary symmetries. These enhanced symmetries at
the boundary are in general known as the asymptotic
symmetries of the corresponding theory. For three dimen-
sional asymptotically flat Einstein (super) gravity, one can
define a set of boundary conditions such that gives us
(super) BMS as the asymptotic symmetry group. In the
Chern-Simons formulation of (super)gravity in the (u; r;ϕ)
coordinates first we do a partial gauge fixing by imposing
∂ϕAr ¼ 0 and then impose the boundary condition on the
gauge fields as,

A ¼ b−1ðaþ dÞb; b ¼ e
r
2
M−1 ð3:20Þ

Here the choice of b helps to factorize the r dependence and
aðu;ϕÞ ¼ aϕðu;ϕÞdϕþ auðu;ϕÞdu is the boundary gauge
field implying the residual gauge freedom at the boundary.
Consideration of the asymptotic flat metric,

ds2 ¼ Mdu2 − 2dudrþNdudϕþ r2dϕ2 ð3:21Þ

dictates the boundary conditions fixing the components of
a accordingly. Thus for a spin-3 extended Einstein’s
gravity, we begin with,

au ¼ M1 −
1

4
Mðu;ϕÞM−1 þQðu;ϕÞV−2

aϕ ¼ L1 −
1

4
Mðu;ϕÞL−1 −

1

4
N ðu;ϕÞM−1

þQðu;ϕÞU−2 þOðu;ϕÞV−2; ð3:22Þ

where Q, O are fields associated with the higher spin
generators. Since they do not generate any spacetime
symmetries these fields are not involved in the metric
(3.21). All fields involved in (3.22) have to satisfy the
gauge equation of motion hence implying constraints on
these fields.
The asymptotic symmetries correspond to the set of

gauge transformations that preserves the equation of
motion and variation of the boundary gauge field. The
equation of motion and the gauge variation equation,
respectively are given by,

daþ 1

2
½a; a� ¼ 0; δa ¼ dΛþ ½a;Λ�; ð3:23Þ

where Λ is the most general gauge parameter,

Λ ¼ ϒnLn þ ξnMn þ ϵpUp þ ηpVp ð3:24Þ

and ϒn, ξn, ϵp, and ηp are arbitrary fields depending on
both u and ϕ where the index n∈ f−1; 0; 1g and
index p∈ f−2;−1; 0; 1; 2g.
The equations of motion explicitly in terms of the fields

M, N , O, and Q takes the form,

∂uM¼ ∂uQ¼ 0; ∂uO¼ ∂ϕQ; ∂uN ¼ ∂ϕM: ð3:25Þ

The above immediately suggests that M and Q are purely
functions of ϕ. Choosing M and Q to be independent
functions, we can express the other two functions, namely
N and O in terms of the independent functions thus fixing
the explicit u dependence of the asymptotic metric (3.21).
To be more explicit, we can write,

N ðu;ϕÞ ¼ LðϕÞ þ u∂ϕMðϕÞ;
Oðu;ϕÞ ¼ UðϕÞ þ u∂ϕQðϕÞ; ð3:26Þ

where LðϕÞ and UðϕÞ are arbitrary smooth functions of ϕ.
We now turn our attention to the gauge variation

equation [second equation of (3.23)]. As one would expect,
this gives us a large set of equations relating most of the
gauge field parameters—in fact, as we will see, we are
precisely left with four independent gauge parameters,
namely ϒ1, ξ1, ϵ2, and η2. The variation of the field
component au leads us to

∂uϒn ¼ 0; ∂uϵ
p ¼ 0; ð3:27Þ

along with other equations relating to various gauge
functions. The above immediately implies both the arbi-
trary gauge functions ϒn and ϵp must be functions of ϕ
exclusively.
The variation of aϕ further leads to another set of

equations relating various gauge functions. As claimed
before, consideringϒ1, ξ1, ϵ2, and η2 to be the independent
fields, the other gauge parameters can be expressed as

ϒ0 ¼ −∂ϕϒ1;

ϒ−1 ¼ 1

2
∂
2
ϕϒ

1 −
1

4
Mϒ1 þ 8σQϵ2;

ξ0 ¼ −∂ϕξ1;

Wð0; bÞ ALGEBRA AND THE DUAL THEORY OF 3D … PHYS. REV. D 109, 066002 (2024)

066002-7



ξ−1 ¼ 1

2
∂
2
ϕξ

1 −
1

4
Mξ1 −

1

4
Nϒ1 þ 8σQη2 þ 8σOϵ2;

ϵ1 ¼ −∂ϕϵ2;

ϵ0 ¼ 1

2
∂
2
ϕϵ

2 −
1

2
Mϵ2;

ϵ−1 ¼ −
1

6
∂
3
ϕϵ

2 þ 1

6
∂ϕMϵ2 þ 5

12
M∂ϕϵ

2;

ϵ−2 ¼ 1

24
∂
4
ϕϵ

2 −
1

24
∂
2
ϕMϵ2 −

7

48
∂ϕM∂ϕϵ

2 −
1

6
M∂

2
ϕϵ

2 þ 1

16
M2ϵ2 þQϒ1;

η1 ¼ −∂ϕη2;

η0 ¼ 1

2
∂
2
ϕη

2 −
1

2
Mη2 −

1

2
N ϵ2;

η−1 ¼ −
1

6
∂
3
ϕη

2 þ 1

6
∂ϕMη2 þ 1

6
∂ϕN ϵ2 þ 5

12
M∂ϕη

2 þ 5

12
N ∂ϕϵ

2;

η−2 ¼ 1

24
∂
4
ϕη

2 −
1

24
∂
2
ϕMη2 −

1

24
∂
2
ϕN ϵ2 −

7

48
∂ϕM∂ϕη

2 −
7

48
∂ϕN ∂ϕϵ

2 −
1

6
M∂

2
ϕη

2

−
1

6
N ∂

2
ϕϵ

2 þ 1

16
M2η2 þ 1

16
MN ϵ2 þ 1

16
NMϵ2 þQξ1 þOϒ1: ð3:28Þ

Furthermore, the above equations (obtained from gauge
variations of aϕ) can be used along with the equations
obtained from the au variation to obtain

∂uξ
n ¼ ∂ϕϒn; ∂uη

p ¼ ∂ϕϵ
p: ð3:29Þ

We have already seen that out of the four independent gauge
parameters, ϒ1, ξ1, ϵ2 and η2, ϒ1 and ϵ2 are exclusively
dependant onϕ. The above equation fixes the u-dependence
of the other two functions ξ1 and η2 as follows

ξ1ðu;ϕÞ¼TðϕÞþu∂ϕϒ1ðϕÞ; η2ðu;ϕÞ¼SðϕÞþu∂ϕϵ2ðϕÞ:
ð3:30Þ

Finally, the gauge variation equations also provide us with
the variation of the independent functions M, L, U, and Q
appearing in the asymptotic form of the metric in terms of
the independent gauge parameters ϒ1ðϕÞ; ϵ2ðϕÞ; TðϕÞ and
SðϕÞ. These are given by

δM ¼ −2∂3ϕϒ1 þ ∂ϕM:ϒ1 þ 2M:∂ϕϒ1 − 32σ∂ϕQ:ϵ2 − 48σQ∂ϕϵ
2; ð3:31Þ

δL ¼ −2∂3ϕT þ ∂ϕM:T þ 2M:∂ϕT þ ∂ϕL:ϒ1 þ 2L:∂ϕϒ1

− 32σ∂ϕQ:S − 48σQ:∂ϕS − 32σ∂ϕU:ϵ2 − 48σU:∂ϕϵ2 ð3:32Þ

δQ ¼ 1

24
∂
5
ϕϵ

2 −
1

24
∂
3
ϕM:ϵ2 −

3

16
∂
2
ϕM:∂ϕϵ2 −

5

16
∂ϕM:∂2ϕϵ

2 −
5

24
M:∂3ϕϵ

2

þ 1

6
M:∂ϕM:ϵ2 þ 1

6
M2:∂ϕϵ2 þ ∂ϕQ:ϒ1 þ 3Q:∂ϕϒ1 ð3:33Þ

δU ¼ 1

24
∂
5
ϕS −

1

24
∂
3
ϕM:S −

3

16
∂
2
ϕM:∂ϕS −

5

16
∂ϕM:∂2ϕS −

5

24
M:∂3ϕS

þ 1

6
M:∂ϕM:Sþ 1

6
M2:∂ϕS −

1

24
∂
3
ϕL:ϵ

2 −
3

16
∂
2
ϕL:∂ϕϵ

2 −
5

16
∂ϕL:∂2ϕϵ

2

−
5

24
L:∂3ϕϵ

2 þ 1

6
∂ϕM:L:ϵ2 þ 1

6
M:∂ϕL:ϵ2 þ

1

3
M:L:∂ϕϵ2 þ ∂ϕQT

þ 3Q∂ϕT þ ∂ϕUϒ1 þ 3U∂ϕϒ1: ð3:34Þ
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For a generic Chern-Simons theory, using the canonical
approach, the variation of the canonical generators that
corresponds to the asymptotic symmetries of this theory
can be found as [61,62],

δQ ¼ −
k
2π

Z
hΛ; δAϕidϕ ð3:35Þ

In our present case, using appropriate supertrace ele-
ments, the above expression of variation of the charge
reduces to,

δQ¼−
k
2π

Z �
1

8
ϒ1δN þ1

8
ξ1δMþ2σϵ2δOþ2ση2δQ


dϕ

ð3:36Þ

We need to integrate this relation to find the asymptotic
charge. For this purpose, the expressions must be expressed
in terms of independent gauge variation parameters, whose
variations are set to zero values at the boundary. Writing the
variation of the charge in terms of independent fieldsL,M,
U, Q and gauge parameters ϒ1; T; ϵ2; S. The variation of
the charge is given as,

δQ ¼ −
k
2π

Z �
1

8
ϒ1δLþ 1

8
TδMþ 2σϵ2δU þ 2σSδQ


dϕ

ð3:37Þ

We now easily find the expression of the charge under
some mild regularity assumptions of variations and it is
given as,

Q ¼ −
k
2π

Z �
1

8
ϒ1Lþ 1

8
TMþ 2σϵ2U þ 2σSQ


dϕ:

ð3:38Þ

A further rescaling of fields, as suggested in [56,57] is
useful in bringing the above charge into a more suitable
form. It is given as,

L̃¼ k
4π

L; M̃¼ k
4π

M; Ũ ¼ k
π
U; Q̃¼ k

π
Q;

eϵ2 ¼ 576ϵ2; S̃¼ 576S ð3:39Þ

Using the above scaling, the final expression of the
asymptotic charge can be achieved and is given as,

Q¼−
Z �

ϒ1L̃þTM̃þ σ

144
ϵ̃2Ũþ σ

144
S̃Q̃


dϕ ð3:40Þ

The asymptotic symmetry algebra can be found using
asymptotic charge and its variation. Precisely, the Poisson
brackets among various modes of the fields can be found
using the formula,�

Q½λ1�; Q½λ2�
	
PB ¼ δλ1Q½λ2� ð3:41Þ

We have the expression of the charge in terms of
independent fields and parameters and using the above
formula (3.41) and the variation of different fields (3.31),
one can now write the full asymptotic algebra. It is
important to note that, while using the field variations,
we have split the quadratic terms involving different fields
in explicit symmetric combinations. The reason for the
same will be clarified in the next subsection. The complete
asymptotic algebra for a gravity theory coupled to spin-3 is
given as,

ifLm;Lng ¼ ðm − nÞLmþn

ifLm;Mng ¼ ðm − nÞMmþn þ
cM
12

mðm2 − 1Þδmþn;0

ifLm;Ung ¼ ð2m − nÞUmþn

ifLm;Vng ¼ ð2m − nÞVmþn

ifMm;Ung ¼ ð2m − nÞVmþn

ifUm;Ung ¼ 3

σ

�
ðm − nÞð2m2 þ 2n2 −mn − 8ÞLmþn þ

96

cM
ðm − nÞ

X
p

ðMmþn−pLp þ Lmþn−pMpÞ


ifUm;Vng ¼ 3

σ

�
ðm − nÞð2m2 þ 2n2 −mn − 8ÞMmþn þ

96

cM
ðm − nÞ

X
p

Mmþn−pMp

þ cM
12

mðm2 − 1Þðm2 − 4Þδmþn;0


; ð3:42Þ

where cM ¼ 12k and we have defined the Fourier modes as,
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L̃ðϕÞ ¼ 1

2π

X
m

Lme−imϕ; M̃ðϕÞ ¼ 1

2π

X
m

Mme−imϕ;

ŨðϕÞ ¼ 1

2π

X
m

Ume−imϕ; Q̃ðϕÞ ¼ 1

2π

X
m

Vme−imϕ:

ð3:43Þ

In the above, we have made a shift in the zero mode
M0 → M0 þ cM

24
to make sure to get the centerless global

algebra as sub algebra of asymptotic algebra for fLm;Mmg
where m ¼ 0;�1 and fUm;Vmg where m ¼ 0;�1;�2.
Thus we have identified the asymptotic symmetry algebra
of spin-3 extended gravity theory, for an arbitrary value of
the spin-3 coupling parameter σ. This is one of the results of
this paper. In the next section, we derive the same algebra
by using Inönü-Wigner Contraction of two copies of spin-3
extended asymptotic AdS algebra.

C. Alternate way of deriving the algebra:
Inönü-Wigner contraction

The Innönü-Wigner contraction is a group contraction act
on a Lie algebra to get a different Lie algebra which is, in
general, nonisomorphic to the previous Lie algebra with
respect to a continuous subgroup of it. The contraction
(limiting) operation on a parameter of the Lie algebra under
suitable conditions alters the structure constants of the
corresponding Lie algebra in a nontrivial singular way. The
same idea of Inönü-Wigner contraction has been used to get
the desired asymptotic algebra for the flat (super)gravity
theories from the asymptotic algebra of the corresponding
AdScase by taking a suitable limit [56,57]. In the present case,
one can also derive the charge algebra (3.42) from a suitable
combination of two copies of asymptotic higher spin charge
algebra of AdS spacetime by considering the AdS radius
l → ∞ limit. One can startwith two copies ofW3 algebra [43]

ifJ p;J qg ¼ ðp − qÞJ pþq þ
c
12

pðp2 − 1Þδpþq;0

ifJ p;Wqg ¼ ð2p − qÞWpþq

ifWp;Wqg ¼ −
σ

3

�
ðp − qÞð2p2 þ 2q2 − pq − 8ÞJ pþq þ

96

c
ðp − qÞΛpþq þ

c
12

pðp2 − 1Þðp2 − 4Þδpþq;0



ifJ̄ p; J̄ qg ¼ ðp − qÞJ̄ pþq þ
c̄
12

pðp2 − 1Þδpþq;0

ifJ̄ p; W̄qg ¼ ð2p − qÞW̄pþq

ifW̄p; W̄qg ¼ −
σ

3

�
ðp − qÞð2p2 þ 2q2 − pq − 8ÞJ̄ pþq þ

96

c̄
ðp − qÞΛ̄pþq þ

c̄
12

pðp2 − 1Þðp2 − 4Þδpþq;0


;

where, Λp ¼ P
q∈Z J pþqJ −q, Λ̄p ¼ P

q∈Z J̄ pþqJ̄ −q and c ¼ c̄ ¼ 3l
2G.

The algebra for the flat case can be obtained by introducing the singular map between the generators of the two copies of
AdS algebras and the generators of the flat algebra. The relationship between generators of AdS algebra fJ n; J̄ n;Wn; W̄ng
and the generators of flat algebra fLn;Mn;Un;Vng is given as,

Ln ¼ J n − J̄ −n;Mn ¼
J n þ J̄ −n

l
; Un ¼ Wn − W̄−n;Vn ¼

Wn þ W̄−n

l
ð3:44Þ

With the above mapping among generators, we can write the flat algebra in terms of generators fLn;Mn;Un;Vng. The
nonzero commutators of the algebra in the form of Poisson bracket can be written as,

ifLm;Lng ¼ ðm− nÞLmþn

ifLm;Mng ¼ ðm− nÞMmþn þ
cM
12

mðm2 − 1Þδmþn;0

ifLm;Ung ¼ ð2m− nÞUmþn

ifLm;Vng ¼ ð2m− nÞVmþn

ifMm;Ung ¼ ð2m− nÞVmþn

ifUm;Ung ¼ −
σ

3

�
ðm− nÞð2m2 þ 2n2 −mn− 8ÞLmþn þ

96

cM
ðm− nÞ

X
k

ðMmþn−pLp þLmþn−pMpÞ


ifUm;Vng ¼ −
σ

3

�
ðm− nÞð2m2 þ 2n2 −mn− 8ÞMmþn þ

96

cM
ðm− nÞ

X
k

Mmþn−pMp þ
cM
12

mðm2 − 1Þðm2 − 4Þδmþn;0


;

ð3:45Þ
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where finally we have taken flat limit l → ∞. We have
further identified cM ¼ cþc̄

l ¼ 2c
l ¼ 3

G. The Poisson brack-
ets exactly match with the ones obtained in (3.42).
The point to note is that the Inönü-Wigner contraction
of the two copies of the spin-3 AdS algebras clearly
justifies the symmetrization of nonidentical fields in the
gauge variation that we had performed in the last sub-
section. In other words, while reviewing the asymptotic
symmetry algebra of higher spin-3 fields coupled to
gravity in terms of that of the asymptotically AdS theory,
in the large l limit the fields appear in a particular
symmetric combination. Further one can obtain the most
generic possible quantum extension of the above Poisson
bracket relations by allowing the central term in ½Lm;Ln�
and ½Um;Un� commutator as presented in [56,57]. Note
that the level of the corresponding Chern-Simon actions is
related as kl ¼ k:l.

IV. THE DUAL FIELD THEORY

In the last section, we obtained the asymptotic symmetry
algebra for three dimensional asymptotically flat gravity
with a spin-3 generalization. Now our main objective is to
construct a two dimensional theory at the boundary which is
dual to our higher spin gravity theory in the bulk. The field
theory is expected to govern the residual gauge degrees of
freedom of the bulk. This is where the Chern-Simons
formulation of (2þ 1) dimensional gravity plays a crucial
role. It is well known that Chern-Simons theory defined on a
manifold with boundaries is equivalent to a WZW theory
with appropriate boundary conditions. Although WZW
theory has a three dimensional piece, its dynamics are
effectively two dimensional and are restricted to the boun-
dary of the original CS theory. This can be better understood
by further reducing the WZW theory to a Liouville type
theory defined exclusively at the 2D boundary.
Since the effect of boundary is crucial in this

correspondence between different theories, let us discuss
it in a bit more detail. For this, we will split the CS gauge
field into two parts A ¼ duAu þ Ã where Au is the timelike
component and Ã is the spatial part of the field. Then we
can rewrite the CS action in Hamiltonian form (See
Appendix B of [28] for details of the derivation) as,

IH½A� ¼ k
Z

hÃ; du ˙̃Ai þ 2hduAu; d̃ ÃþÃ2i; ð4:1Þ

where the derivatives are also split into the temporal and the
spatial parts. Now from this form of the action, it becomes
clear that the variation of the action is not well defined for a
generic boundary condition. In fact, the variation of the
action yields an extra boundary term of the form
−2k

R
dud̃hAu; δÃi. This can be further simplified in our

case since the spatial directions are fr;ϕg and ϕ is a
compact direction. Hence, the only surviving boundary
term is in ðu;ϕÞ surface.

Since CS theory is a topological field theory, it is locally
trivial. This is also clear from the fact that the equation of
motion says that the field strength vanishes at every point.
Hence, locally, the solution for the gauge connection can be
written as

Ai ¼ G−1
∂iG ð4:2Þ

where G is an element of the gauge group. We further
impose gauge choice to write

Gðu; r;ϕÞ ¼ gðu;ϕÞhðu; rÞ:

Then following our argument an improved CS action along
with the proper boundary term takes the form:

ICS½g�¼−k
Z
∂M

d2xϵijTrðg−1∂igg−1∂jgÞ

þk
3

Z
M
d3xϵμνρTrðG−1

∂μGG−1
∂νGG−1

∂ρGÞþIbdy

ð4:3Þ
which is the chiral Wess-Zumino-Witten action. The
variation of this action is two dimensional which already
manifests the 2D nature of our dual holographic theory. We
can further reduce this chiral WZW action to a Liouville
type theory. As we will show, doing so requires us to use
the full set of boundary conditions on A that we obtained
from the gravitational context. In the following, our main
objective would be to identify such a theory for the higher
spin-3 gravity case.

A. Construction of the action
of the dual field theory

Starting from (4.3), the Wess-Zumino-Witten action with
the coordinate choice of ðu;ϕ; rÞ for the bulk space time,
can be expressed as,2

ICS½g� ¼ k
Z
∂M

dudϕh∂ϕgg−1∂ugg−1i

þk
3

Z
M
hG−1dG∧G−1dG∧G−1dGiþ Ibdy: ð4:4Þ

In the above action, g is the dynamical field living on the
boundary spanned by ðu;ϕÞ coordinates and G is its
pullback to the bulk manifold. We rewrite the above action
(4.4) by using the Polyakov-Wiegmann identity [63].3

This identity allows to rewrite the three-dimensional
integral part of (4.4) as a two dimensional integral. By
choosing a splitting g ¼ g1g2g3, we express the action
(4.4) as,

2We have briefly outlined the construction of the dual WZW
theory for three dimensional pure asymptotically flat Einstein
gravity theory in Appendix B.

3Look at the Appendix A for relevant details.

Wð0; bÞ ALGEBRA AND THE DUAL THEORY OF 3D … PHYS. REV. D 109, 066002 (2024)

066002-11



ICSðgÞ ¼ Iðg1Þ þ Iðg2Þ þ Iðg3Þ þ 2k
Z
∂M

dudϕTrðg−11 ∂ϕg1∂ug2g−12 Þ

þ 2k
Z
∂M

dudϕTrðg−12 ∂ϕg2∂ug3g−13 Þ þ 2k
Z
∂M

dudϕTrðg−11 ∂ϕg1g2∂ug3g−13 g−12 Þ þ Ibdy ð4:5Þ

where,

IðgiÞ ¼ k
Z
∂M

dudϕh∂ϕgig−1i ∂ugig−1i ii ¼ 1; 2; 3 ð4:6Þ

To reduce this action further we use Gauss decomposi-
tion for the field g. For performing the Gauss decom-
position4 of fields, we need to expand the fields into the
Chevalley-Serre basis of the corresponding gauge group. In
the present case, the gauge group is fhsð3Þ as given in (3.7).
Then we can do the decomposition as,

g1 ¼ eXL1þWM1þPU1þQU2þRV1þSV2

g2 ¼ eΦL0þζM0þηU0þξV0

g3 ¼ eYL−1þVM−1þEU−1þFU−2þCV−1þDV−2 ð4:7Þ

where fLi;Migði ¼ 0;�1Þ and fUi; Vigði ¼ 0;�1;�2Þ
are the generators of fhsð3Þ (3.7). Note that X;W;P;Q;
R; S;Φ; ζ; η; ξ; Y; V; E; F; C;D in (4.7) are boundary fields
and thus are functions of u;ϕ coordinates only. Using an

appropriate matrix representation5 of the generators where
the matrices are upper triangular, diagonal and lower
triangular matrices, we plug in (4.7) in the action (4.5)
and find all the terms. While Iðg1Þ; Iðg2Þ; Iðg3Þ have very
simple expressions,

Iðg1Þ ¼ 0 ð4:8Þ

Iðg2Þ¼k
Z
∂M

dudϕ

�
1

4
Φ0ζ̇þ1

4
ζ0Φ̇þσ

3
ξ0η̇þσ

3
η0ξ̇

�
ð4:9Þ

Iðg3Þ ¼ 0 ð4:10Þ

the other terms of (4.5) becomes,

Trðg−11 ∂ϕg1∂ug2g−12 Þ ¼ 0 ð4:11Þ

Trðg−12 ∂ϕg2∂ug3g−13 Þ ¼ 0 ð4:12Þ

Trðg−11 ∂ϕg1g2∂ug3g−13 g−12 Þ¼1

2
σe2Φ

��ðVXþWYþ2XYζÞP0 þ2ðV−2YζÞQ0 þXYR0−2YS0−PYW0

−ðPVþRY−2PYζÞX0	Ėþ�
2ðRþ2PζÞX0−2ðWþ2XζÞP0 þ8ζQ0−2XR0 þ4S0 þ2PW0	Ḟ

þðXYP0−PYX0ÞĊ−2YQ0Ėþð2PX0−2XP0−4Q0ÞḊþðEPX0−EXP0 þ2EQ0ÞV̇
þ�ðCPþERþ2EPζÞX0−ðEWþCXÞP0−2EXζP0 þEPW0 þ2ðCþ2EζÞQ0	Ẏ�
þ1

2
cosh

�
2

ffiffiffi
σ

p
η
�
eΦ

�� ffiffiffi
σ

p
W0 þ� ffiffiffi

σ
p

ζ−2σξ
�
X0−

�
σζP0 þ2σ

3
2ξ
�
P0−σR0	Ė

þ� ffiffiffi
σ

p
X0−σP0�Ċ−ð2σξP0 þW0 þζX0ÞẎ�þ1

2
sinh

�
2

ffiffiffi
σ

p
η
�
eΦ

�� ffiffiffi
σ

p
P0−X0�V̇

þ ffiffiffi
σ

p ðζP0 þR0 þ2ξX0ÞẎ� ð4:13Þ

Putting together all the pieces, the full action (4.5) can be expressed as,

ICS ¼ k
Z
∂M

dudϕ

�
1

4
Φ0ζ̇ þ 1

4
ζ0Φ̇þ σ

3
ξ0η̇þ σ

3
η0ξ̇þ σe2Φ

��ðVX þWY þ 2XYζÞP0

þ 2ðV − 2YζÞQ0 þ XYR0 − 2YS0 − PYW0 − ðPV þ RY − 2PYζÞX0	Ė
þ �

2ðRþ 2PζÞX0 − 2ðW þ 2XζÞP0 þ 8ζQ0 − 2XR0 þ 4S0 þ 2PW0	Ḟ
þ ðXYP0 − PYX0ÞĊ − 2YQ0Ėþ ð2PX0 − 2XP0 − 4Q0ÞḊþ ðEPX0 − EXP0 þ 2EQ0ÞV̇
þ �ðCPþ ERþ 2EPζÞX0 − ðEW þ CXÞP0 − 2EXζP0 þ EPW0 þ 2ðCþ 2EζÞQ0	Ẏ�

4Important aspects of Gauss decomposition are discussed in [64].
5Look at Appendix C.
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þ cosh
�
2

ffiffiffi
σ

p
η
�
eΦ

�� ffiffiffi
σ

p
W0 þ � ffiffiffi

σ
p

ζ − 2σξ
�
X0 −

�
σζP0 þ 2σ

3
2ξ
�
P0 − σR0	Ėþ � ffiffiffi

σ
p

X0 − σP0�Ċ− ð2σξP0 þW0 þ ζX0ÞẎ�
þ sinh

�
2

ffiffiffi
σ

p
η
�
eΦ

�� ffiffiffi
σ

p
P0 −X0�V̇ þ ffiffiffi

σ
p �

ζP0 þR0 þ 2ξX0�Ẏ�þ Ibdy ð4:14Þ

The above action contains all the fields that appeared in the Gauss decomposition of the gauge field. This is certainly an
overestimation, as to get the boundary theory that sees (3.42) as its symmetry, we further need to use the constraints on
various fields coming from the appropriate boundary condition (3.22). Plugging the Gauss decomposition (4.7) in Aϕ and
imposing the boundary conditions (3.22) one can actually understand that the fields introduced above are not all
independent, rather they depend on each other at the boundary. The boundary condition imposes the following constraints
on the fields,

Q0 ¼ 1

2
ðXP0 − PX0Þ;ffiffiffi

σ
p

eΦP0 ¼ − sinhð2 ffiffiffi
σ

p
ηÞ; eΦX0 ¼ coshð2 ffiffiffi

σ
p

ηÞ

E ¼ −
η0

3
; Y ¼ −

Φ0

2
; C ¼ −

ξ0

3
; Y ¼ −

ζ0

2
; F ¼ 1

6
η0Φ0 þ 1

12
η00ffiffiffi

σ
p

eΦR0 ¼ sinhð2 ffiffiffi
σ

p
ηÞζ − 2

ffiffiffi
σ

p
coshð2 ffiffiffi

σ
p

ηÞξ;
eΦW0 ¼ − coshð2 ffiffiffi

σ
p

ηÞζ þ 2
ffiffiffi
σ

p
sinhð2 ffiffiffi

σ
p

ηÞξ

S0 ¼ 1

2
ðWP0 þ XR0 − PW0 − RX0Þ;

D ¼ 1

6
ζ0η0 þ 1

6
ξ0Φ0 þ 1

12
ξ00 ð4:15Þ

Thus we see that we have 12 constraint relations among 16 fields and hence there will be only 4 independent degrees of
freedom Φ, ζ, η, ξ for the boundary field theory. These independent fields are related to the four independent components
M, N , Q, O of the asymptotic Chern-Simons field, which can also be realized from the boundary conditions as follows,

M ¼ 4σ

3
ðη0Þ2 þ ðΦ0Þ2 þ 2Φ00

N ¼ 8σ

3
η0ξ0 þ 2ζ0Φ0 þ 2ζ00

Q ¼ −
2σ

27
ðη0Þ3 þ 1

6
η0ðΦ0Þ2 þ 1

4
Φ0η00 þ 1

12
η0Φ00 þ 1

12
η000

O ¼ −
5σ

18
ðη0Þ2ξ0 þ 1

3
ζ0η0Φ0 þ 1

8
ξ0ðΦ0Þ2 þ 1

12
η0ζ00 þ 1

4
ζ0η00 þ 7

24
Φ0ξ00 þ 1

24
ξ0Φ00 þ 1

12
ξ000 ð4:16Þ

Plugging all the expressions from (4.15) and (4.16), The
dual action in (4.14) can finally be written in terms of the
independent fields Φ, ζ, η, ξ as,

ICS ¼ k
Z
∂M

dudϕ

�
1

4
Φ0ζ̇ þ 1

4
ζ0Φ̇þ σ

3
ξ0η̇þ σ

3
η0ξ̇þ 1

2
ζ̇0


þ Ibdy ð4:17Þ

Here we have expressed the action in terms of the
independent fields up to the boundary term. The boundary
term depends on the particular boundary condition (3.22)
imposed on the components of the gauge field. The generic
form of the boundary term, in terms of the gauge field
components, can be found by demanding a well defined

variation of the action. For a 3D Chern-Simons action the
well defined variation of boundary term is,

δIbdy¼−4k
Z
M
dudϕdrh∂rðAuδAϕÞ−∂ϕðAuδArÞi ð4:18Þ

Boundary coordinate ϕ is cyclic in nature and we will get
no contribution from the term involving a total derivative
with respect to ϕ. Thus (4.18) reduces to,

δIbdy ¼ −4k
Z
M

dudϕdrh∂rðAuδAϕÞi ð4:19Þ

After radial integration, we can express the boundary term
as follows,
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Ibdy ¼ −2k
Z
∂M

dudϕhAuAϕi ð4:20Þ

To evaluate this boundary term explicitly in terms of
independent boundary fields we have to use (3.22) and
the information of the supertrace elements. Using these, the
boundary term takes the form given as,

Ibdy ¼ −2k
Z
∂M

dudϕ

�
M
4

�
ð4:21Þ

We can further rewrite the boundary action in terms of
the independent fields of the 2D dual field theory using
(4.16) as,

Ibdy ¼ −2k
Z
∂M

dudϕ

�
σ

3
ðη0Þ2 þ 1

4
ðΦ0Þ2 þ 1

2
Φ00


: ð4:22Þ

With the above boundary action in (4.17), we get the
following reduced dual action,

ICS ¼ k
Z
∂M

dudϕ

�
1

4
Φ0ζ̇ þ 1

4
ζ0Φ̇þ σ

3
ξ0η̇þ σ

3
η0ξ̇

þ 1

2
ζ̇0 −

2σ

3
ðη0Þ2 − 1

2
ðΦ0Þ2 −Φ00


: ð4:23Þ

The compact nature of angular direction ϕ will help us to
manipulate some terms. After simplification, we can write
the final form of the reduced action as,

ICS ¼ k
Z
∂M

dudϕ

�
1

2
Φ0ζ̇ −

1

2
ðΦ0Þ2 þ 2σ

3
η0ξ̇ −

2σ

3
ðη0Þ2


:

ð4:24Þ

Equation (4.24) is the main result of this paper. This is
the action that describes the dynamics of a spin-3 field
coupled to three dimensional pure gravity theory. Here η, ξ
carries the signatures of the higher dimensional higher spin
fields and σ is the higher spin coupling. To the best
of our knowledge, this is the first ever attempt in the
literature to write an action describing the dynamics of
asymptotically flat higher spin gravity theory in three space
time dimensions. We easily note that the canonical con-
jugate momentas of the above fields can be written as,

pΦ ¼ k
2
ζ0; pζ ¼

k
2
Φ0; pη ¼ k

2σ

3
ξ0; pξ ¼ k

2σ

3
η0:

ð4:25Þ

These canonical conjugate momenta of the fields are
used to find the symmetry transformation of the fields. A
Hamiltonian formalism can further be used to find the
variation of the different fields and that can be computed
from their Poisson brackets with the global charge. These

variations of fields will help us to get the transformations of
various fields that further lead to the symmetries of the
reduced action of the theory. This gives us the opportunity
to cross-check the asymptotic algebra (3.42) directly. While
the prescription is straightforward, the actual computation
requires solving the equations of motions for each field and
is technically challenging. It would be nice to address this
question in alternative ways and we hope to report on it in a
future work.

V. DISCUSSION AND OUTLOOK

The asymptotic symmetry algebra of asymptotically flat
3D spacetimes, bms3 admits generic deformations known
asWða; bÞ algebra. In this paper, we have established a no-
go theorem, that for a generic value of the parameter b other
than −1,Wð0; bÞ algebras cannot be used as a gauge group
for a three dimensional Chern-Simons theory, since they do
not admit a nondegenerate invariant bilinears. Next, we
studied the possible emergence of Wða; bÞ algebras as the
asymptotic symmetry algebra (or at least a subalgebra of an
asymptotic algebra) of a gravity theories in 3D flat space-
times. In particular, a key observation of our work is that
Wð0;−2Þ algebra can be thought of as a subalgebra of the
asymptotic symmetry algebra of asymptotically flat spin-3
gravity. Specifically, the generators Lα and Vp form the
Wð0;−2Þ subalgebra. Having thus identified a connection
between deformations of bms3 and symmetry algebra of
asymptotically flat higher spin theories for a particular case
(of a ¼ 0 and b ¼ −2), it is natural to ask if generalization
of such connection exists for generic values of a, b and
arbitrary higher spin. We hope to report on this issue in
future works.
As a natural subsequent step, we considered spin-3

gravity theory in the bulk and use the Chern-Simons
formulation of ð2þ 1ÞD gravity to study its asymptotic
symmetries with suitable boundary conditions imposed on
all fields. Alternatively, we also derive the algebra as an
Inönü-Wigner contraction of the asymptotic symmetry
algebra for spin-3 gravity in AdS3. In a sense the Inönü-
Wigner contraction is tantamount to taking the large radius
limit of AdS. Our results of the charge algebra are in
agreement with the existing one of the literature [56].
Through this computation, the appearance of symmetric
combinations of boundary fields in the gauge variations
becomes evident and finds its root in the corresponding
Inönü-Wigner contraction prescription.
The central result of this paper is to obtain the explicit

action of the corresponding 2D dual theory for this bulk
higher spin extended gravity theory. The prime tool used
in deriving the 2D theory is the equivalence between the
Chern-Simons theory and Wess-Zumino-Witten theory. In
deriving the explicit form of the action we have used three
ingredients: (i) Polyakov-Wiegmann identity which gives
us a decomposition of the Chern-Simons action as the
sum of three independent Chern-Simons theories along
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with quartic and sextic interaction terms. (ii) Gaussian
decomposition of gauge group elements played a crucial
role in the derivation of the simplified 2D action. It is in
fact this decomposition that motivates the particular
Polyakov-Wiegmann decomposition performed in the
previous section. (iii) Finally, the boundary conditions
on the chemical potentials in the Chern-Simons theory is
used, which goes into defining the independent degrees of
freedoms of the dual two dimensional theory. Eventually,
the chiral WZW theory, is reduced to a flat limit of an
extended Liouville theory, where the fields η, ξ carry the
signatures of the higher dimensional higher spin fields.
This gives rise to a relatively simple looking 2D theory
(4.24), that describes the dynamics of the three
dimensional asymptotically flat gravity theory coupled
to spin-3 fields. A careful symmetry analysis of this theory
is bounded to reproduce the asymptotically flat spin-3
algebra although we relegate that analysis to future works.
It is noteworthy to mention that one might attempt to
compute the exact (resummed) S-matrix element of the
higher spin Liouville theory obtained in this work using
integrability techniques developed recently in [65,66].
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APPENDIX A: POLYAKOV-WIEGMANN
IDENTITY

In this appendix, we present the Polyakov-Wiegmann
identity in a covariant form. Our starting point is the
following action:

IðgÞ ¼ k
2

Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
ρijTrðg−1∂igg−1∂jgÞ

þ k
3

Z
V
d3σεijkTrðG−1

∂iGG−1
∂jGG−1

∂kGÞ; ðA1Þ

where g is a group element of the gauge group associated
with the above action, Σ is the 2-dimensional manifold, V is
the 3-dimensional bulk extension of Σ (i.e., ∂V ¼ Σ) and G
is the extension of g in the 3-dimensional bulk. We also

assume that the coordinates of the 2-dimensional manifold
Σ are both compact. Consider the following decomposition
of g, namely

g ¼ f · h: ðA2Þ
Correspondingly, let F and H be the extensions of f and h
in the 3-dimensional bulk manifold V. Plugging (A2) in the
first term of (A1),

Trðg−1∂igg−1∂jgÞ¼Trðf−1∂iff−1∂jfÞþTrðh−1∂ihh−1∂jhÞ
þ2Trðf−1∂if∂jhh−1Þ: ðA3Þ

In writing the above, we have also used the cyclicity of
traces. Now, plugging in

G ¼ F ·H ðA4Þ

in the bulk term of (A1), we can again use cyclicity of
traces to get

εijkTrðG−1
∂iGG−1

∂jGG−1
∂kGÞ

¼ εijkTrðF−1
∂iFF−1

∂jFF−1
∂kFÞ

þ εijkTrðH−1
∂iHH−1

∂jHH−1
∂kHÞ

þ 3εijkTrð∂iHH−1F−1
∂jFF−1

∂kFÞ
þ 3εijkTrð∂iHH−1

∂jHH−1F−1
∂kFÞ ðA5Þ

Focussing on the last two terms, note that

εijkTrð∂iHH−1F−1
∂jFF−1

∂kF þ ∂iHH−1
∂jHH−1F−1

∂kFÞ
¼ −∂jðεijk∂iHH−1F−1

∂kFÞ; ðA6Þ

implying that they are precisely boundary pieces. Thus,
eventually, we have

IðgÞ ¼ IðfÞ þ IðhÞ þ k
Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
ρijTrðf−1∂if∂jhh−1Þ

− k
Z
V
d3σTrð∂jðεijkF−1

∂kF∂iHH−1ÞÞ

¼ IðfÞ þ IðhÞ þ k
Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
ρijTrðf−1∂if∂jhh−1Þ

þ k
Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
εikTrðf−1∂kf∂ihh−1Þ ðA7Þ

The components of ρ in light-cone coordinate are
ρþ− ¼ ρ−þ ¼ 2 and ρþþ ¼ ρ−− ¼ 0. Similarly for ε, the
components are εþ− ¼ 2, ε−þ ¼ −2 and εþþ ¼ ε−− ¼ 0. ρ
and ε are the determinants of the ρij and εij.

IðgÞ ¼ IðfÞ þ IðhÞ þ 2k
Z
Σ
d2xTrðf−1∂−f∂þhh−1Þ ðA8Þ
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Now, further decomposing f in (A7) as

f ¼ p · q; ðA9Þ
and their bulk extensions as

F ¼ P ·Q; ðA10Þ

we get,

IðgÞ ¼ IðpÞ þ IðqÞ þ IðhÞ þ k
Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
ρijTrðp−1

∂ip∂jqq−1Þ þ k
Z
V
d3σTrð∂jðεijkP−1

∂kP∂iQQ−1ÞÞ

þ k
Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
ρijTrðq−1p−1

∂iðpqÞ∂jhh−1Þ þ k
Z
V
d3σTrð∂jðεijkQ−1P−1

∂kðPQÞ∂iHH−1ÞÞ ðA11Þ

⇒ IðgÞ ¼ IðpÞ þ IðqÞ þ IðhÞ þ k
Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
ρijTrðp−1

∂ip∂jqq−1Þ

þ k
Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
ρijTrðq−1∂iq∂jhh−1Þ þ k

Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
ρijTrðp−1

∂ipq∂jhh−1q−1Þ

þ k
Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
εijTrðp−1

∂jp∂iqq−1Þ þ k
Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
εijTrðq−1∂jq∂ihh−1Þ

þ k
Z
Σ
d2σ

ffiffiffiffiffiffi
−ρ

p
εijTrðp−1

∂jpq∂ihh−1q−1Þ ðA12Þ

⇒ IðgÞ ¼ IðpÞ þ IðqÞ þ IðhÞ þ 2k
Z
Σ
d2xTrðp−1

∂−p∂þqq−1Þ þ 2k
Z
Σ
d2xTrðq−1∂−q∂þhh−1Þ

þ 2k
Z
Σ
d2xTrðp−1

∂−pq∂þhh−1q−1Þ ðA13Þ

The final form of Polyakov-Wiegmann identity is given as,

IðgÞ ¼ IðpÞ þ IðqÞ þ IðhÞ þ 2k
Z
Σ
dudϕTrðp−1

∂ϕp∂uqq−1Þ þ 2k
Z
Σ
dudϕTrðq−1∂ϕq∂uhh−1Þ

þ 2k
Z
Σ
dudϕTrðp−1

∂ϕpq∂uhh−1q−1Þ ðA14Þ

We have used the above form of the identity for the computations of the dual gravity action.

APPENDIX B: DUAL ACTION FOR PURE GRAVITY

In this appendix, we have rederived the dual Wess-Zumino-Witten action for three dimensional pure asymptotically flat
Einstein gravity theory. We have used the Polyakov-Wiegmann identity for the derivation. The Wess-Zumino-Witten action
which is equivalent to Chern-Simons action in ðu;ϕ; rÞ coordinate can be given as,

ICS½g� ¼ k
Z
∂M

dudϕh∂ϕgg−1∂ugg−1i þ
k
3

Z
M
hG−1dG ∧ G−1dG ∧ G−1dGi þ Ibdy ðB1Þ

We can decompose element g into three parts, i.e., g ¼ g1:g2:g3 and using the Polyakov-Wiegmann identity. We can write
the action as,

ICSðgÞ ¼ Iðg1Þ þ Iðg2Þ þ Iðg3Þ þ 2k
Z
∂M

dudϕTrðg−11 ∂ϕg1∂ug2g−12 Þ

þ 2k
Z
∂M

dudϕTrðg−12 ∂ϕg2∂ug3g−13 Þ þ 2k
Z
∂M

dudϕTrðg−11 ∂ϕg1g2∂ug3g−13 g−12 Þ þ Ibdy ðB2Þ
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For bms3 case, g1, g2, g3 can be expressed as an
exponential sum of the generators of the Poincare algebra
[isoð2; 1Þ] with a field coefficient can be given as,

g1 ¼ eXL1þWM1

g2 ¼ eΦL0þζM0

g3 ¼ eYL−1þVM−1 ðB3Þ

where fLi;Migði ¼ 0;�1Þ are the generators of the
isoð2; 1Þ algebra and X;W;Φ; ζ; Y; V is the corresponding
fields. The isoð2; 1Þ algebra can be given as,

½Lm; Ln� ¼ ðm − nÞLmþn

½Lm;Mn� ¼ ðm − nÞMmþn ðB4Þ

explicit matrix representation of this isoð2; 1Þ algebra in
three dimensions can be written as follows,

L1 ¼

0
B@

0 0 0

1 0 0

0 1 0

1
CA; L−1 ¼

0
B@

0 −2 0

0 0 −2
0 0 0

1
CA;

L0 ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA ðB5Þ

and we have defined Mi ¼ ϵLiði ¼ 0;�1Þ where ϵ2 ¼ 0.
The nondegenarate supertrace element of the generators of
isoð2; 1Þ is given as, hLm;Mni ¼ antidiagð− 1

2
; 1
4
;− 1

2
Þ.

Using the above relation, we can show that,

Iðg1Þ ¼ 0 ðB6Þ

Iðg2Þ ¼ k
Z
M

dudϕ

�
1

4
Φ0ζ̇ þ 1

4
ζ0Φ̇

�
ðB7Þ

Iðg3Þ ¼ 0 ðB8Þ

Trðg−11 ∂ϕg1∂ug2g−12 Þ ¼ 0 ðB9Þ

Trðg−12 ∂ϕg2∂ug3g−13 Þ ¼ 0 ðB10Þ

Trðg−11 ∂ϕg1g2∂ug3g−13 g−12 Þ

¼ −
1

2
eΦX0V̇ −

1

2
eΦW0Ẏ −

1

2
eΦζX0Ẏ ðB11Þ

So the action can be written as,

ICS ¼ k
Z
M

dudϕ

�
1

4
Φ0ζ̇ þ 1

4
ζ0Φ̇þ 2

�
−
1

2
eΦX0V̇ −

1

2
eΦW0Ẏ −

1

2
eΦζX0Ẏ

�
þ Ibdy

¼ −
k
2

Z
M

dudϕ

�
2ðeΦX0V̇ þ eΦW0Ẏ þ eΦζX0ẎÞ − 1

2
ðΦ0ζ̇ þ ζ0Φ̇Þ


þ Ibdy ðB12Þ

This result exactly matches with the result of [67] up to an overall factor.

APPENDIX C: MATRIX REPRESENTATION OF fhsð3Þ ALGEBRA

An explicit 3 × 3 matrix representation of the generators, that we have used in this paper is chosen as follows,

L1 ¼

0
B@

0 0 0

1 0 0

0 1 0

1
CA; L−1 ¼

0
B@

0 −2 0

0 0 −2
0 0 0

1
CA; L0 ¼

0
B@

1 0 0

0 0 0

0 0 −1

1
CA;

U0 ¼
2

3

ffiffiffiffiffiffi
−σ

p
0
B@

1 0 0

0 −2 0

0 0 1

1
CA; U1 ¼

ffiffiffiffiffiffi
−σ

p
0
B@

0 0 0

1 0 0

0 −1 0

1
CA; U−1 ¼

ffiffiffiffiffiffi
−σ

p
0
B@

0 −2 0

0 0 2

0 0 0

1
CA;

U2 ¼ 2
ffiffiffiffiffiffi
−σ

p
0
B@

0 0 0

0 0 0

1 0 0

1
CA; U−2 ¼ 2

ffiffiffiffiffiffi
−σ

p
0
B@

0 0 4

0 0 0

0 0 0

1
CA; ðC1Þ

and defined Mi ¼ ϵLiði ¼ 0;�1Þ and Vi ¼ ϵUiði ¼ 0;�1;�2Þ where ϵ2 ¼ 0. hLm;Mni ¼ antidiagð− 1
2
; 1
4
;− 1

2
Þ and

hUm; Vni ¼ antidiagð2σ;− σ
2
; σ
3
;− σ

2
; 2σÞ, where σ is a constant.
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