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We review the main ideas underlying the emerging theory of Yangians—the new type of hidden
symmetry in string-inspired models. Their classification by quivers is a far-going generalization of simple
Lie algebras classification by Dynkin diagrams. However, this is still a kind of project, while a more
constructive approach goes through toric Calabi-Yau spaces, related supersymmetric systems, and the
Duistermaat-Heckman or equivariant integrals between the fixed points in the Atiyah-Drinfeld-Hitchin-
Manin (ADHM)-like moduli spaces. These fixed points are classified by crystals (Young-type diagrams),
and Yangian generators describe “instanton” transitions between them. Detailed examples will be presented
elsewhere.
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I. INTRODUCTION AND DISCUSSION

One of the main goals of string theory [1] is to extend the
notion of symmetries, to make them responsible for most of
dynamical properties of physical systems. This requires a
vast extension of the Lie-Noether concept, and such new
symmetries are often referred to as hidden. We already
know a number of examples—from integrability of generic
nonperturbative (functional) integrals [2–4] and superin-
tegrability of many of them [5] to more exotic properties
like categorical symmetries [6–8] or differential expan-
sions [9–11] and their defects [12–14] for Wilson loop
averages in Chern-Simons theory and knot polynomials.
These hidden symmetries clearly have relation to Lie
algebras, but they still remain somewhat indirect and not
fully understood.
Much closer to direct deformation of Lie structure are

Yangians [15–20]—and, naturally, they have received more
and more attention in recent years [21–25]. Though original
motivation, which we begin from in this introduction, is
very much in the spirit of other hidden symmetries, it is
clear that Cartan-like formal description, similar to that of
simple Lie algebras, is also available [18,19,26,27] (see
Sec. IVA), where conventional Dynkin diagrams are

generalized to quivers (see Sec. III A). However, even in
this case there is still a big way toward understanding of
representation theory of Yangians, and more constructive
“physical” approaches continue to dominate [19,20]—as
we discuss in Secs. III and V and summarize in Fig. 1.
In this short paper, we outlined the main ideas used in

description of Yangians and their representations. These
ideas are four different points of view on the same quiver
Yangian, that correspond to boxes Y1ðQÞ, Y2ðQÞ, Y3ðQÞ,
and Y4ðQÞ in Fig. 1 and Secs. II–V, respectively. These
structures arrive from seemingly different sources:

(i) Y1ðQÞ is an algebra of orthogonal polynomials of an
infinite set of commuting variables pk called
“times.” We could form an algebra of raising and
lowering operators acting on polynomials by multi-
plication pk· and derivatives ∂=∂pk.

(ii) Y2ðQÞ acts on equivariant fixed points of quiver
varieties (in some cases corresponding to the in-
stanton moduli spaces). Operators are explicitly
constructed as matrices whose entries represent
equivariant Duistermaat-Heckman integrals over
homomorphism loci for pairs of fixed points.

(iii) Of Y3ðQÞ one might think of as a bootstrap of an
algebra havingmodules with vectors labeled byYoung
diagrams, or plain partitions and 3Dmolten crystals in
more generic terms. On this route, one might aim to
design a system of rational matrix coefficients for
adding or subtracting boxes raising or lowering oper-
ators, so that the latter have proper zeros and poles
preventing one from misplacing the box.

(iv) Finally, Y4ðQÞ emphasizes the role of an instanton
algebra in a quantum field theory (QFT). One might
consider a vector space spanned by quasiclassical
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wave functions for a set of classical vacua as amodule
for the instanton algebra where the matrix elements
are calculated by instanton amplitudes between cor-
respondingpairs of vacua.Webelieve thatY4ðQÞmay
be reconstructed from the instanton algebra of a
quiver-Q (supersymmetric) gauge theory.

However, resulting algebras appear to be equivalent. And
this equivalence (“quadrality”) lies at the heart of a study
program proposed in this note.
Detailed examples and further review of existing liter-

ature will be presented elsewhere. Further deformations to
Ding-Iohara-Miki (DIM) algebras [28–30] and associated
brane and network models [31] can use the same patterns,
along with the matrix model [32] and conformal field
theory (free field) [23,33–35] techniques.

II. YANGIAN FROM SCHUR-JACK FAMILY
OF POLYNOMIALS

In this section, we discuss the first appearance of quiver
Yangian algebras through the family of Schur-Jack poly-
nomials that correspond to rectangular Y1ðQÞ in Fig. 1.
Schur polynomials SR form a distinguished basis in the

space of homogeneous polynomials of variables pa,
a ¼ 1; 2; 3;…;∞. One of the crucial properties of the
Schur polynomials is that they form a character ring ofGLN :

R ⊗ R0 ¼
X
R00

NR00
RR0R00 ⇒ SR · SR0 ¼

X
R00

NR00
RR0SR00 ; ð2:1Þ

where NR00
RR0 are the famous Littlewood-Richardson coeffi-

cients and R, R0, and R00 are the Young diagrams:

FIG. 1. Approaches to the quiver Yangians.
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ð2:2Þ

The numbers pðnÞ of Young diagrams with n boxes are
nicely collected in the following generating function:

Y
k¼1

1

1 − qk
¼

X
n¼0

pðnÞqn ¼ 1þ qþ 2q2 þ 3q3 þ 5q4

þ 7q5 þ � � � : ð2:3Þ
The orthogonality property for Schur polynomials can be
represented as the Cauchy identity:

X
R

SRfpgSR0 fp̄g ¼ exp

�X∞
k¼1

pkp̄k

k

�
: ð2:4Þ

An avatar of Schur-Weyl duality between linear and
symmetric groups [36] can be formulated in terms of
commuting set of cut-and-join operators [37]:

ŴΔSR ¼ ϕRðΔÞSR; ð2:5Þ

where ϕRðΔÞ are properly normalized characters of sym-
metric groups. The simplest nontrivial cut-and-join oper-
ator Ŵ½2� actually defines the Schur functions as the set of
own eigenfunctions. In other words, all the Schur poly-
nomials are encoded in the following nice looking operator:

Ŵ½2� ¼
1

2

X∞
a;b¼1

�
abpaþb

∂
2

∂pa∂pb
þ ðaþ bÞpapb

∂

∂paþb

�
:

ð2:6Þ
An important fact for our presentation is that the commu-
tative algebra of cut-and-join operators can be extended to
the full noncommutative W1þ∞ algebra [38],1 that is, a
special case of affine Yangian Yð bgl1Þ [16,17]. Remarkably,
this Yangian is generated by multiple commutators of the
small set of simple operators:

(i) operator of multiplication on the first p variable p1:

p1 · SR ¼
X

□∈Rþ
SRþ□; ð2:7Þ

(ii) derivative with respect to p1:

∂

∂p1

SR ¼
X
□∈R−

SR−□; ð2:8Þ

(iii) diagonal operator Ŵ½2�:

Ŵ½2�SR ¼
�X

□∈R

j□ − i□

�
· SR; ð2:9Þ

where i□ and j□ are the two coordinates of the box in the
Young diagram. The notation R� means the positions of the
boxes outside (inside) the Young diagram where one can
add (remove) a box in a way that R�□ is still a Young
diagram.
Miraculously, almost the whole picture lifts to the level

of β deformation [44]. The Schurs SR become Jack
polynomials JR [45]:

JR · JR0 ¼
X
R00

N R00
RR0 ðβÞJR00 : ð2:10Þ

The orthogonality property survives β deformation:

X
R

JRfpgJR0 fp̄g
jjJRjj2

¼ exp

�X∞
k¼1

β · pkp̄k

k

�
; ð2:11Þ

and cut-and-join operator undergoes simple deformation:

Ŵβ
½2� ¼

1

2

X∞
a;b¼1

�
abpaþb

∂
2

∂pa∂pb
þ βðaþ bÞpapb

∂

∂paþb

�

þ ð1 − βÞ
2

X∞
a¼1

ða − 1Þapa
∂

∂pa
: ð2:12Þ

In the β-deformed case, this operator corresponds to
the integrable Hamiltonian of a quantum many-body
system [46,47]. Triple of operators generate the algebra
affine Yangian Yð bgl1Þ:

e0 ¼ p1; ψ3 ¼ Ŵβ
½2�; f0 ¼ −

∂

∂p1

: ð2:13Þ

The names of these operators ðen;ψn; fnÞ are borrowed
from the theory of simple Lie algebras where we have a
triple of (rising operator, Cartan generator, lowering oper-
ator) for any node in the Dynkin diagram. Namely, en, fn
operators are rising and lowering operators, since they
add or remove boxes of the Young diagram. Operators ψn
are similar to Cartan generators and act diagonally in
representations.
The same story about cut-and-join operators and Young

diagrams translates to other Yangians. We provide here an
example of affine super-Yangian Yð bgl1;1Þ that possesses a
semi-Fock representation, where vectors are enumerated by
super-Young diagrams [48]:

1Another avatar for these algebras are so-called vertex operator
algebras. On recent developments, see [39–43], and references
therein.

TOWARD A THEORY OF YANGIANS PHYS. REV. D 109, 066001 (2024)

066001-3



ð2:14Þ

In case Ri and Riþ1 are both half-integers, then the
condition Ri > Riþ1 is satisfied. The numbers psðn;mÞ
of super-Young diagrams with n boxes and m half-boxes
are collected in the following generating function:

Y
k¼1

1þ η · qk−1

1 − qk
¼

X
n¼0

psðn;mÞqnηm ¼ 1þ ηþ qþ 2ηq

þ ð2q2 þ η2qÞ þ 4ηq2 þ � � � : ð2:15Þ
As one can see from the generating function, in the case of
super-Yangian we need two sets of variables: bosonic p
variables pa (denominator) and fermionic or Grassmann
variables θa (numerator). If one assigns degrees degðpaÞ ¼
a and degðθaÞ ¼ a − 1

2
, then the numbers of homogeneous

polynomials of fixed degree are described by the above
generating function.
In the case of super-Yangian, the corresponding quiver

has two nodes [(þ) node and (−) node]; therefore, the
minimal set of operators is twice bigger than in the previous
case of Yð bgl1Þ. Rising and lowering operators:

eþ0 ¼ θ1; fþ0 ¼ ∂

∂θ1
;

e−0 ¼
X
k

pk
∂

∂θk
; f−0 ¼ ϵ1ϵ2

X
k

kθk
∂

∂pk
; ð2:16Þ

and two super-cut-and-join operators Ŵþ and Ŵ− [48]:

Ŵ�¼1

2

X∞
a;b¼1

�
abpaþb

∂
2

∂pa∂pb
−ϵ1ϵ2ðaþbÞpapb

∂

∂paþb

�

þ
X∞
a;b¼1

�
b−

1

2
�1

2

�
·

�
aθaþb

∂
2

∂pa∂θb
−ϵ1ϵ2paθb

∂

∂θaþb

�

þϵ1þϵ2
2

·
X∞
a¼1

�
a

�
a−

1

2
∓1

2

�
pa

∂

∂pa

þða−1Þ
�
a−

1

2
�1

2

�
θa

∂

∂θa

�
: ð2:17Þ

These super-cut-and-join operators define a new set of
polynomials SR, that we call super-Schur polynomials, as
the set of own eigenfunctions:

Ŵ�SR ¼ w�
RSR: ð2:18Þ

These polynomials have two free parameters ϵ1;2 as in the
case of usual Jack polynomials, where β is a free parameter.

Remarkably, super-Schur polynomials also form a orthogo-
nal basis and obey the modified Cauchy identity:

X
R

SRfp; θg · SRfp̄; θ̄g
jjSRjj2

¼ exp

�X∞
k¼1

pkp̄k

k
þ θkθ̄k

�
:

ð2:19Þ

III. YANGIAN FROM QUIVER
REPRESENTATIONS

Yangians arise as the special algebras that act on the
space of Bogomol’nyi-Prasad-Sommerfield (BPS) states in
type IIA string theory with a system of D-branes compac-
tified on the toric Calabi-Yau threefold [15]. BPS moduli
space can be described in terms of the quiver and super-
potential—they are extracted directly from the toric Calabi-
Yau [19,49]. What is important for our presentation is that
the Yangian acts between different fixed points (of torus
action) in the space of quiver representations (= BPS
moduli space). The transition amplitudes are given by
the equivariant integrals.

A. Definitions: Quiver

Generic quiver data Q:
(1) Quiver—an oriented graph—a collection of nodes

Q0þ a collection of arrows Q1.
(2) SuperpotentialW. We could denote it asQ2, since it

is made of closed loops in quiver.
(3) Equivariant parameters ϵα∈Q1

∈C assigned to each
arrow inQ and constrained by a condition that sums
of ϵα ’s over any arrow loop contributing to W is
zero. So that the equivariant weight of W is zero.

Also we adopt the following notations:
(i) fa → bg—a set of arrows inQ flowing from node a

to node b;
(ii) ja → bj—a number of arrows in Q flowing from

node a to node b.

B. Quiver representation and torus fixed points

(i) Quiver representation assigns a vector space to each
quiver node and a matrix Bi to each quiver arrow.
The dimensions of different vector spaces in quiver
nodes could be different; therefore, in general, Bi are
rectangular matrices. The important point is that the
matrices Bi are considered up to the change of basis
in the quiver nodes.
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(ii) Superpotential is defined from the periodic lattice
corresponding to torus CY3 by the following rule:

W ¼ Tr
X
faces

ð−Þorientation
Y
arrows

Bi: ð3:1Þ

Then we impose so-called F-term equations on
matrices Bi:

∂W
∂Bi

¼ 0: ð3:2Þ

These equations correspond to part of the famous
ADHMequations in the case of CY3 ¼ C3. The other
part of ADHM equations (so-called D-term equa-
tions) involve additional Fayet-Illiopoulos parameters
ζa, on which the moduli spaces of solutions can
depend in a nontrivial way. In this paper, we consider
only the case ζa > 0, and these D-term equations are
irrelevant for our presentation of the simplest Yangian
representations. However, for the other choices of
parameters ζa the corresponding Yangians can be
different but related by mutations.

(iii) Framing is an additional data, which can be repre-
sented by additional nodes added to the quiver, and it
defines a representation of Yangian. In particular, it
can distinguish between 2d Fock and 3dMacMahon
representations.

(iv) Torus action scales the matrices Bi:

Bi → eϵi · Bi: ð3:3Þ
Vectors of the Yangian representation correspond to
fixed points of torus action in the space of quiver
representations. In other words, vectors of Yangian
representation correspond to a set of matrices Bi (up
to change of basis in quiver nodes) obeying F-term
equationsþ fixed point constraints.
These fixed points of the torus action are labeled

by crystals ¼ Young-type diagrams. We further
denote these diagrams λ, and the vector space of
the Yangian representation will be space of jλi.
These diagrams will be constructed from building
blocks—atoms □a of different types, that are enu-
merated by the quiver nodes a∈Q0.

C. Yangian algebra

To construct the Yangian algebra we go through the
following algorithm.
(1) First, for each quiver node a we introduce two fields

eðaÞðzÞ and fðaÞðzÞ. These fields will have a simple
interpretation in terms of the diagrams—they add
and remove atoms □a by the following rule:

eðaÞðzÞjλi ¼
X

□a ∈ λþ

Eλ;λþ□a

z − ωð□aÞ
jλþ□ai; ð3:4Þ

fðaÞðzÞjλi ¼
X

□a ∈ λ−

Fλ;λ−□a

z − ωð□aÞ
jλ −□ai: ð3:5Þ

There are several comments on the above formulas.
As was mentioned in the previous section on Schur
polynomials, the notation λ� means the set of atoms
outside (inside) the diagram λ where we can add
(remove) the atom□a of type a. The functionωð□aÞ
is a weighted coordinate of the□a. The weight of the
xi coordinate is ϵi; therefore,

ωð□aÞ ¼
X
i

xið□aÞ · ϵi: ð3:6Þ

According to this procedure, the field actions
eðaÞðzÞjλi and fðaÞðzÞjλi can have only simple poles
and the residues exactly match the vectors jλ�□ai
with one atom added or removed.

(2) Second, we should choose the coefficients Eλ;λþ□a

and Fλ;λ−□a
. This choice is important, because it

controls the commutation relations of the resulting
fields eðaÞðzÞ and fðaÞðzÞ. In our presentation, the
coefficients are extracted from the quiver represen-
tation described in the previous Sec. III B. The
extraction procedure goes in four steps.
(a) For diagrams λ and λþ□a, we find sets of

matrices Bi and B0
i satisfying F-term equationsþ

fixed point constraints.
(b) We find a subspace in the space of small

perturbations ΔBi and ΔB0
i around fixed point

solutions Bi and B0
i that obey F-term relations up

to the change of basis in the quiver nodes. From
this operation, we derive the normalization rules:

hλjjλi ¼ Eulλ; ð3:7Þ
where the new object Eulλ is the product of all
the weights of all matrix coefficients of ΔBi. The
terminology Eul comes from the fact that the
above prescription implicitly corresponds to
equivariant (Duistermaat-Heckman) integration.
In that formalism, the answer for the integral is
given by the sum of the different fixed points of
the torus action, and each contribution is the Euler
class of the tangent space at the fixed point.

(c) At the final step, we compute the last ingredients
Eulλ;λþ□a

to compute coefficients Eλ;λþ□a
:

Eλ;λþ□a
¼ Eulλ

Eulλ;λþ□a

: ð3:8Þ

To compute coefficients Eulλ;λþ□a
, we should

connect two solutions corresponding to dia-
grams λ and λþ□a by a linear (generally
irreversible) matrix τ (a zero-dimensional analog
of the singular Hecke modification [50] shifting
the Chern classes of a bundle):
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B0
i · τ ¼ τ · Bi: ð3:9Þ

The map τ is continued to the level of small
perturbations and selects a smaller subspace of
ΔBi and ΔB0

i that obey (3.9) up to the first order.
The products of all weights in this smaller
subspace defines Eulλ;λþ□a

.
The coefficients Eulλ;λþ□a

needed for Fλ;λ−□a

are computed in the same way but for another
pair of diagrams:

Fλ;λ−□a
¼ Eulλ

Eulλ;λ−□a

: ð3:10Þ

According to the above procedure, the representation of the
Yangian is constructed via simple calculations with ma-
trices. Some details and examples of calculations can be
found in [51–53] and Appendix C in [20].

IV. THE FORMAL DEFINITION OF YANGIAN
DIRECTLY FROM QUIVER

A. Yangian algebra

Yangian YQ is entirely and directly defined by quiverQ.
For each vertex a in Q we associate the generators:

positive and negative “simple roots” eðaÞðzÞ and fðaÞðzÞ and
related “Cartan elements” ψ ðaÞðzÞ:

eðaÞðzÞ ¼
X∞
n¼0

eðaÞn

znþ1
; ψ ðaÞðzÞ ¼

X∞
n¼−∞

ψ ðaÞ
n

znþ1
;

fðaÞðzÞ ¼
X∞
n¼0

fðaÞn

znþ1
: ð4:1Þ

YQ is a superalgebra. Therefore, the root generators
acquire definite Z2-parity P: bosonic P ¼ 0 or fermionic
P ¼ 1. Parity of node a is defined according to the
following formula:

Pa ¼ ðja → aj þ 1Þ mod 2: ð4:2Þ

Cartan generators are all bosonic.
Supercommutation relations are defined by the maps and

arrows of Q:

ψ ðaÞðzÞψ ðbÞðwÞ ≅ ψ ðbÞðwÞψ ðaÞðzÞ;
eðaÞðzÞeðbÞðwÞ ≅ ð−1ÞPaPbφQ

abðz − wÞeðbÞðwÞeðaÞðzÞ;
fðaÞðzÞfðbÞðwÞ ≅ ð−1ÞPaPbφQ

abðz − wÞ−1fðbÞðwÞfðaÞðzÞ;
ψ ðaÞðzÞeðbÞðwÞ ≅ φQ

abðz − wÞeðbÞðwÞψ ðaÞðzÞ;
ψ ðaÞðzÞfðbÞðwÞ ≅ φQ

abðz − wÞ−1fðbÞðwÞψ ðaÞðzÞ;

½eðaÞðzÞ; fðbÞðwÞg ≅ −δab
ψ ðaÞðzÞ − ψ ðbÞðwÞ

z − w
; ð4:3Þ

where

(i) ½x; yg ≔ xy − ð−1ÞPxPyyx is a supercommutator;
(ii) sign ≅ equates Taylor series expansion at the points

z ¼ ∞, w ¼ ∞ on both sides up to the terms of the
form zn≥0wm and znwm≥0;

(iii) quiver bond factors:

φQ
abðuÞ ≔

Q
α∈ fa→bgðuþ ϵαÞQ
β∈ fb→agðu − ϵβÞ

: ð4:4Þ

Remark 1. Cubic and higher order Serre relations require
additional consideration, left beyond the scope of the pre-
sent text. A conjecture for Serre relations in the case of a
generic quiver is given in [54]. Cases Yð bglmjnÞ are described
in [55]. Some suggestions for YðKP2Þ and YðKP1×P1Þ (not
based on Lie algebras) are given in Appendix D in [56].
Remark 2. Canonically, Yangians with different shifts

(when one allows for nonzero negative Cartan ele-

ment modes ψ ðaÞ
−s≤n<0 ≠ 0) are considered to be different

algebras [57,58]. However, physically, one might try to
classify them as simply different representations. Both
treatments have their own peculiarities. On one hand, mere
framing modification leaving the unframed quiver diagram
intact introduces shifts [26,30]. And the naive nth tensor
power on the Yangians could be also installed in the
physical picture as a framing modification; thus, mixing
together Yangians with different shifts in a single object
of a tensor category is not forbidden. Moreover, for the
quiver Yangians not based on the affine Lie superalgebras,
the shift s is infinity; formally speaking, it cannot be
bounded above for infinite MacMahon-like crystal repre-
sentations [59]. On the other hand, the negative Cartan
element modes seem somewhat decoupled from the alge-

bra, since in the Yangian relation ½eðaÞn ; fðbÞm g ¼ δabψ
ðaÞ
nþm, n,

m ≥ 0 only non-negative modes are generated. This
induces certain obstacles in a search for the universal
(representation-independent) coproduct structure that is a
homomorphism of algebras.

V. YANGIAN AND QUANTUM FIELD THEORY

Finally, we could name another seemingly different
source of the Yangian algebra as a multidimensional
supersymmetric QFT. The crucial difference of this
approach with that mentioned above is that we do incor-
porate an effective theory of D-branes in the type IIA string
theory compactified on the toric Calabi-Yau. The effective
QFT in this picture is related to the ADHM construction
and instanton equations in diverse dimensions only implic-
itly after a careful analysis of D-brane charges and theory
moduli [60].
Nevertheless, this physical approach to a mathematical

problem of finding algebraic structures reveals richness
and fruitfulness repeating in some aspects the story about
the physical avatar of the knot invariant construction
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problem—the 3D Chern-Simons theory and the boundary
conformal Wess-Zumino-Witten theory [61].
Here, we mention this story in a seemingly inverse order.

The Yangian algebra admits a Hopf algebra structure; in
particular, one could define the coproduct even for the
affine cases [22,62,63]. Having the coproduct, Δ we can
restore the R matrix—the intertwining operator permuting
the order of multipliers in a tensor square:

Δ12R ¼ RΔ21: ð5:1Þ
Both the coproduct and the R matrix depend on the
complex spectral parameter having the same nature as
the generating parameter in the series (4.1) or the equiv-
ariant weight in (3.4). R matrix is a solution of the Yang-
Baxter equation ensuring that the representation tensoring
structure is indeed associative.
On the other hand, theRmatrix, a transfer matrix, may be

derived independently of the Yangian structure starting with
spin chains and other integrable models like the Calogero
model [46]. The relation between the QFTs and integrable
models is well known in the literature [64,65] as the gauge or
Bethe correspondence.
The physical approach allows one to argue the appear-

ance of such nontrivial relations as the Yang-Baxter
equation in a quite elegant way: Two sides of the equality
are just different yet homotopic paths in the parameter
(moduli) space of the QFT; then, the equality of two sides is
solely an absence of hysteresis in the theory. The absence of
hysteresis for theories in question is a rather natural
property induced by supersymmetry. On the other hand,

this approach makes the other avatars of the Yangians
mentioned above rather obscure. This story becomes even
more intriguing [59] when a naive attempt to restore the
whole chain of relations underlying the gauge or Bethe
correspondence between QFT vacua and solutions to the
Bethe equations including the construction of the coproduct
and the R matrix fails.
Nevertheless, the R-matrix evolution (actually, in both

cases of the Yangian and quantum algebras and their
mixtures like quantum toroidal algebras) in the QFT can
be expanded in a series [66–71] of transitions through
instanton or soliton jumps between overlapping levels of
effective QFTs. This observation allows us to expect that
the algebra of BPS solitons and instantons reproduces the
Yangian in an inexplicit way; in other words, we expect to
have the following relations:

Eλ;λþ□ ¼ lim
T→∞

hλþ□je i
ℏTHjλi; ð5:2Þ

for some effective Hamiltonian H.
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