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Recent work by Danielson, Satishchandran, and Wald (DSW) has shown that black holes—and, in fact,
Killing horizons more generally—impart a fundamental rate of decoherence on all nearby quantum
superpositions. The effect can be understood from measurement and causality: An observer (Bob) in the
black hole should be able to disturb outside quantum superpositions by measuring their superposed
gravitational fields, but since his actions cannot (by causality) have this effect, the superpositions must
automatically disturb themselves. DSW calculated the rate of decoherence up to an unknown numerical
factor for distant observers in Schwarzschild spacetime, Rindler observers in flat spacetime, and static
observers in de Sitter spacetime. Working in electromagnetic and Klein-Gordon analogs, we flesh out and
generalize their calculation to derive a general formula for the precise decoherence rate for Killing
observers near bifurcate Killing horizons. We evaluate the rate in closed form for an observer at an arbitrary
location on the symmetry axis of a Kerr black hole. This fixes the numerical factor in the distant-observer
Schwarzschild result, while allowing new exploration of near-horizon and/or near-extremal behavior. In the
electromagnetic case we find that the decoherence vanishes entirely in the extremal limit, due to the “black
hole Meissner effect” screening the Coulomb field from entering the black hole. This supports the causality
picture: Since Bob is unable to measure the field of the outside superposition, no decoherence is necessary
—and indeed none occurs.
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I. INTRODUCTION

Some of the greatest remaining conceptual challenges in
theoretical physics involve the interplay among gravity,
quantum mechanics, and measurement. Thought experi-
ments involving black holes can be particularly sharp,
pushing cherished physical ideas to their limits. In a recent
paper [1] remarkable for its simplicity and generality,
Danielson, Satishchandran, and Wald (DSW) showed that
the mere presence of a black hole induces a fundamental
rate of decoherence on all nearby quantum superpositions.
In other words, it is not just difficult but in fact impossible
to avoid entanglement with degrees of freedom inside the
black hole.
As surprising as this decoherence may seem, there is

actually a very simple argument for why it should occur.1

Suppose that Alice prepares a quantum superposition

outside the black hole. The superposed matter creates a
superposed gravitational field, which penetrates into the
black hole, where an observer, Bob, could choose to
measure it. By doing so, he has gained information about
Alice’s state and must therefore disturb it; however, by
causality, his actions can have no effect whatsoever on her
state. Since a hypothetical Bob can in principle take an
action that should disturb Alice’s state, the inescapable
conclusion is that her state must in fact disturb itself: the
DSW decoherence.
Though powerful, this simple argument still leaves one

wanting for deeper understanding—some identifiable
mechanism or at least a connection to more familiar
physics. DSW attribute the effect to “emission of soft
gravitons” in light of a low-frequency approximation to the
entangling graviton flux through the horizon. But this is
hardly emission in the conventional sense, given that the
relevant quantum superpositions are held stationary as they
steadily decohere. A hint of deeper meaning might be
found in the role of the surface gravity in the DSW
calculation, suggesting that perhaps the decoherence can
be understood in thermal terms.
Exploring and validating these interpretations—causality,

soft radiation, thermal properties—will require detailed,
general calculations of the decoherence. Thus far, the effect
has been considered for distant observers in the
Schwarzschild spacetime [1], Rindler observers in flat

1This argument arises naturally out of prior thought experi-
ments involving causality in flat spacetime [2,3] and indeed
formed some of the original motivation for the DSW result (DSW,
private communication).
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spacetime [4], and static observers in de Sitter spacetime [4].
These cases do not allow one to vary the surface gravity
independently of other physical parameters and do not
contain an extremal limit. Furthermore, in all cases DSW
only obtained the overall scaling of the rate, leaving a
numerical factor undetermined.
In this paper we will derive a general formula for the

precise decoherence rate for Killing observers near a bifur-
cateKilling horizon and apply it to an observer at an arbitrary
location along the symmetry axis of a rotating black hole.We
use the same basic setup as DSW, while fleshing out and/or
generalizing some key elements of the calculation. Our
results confirm their findings (fixing unknown coefficients)
and generalize the results to a context where the black hole
mass, black hole temperature, and observer distance can be
varied independently. However, our calculations are unfortu-
nately limited to the electromagnetic (EM) and Klein-
Gordon (KG) analogs. We leave the more challenging case
of gravitational decoherence to future work.2

We now describe the setup and the main results, focusing
on the EM case. As in DSW, we consider a localized (but
macroscopic) charged object that is placed into in a spatial
superposition, held for a (Killing) time T, and then
recombined (Fig. 1). The charged object is treated semi-
classically in that each branch of the superposition couples
to the quantized EM field as a fixed classical source. The
sources are assumed to be on Killing orbits outside the
horizon, and the photon field begins in the Unruh state
associated with the Killing horizon.3

Each branch of the superposition has a different semi-
classical source, so the two branches induce two different
evolutions of the state jψi of the photon field, denoted jψLi
and jψRi for “left” and “right.” If jψLi and jψRi become
orthogonal after the experiment, then the experiment is
maximally entangled with the photon field (a kind of
“environment”) and Alice’s superposition has fully deco-
hered. Working in the limit that the superposition is
maintained for a long time T, we calculate the final overlap
of these states to be4

jhψLjψRij ¼
(
exp

h
− C

2
κT

i
; κ ≠ 0

ðT=T0Þ−C; κ ¼ 0;
ð1Þ

where κ is the horizon surface gravity, T0 is a nonuniversal
timescale (dependent on the details of the transition), and C
is a constant we call the “decohering flux.”
To present the formula for C, let FR

μν and FL
μν represent

the stationary solutions associated with the right and left
branches (respectively) of the superposition. The difference
between these fields contains “which-path information”
about the superposition, and the important part turns out to
be the “radial fields,” i.e., the pullback of F and its dual �F
to a horizon cross section C. We define

dΔEr ≡ 1

2
ϵABð�FL

AB − �FR
ABÞjC ð2Þ

dΔBr ≡ 1

2
ϵABðFL

AB − FR
ABÞjC; ð3Þ

where xA (A ¼ 1, 2) are coordinates on C, which has spatial
metric qAB, area form ϵAB, area element dS ¼ ffiffiffi

q
p

d2xA,
derivative operator ∇A, and Laplacian ∇2 ¼ qAB∇A∇B

with inverse ∇−2. In terms of these definitions, the
decohering flux is given by5

FIG. 1. The DSW decoherence. Alice creates a spatial super-
position, holds it for Killing time T, and then closes it. The
superposed Coulomb fields are approximately stationary on the
horizon for a time of order T, shown as a double-arrow. At large
T, the coherence decreases exponentially like e−ΓT , making
complete decoherence unavoidable. We find the precise rate to
be Γ ¼ 1

2
Cκ, where κ is the horizon surface gravity and C is the

“decohering flux” from the superposed Coulomb fields.

2In the gravitational case the stress-energy of Alice’s labo-
ratory must be taken into account.

3By “photon field” we refer to the quantized retarded-minus-
advanced field, which has no Coulomb degrees of freedom. Here
our approach differs technically from DSW, who instead subtract
off Coulomb fields at initial and final times and consider the
Hartle-Hawking vacuum, invoking low-frequency equivalence to
Unruh.

4Our calculation is nonextremal but we take the extremal limit
using an estimate for the nonextremal rate under the condition
κT ≪ 1, while still assuming that T is much larger than all other
timescales.

5Equation (4) has been fully justified only for compact horizon
cross sections, but we expect it to hold in the noncompact case in
spacetimes with suitable falloff properties.
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C ¼ 1

4π2

Z
½ð∇A∇−2dΔErÞ2 þ ð∇A∇−2dΔBrÞ2�dS; ð4Þ

where ðVAÞ2 denotes qABVAVB. The KG result takes the

same form (1) with the simpler expression C ¼
π−1

R cΔϕ2dS (82) for the decohering flux.
We are able to evaluate the decohering flux C explicitly

for a superposition on the symmetry axis of the Kerr
spacetime. In the EM case we consider a spatial super-
position in the radial direction, while in the KG case we
consider a superposition of different values of charge
(which is possible because the KG charge can be time-
dependent). The KG and EM results are given in Eqs. (113)
and Eq. (150) below, respectively, and are plotted in Fig. 2.
The extremal limit is particularly interesting. From (1)

we see that if κ → 0 with C ≠ 0, the exponential
decoherence goes over to a power-law behavior, whereas
if both vanish then the decoherence vanishes entirely. We
see in Fig. 2 that indeed both vanish (C ¼ κ ¼ 0) for
maximally spinning black holes (a ¼ M) in the electromag-
netic case,meaning the effect goes away completely. This is a
consequence of the “black hole Meissner effect” [5,6] that
maximally spinning black holes screen out any external
fields. The physical picture of “Bob in a black hole” thus
holds up to detailed calculation: Since there is no Coulomb
field for him to measure, there is no causal need for
decoherence, and indeed the decoherence duly vanishes.
The remainder of the paper is organized as follows. The

first four sections treat the KG case in detail. In Sec. II we
consider field quantization in the presence of a persistent
semiclassical source and introduce the notion of particles as
quanta of the retarded-minus-advanced field. In Sec. III we
describe the superposition experiment and show that the
decoherence is related to the “expected number of entan-
gling particles,” fleshing out the key ideas of DSW and
extending them to the retarded-minus-advanced context. In
Sec. IV we express the decoherence as an integral on the

past horizon. This produces the main formal results, namely
the decoherence rates and formulas for the decohering flux.
We calculate the decohering flux in the Kerr spacetime in
Sec. V. We consider the EM case in Sec. VI, establishing
some useful properties of a horizon-adapted gauge and
repeating the steps of the KG calculation. We use units with
G ¼ c ¼ ℏ ¼ 1 and ϵ0 ¼ 1=ð4πÞ, and our metric signature
is ð−;þ;þ;þÞ.

II. KLEIN-GORDON FIELD WITH
A CLASSICAL SOURCE

In this section we review the Fock quantization of the
Klein-Gordon field in the style of [7], first in the free case
and then in the presence of a semiclassical source. This
establishes notation and physical interpretation for our
analysis of the superposition experiment. We work in a
globally hyperbolic spacetime in coordinates ðt; xÞ, where t
is constant on a family of Cauchy surfaces and x refers to a
collection of spatial coordinates. We consider the case of
three spatial coordinates, but the modifications for other
dimensions are trivial.
The free KG equation is

□ϕ ¼ 0; ð5Þ

KG (monopole)

EM (dipole)

0 0.25 0.5 0.75 1

0

0.25

0.5
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FIG. 2. The decohering flux C as a function of spin for an
observer at r0 ¼ 3M on the symmetry axis of a Kerr black hole,
normalized by its value C0 at a ¼ 0. In the extremal limit, the EM
flux vanishes as a result of the black hole Meissner effect (Fig. 3).

FIG. 3. If a charge q is placed in a spatial superposition of
proper separation d, the “which path information” is contained in
the difference of the Coulomb fields, which is field of a dipole
p ¼ qd. Here we show the electric field lines (level sets of
electric flux through a surface of revolution) for a dipole at r0 ¼
3M on the symmetry axis of a nonrotating (left) and maximally
rotating (right) Kerr black hole. (The black hole region r <
M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is shown in black.) In the extremal case, the field

does not penetrate inside (the black hole Meissner effect), and
correspondingly there is no horizon-induced decoherence.
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where □ ¼ gμν∇μ∇ν and ∇ is the metric-compatible
covariant derivative. Given two solutions ϕ1 and ϕ2, the
KG product is defined as

ðϕ1;ϕ2Þ ¼ i
Z
Σ
ðϕ̄1∇μϕ2 − ϕ2∇μϕ̄1Þnμ

ffiffiffi
h

p
d3x ð6Þ

where an overbar denotes complex conjugation and nμ is the
future-directed unit normal to a spacelike Cauchy surface
with induced metric hμν and volume element

ffiffiffi
h

p
d3x. The

KG product is independent of the choice of surface, meaning
in particular that its value is independent of t.
We consider a complete set of mode solutions ϕiðt; xÞ

normalized as

ðϕi;ϕjÞ¼ δij; ðϕ̄i; ϕ̄jÞ¼−δij; ðϕi; ϕ̄jÞ¼ 0: ð7Þ

Here the index i represents a collection of continuous or
discrete indices, with δij representing a product of
Kronecker and/or Dirac deltas as appropriate. If a solution
is expanded as

ϕ ¼
X
i

ðciϕi þ c̄iϕ̄iÞ; ð8Þ

then its “positive-frequency part” is

Kϕ ¼
X
i

ciϕi: ð9Þ

The map K depends on the choice of mode functions. The
KG product of a real solution (with itself) is always zero, but
the KG product of its positive-frequency part is given by

ðKϕ; KϕÞ ¼
X
i

jcij2: ð10Þ

The quantum theory in the Heisenberg picture is
obtained by promoting ϕ to a self-adjoint operator satisfy-
ing the field equations,

□ϕ̂ ¼ 0; ð11Þ
expressing the general solution in terms of a complete set of
mode functions

ϕ̂ ¼
X
i

ðâiϕi þ â†i ϕ̄iÞ; ð12Þ

imposing ladder-operator commutation relations on the
coefficients âi,

½âi; â†j � ¼ δij; ½âi; âj� ¼ 0; ½â†i ; â†j � ¼ 0; ð13Þ

and building a Fock space in the usual way. The product
â†i âi is interpreted as the number operator for ϕi-particles.

The notion of a particle thus depends on the choice of mode
function. This procedure is equivalent to canonical quan-
tization [8].
Now suppose that there is a fixed classical source ρðt; xÞ,

so that the Heisenberg-picture field now satisfies

□ϕ̂ ¼ −4πρ: ð14Þ

The form (12) is no longer a solution of the equations of
motion; instead, we must add a particular solution to (14).
This choice adds another freedom in the construction of the
Fock space, beyond the choice of mode function. The
choice of mode function determines the notion of particle,
while the two choices together—mode functions and
particular solution—jointly determine the state of the field
in the “vacuum” annihilated by âi. For the semiclassical
source to be the “only influence” on the state of the
quantum field, the natural condition is the absence of
incoming radiation, corresponding to the (classical)
retarded solution ϕret,6

ϕ̂ ¼
X
i

ðâiϕi þ âi†ϕ̄iÞ þ ϕret1̂: ð15Þ

where 1̂ is the identity. We again impose the commutation
relations (13). The operators âi define an “in” Fock space
F in with an associated “in” vacuum,

âijini ¼ 0; ð16Þ

which has no in-particles. However, this notion of particle
is unnatural at late times, since a field configuration with
outgoing radiation would be deemed to have no particles.
Instead, at late times the natural expression of ϕ̂ is

ϕ̂ ¼
X
i

ðb̂iϕi þ b̂i
†ϕ̄iÞ þ ϕadv1̂; ð17Þ

where the use of the advanced field ϕadv guarantees that the
b-vacuum has no outgoing radiation, as desired if one
wishes to have a quantized description of outgoing radi-
ation. These operators define an “out” Fock spaceF out with
an associated “out” vacuum,

b̂ijouti ¼ 0; ð18Þ

which has no out-particles. Notice that we use the same
mode functions ϕi at early and late times. This in effect
neglects any particle creation due to the spacetime itself.
Such effects can easily be added on with a Bogoliubov
transformation.

6By assuming the existence of the retarded solution we restrict
to situations where the source is suitably regular at early times.
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In general the source ρ will create particles in the sense
that hinjN̂outjini ≠ 0, where N̂out ¼ b̂†i b̂i. We can express
the particle creation by noticing that

b̂i ¼ âi þ αi1̂; ð19Þ

where αi are the coefficients of the retarded-minus-
advanced solution,

ϕret − ϕadv ¼
X
i

ðαiϕi þ ᾱiϕ̄iÞ: ð20Þ

Since the retarded-minus-advanced solution is a homo-
geneous solution to the Klein-Gordon equation, these
coefficients αi are constants independent of time (and
space). It then follows that the expected number of particles
created in each mode i is given by

hinjb̂†i b̂ijini ¼ jαij2: ð21Þ

In light of Eqs. (9) and (10), we see that the total expected
particle number is given byX

i

jαij2 ¼ ðKðϕret − ϕadvÞ; Kðϕret − ϕadvÞÞ: ð22Þ

That is, the expected number of particles is the KG product
of the positive-frequency part of the retarded-minus-
advanced solution.
In the next section we will consider the response of the

KG field to a quantum superposition of semiclassical
sources that agree at early times. For this purpose it is
useful introduce the Schrödinger picture defined relative to
some early time t0. We denote the Schrödinger-picture
operator by ϕ̂0 and the initial Schrödinger-picture state
by jψ0i,

ϕ̂0 ¼ ϕ̂ðt0; xÞ ð23Þ

jψ0i ¼ jini: ð24Þ

The Schrödinger-picture state evolves as

jψi ¼ Ûðt; t0Þjψ0i; ð25Þ

where the quantum-mechanical propagator Û satisfies

ϕ̂0 ¼ Ûðt; t0Þϕ̂ðt; xÞÛðt; t0Þ†; ð26Þ

with ϕ̂ given in Eq. (15).

III. THE SUPERPOSITION EXPERIMENT

LetHmatter denote the Hilbert space of the matter degrees
of freedom manipulated by our intrepid experimentalist.
She prepares a superposition state

jΨi ¼ 1ffiffiffi
2

p ðjΨLi þ jΨRiÞ; ð27Þ

with the following properties. First, the constituent states
are perfectly distinguishable,

hΨLjΨRi ¼ 0: ð28Þ
Second, their charge densities can be treated semiclassically,

ρ̂jΨIi ≈ ρIðt; xÞjΨIi ðI ¼ L;RÞ: ð29Þ

Here ρ̂ is the charge operator and ρI is its expectationvalue in
the (normalized) state jΨIi. Third, the two semiclassical
charge densities are identical at sufficiently early and late
times,

ρL ¼ ρR ðearly and late timesÞ: ð30Þ

We name the states left and right since we imagine a
spatial superposition, following DSW. Such a superposition
can be achieved if matter with an embedded spin is sent
through a Stern-Gerlach apparatus, held in spatial super-
position for a time T, and then sent through a reversing
Stern-Gerlach apparatus [2]. However, in the KG case the
charge of the particle is not conserved, and we will actually
consider the simpler situation where the “left” and “right”
states are two different time-evolutions of the charge,
without any spatial separation. These distinctions are
unimportant until Sec. V below.
Now consider the evolution of the system including the

Klein-Gordon coupling. By the assumption of no back-
reaction, each state jΨIðtÞi in the superposition induces a
corresponding evolution jψ IðtÞi in the field via the corre-
sponding semiclassical source ρI . Because the sources
agree at early times, the corresponding retarded solutions
ϕret
I agree at the initial time t0. Using a fixed set of mode

functions ϕi, the Shrödinger-picture field ϕ̂ [see (23) and
(15)] is therefore independent of the choice of right or left
and can be identified with the single Shrödinger-picture
field operator in the superposition experiment. Similarly,
the time-independent annihilation operators âi define the
shared initial state of the field via

âijψ0i ¼ 0: ð31Þ

This construction results in an initial tensor product state
for the joint evolution,

jϒi ¼ 1ffiffiffi
2

p ðjΨLi þ jΨRiÞ ⊗ jψ0i; t ¼ t0: ð32Þ

The interpretation is that Alice has carefully isolated her
apparatus. As she conducts the superposition experiment,
the photon field reacts differently do the right and left
branches, and the system as a whole evolves as
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jϒi ¼ 1ffiffiffi
2

p ðjΨLi ⊗ jψLi þ jΨRi ⊗ jψRiÞ: ð33Þ

If the left and right field states become orthogonal, then the
superposition has decohered.
To express the evolution of the field states we add an

index to the propagator Û,

jψ Ii ¼ ÛIðt; t0Þjψ0i: ð34Þ

Whereas in Sec. II Û was the propagator for the problem
with a fixed semiclassical source, here ÛI is the evolution
operator for a particular part of a particular state. More
precisely, if the matter states jΨi evolve by Û, then jΨIi ⊗
jψ Ii evolves by Û ⊗ ÛI.
The Heisenberg-picture operators of Sec. II depend on

the source and are not associated with any picture
(Heisenberg or otherwise) in the superposition problem.
Instead, these are viewed as useful definitions to obtain
information about ÛI . From Eq. (15), we have

ϕ̂I ¼
X
i

ðâiϕi þ âi†ϕ̄iÞ þ ϕret
I 1̂; ð35Þ

and from (23) we have

ϕ̂0ðxÞ ¼ ÛIðt; t0Þϕ̂Iðt; xÞÛIðt; t0Þ†: ð36Þ

Our goal is to calculate

lim
t→∞

jhψLjψRij ¼ jhψ0jD̂jψ0ij; ð37Þ

where in light of Eq. (34), we define

D̂ ¼ lim
t→∞

Û†
Lðt; t0ÞÛRðt; t0Þ: ð38Þ

To find this operator we note that since the left-hand side
(lhs) of (36) is independent of I, we have

ÛLϕ̂LÛ
†
L ¼ ÛRϕ̂RÛ

†
R; ð39Þ

implying

ϕ̂R ¼ Û†
RÛLϕ̂LÛ

†
LÛR; ð40Þ

where we have suppressed the ðt; xÞ dependence of the
fields and the ðt; t0Þ dependence of the propagators. From
(35) we have

ϕ̂R ¼ ϕ̂L þ ðϕret
R − ϕret

L Þ1̂; ð41Þ

which combined with (40) gives

Û†
RÛLϕ̂LÛ

†
LÛR ¼ ϕ̂L þ ðϕret

R − ϕret
L Þ1̂: ð42Þ

At late times t → ∞, the lhs is D̂†ϕ̂LD̂. Since the advanced
fields agree at late times, we may add ϕadv

L − ϕadv
R to the

right-hand side (rhs) in this limit. We thus have

D̂†ϕ̂LD̂ ¼ ϕ̂L þ Δϕ1̂; ð43Þ

where we introduce

Δϕ≡ ðϕret
R − ϕadv

R Þ − ðϕret
L − ϕadv

L Þ: ð44Þ

The form (43) is convenient because the presence of the
retarded-minus-advanced fields makes Δϕ a source-free
solution for all times. Its mode coefficients are therefore
time-independent, and we can think of D̂ as a time-
independent displacement operator. According to the gen-
eral theory of coherent states [9], every operator that obeys
(43) may be represented as

D̂ ≅ exp

�X
i

â†i ðαRi − αLi Þ − âiðᾱRi − ᾱLi Þ
�
; ð45Þ

where ≅ indicates equality up to phase and αIi are the time-
independent mode coefficients of ðϕret

I − ϕadv
I Þ. Using (31),

one can then calculate the overlap (37) as

jhψ0jD̂jψ0ij ¼ exp

�
−
1

2

X
i

jαRi − αLi j2
�
: ð46Þ

Recall from (21) that
P

i jαij2 can be interpreted as the
expected number of particles produced by the semiclassical
source. Here it is the left-right difference αRi − αLi that
appears, which by linearity can be interpreted as the
expected number of particles produced by the difference
of the left and right semiclassical sources. Since these
particles evidently determine the extent to which the system
decoheres, it is natural to call them entangling particles
following DSW. We therefore define hNei, the “expected
number of entangling particles,” as

hNei ¼
X
i

jαRi − αLi j2; ð47Þ

which is also the KG product of the positive-frequency part
of the left-right difference of the retarded minus advanced
solutions (44),

hNei ¼ ðKΔϕ; KΔϕÞ: ð48Þ

Putting everything together, Eqs. (37), (46), and (47)
become

lim
t→∞

jhψLjψRij ¼ e−hNei=2 ð49Þ

SAMUEL E. GRALLA and HONGJI WEI PHYS. REV. D 109, 065031 (2024)

065031-6



This reproduces the physical picture of Ref. [2] and DSW:
if the experiment emits entangling particles, the super-
position decoheres. Notice that near-complete decoherence
occurs with the emission of just a handful of particles.
In computing hNei using (48), the KG product may be

computed on any Cauchy slice, since Δϕ is a homogeneous
solution. However, if we use a slice at late times, where the
advanced solutions agree (ϕadv

L ¼ ϕadv
R ), then only the

retarded solutions appear. That is, the expected number
of entangling particles is the KG product of the positive-
frequency part of the difference between the left and right
retarded solutions, evaluated at late times. This is the form
of the result obtained in DSW.
In calculations we will find it convenient to instead push

the Cauchy surface to early times, where (for the Unruh
state) the nonvanishing mode functions are purely positive
frequency. In this case it is the retarded solutions that agree
(ϕret

L ¼ ϕret
R ), and so only the advanced solutions appear.

That is, we may also compute hNei as the KG product of
the positive-frequency part of the difference between the
left and right advanced solutions, evaluated at early times.

IV. ENTANGLING PARTICLES ON A BIFURCATE
KILLING HORIZON IN THE UNRUH STATE

We now restrict to spacetimes with a bifurcate Killing
horizon (Ref. [10] and Appendix B), in which a future
horizonHþ and a past horizonH− intersect at a bifurcation
surface B. We label the horizon generators of H� by their
coordinates xA on B and use an affine parameter
U∈ ð−∞;∞Þ on the past horizon and V ∈ ð−∞;∞Þ on
the future horizon, such that U ¼ V ¼ 0 is B. Thus Hþ is
described by coordinates ðV; xAÞ and H− is described by
coordinates ðU; xAÞ. In black hole spacetimes with the
conventional definitions of U and V, the regions of H�
bordering the exterior are U < 0 onH− and V > 0 onHþ.

We will denote these portions as HE
�. We denote the

horizon surface gravity by κ and introduce Killing time
coordinates u and v by

U ¼ −e−κu; V ¼ eκv; ð50Þ

In particular, H−
E is covered by −∞ < u < ∞, while HEþ is

covered by −∞ < v < ∞. These coordinates u and v
extend into the conventional exterior region of a black
hole spacetime. Some of these properties are illustrated
in Fig. 4.

A. KG product in terms of affine-time
Fourier transform

The formula (6) for the KG product holds on a spacelike
surface. We will be interested in the limit where a portion of
this surface approaches the past horizonH−. One can check
that the limiting product is

ðϕ1;ϕ2ÞH− ¼ i
Z

lμðϕ̄1∇μϕ2 − ϕ2∇μϕ̄1ÞdSdλ; ð51Þ

where dS is the volume element on the bifurcation surface
B, while lμ ¼ dxμ=dλ is tangent to the horizon generators
xμðλÞ with λ some parameter that is constant on B.
Choosing λ ¼ U gives

ðϕ1;ϕ2ÞH− ¼ i
Z
H−

ðϕ̄1∂Uϕ2 − ϕ2∂Uϕ̄1ÞdSdU: ð52Þ

Consider now a set of modes ϕi used for quantization.
Suppose in particular that the subset of such modes that are
nonvanishing on the past horizon are purely positive-
frequency with respect to affine time U when evaluated
there. (This situation arises for black holes formed from
gravitational collapse; we will describe it as working in the
“Unruh state” [11]). Describing each nonvanishing mode
by an affine frequency Ω > 0 and a set of (continuous or
discrete) spatial indices L, we have

ϕΩLjH− ¼ e−iΩUffiffiffiffiffiffiffiffiffi
4πΩ

p YLðxAÞ; ð53Þ

where YL is some complete set of modes for functions
fðxAÞ which are orthonormal with respect to dS,7Z

ȲLðxAÞYL0 ðxAÞdS ¼ δLL0 : ð54Þ

FIG. 4. Bifurcate Killing horizon.

7In practice, the most useful set of spatial mode functions may
depend on Ω, i.e., may be some set YΩLðxAÞ. The details of the
mode functions play no role in our considerations, so for
simplicity we assume they depend only on L.
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The prefactor ð4πΩÞ−1=2 in (53) guarantees that the modes
are properly normalized in the sense of (7). The mode
coefficient cΩL is then evaluated to be

cΩL ¼ ðϕΩL;ϕÞjH−

¼
ffiffiffiffi
Ω
π

r Z
dS

Z
∞

−∞
dUϕjH−eiΩUYLðxAÞ: ð55Þ

Noting that cΩL is proportional to the affine-time Fourier
transform of each spatial mode of the field, we can express
the Fourier transform as a sum over modes,

Φ̃ðΩ; xAÞ ¼
X
L

ffiffiffiffi
π

Ω

r
c̄ΩLȲLðxAÞ; ð56Þ

where our Fourier conventions are

Φ̃ðΩ; xAÞ ¼
Z

∞

−∞
ϕjH−ðU; xAÞe−iΩUdU: ð57Þ

Integrating over the spatial directions, we haveZ
jΦ̃ðΩ; xAÞj2dS ¼

X
L

πjcΩLj2
Ω

; ð58Þ

using the orthonormality of the harmonics. The KG product
of the positive-frequency part of a field ϕ is thus

ðKϕ; KϕÞH− ¼
Z

∞

0

dΩ
X
L

jcΩLj2 ð59Þ

¼ 2

Z
dS

Z
∞

0

ΩdΩ
2π

jΦ̃ðΩ; xAÞj2: ð60Þ

The range of the Ω-integral follows from the fact that the
mode functions are purely positive frequency (defined only
for Ω > 0).
The future-horizon analog of Eq. (60) was used by DSW

in the electromagnetic and gravitational cases in the
Schwarzschild spacetime [1]. The future-horizon version
holds for the Hartle-Hawking state, but DSWargue that the
associated decoherence results also apply to the Unruh
state, citing low-frequency equivalence between the two.
We will find it helpful to introduce another form of

Eq. (60). Using the definition (57) of the Fourier transform,
we can introduce two integrals over affine time,

ðKϕ;KϕÞH− ¼ 1

π

Z
dS

Z
∞

−∞
dU1

Z
∞

−∞
dU2

×ϕðU1;xAÞϕðU2;xAÞ
Z

∞

0

Ωe−iΩðU1−U2ÞdΩ:

ð61Þ

This last integral can be performed using the identityZ
∞

−∞

eiωx

ðx − iϵÞ2 dx ¼ −2πωHðωÞ; ð62Þ

which is easily checked by contour integration. Here HðωÞ
is the Heaviside function, equal to 1 for ω > 0 and 0 for
ω < 0. Inverting this Fourier transform, we find

1

ðx − iϵÞ2 ¼ −
Z

∞

−∞
ωdωHðωÞe−iωx; ð63Þ

which is the needed integral. Eq. (60) then becomes

ðKϕ; KϕÞH− ¼ −1
π

Z
dSdU1dU2

ϕðU1; xAÞϕðU2; xAÞ
ðU1 −U2 − iϵÞ2 :

ð64Þ

This formula also arises in the rigorous approach to QFT
used in [10]—see Eq. (4.13) therein.

B. KG product in terms of Killing-time
Fourier transform

Up to now we have considered the entirety of H−,
including both the “exterior” U < 0 and “interior” U > 0.
However, our application of the formula involves fields that
are nonzero only in the exterior part U < 0, denoted H−

E.
For such fields we may reduce the integration range of U1

and U2 to negative values only, and we may change
variables to the Killing time u related by U ¼ −e−κu
(50). After some algebra we obtain

ðKϕ; KϕÞH−
E
¼ −κ2

4π

Z
dS

Z
∞

−∞
du1

Z
∞

−∞
du2

×
ϕðu1; xAÞϕðu2; xAÞ

sinh2 ð1
2
κðu1 − u2Þ − iϵÞ ; ð65Þ

where ϕ is evaluated on H−
E and regarded as a function of

ðu; xAÞ. We write H−
E on the lhs to remind the reader that

this integral ranges over only the exterior portion of the past
horizon. However, the full horizon is still in some sense
involved through the K map, which refers to positive
frequency with respect to U∈ ð−∞;∞Þ.
Next we reintroduce the Fourier transform, this time with

respect to Killing time,

ϕ̃ðω; xAÞ ¼
Z

∞

−∞
ϕjH−

E
ðu; xAÞe−iωudu: ð66Þ

We may now invert for ϕjH−
E
ðu; xAÞ and plug in to both

instances of ϕ in Eq. (65). After changing variables to u ¼
u2 and Δ ¼ u1 − u2, we see that the u integral reduces to a
delta function in frequency, leaving
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ðKϕ; KϕÞH−
E
¼ −κ2

8π2

Z
dS

Z
∞

−∞
dωjϕ̃ðω; xAÞj2

×
Z

∞

−∞
dΔ

e−iωΔ

sinh2 ð1
2
κΔ − iϵÞ : ð67Þ

The last integral may be performed by contour integration,
giving

ðKϕ;KϕÞH−
E
¼ 1

π

Z
dS

Z
∞

−∞
dωjϕ̃ðω;xAÞj2 ω

expð2πω=κÞ−1
;

ð68Þ

which may be compared with (60).
From Eqs. (48), (68), and (66) and (44) the contribution

from H−
E to the expected number of entangling photons is

given by

hNeiH−
E
¼ 1

π

Z
dS

Z
∞

0

dωjΔϕ̃j2ω coth

�
πω

κ

�
; ð69Þ

where Δϕ̃ is the Killing-time Fourier transform of Δϕ (44)
evaluated on the horizon,

Δϕ̃ ¼
Z

∞

−∞
ΔϕjH−

E
e−iωudu: ð70Þ

The left and right retarded solutions agree at early times, so
they do not contribute to Δϕ when evaluated on H−

E,

ΔϕjH−
E
¼ −ðϕadv

R − ϕadv
L ÞjH−

E
: ð71Þ

Equation (69) has a thermal interpretation. If the calcu-
lation were repeated using Boulware modes (positive
frequency with respect to u on H−

E) to quantize the field
in the exterior, then Eq. (69) would appear without the coth
factor. The difference between the Unruh case under
consideration and the Boulware case [12–15] is thus an
integral involving cothðπω=κÞ − 1, which is a thermal
factor 2=ðexp½ω=TH� − 1Þ where TH ¼ κ=ð2πÞ is the hori-
zon temperature.

C. Estimate of entangling particle number

For the superposition experiment in a spacetime with
sufficient decay properties, the left and right fields will
agree at early and late times, meaning thatΔϕwill vanish at
early and late times. If the superposition is maintained for a
sufficiently long time, then the left and right fields will be
roughly constant over most of the time the superposition is
maintained, and Δϕ is similarly constant over a corre-
sponding lapse of time. We will denote this constant bycΔϕðxAÞ. Again assuming the relevant decay properties, it
can be computed from solutions where the sources persist
forever,

cΔϕðxAÞ ¼ −ðϕstat
R − ϕstat

L ÞjC; ð72Þ

where ϕstat
R and ϕstat

L are stationary (invariant under the
horizon-generating Killing field8) solutions with stationary
sources ρstatR and ρstatL corresponding to the superposition.
We write evaluation on a horizon cross section C (as
opposed to the past horizon H−

E) to emphasize that these
are stationary solutions. We include a minus sign in the
definition (72) to match the minus sign in (71), which
originates from the use of retardedminus advanced fields in
the difference field (44). This is purely a cosmetic issue

since only the square of cΔϕ will appear in the decohering
flux, Eq. (82) below.
We may thus think of Δϕ as transitioning from zero tocΔϕ then back to zero. We will work with Killing time u and

denote the Killing timescales as follows:
Tb: The largest “background” timescale (associated with
propagation on the background spacetime)

Tt: The “transition” timescale (associated with opening
or closing the superposition)

T: The timescale for which the superposition is main-
tained

Finally we define

T ¼ maxðTt; TbÞ: ð73Þ

which represents the timescale for the field on the horizon
to transition.
Our goal is to estimate the integral (69) in the regime

T ≫ T : ð74Þ

To do so we introduce an intermediate frequency ωc
satisfying

1

T
≪ ωc ≪

1

T
: ð75Þ

For example, if 1=T ∼ ϵ then we can take ωc ∼ ϵ1=2 as
ϵ → 0. We split the integral (69) into two pieces,

hNeiH−
E
¼ I1ðTÞ þ I2ðTÞ; ð76Þ

with

I1ðTÞ ¼
1

π

Z
dS

Z
ωc

0

dωjΔϕ̃j2ω coth

�
πω

κ

�
ð77Þ

8If the source were instead invariant under another Killing
field, the KG field would not in general be constant on each
horizon generator xA during the superposition time.
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I2ðTÞ ¼
1

π

Z
dS

Z
∞

ωc

dωjΔϕ̃j2ω coth

�
πω

κ

�
: ð78Þ

In the first integral (77) we have ωT ≪ 1 on the entire
range of integration, so that variations in Δϕ on scales ≲T
are not visible in the Fourier transform. In this regime we
may approximate Δϕ̃ as the Fourier transform of a sharp

top hat function of height cΔϕðxAÞ,
Δϕ̃ ≈ cΔϕðxAÞ 2

ω
sin

�
ωT
2

�
; ωT ≪ 1: ð79Þ

Using this approximation in (77), we find

I1ðTÞ ≈ C
Z

ωc

0

dω
4

ω
sin2ðωT=2Þ coth

�
πω

κ

�
ð80Þ

¼ C
Z

ωcT

0

dλ
4

λ
sin2ðλ=2Þ coth

�
πλ

κT

�
; ð81Þ

where

C ¼ 1

π

Z cΔϕ2dS ð82Þ

is the constant we call the decohering flux. In passing from
(80) to (81) we made the change of variables λ ¼ ωT.
The analysis now bifurcates according to whether κ

vanishes or not. For κ ≠ 0 we may replace coth x by its
small-x behavior 1=x in the large-T limit,

I1ðTÞ ≈ CκT
4

π

Z
ωcT

0

dλ
sin2ðλ=2Þ

λ2
ð83Þ

≈CκT; T → ∞; κ ≠ 0; ð84Þ

noting that ωcT → ∞ with the intermediate scaling (75)
and using the integral

R
∞
0 sin2ðλ=2Þ=λ2dλ ¼ π=4.

Alternatively, in the κ → 0 limit we may replace coth x
by its large-x value of 1,

I1ðTÞ ≈ 4C
Z

ωcT

0

dλ
sin2ðλ=2Þ

λ
ð85Þ

≈2C logT; T → ∞; κ ¼ 0; ð86Þ

where in the second step we drop constant terms, including
logωc. In both cases the arbitrary scale ωc disappears from
the leading behavior at large T.
Since our calculation assumes a bifurcate Killing hori-

zon, strictly speaking it applies only for nonzero κ. The
expression “κ ¼ 0” in (86) (and elsewhere below) is
shorthand for the assumption κT ≪ 1, which establishes
the hierarchy T ≪ T ≪ 1=κ. One might worry that the
Aretakis instability [16–18] will make this hierarchy

difficult to achieve, since growth occurs on timescales of
order κ−1 for near-extremal black holes [19]. However, the
field itself decays during this time, albeit at a slow, power-
law rate.
Now consider the second integral (78). For analyzing

this integral it is helpful to write Δϕ as

ΔϕjH−
E
¼ g1ðuþ T=2; xAÞ − g2ðu − T=2; xAÞ; ð87Þ

where g1ðu; xAÞ and g2ðu; xAÞ are smooth, T-independent

functions that transition from 0 to cΔϕðxAÞ=2 in a region of
size Δu ∼ T near u ¼ 0. These functions describe the
details of the transition periods, including (for example)
oscillations from quasinormal mode ringing. The Fourier
transform of (87) is

Δϕ̃ ¼ g̃1e−iωT=2 − g̃2eiωT=2; ð88Þ

where g̃1ðω; θ;ϕÞ and g̃2ðω; θ;ϕÞ are the Fourier trans-
forms of g1 and g2, respectively. The magnitude squared is
thus

jΔϕ̃j2 ¼ jg̃1j2 þ jg̃2j2 þ g̃1 ¯̃g2eiωT þ g̃2 ¯̃g1e−iωT: ð89Þ

In the second integral (78) we have ωT ≫ 1 everywhere on
the domain of integration and by (89) the T-dependence of
jΔϕ̃j2 is only in the form of a rapid oscillation. These
oscillations integrate to zero, leaving

I2 ≈
1

π

Z
dS

Z
∞

ωc

dωðjg̃1j2 þ jg̃2j2Þω coth

�
πω

κ

�
: ð90Þ

Although the integrand is now independent of T, the
integral can still depend on T through the lower-limit
ωc, which has an intermediate scaling, such as ωc ∼ 1=

ffiffiffiffi
T

p
.

However, we have already seen that ωc disappears from the
leading, large-T approximation for the other integral I1
(linearly diverging in the nonextremal case, and logarithmi-
cally diverging in the extremal case). Since the full integral
I1 þ I2 is manifestly independent of ωc, it follows that I2 is
also independent of ωc at these orders in the large-T
expansion. But since I2 can only have T-dependence
through ωc, we conclude that I2 makes no contribution
at these orders in the large-T expansion.
The leading large-T behavior of hNei (76) thus comes

entirely from the low-frequency integral I1. Collecting the
results from Eqs. (84) and (86), we have

hNeiH−
E
≈ C

�
κT κ ≠ 0

2 logT; κ ¼ 0
; ð91Þ

holding for T ≫ T . The log of a dimensionful quantity
appears because we have dropped subleading constant
contributions; these depend on the details of the transitions.
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Recall from (49) that the exponential of −hNei=2 gives
the final value of the of the inner product jhψLjψRij of the
left and right states of the experiment. If there are no
significant contributions to the entangling photon flux from
other boundaries, then Eq. (91) provides the decoherence
rate. We see that in the nonextremal case the dependence on
the separation time T is exponential,

jhψLjψRij ¼ e−
C
2
κT; ð92Þ

which we can interpret as saying that the state decoheres
exponentially. On the other hand, in the extremal case we
have a slower, power-law decoherence

jhψLjψRij ¼ ðT=T0Þ−C; ð93Þ

where we now include an undetermined constant T0. This
constant is nonuniversal and depends on the details of the
transition. By contrast, the decohering flux C can be
determined from the stationary field equations via
Eq. (82). It remains to calculate the decohering flux in
situations of physical interest.

V. OBSERVER ON THE SYMMETRY AXIS OF A
ROTATING BLACK HOLE

The Kerr metric in Boyer-Lindquist coordinates reads

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 ð94Þ

þ Σdθ2 −
4Mar sin2 θ

Σ
dtdϕ

þ
�
r2 þ a2 þ 2Ma2r sin2 θ

Σ

�
sin2 θdϕ2 ð95Þ

where Δ ¼ r2 þ a2 − 2Mr and Σ ¼ r2 þ a2 cos2 θ. The
horizon radius rþ, angular velocity ΩH, and surface gravity
κ are given by

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
ð96Þ

ΩH ¼ a
r2þ þ a2

ð97Þ

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

2Mrþ
: ð98Þ

The Boyer-Lindquist coordinates are not regular on the
horizon. To describe the past horizon H− we introduce

u ¼ t − r�; ð99Þ

ψ− ¼ ϕ − r#; ð100Þ

where dr�=dr ¼ ðr2 þ a2Þ=Δ and dr#=dr ¼ a=Δ. See
Eqs. (5.62) and (5.63) in Ref. [20] for explicit expressions
for r� and r#. The coordinates ðu; r; θ;ψ−Þ are regular on
the past horizon, but they are not constant on its generators,
which instead rotate with angular velocityΩH. We therefore
introduce an additional angle

ϕ̄ ¼ ψ− − ΩHu; ð101Þ

which remains constant on the generators of the past
horizon. We will refer to the set ðu; r; θ; ϕ̄Þ as “horizon-
adapted coordinates.” These satisfy the construction
described in Sec. IV with xA ¼ ðθ; ϕ̄Þ.
The induced metric on the horizon is

ds2B ¼ qABdxAdxB ð102Þ

¼ Σþdθ2 þ Σ−1þ ðr2þ þ a2Þ2 sin2 θdϕ̄2; ð103Þ

where the þ indicates evaluation at r ¼ rþ. The area
element is

dS ¼ ðr2þ þ a2Þ sin θdθdϕ̄: ð104Þ

The horizon-generating Killing field takes the form

ξ ¼ ∂

∂t
þΩH

∂

∂ϕ
¼ ∂

∂u
: ð105Þ

The partial derivatives in the first equality refer to Boyer-
Lindquist coordinates, whereas the partial derivative in the
second equality refers to horizon-adapted coordinates.
The state of a quantum field near a black hole formed

from gravitational collapse is described at late times by the
Unruh vacuum [21], which corresponds to choosing a set of
modes that are positive frequency with respect to affine
time U when evaluated on the past horizonH− (along with
additional modes that vanish there). Using this same set of
modes in the framework of Sec. III describes the super-
position experiment near a black hole formed from gravi-
tational collapse. Section IV showed that under these
circumstances the decoherence rate is determined by the
integral of the square of the stationary difference field on

the horizon, cΔϕ, as in Eq. (82). Our task is to compute cΔϕ
in cases of physical interest.
We will consider point sources described by a charge

qðτÞ on a worldline xμðτÞ (where τ is proper time),

ρ ¼
Z

qðτÞ δ
ð4Þðx − xðτÞÞffiffiffiffiffiffi−gp dτ: ð106Þ

Notice that unlike in the electromagnetic case, the charge
can be time-dependent. For a constant point charge q0 held
at radius r0 on the symmetry axis of a Kerr black hole, we
have
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ρ ¼ αq0
2πΣ

δðr − r0Þδð1 − cos θÞ; ð107Þ

where α ¼ ffiffiffiffiffi
gtt

p
is the “redshift factor,”

α2 ¼ r20 þ a2 − 2Mr0
r20 þ a2

: ð108Þ

The stationary solution ϕc ¼ ϕcðr; θÞ satisfies

∂

∂r

�
Δ
∂ϕc

∂r

�
þ 1

sin θ
∂

∂θ

�
sin θ

∂ϕc

∂r

�
¼ −2αq0δðr − r0Þδð1 − cos θÞ: ð109Þ

The solution has been given in integral form in Ref. [22] as
Eq. (10) with s ¼ 0. (Our ϕc is identified with −2αq0f in
that reference.) Evaluating the integral gives

ϕcðt; r; θ;ϕÞ ¼
αq0
R

; ð110Þ

where R is defined as

R2 ¼ ½ðr0 −MÞ − ðr −MÞ cos θ�2 þ Δ sin2 θ: ð111Þ

Notice that the constant prefactor in the KG Coulomb
solution (110) is the redshifted charge αq0. In particular, the
charge inferred at infinity as the coefficient of the 1=r
falloff is αq0, which is not equal to the locally defined
charge q0. As an extreme example, when a charge q0 is
slowly lowered into the black hole, the field everywhere
outside the black hole decreases in strength and ultimately
vanishes when the charge enters the horizon. There is no
obstacle to this physical process since there is no con-
servation law for the scalar charge. The disappearance of
the field is a manifestation of the “no scalar hair” property
of black holes [23].
These properties make the KG spatial superposition

experiment behave differently from the EM case. To adhere
most closely to the DSW electromagnetic setup, we would
consider a point charge q0 held in superposition at two
slightly different radii rL and rR, which results in a dipolar
difference source. However, if the dipole is defined in the
Lorentz-invariant way as the charge q0 times the proper
distance d, then the field actually falls off like 1=r at
infinity, not as 1=r2 as it does in electromagnetism. In
essence, the KG dipole still behaves like a monopole.
We therefore find it more convenient to simply work

with a monopole superposition, which is possible since
Alice can manipulate the value of the KG charge as a
function of time. That is, we consider the conceptually
simpler experiment in which the particle position is definite
but the value of its charge is placed in superposition and
later restored to the original value. We will still use the
labels “left” and “right,” but the two semiclassical sources

share a single position r0, differing only in the time-
evolutions qRðτÞ and qLðτÞ of their charges. The difference
source Δq ¼ qR − qL evolves from zero to some value Q

and back. The horizon difference field cΔϕ (72) is given by
the difference of Coulomb fields on the horizon,

cΔϕ ¼ −
αQ

r0 −M − ðrþ −MÞ cos θ : ð112Þ

Using (104) we may compute the decohering flux as

C ¼ 4Q2
r2þ þ a2

r20 þ a2
; ð113Þ

where we remind the reader that Q is the difference in
charge between the branches of the superposition.
In general there are also contributions to the decoherence

from null infinity. In Appendix Awe show that the expected
number of entangling particles on I− at large T is given by
hNeiI− ¼ 2C∞ logT (A18), where C∞ is the analogous
decohering flux on null infinity (A19). From Eq. (110) we
compute the difference of Coulomb fields at r → ∞ to becΔϕ∞ ¼ −αQ, and the integral (A19) gives

C∞ ¼ 4α2Q2: ð114Þ

This gives rise to a power-law contribution to large-T
decoherence going as ðT=T0Þ−C∞ , similar to the extremal
horizon result (93).
In the nonextremal case the decoherence from the

horizon is exp½−ð1=2ÞCκT� by (92) and always dominates
the power-law contribution from null infinity. On the other
hand, in the extremal case the horizon’s contribution is also
a power law, and the dominant effect is the one with the
larger decohering flux. Comparing (113) and (114), we find
(as expected) that the horizon dominates when the observer
is sufficiently near the horizon, while infinity dominates
when the observer is sufficiently far away. Precise equality
occurs at the critical value r0 ¼ M þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ r2þ

p
.

We began this paper by reviewing a heuristic argument
involving Bob making measurements from behind a
horizon, which suggests the presence of a decoherence
effect associated with horizons. The precise calculation
shows there is also a decoherence associated with null
infinity (in the KG case), and it is interesting to consider
whether a similar heuristic applies. While no single Bob
can gather information at infinite distance, we can still
imagine an army of Bobs stationed on a distant sphere in
the distant future, i.e., a congruence of observers approach-
ing null infinity. The question of whether the Bobs gather
finite information in the limit depends on falloff conditions,
and we do not attempt to analyze it directly. However, the
nonzero decoherence result suggests that for the KG field,
the Bobs can indeed gather which-path information from
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far away. It would be very interesting to make this
correspondence precise.

VI. ELECTROMAGNETIC DECOHERENCE

The EM case is highly analogous to the KG case, except
for some additional subtleties related to the choice of
gauge. We will first establish some some general properties
of a horizon-adapted gauge, before proceeding to perform
the calculation.

A. Horizon-adapted gauge

Following DSW we work in a gauge where Aμ vanishes
when contracted with the horizon generator. Since we work
on the past horizon, the condition takes the form

ξμAμjH− ¼ 0: ð115Þ

In the horizon-adapted coordinates of Sec. IV we may write

AUjH− ¼ 0 ð116Þ

or

AujH−
E
¼ 0: ð117Þ

We will call this a horizon-adapted gauge.
In Appendix B we show that, in the horizon-adapted

gauge, the pullback of Maxwell’s equation to the horizon
takes the form of a total derivative,

∂

∂u

�
1

2
ϵAB�FAB −∇AAA

�
¼ 0: ð118Þ

Integrating then gives

∇AAA ¼ 1

2
ϵAB�FAB þ fðxAÞ; ð119Þ

in terms of an integration constant f. Under the residual
gauge freedom AA → AA þ∇Ag with g ¼ gðxAÞ, we have

f → f þ qAB∇A∇Bg: ð120Þ

We can thus utilize the residual gauge freedom to make
fðxAÞ lie complement of the image of the Laplacian. By
theorem 4.13a of Ref. [24], for compact manifolds (in our
case, the horizon cross section C) this complement is just
the set of constant functions. We may thus set f to be a
constant,

∇AAA ¼ 1

2
ϵAB�FAB þ f0: ð121Þ

After integration, we see that f0 is proportional to the
charge enclosed in the compact horizon,

f0 ¼
1

A

Z
C

1

2
ϵAB�FABdS ¼ 1

A

Z
C

�F; ð122Þ

where dS is the natural area element on C andA ¼ R
C dS is

the cross-sectional area. If there is no charge in the compact
horizon then we have simply

∇AAA ¼ 1

2
ϵAB�FAB: ð123Þ

For noncompact horizons with suitable falloff conditions,
we expect that the complement of the image of the
Laplacian will either be empty or can be removed with a
similar physical assumption.
For simplicity we will assume that f0 ¼ 0 so that (123)

holds. However, it is trivial to repeat the analysis of the
paper with f0 included. One simply assumes that the left
and right branches of the superposition share the same f0,
which corresponds physically to the statement that the
superposition was created from a single initial state. (In the
compact-horizon case, f0 is interpreted as total charge.)
The constant f0 then cancels out of the right-left difference
field and hence does not appear in the final decoherence
rate. This cancellation occurs in our treatment of null
infinity in Appendix A 3, where the charge cannot be
assumed to vanish separately in the left and right branches.
A second equation analogous to (123) can be derived

much more easily. From the definition of the field strength
we have

∂AAB − ∂BAA ¼ FAB: ð124Þ

Contracting this equation with ϵAB produces a magnetic
analog of (123). Displaying these two equations together
gives a pleasing pair,

qAB∇AAB ¼ 1

2
ϵAB�FAB ð125Þ

ϵAB∇AAB ¼ 1

2
ϵABFAB: ð126Þ

The right-hand sides provide invariant notions of the radial
electric and magnetic fields.
These equations suggest that both components of AA can

be determined from the field strength Fμν at each time u.
We can make this explicit by introducing electric and
magnetic Hertz potentials EðuÞ and BðuÞ,

AA ¼ ∇AE þ ϵAB∇BB: ð127Þ

Each potential is then sourced by its corresponding radial
field,

∇2E ¼ −
1

2
ϵAB�FAB ð128Þ
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∇2B ¼ −
1

2
ϵABFAB; ð129Þ

where ∇2 ¼ qAB∇A∇B is the Laplacian on the horizon
cross section. We define the inverse Laplacian ∇−2 so that
the integral of∇−2f vanishes for any f in the domain. (This
is always possible by theorem 4.13e of Ref. [24].) We then
invert as

E ¼ −
1

2
∇−2ðϵAB�FABÞ ð130Þ

B ¼ −
1

2
∇−2ðϵABFABÞ: ð131Þ

We expect similar expressions to hold in the noncompact
case provided that there are suitable falloff conditions.

B. Entangling photons

With the above facts established, the KG analysis of
Secs. II–V generalizes straightforwardly to EM fields. The
modes satisfy the free Maxwell equation,

∇μFμν ¼ 0; ð132Þ

and are normalized according to the gauge-invariant,9

surface-independent product

ðA1; A2Þ ¼ −
i
4π

Z
Σ
d3x

ffiffiffi
h

p
nμðF̄1μνAν

2 − F2μνĀν
1Þ: ð133Þ

In the presence of a source Jμ we have

∇μFμν ¼ −4πJν: ð134Þ

We make the same assumptions of Sec. III with sources JμR
and JμL instead of ρR and ρL, and use identical arguments to
show the decoherence rate is given by e−hNei=2 (49) with

hNei ¼ ðKΔA;KΔAÞ; ð135Þ

analogously to (48). Here ΔA is the right-left difference of
the retarded-minus-advanced fields,

ΔA≡ ðAret
R − Aadv

R Þ − ðAret
L − Aadv

L Þ; ð136Þ

where we suppress the tensor index and use notation
analogous to (44). Note that the associated field strength
ΔF is the retarded minus advanced solution arising from a
source JμR − JμL of compact spacetime support. This ensures

that ΔF has compact spatial support on any Cauchy
surface, and therefore that the product (135) is gauge-
invariant.
The steps of Sec. IV also generalize. On the horizon in

the horizon-adapted gauge we have

ðA1; A2ÞH− ¼ i
4π

Z
dS

Z
∞

−∞
dU

× qABðĀ1A∂UA2B − A2A∂UĀ1BÞ; ð137Þ

which closely parallels the corresponding KG expression
(52). The ensuing steps proceed identically until we
establish the analog of (69),

hNeiH−
E
¼ 1

4π2

Z
dS

Z
∞

0

ωdω
2π

jΔÃj2 coth
�
πω

κ

�
; ð138Þ

where

jΔÃj2 ¼ qABΔ ¯̃AAΔÃBjH−
E
; ð139Þ

with ÃA is the Killing-time Fourier transform on the
Horizon [analogous to (70)],

ΔÃA ¼
Z

∞

−∞
ΔAAjH−

E
e−iωudu: ð140Þ

In the KG case we proceeded to estimate the integral
based on the assumption that Δϕ transitions from zero to a

constant cΔϕ and back, with the transitions occurring over a
timescale T and the constant period occurring for T ≫ T
(Fig. 1). In the EM case the same assumptions will be valid
for the field strength Fμν, but the behavior in a given gauge
AA need not mimic that of the field strength. However, we
have shown in Sec. VI A that the horizon-adapted gauge
can be constructed locally in time from the field strength (at
least for compact horizons, and presumably in the non-
compact case with suitable falloff), meaning that it will in
fact share the properties described above. We may thus
perform the estimate identically, arriving at the exact same
results (92) and (93),

jhψLjψRij ¼
�
e−

C
2
κT; κ ≠ 0

ðT=T0Þ−C κ ¼ 0
; ð141Þ

where the decohering flux C is now given by

C ¼ 1

4π2

Z
qAB cΔAA

cΔABdS; ð142Þ

analogously to (82). The quantity cΔA is defined analo-
gously to (72),

cΔAðxAÞ ¼ −ðAstat
R − Astat

L ÞjH; ð143Þ

9Under Aμ → Aμ þ ∂μΛ, Eq. (133) changes by boundary
terms, which are the integrals of F1Λ and F2Λ. We do not
address these subtleties in the mode quantization argument, but
the final results involve the inner product evaluated on solutions
where such terms would vanish—see discussion below Eq. (136).
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where (with tensor indices suppressed) Astat
R and Astat

L are
stationary solutions in horizon-adapted gauge in the pres-
ence of stationary sources JstatR and JstatL (respectively)
corresponding to the superposition.
To derive the formula for C given in the introduction as

Eq. (4), we use the solution (130) and (131) for the electric
and magnetic potentials in the decomposition (A46) for the
horizon vector potential. Plugging this decomposition into
(142), we find that cross-terms are total derivatives. These
may be dropped for a horizon of compact support like that
of the Kerr spacetime, and also for noncompact horizons in
spacetimes with suitable decay properties (such as Rindler)
given the assumption of a localized source outside the
horizon.

C. Calculation in Kerr

The charge-current of a point source in a curved
spacetime is given by

Jμ ¼
Z

euμ
δð4Þðx − xðτÞÞffiffiffiffiffiffi−gp dτ: ð144Þ

For a stationary charge on the symmetry axis of a Kerr
black hole, we have

J ¼ e
2πΣ

δðr − r0Þδð1 − cos θÞ ∂

∂u
: ð145Þ

The stationary, regular solution with charge e can be called
the Coulomb field Fc

μν. A vector potential is given in closed
form in Eq. (9) of Ref. [25]. However, this potential is
poorly behaved on the horizon and its well-behaved
components are not in the horizon-adapted gauge. While
we could in principle proceed by finding an explicit gauge
transformation to a regular, horizon-adapted gauge, we find
it more convenient to compute the gauge-invariant field
strength and reconstruct a a suitable Ac

A by solving

Eqs. (125) and (126). In the axisymmetric case of present
interest, these equations become

1ffiffiffi
q

p ∂θð ffiffiffi
q

p
qθθAc

θÞ ¼ −
1

2
ϵAB�Fc

AB ð146Þ

1ffiffiffi
q

p ∂θAc
ϕ̄
¼ 1

2
ϵABFc

AB; ð147Þ

holding on the horizon r ¼ rþ. The integrals can be done in
closed form, and after some calculation we find

Ac
AjC ¼

−eðrþ −MÞ sin θ
ða2 þ r20Þðr0 −M − ðrþ −MÞ cos θÞ

×

�
ðr0rþ þ a2 cos θÞðdθÞA

þ aðr2þ þ a2Þðrþ − r0 cos θÞ sin θ
r2þ þ a2cos2θ

ðdϕ̄ÞA
�
; ð148Þ

imposing regularity on the pole to obtain a unique solution.
Equation (148) refers to the Coulomb field of a single

point charge e. For the superposition experiment, a charge e
is held in a spatial superposition of two nearby radii
r0 � ϵ=2. We require the difference of the two vector
potentials, which by linearity is the vector potential due to
the difference of the sources. Since the proper separation isffiffiffiffiffiffi
grr

p
ϵ, the difference source is an effective dipole

p ¼ e
ffiffiffiffiffiffi
grr

p
ϵ. In the limit ϵ → 0 (fixing p) the difference

field is

Astat
R;μ − Astat

L;μ ¼
pffiffiffiffiffiffi

grr
p jr¼r0;θ¼0

∂Ac
μ

∂r0

����
e¼1

: ð149Þ

Using Eq. (148) we can obtain cΔA (143) and evaluate the
decohering flux integral (142). We find

C ¼ p2
ðr2þ þ a2Þðr0 − rþÞðr0rþ − a2Þ

6πðr20 þ a2Þ3rþ

�
6
r2þ þ a2

r2þ − a2
log

�
rþðr0 − rþÞ
r0rþ − a2

�
þ a6 þ a4ð−5r20 þ 18r0rþ − 14r2þÞ þ a2rþð6r30 − 26r20rþ þ 18r0r2þ þ r3þÞ þ r20r

3þð6r0 − 5rþÞ
ðr0 − rþÞ2ða2 − r0rþÞ2

�
: ð150Þ

This function is plotted in Fig. 2 as a function of black
hole spin.
We can obtain simpler expressions in a few different

limits. First we we consider the nonspinning case a ¼ 0,

C ¼ 4M2p2

3πr50

�
2M

3r0 − 5M
r0 − 2M

þ 3ðr0 − 2MÞ ln
�
1 −

2M
r0

��
:

ð151Þ

We can further expand at large r0,

C ¼ 32

3π

p2M4

r60
þOðr−70 Þ: ð152Þ

This expression may be compared to analogous results in
Ref. [1], which quotes a decoherence timescale in Eq. (15).
In light of Eq. (92) we define the decoherence timescale
TD ¼ 2=ðCκÞ. Using κ ¼ 1=ð4MÞ and Eq. (152) for C, and
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noting that our p equals their qd, we confirm the scaling of
Eq. (15) of Ref. [1]. Noting our units ϵ0 ¼ 1=ð4πÞ, we find
that their Eq. (15) should contain a prefactor 3π2 in order to
correspond to our definition of TD. This is the precise
version of their order of magnitude estimate.
Alternatively we can consider a near-horizon limit.

Letting b ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mðr0 − 2MÞp þOððr0 − 2MÞ3=2Þ denote

the proper distance to the horizon, we find

C ¼ 2p2

3πb2
þOðb0Þ: ð153Þ

This may be compared with analogous results for Rindler
spacetime in Ref. [4], noting that the acceleration a of a
near-horizon observer is related to proper distance b by
a ¼ 1=bþOðbÞ. Since Ref. [4] quotes a rate in proper
time, we also use κT ¼ aτ þOðbÞ to convert our
decoherence rate TD to a proper decoherence rate
τD ¼ TDðκ=aÞ ¼ 2=ðCaÞ. This τD may be compared to
TD in Eq. (3.27) of Ref. [4]; we confirm the scaling and find
that a prefactor of 12π2 is required to agree with the
precise rate.
It is also instructive to look at the large r0 limit at finite

spin,

C ¼ 2p2ðr2þ − a2Þ2ðr2þ þ a2Þ
3πr2þr60

þOðr−70 Þ: ð154Þ

Finally, we consider extremal limits. Introducing ϵ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=M2

p
and letting ϵ → 0 at fixed M and r0, we find

C ¼ 8p2M4ðM2 − 2Mr0 þ 2r20Þ
3πðM − r0Þ2ðM2 þ r20Þ3

ϵ2 þOðϵ3Þ: ð155Þ

The flux vanishes like ϵ2, which is linear in a, as seen
in Fig. 2.
Alternatively, we can take the extremal limit while

simultaneously approaching the horizon. Defining x0 ¼
ðr0 − rþÞ=r0 and taking the extremal limit ϵ → 0 with x0 ∼
ϵ gives a finite limit,

C ¼ p2
ϵ2

3πM2x0ðx0 þ 2ϵÞ : ð156Þ

If time is also rescaled like 1=ϵ, then this limit applied to the
metric yields the “nearNHEK” patch [26] of the NHEK
metric [27]. Here we have used the definitions of Ref. [28].
In the case of KG fields there was also a contribution to

decoherence from null infinity. This occurs because the
Coulomb fields are nonzero at infinity in the sense that the
1=r part of the difference field is nonzero. This occurs for
the monopole case we studied as well as the KG dipole
case, as discussed in Sec. V. However, in the EM case the
dipole field decays like 1=r2 and there is no contribution to

decoherence from null infinity. This may be seen explicitly
from the general expression (A57) derived in Appendix A.

ACKNOWLEDGMENTS

It is a pleasure to thank Paul Anderson, Daine Danielson,
Gautam Satishchandran, and Bob Wald and for helpful
discussions. This work was supported by NSF Grants
No. PHY-1752809 and No. PHY-2309191 to the
University of Arizona.

APPENDIX A: SYMPLECTIC PRODUCT
ON THE KERR EXTERIOR AND

CONTRIBUTIONS FROM NULL INFINITY

In this appendix, we consider the exterior part of the Kerr
spacetime, foliated by Cauchy surfaces of constant Boyer-
Lindquist t, denoted Σt. As t → −∞, the symplectic
product splits into separate contributions from the past
horizon H−

E and from past null infinity I−, with contribu-
tions from past timelike infinity assumed to vanish due to
falloff. The horizon contributions were estimated at large T
in the main body; here we estimate the large-T contribu-
tions from null infinity. We consider the KG and EM cases
separately. We find that there is a logarithmic contribution
in the KG case, whereas the EM case is finite as T → ∞.

1. Klein-Gordon product

As already presented in the main text as Eq. (6), the KG
product of two source-free solutions ϕ1 and ϕ2 on a time
slice Σt is defined as

ðϕ1;ϕ2Þt ¼ i
Z
Σt

d3x
ffiffiffi
h

p
nμðϕ̄1∇μϕ2 − ϕ2∇μϕ̄1Þ; ðA1Þ

where nμ is the future-directed unit normal to Σt, and h is
the determinant of the induced metric. It follows directly
from the source-free Klein-Gordon equation that the inner
product is independent of the surface Σt.
We may approach the past horizon by letting r → rþ at

fixed fu; θ; ϕ̄g, where these coordinates were defined in
Sec. V. Since t → −∞ in this limit, it represents a portion of
the limiting Σt. In this limit, a direct computation gives

d3x
ffiffiffi
h

p
nμ → dSdu

�
∂

∂u

�
μ

; ðA2Þ

where dS is given in Eq. (104) and ð ∂

∂uÞμ is the coordinate
basis vector in the horizon-adapted coordinate system
fu; r; θ; ϕ̄g (also equal to the horizon-generating Killing
field). The contribution to the KG product in this limit is
thus

ðϕ1;ϕ2ÞH−
E
¼ i

Z
∞

−∞
du

Z
dSðϕ̄1∂uϕ2 − ϕ2∂uϕ̄1ÞH−

E
; ðA3Þ
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where the partial derivative refers to horizon-adapted
coordinates.
We may approach past null infinity by letting r → ∞ at

fixed ðv; θ;ϕÞ, where v is the advanced time v ¼ tþ r�.
Since t → −∞ in this limit, it also represents a portion of
the limiting Σt. In this limit, a direct computation gives

d3x
ffiffiffi
h

p
nμ → r2dΩdv

�
∂

∂v

�
μ

; ðA4Þ

where dΩ ¼ sin θdθdϕ is the 2-sphere element and ð ∂

∂vÞμ is
the coordinate basis vector in the advanced coordinate
system fv; r; θ;ϕg. The volume element diverges, but this
will be canceled in the inner product by falloff of the
fields,10

ϕðv; r; yAÞ ¼ ϕjI−ðv; yAÞr−1 þ oðr−1Þ: ðA5Þ

(We adopt the notation that evaluation of a scalar field at I−

represents the 1=r part.) The contribution to the KG product
in this limit is thus

ðϕ1;ϕ2ÞI− ¼ i
Z

∞

−∞
dv

Z
dΩðϕ̄1∂vϕ2 − ϕ2∂vϕ̄1ÞI− : ðA6Þ

where the partial derivative refers to advanced coordinates.
The fields in the integrand are understood as the r−1 parts
defined in Eq. (A5).
Finally we consider the pieces of the limiting Σt that are

not captured by the horizon or null infinity. Colloquially,
these are the “contributions from past timelike infinity.”
Although we do not formalize a proof, it is clear that these
pieces do not contribute to the limiting KG product.
Extensive numerical evidence (beginning with [30]) shows
that solutions with compact sources decay polynomially in
time at fixed spatial coordinate. Rigorous decay results
have also been obtained in hyperboloidal slicings
(Ref. [31], Corollary 3.1). The time-reverse of these results
applies to decay of the advanced field at early times, such
that the retarded-minus-advanced field we consider should
decay as t → −∞ away from H−

E and I−. We therefore
assert that there is no contribution from timelike infinity,

lim
t→−∞

ðϕ1;ϕ2Þt ¼ ðϕ1;ϕ2ÞH−
E
þ ðϕ1;ϕ2ÞI− : ðA7Þ

2. Decoherence from null infinity

We now consider the superposition experiment setup of
the main body. In Secs. IV and V we evaluated the
contribution to decoherence from the past horizon, first
in a general setup and then for an observer on the symmetry

axis of the Kerr spacetime. We now repeat this analysis for
the contribution from null infinity. The steps are highly
analogous.
For the Unruh state, the nonvanishing mode functions

are positive frequency with respect to v,

ϕin
ωLjI− ¼ e−iωvffiffiffiffiffiffiffiffiffi

4πω
p YLðyAÞ; ðA8Þ

where yA ¼ fθ;ϕg and we remind the reader that evaluation
at I− is understood as taking the 1=r part, as in Eq. (A5).
The functions YLðyAÞ are assumed to be orthonormal on

the (celestial) sphere,Z
ȲLðyAÞYL0 ðyAÞdΩ ¼ δLL0 : ðA9Þ

In practice, the most useful angular mode functions depend
on ω as well,11 but our results are insensitive to the specific
choice. According to the falloff (A5), a field on I− may be
decomposed as

ϕjI−ðv; xAÞ ¼
Z

∞

−∞
dω

X
L

cωLϕin
ωLjI−ðv; xAÞ ðA11Þ

for some mode coefficients cωL. Using the same method as
in Sec. IVA, we find that

ðKϕ; KϕÞI− ¼
Z

∞

0

dω
X
L

jcωLj2 ðA12Þ

¼ 2

Z
dΩ

Z
∞

0

ωdω
2π

jΦ̃ðω; xAÞj2 ðA13Þ

¼ −1
π

Z
dΩdv1dv2

ϕðv1; xAÞϕðv2; xAÞ
ðv1 − v2 − iϵÞ2 ;

ðA14Þ

where Φ̃ðω; xAÞ is now the Fourier transform of Φ on past
null infinity I−,

Φ̃ ¼
Z

∞

−∞
ϕjI−e−iωvdv: ðA15Þ

In the superposition experiment, the contribution to the
entangling particles from null infinity is

10This falloff is clear in the mode solutions to the KG
equation [29].

11The scalar wave equation is separable in the Kerr back-
ground, with θ eigenfunctions equal to oblate spheroidal har-
monics Smlð−a2ω2; cos θÞ (See Eq. (8) in Ref. [29]). Thus we
have

Yωlmðθ;ϕÞ ¼
e−imϕffiffiffiffiffi

4π
p Smlð−a2ω2; cos θÞ: ðA10Þ
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hNeiI− ¼ ðKΔϕ; KΔϕÞI− ; ðA16Þ

where Δϕ is the left-right difference of the retarded-minus-
advanced solution, Eq. (44). The retarded solutions cancel
at early times, so we have

ΔϕjI− ¼ −ðϕadv
R − ϕadv

L ÞjI− : ðA17Þ

Assuming that Alice is a static observer,12 we may estimate
ðKΔϕ; KΔϕÞ using the method of Sec. IV C applied to
Eq. (A13). Since the advanced time v agrees with Killing
time, there is no factor of cothðπωκ Þ [as in Eq. (69)]
appearing in Eq. (A13). Therefore, the method of estima-
tion in Sec. IV C applies with κ ¼ 0 [See Eq. (91)]. We
obtain

hNeiI− ¼ 2C∞ logT ðA18Þ

with

C∞ ¼ 1

π

Z
jcΔϕ∞j2dΩ; ðA19Þ

where cΔϕ∞ is the difference of the stationary Coulomb
solutions,

cΔϕ∞ðxAÞ ¼ −ðϕstat
R − ϕstat

L Þjr→∞: ðA20Þ

We refer to C∞ as the decohering flux on null infinity.

3. Electromagnetic decoherence at null infinity

We now consider electromagnetic decoherence in the
Kerr spacetime. The main differences in the EM case will
be related to the choice of gauge. As already given in the
main text as Eq. (133), the EM symplectic product is

ðA1; A2Þ ¼ −
i
4π

Z
Σt

d3x
ffiffiffi
h

p
nμðF̄1μνAν

2 − F2μνĀν
1Þ: ðA21Þ

Since the product is gauge-invariant (up to boundary terms
—see footnote 9), we are free to use different gauges on
different portions of Σt. For the portion that limits to the
past horizon as t → −∞, we use the horizon-adapted gauge
of the main text. For the portion that limits to null infinity
we will use an analogous gauge, as follows.
We again work in advanced coordinates ðv; r; yAÞ in the

Kerr spacetime, letting r → ∞ to reach I−. (However, our
analysis does not use details of the Kerr metric in an
essential way and extends naturally to more general
asymptotically flat spacetimes.) We denote the spherical
metric by γAB, where in fθ;ϕg coordinates,

γAB ¼ ðdθÞAðdθÞB þ sin2 θðdϕÞAðdϕÞB: ðA22Þ

The covariant derivative with respect to the 2-sphere is
denoted as DA and the 2-dimensional area element is ϵAB.
We use orientation ϵvrθϕ ¼ ffiffiffiffiffiffi−gp

and ϵθϕ ¼ ffiffiffi
γ

p ¼ sin θ.
We assume that the electromagnetic field is smooth at

null infinity in the sense of Eq. (27) in Ref. [32],13

Av ¼ Oðr0Þ ðA23Þ

Ar ¼ Oðr−2Þ ðA24Þ

AA ¼ Oðr0Þ: ðA25Þ

In analogy with the horizon adapted gaugewhere Au ¼ 0 on
H−

E, wewantAv to vanish near I−. We use the notation that a
superscript (n) indicates the r−n part of a quantity expanded

at large r. If Av is expressed as A
ð0Þ
v þ Að1Þ

v r−1 þOðr−2Þ, we
make a gauge transformation Aμ → Aμ þ ∂μΛ with

Λ ¼ R
dvAð0Þ

v þ R
dvAð1Þ

v r−1 þOðr−2Þ. This transforma-
tion makes Av order r−2, while preserving the falloff
conditions (A24) and (A25) of Ar and AA,

Av ¼ Oðr−2Þ; ðA26Þ

Ar ¼ Oðr−2Þ; ðA27Þ

AA ¼ Að0Þ
A þOðr−1Þ: ðA28Þ

The field strength has falloff

Fvr ¼ Fð2Þ
vr r−2 þOðr−3Þ ðA29Þ

FvA ¼ Fð0Þ
vA þOðr−1Þ ðA30Þ

FrA ¼ Oðr−2Þ ðA31Þ

FAB ¼ Fð0Þ
AB þOðr−1Þ ðA32Þ

with

Fð0Þ
vA ¼ ∂vA

ð0Þ
A ; ðA33Þ

Fð0Þ
AB ¼ ∂AA

ð0Þ
B − ∂BA

ð0Þ
A : ðA34Þ

It is convenient to introduce radial electric and magnetic
fields on I− as

Eð2Þ
r ≡ lim

r→∞

1

2
ϵAB�FAB ¼ −Fð2Þ

vr ; ðA35Þ
12In a more general asymptotically flat setting (beyond the

Kerr metric), we would require that she is on a Killing orbit of ∂v,
the Killing field generating I−.

13We can convert formulas at future null infinity in [32] to past
null infinity by sending u → −v.
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Bð2Þ
r ≡ lim

r→∞

1

2
ϵABFAB ¼ −�Fð2Þ

vr ; ðA36Þ

where we remind the reader that �Fμν ¼ 1
2
ϵμνρσFρσ is the

Hodge dual of Fμν.
Assuming sufficient falloff toward timelike infinity, the

symplectic product again splits into contributions from the
past horizon and from past null infinity,

lim
t→−∞

ðA1; A2Þt ¼ ðA1; A2ÞH−
E
þ ðA1; A2ÞI− : ðA37Þ

The horizon contribution was studied in the main body, and
we now study the contribution from infinity. A direct
calculation shows that as r → ∞ at fixed v, in our gauge we
have ffiffiffi

h
p

nμF1μνAν
2 → −

ffiffiffi
γ

p
γABAð0Þ

2A ∂vA
ð0Þ
1B ; ðA38Þ

where γ ¼ det γAB. The limiting symplectic product is thus

ðA1;A2ÞI− ¼ i
4π

Z
∞

−∞
dv

Z
dΩγABðAð0Þ

1A ∂vA
ð0Þ
2B −Að0Þ

2A∂vA
ð0Þ
1B Þ;

ðA39Þ

where dΩ is the volume element on the celestial sphere
dΩ ¼ ffiffiffi

γ
p

d2xA. It is convenient to work in this gauge
because the symplectic product (A39) is analogous to KG
case (A6).
We now repeat the analysis in Sec. VI A for I− instead of

H−
E. The leading [Oðr−2Þ] part of Maxwell’s equations

ð ∂

∂vÞν∇μFμ
ν ¼ 0 gives

∂

∂v
Fð2Þ
vr þDAFð0Þ

vA ¼ 0: ðA40Þ

Using Eq. (A33) this becomes a total v-derivative, and we
find

DAAð0Þ
A ¼ −Fð2Þ

vr þ fðxAÞ ðA41Þ

in terms of an integration constant fðxAÞ, analogous to
Eq. (119). We can change f by the Laplacian of a scalar
gðxAÞ, i.e. f → f þD2g, using the residual gauge freedom

Að0Þ
A → Að0Þ

A þDAg.
14 We can use this freedom to set f

equal to a constant −e,

DAAð0Þ
A ¼ −Fð2Þ

vr − e: ðA42Þ

Integrating over the sphere shows that e is the total electric
charge,

e ¼ lim
r→∞

1

4π

Z
S2

�
F; ðA43Þ

When treating the horizon case we assumed for simplicity
that the enclosed charge vanished, since a nonzero charge
would cancel out when the right-left difference field is
considered anyway. Here we cannot take the charge to
vanish, and we will see the right-left cancellation explicitly
in Eq. (A57) below.
From Eqs. (A42) and (A34) in the notation of Eqs. (A35)

and (A36), we have

γABDAA
ð0Þ
B ¼ Eð2Þ

r − e ðA44Þ

ϵABDAA
ð0Þ
B ¼ Bð2Þ

r ; ðA45Þ

Noting the definitions (A35) and (A36) of Eð2Þ
r and Bð2Þ

r ,
these equations are analogous to Eqs. (125) and (126). A
term analogous to e does not appear in the horizon version
because the charge enclosed in the horizon was assumed to
vanish.
Eqs. (A44) and (A45) show that Að0Þ

A can be determined
from the gauge-invariant field strength locally in time (at
each v) along I−. To see this explicitly, we introduce the
decomposition

Að0Þ
A ¼ qABDBE þ ϵABDBB; ðA46Þ

so that Eqs. (A44) and (A45) become

D2E ¼ Eð2Þ
r − e; ðA47Þ

D2B ¼ Bð2Þ
r : ðA48Þ

Defining the inverse Laplacian D−2 so that the integral
D−2f vanishes for any f in the domain, we have the explicit
solution

E ¼ D−2ðEð2Þ
r − eÞ ðA49Þ

B ¼ D−2Bð2Þ
r ; ðA50Þ

from which the vector potential Að0Þ
A in the correct gauge

can be constructed via Eq. (A46). Notice that the l ¼ 0 part

of Eð2Þ
r (i.e., the charge e) is naturally removed so that the

resulting function is in the domain of D−2.
With these results established, we may now repeat the

steps of Sec. A 2 above. The analog of Eq. (A13) is found
to be

ðKA;KAÞI− ¼ 1

4π2

Z
dΩ

Z
∞

0

ωdω
2π

γABÃð0Þ
A Ãð0Þ

B ; ðA51Þ14These gauge transformations are sometimes called “large
gauge transformations” [33].
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where again tilde denotes Fourier transform,

ÃA ¼
Z

∞

−∞
Að0Þ
A e−iωvdv: ðA52Þ

The expected number of entangling particles is given by
plugging in the left-right difference of retarded minus
advanced fields ΔA (136),

hNeiI− ¼ ðKΔA;KΔAÞI− : ðA53Þ

Estimating at large T then gives

hNeiI− ¼ 2C∞ logT; ðA54Þ

with

C∞ ¼ 1

4π2

Z
γAB cΔA∞A

cΔA∞BdΩ; ðA55Þ

where as usual cΔAA is the difference of the stationary
“Coulomb fields” associated with the stationary portions of
the left and right branches of the superposition,

cΔA∞ðxAÞ ¼ −ðAstat
R − Astat

L Þjr→∞; ðA56Þ

with tensor index A suppressed.
If we introduce the difference radial fields cΔEr and cΔBr

constructed from ΔA∞ via Eqs. (A35) and (A36) (dropping
the subscript∞ and superscript (2) for conciseness), noting
Eqs. (A46), (A49), and (A50) we can write the decohering
flux in a manifestly gauge-invariant manner as

C∞¼ 1

4π2

Z
½ð∇AD−2dΔErÞ2þð∇AD−2dΔBrÞ2�dS; ðA57Þ

where a total derivative cross-term vanishes, analogously to
the horizon calculation discussed in the last paragraph of
Sec. VI B. Eq. (A57) is precisely analogous to the for-
mula (4) for horizon decoherence presented in the intro-
duction. Notice that the charge e has canceled out of the
final expression, since cΔEr has no net charge.

APPENDIX B: MAXWELL’S EQUATIONS
ON A KILLING HORIZON

InCMaxwell’s equations on a bifurcate Killing horizon
and show that the horizon component becomes a total
derivative, Eq. (B33).

1. Killing horizon

Following [10], we assume there exists a one-parameter
isometry whose fixed points form an orientable, spacelike,
co-dimension 2 (hence 2-dimensional) surface B. Let lμ

and nμ be two (continuously chosen, future directed) null

normals B satisfying l · n ¼ −1. (For brevity we denote
inner products by vμwμ ¼ v · w.) We extend nμ off of B via
the affinely parametrized null geodesic equation,

nμ∇μnν ¼ 0: ðB1Þ

The null surface generated by nμ is called the past horizon
H−. The portion of H− in the causal past of B is the
“exterior” past horizon H−

E, while the part in the future is
the “interior” H−

I . An analogous construction can be made
for the future horizon Hþ, but we will not use it in this
appendix. In what follows, all equations are understood to
be evaluated on H−

E.
Let ξμ denote the generator (Killing field) of the

isometry. As explained in Sec. II in Ref. [10], ξμ is tangent
to H�. On H−

E it is related by a positive function f,

nμ ¼ fξμ: ðB2Þ

We introduce time coordinates u and U on H−
E by

nμ∇μU ¼ 1 “affine time” ðB3Þ

ξμ∇μu ¼ 1 “Killing time”: ðB4Þ

We choose U such that the bifurcation surface B is at
U ¼ 0, while U ¼ −1 coincides with u ¼ 0. It is shown in
Sec. II in Ref. [10] that

U ¼ − expð−κuÞ; ðB5Þ

where κ is the “surface gravity.” The constancy of κ on
horizon can be seen using the same proof in Sec. 12.5 of
Ref. [34]. It follows immediately that

f ¼ 1

κjUj ¼
1

κ
expð−κuÞ: ðB6Þ

The null geodesic congruence nμ is also normal to the
horizon. It follows that the geodesic congruence is expan-
sionless, shear free, and twist-less, i.e.,

vμ1v
ν
2∇μnν ¼ 0 ðB7Þ

for all vμ1; v
μ
2 tangent to the horizon H−

E. This result again
can be directly seen from an analogous argument leading to
Eq. (12.5.20) in Ref. [34].
If xA is a coordinate system on the bifurcation surface B,

we obtain a coordinate system fU; xAg (hence fu; xAg) on
H−

E by letting xA be constant on the null geodesic gen-
erators. If we adjoin a fourth coordinate r that is constant on
H−

E, then on H−
E we have

nμ ¼
�

∂

∂U

�
μ

; ξμ ¼
�
∂

∂u

�
μ

: ðB8Þ
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Since ξμ is a Killing field, we have ∂ugAB ¼ 0 and hence

∂UgAB ¼ 0: ðB9Þ

2. Null tetrad on H−
E

Wemay obtain a null tetrad onB by selecting a normalized
complex-null vectorm (m ·m ¼ m̄ · m̄ ¼ 0; m · m̄ ¼ 1) that
is orthogonal to l and n. We extend mμ to all of H−

E by Lie
transport along the null generators,

Lnmμ ¼ ½n;m�μ ¼ 0: ðB10Þ

This is equivalent to the statement that in the preferred
coordinates ðU; r; xAÞ, the components mμ are constant on
horizon generators,

∂

∂U
mμ ¼ 0: ðB11Þ

In particular, m is tangent to horizon cross sections; its only
nonzero components are mA.
The inner products m · n, m ·m and m · m̄ are preserved

by the Lie transport. For example,

LnðmμnνgμνÞ ¼ mμnνLngμν

¼ mμnν
�∇μf

f
nν þ

∇νf
f

nμ

�
¼ 0: ðB12Þ

The second equality follows from Killing’s equations
∇μξν þ∇νξμ ¼ 0 together with Eq. (B2).15 The third equal-
ity holds because mμnμ ¼ 0 and mμmμ ¼ 0 on H−

E.
Thus the conditionsm · n ¼ 1, m̄ · m̄ ¼ 0, andm · m̄ ¼ 1

hold everywhere onH−
E. To form a complete tetrad basis on

the horizon, we choose lμ to be the future-directed null
vector that is uniquely specified by l · n ¼ −1 and
m · l ¼ 0. This defines a complex null tetrad on the
entire H−

E.
For future use we list the standard relations obeyed by a

null tetrad. As shown above, the vectors are orthonormal,

l · n ¼ −1 m · m̄ ¼ 1 ðB13Þ

l · l ¼ 0 n · n ¼ 0 ðB14Þ

l ·m ¼ 0 n ·m ¼ 0 m ·m ¼ 0: ðB15Þ

Since the dot products of tetrad members are constant, for
any two tetrad members X; Y ∈ fl; n; m; m̄g, we have

Xμ∇νYμ ¼ −Yμ∇νXμ: ðB16Þ

This is equivalent to the anti-symmetry of the Ricci rotation
coefficients. In particular, Xμ∇νXμ ¼ 0. The metric is
given by

gμν ¼ −lμnν − lνnμ þmμm̄ν þmνm̄μ: ðB17Þ

The volume elements for the 4-space ϵ and the cross section
ϵð2Þ are given by

ϵμνρσ ¼ 24il½μnνmρm̄σ� ðB18Þ

ϵð2Þμν ¼ 2im½μm̄ν�: ðB19Þ

We label the tetrad components of tensors with a lowered
index; for example, lμnνTμ

ν ¼ Tln. All tetrad components
are seen as lower indices; no raising and lowering of tetrad
indices appears in this work. Derivatives are written
similarly; for example, ∇l ¼ lμ∇μ. When a derivative
acts on a tensor with tetrad indices, the tetrad contraction is
taken first. For example, for a tensor Tμ1μ2

ν1ν2, we might
write

∇mTμ1μ2
ln ¼ mλ∇λðTμ1μ2

ν1ν2l
ν1nν2Þ: ðB20Þ

3. Cross sections C

The spatial two-surfaces obtained by Lie transport of the
bifurcation surface will be called cross sections C. The
induced metric on a cross section may be written

qμν ¼ mμm̄ν þ m̄μmν ðB21Þ

and satisfies

qμλqλν ¼ qμν: ðB22Þ

Since qAB ¼ gAB, by (B9) the components are constant on
horizon generators,

∂

∂U
qAB ¼ 0: ðB23Þ

It follows from orthonormality of m that qAB ¼ mAm̄B þ
m̄AmB is equal to the matrix inverse of qAB. The derivative

compatible with qAB is denoted ∇ð2Þ
A . For any one-form vμ,

the components vA satisfy

∇ð2Þ
A vB ¼ qAμqBν∇μvν: ðB24Þ

15Equation (B2) holds only on the horizon, but in Eq. (B12) the
indices are contracted with vectors m and n which are tangent to
the horizon.
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4. Maxwell’s equation on H−
E

We now consider the component of Maxwell’s equations
tangent to the horizon generators,

nν∇μFμν ¼ 0: ðB25Þ

Using the Leibniz rule we have

∇μFμ
n − Fμν∇μnν ¼ 0 ðB26Þ

in the notation of (B20). The two terms in Eq. (B26) can be
simplified as follows:

∇μFμ
n ¼ Fmn∇μm̄μ þ∇m̄Fmn þ c:c: −∇nFln ðB27Þ

Fμν∇μnν ¼ Fmnðnμ∇m̄lμ þ m̄μ∇lnμÞ þ c:c:; ðB28Þ

where c.c. denotes the complex conjugate of the preceding
terms on that line.We have used the antisymmetry ofFμν, the
vanishing of the projection of ∇μnν onto the cross section C
[Eq. (B7)] (in particular, mμmν∇μnν ¼ mμm̄ν∇μnν ¼ 0),
antisymmetry of the Ricci rotation coefficients
[Eq. (B16)], and the geodesic equation [Eq. (B1)].
We will use two identities. The first identity reads

∇μm̄μ − ðnμ∇m̄lμ þ m̄μ∇lnμÞ ¼ mμ∇m̄mμ; ðB29Þ

where we have used Eq. (B10), Eq. (B16), and Eq. (B17).
The second identity is

∇ð2ÞAFnA ¼ qμν∇μFnν

¼ ∇m̄Fnm þ Fnmmμ∇m̄m̄μ þ c:c:; ðB30Þ

where we used Eqs. (B10), (B16), (B21), and Eq. (B24).
Substituting Eqs. (B27) and (B28) into (B26), using

(B29) and (B30) we find

−∇nFln þ∇ð2ÞAFnA ¼ 0: ðB31Þ

We now work in coordinates ðU; r; xAÞ using the
horizon-adapted gauge AU ¼ 0. Noting n ¼ ∂U (B8), we
have

FnA ¼ ∂UAA: ðB32Þ

Since the spatial metric qAB is independent of U (B23), the
partial derivative ∂U commutes with the spatial covariant
derivative ∇ð2Þ in (B31). We therefore find

∂

∂U
ðFln −∇ð2ÞAAAÞ ¼ 0: ðB33Þ

Using Eqs. (B18) and (B19), it is easy to check that the
tetrad component Fln can be expressed as

Fln ¼
1

2
ϵð2Þμν�Fμν ¼

1

2
ϵð2ÞAB�FAB; ðB34Þ

using �Fμν ¼ 1
2
ϵμνρσFρσ. Integrating Eq. (B33) and using

(B34) gives us (119) in the main body.
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