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Asymptotic safety in the Litim-Sannino model at four loops
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We consider a four-dimensional SU(N,.) gauge theory coupled to N, species of color fermions and N%
colorless scalars. The quantum field theory possesses a weakly interacting ultraviolet fixed point that we
determine from beta functions computed up to four-loop order in the gauge coupling, and up to three-loop
order in the Yukawa and quartic scalar couplings. The fixed point has one relevant direction giving rise to
asymptotic safety. We compute fixed-point values of dimensionless couplings together with the
corresponding scaling exponents up to the first three nontrivial orders in Veneziano parameter €, both
for infinite and finite number of colors N .. We also consider anomalous dimensions for fields, scalar mass
squared, and a class of dimension-three operators. Contrary to previous studies, we take into account
possible mixing of the latter and compute eigenvalues of the corresponding matrix. Further, we investigate
the size of the conformal window in the Veneziano limit and its dependence on N..
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I. INTRODUCTION

The study of asymptotic behavior of the dimensionless
couplings in quantum field theory (QFT) provides impor-
tant information both for the Standard Model (SM) and
beyond the Standard Model (BSM) scenarios. One of these
behaviors is known as asymptotic freedom [1,2], which is a
defining feature of quantum chromodynamics. This behav-
ior entails a decrease in the value of a coupling with the
energy scale. Thus, in the deep ultraviolet (UV), this
coupling tends to approach the Gaussian noninteractive
fixed point (FP).

Asymptotic safety (AS) is an extension of the concept of
asymptotic freedom, as outlined in the work of Weinberg
[3]. In AS, the coupling in the deep UV also reaches a fixed
point, but unlike in asymptotic freedom, the fixed-point
value is not zero, which means that the theory remains
interactive. Such theories are referred to as asymptoti-
cally safe.

The concept of asymptotic safety was initially intro-
duced by S. Weinberg in the late 1970s as a means of
achieving nonperturbative renormalizability for the four-
dimensional theory of gravity [3]. However, in recent years,
AS has been widely applied in the context of gauge theories
to address issues with U(1) gauge couplings (Landau pole)
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by stabilizing them at an interactive fixed point at a certain
scale. Indications of AS has been found in simple [4,5],
semisimple [6], and supersymmetric gauge theories
coupled to matter [7-9]. From the phenomenological point
of view, properties of such UV interactive fixed points for
matter fields can be transmitted down to the low-energy
regime and lead us to some phenomenological predictions;
see, e.g., recent reviews [10,11].

An example of a UV-complete particle theory with a
weakly interacting fixed point is a model of N, fermions
coupled to SU(N,) gauge fields and elementary scalars
through gauge and Yukawa interactions [5,12]. In the large-
N Veneziano limit, the fixed point can be systematically
studied in perturbation theory using a small control
parameter ¢, allowing for the extraction of specific details
of theory. Previous studies [5,13—15] have identified critical
couplings and universal exponents up to second order in €,
including finite N corrections. Phenomenological applica-
tions of the model and its extensions can be found in
Refs. [15-33]. It is also worth mentioning that the model
was the first nonsupersymmetric theory investigated in the
large global charge limit [34,35]. The holographic descrip-
tion of the model was considered in Ref. [36].

In this paper, we confirm the study [37] of the UV critical
theory and provide the fixed-point couplings and conformal
data up to third order in € (both for infinite and finite-N,.
scenarios) by considering four-loop gauge, three-loop
Yukawa, and quartic f functions. We also determine
three-loop anomalous dimensions for dimension-three oper-
ators and discuss peculiarities in their computations as
compared to Ref. [37].

The paper is organized as follows. Section II provides the
main information about the considered model and operators.

Published by the American Physical Society
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In Sec. III we give the details of computation of the
renormalization-group (RG) functions. In Sec. IV we dem-
onstrate our results for fixed points, anomalous dimensions,
and scaling exponents for finite N.. The bounds on the
conformal window are given in Sec. V. We conclude in
Sec. VI. The full expressions for beta functions and various
anomalous dimensions can be found in Appendixes A 1-A 3.
Appendix B contains additional information related to finite-
N, results.

II. MODEL DESCRIPTION

We consider four-dimensional theory with SU(N.)
gauge fields coupled to Ny massless Dirac fermions and
a scalar singlet field H. The last is uncharged under the
gauge group and carries two flavor indices, such that it can
be written as a Ny X N complex matrix. The correspond-
ing Lagrangian is

1
L= P¥Fiu Ly + Ly

+Tr(piDy) +Tr(*H'0,H) — yTr[p(HPr + H' Pp )y]
—m?Tr(H'H) —uTr((H H)?) - o(Tr(HTH))2, (1)

where Fy, is the field strength of the gauge bosons G;; with
a=1,..., N% — 1. The trace in Eq. (1) runs over both color
and flavor indices and w = y; + wy are fermions with
Prg =5(1£7s). In what follows, we use a linear R;
gauge with L, = — 2%: (0,G%)* together with the corre-
sponding ghost Lagrangian L ,.

The theory (1) is invariant under global G = U (N) x
Ug(Ny) “flavor” symmetry corresponding to independent
unitary rotations of left- and right-handed chiral fermions.
The matrix scalar field H is colorless but transform under G
(see Table I). In this paper we also consider a class of
operators that breaks the flavor symmetry down to diagonal
U(Ny). One can introduce independent couplings for these
operators resulting in the following additional contribution
to the Lagrangian (1):

8L = —m, Tr(py) — % [Tr(HH'H) + H.c.]

- % [Tr(HH")Tr(H) + H.c.]

-

E—mv/Ol —/’l202—/’l303 :—7_50 (2)

TABLE 1. Representations of matter fields under gauge
SU(N.) and flavor U, (N;) and Ug(N;) groups.

"853 NC Nj 1

VR N, 1 Ny

H 1 Ny Ny

The choice of the G-breaking terms is dictated by the fact
that the operator O, = yy, also considered in Ref. [37],
mixes under renormalization with the two operators
coupled to A, 3.

The model has four dimensionless couplings: gauge
coupling g, the Yukawa y, and two quartic scalar couplings
u and v». One usually introduces a set of rescaled
couplings [38]

g°N. y*N,
a, = 5 a, = bl
7 (42) Y (4a)
uN,; UN}%
= - R v = —_— 3
W)y YT ) G)

The latter has been done since we consider the Veneziano
limit [39] with Ny, N, — co. One also introduces a
parameter

-3 @

TN, T2

that becomes continuous and may take any value between
(=4, o0). The benefit of the Veneziano limit is that it
allows systematic expansions in a small parameter. In our
work we suppose that

0<e<l, (5)

and treat it as a small control parameter for perturbativity.

In order to study dimension-three operators in the
Veneziano limit, we rescale the corresponding couplings
and the operators as

m,//, = mw NC’ hlz = hZNfﬂ I’lg = h3N‘}2(, (6)
01=0,/y/N., 05=0,/Ny, Og=03/N]2c. (7)

This allows one to absorb all corrections with positive
powers of N, and N appearing in the beta functions for ¥
into the rescaled couplings given in Eqs. (3) and (6). It is
worth noticing that the parameters my, h;, and h, are
rescaled in the same way as the dimensionless couplings y,
u, and v, respectively.

III. CALCULATION METHODS

The beta functions and anomalous dimensions in the MS
scheme can be computed by standard methods, so we omit
full description of the techniques refereeing to appropriate
literature. In this section, we only discuss peculiarities of
the current calculation. Let us mention here that we do not
rescale the couplings and operators according to Eqs. (3)
and (6) in our explicit computation. The transition to the
Veneziano-limit normalization is carried out at the final
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FIG. 1.

Feynman rules for Yukawa and quartic vertices. The indices i, j =1, ..., Ny count fermion generations (flavor), while

a,fp=1,...,N, correspond to the SU(N,) gauge group. Flavor flows for left- and right-handed fermions are indicated.

stage. Nevertheless, we present all our results in terms of
a4y, and for the rescaled operators (7).

In order to compute the required RG functions, we
rewrite the Lagrangian (1) in terms of real scalars ¢¢
utilizing a decomposition (a = 1, ..., 2NJ2¢) [40]

H — ¢aTa7

HY = ¢eTa,  Fe=Te (8)

with 7 being complex N X N matrices' normalized as
Tr(T9T?) + Tr(T°T) = 5 9)
and satisfying the following identities:

TiT =TTy =0, T4TY = 0ydp. (10
Such a decomposition gives rise to the Feynman rules (see
Fig. 1) for the vertices involving ¢“. In Fig. 1 we also
indicate the flavor “flow” for the double-trace and single-
trace scalar couplings that can be associated with the left (L)
and right (R) chiral fermions. In the absence of U (N ) x
Ug(Ny) breaking, the “left-" and “right-handed” flows are
“conserved” separately.

We implemented the rules in the DIANA [41] package
based on QGRAF [42] and utilize FORM [43] to deal with
index contractions and to compute Feynman integrals via
the MATAD [44] code. In order to derive RG equations for u,
v, and y, we generate Green’s functions corresponding to
radiative corrections for the tree-level Yukawa and quartic
vertices up to three loops and extract local divergent terms
by applying suitable projectors. Our explicit calculations
heavily rely on well-known infrared rearrangement (IRR)
trick [45,46], which allows one to deal only with fully

'One can also use a decomposition in terms of the identity
matrix and SU(N) generators as, e.g., in Refs. [34,35].

massive vacuum integrals. The fermion-fermion-scalar
interaction involves the ys matrix, which requires special
treatment in dimensional regularization (see, e.g.,
Ref. [47]). In this paper, we restrict ourselves to the
seminaive approach [48,49] and by explicit computation
we prove that potential ambiguities do not appear in the
final result for the RG functions, thus, providing an
independent cross-check of the results obtained in
Ref. [37]. As for the four-loop gauge-coupling beta
function the ys; ambiguity can be fixed by means of
Weyl consistency conditions [S0-53]. Moreover, we do
not carry out explicit computations here, but use the RGBeta
code [54] extended to 432 order in Refs. [55,56].

Let us now switch to the discussion of a family of
dimension-three operators that includes O; = yy. In
dimensionally regularized theory2 (d =4 —2¢) within
the MS scheme, we have a relation between bare and
renormalized quantities

=u* - (R)g- 20250 [0l (11)

where all couplings in Kg, and all operators in 9] r have in
our case the mass dimension one and three, respectively.
The corresponding renormalization matrices Z, and Z, are
defined as

Ko = Z(u.a(u). €) - Kg.

Ze(u.a(p).e) = IS Z(a(u), ), (12)
Iue

*Note the difference between the Veneziano parameter ¢ and
that of dimensional regularization &.
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[Olx = Zo(u.alu). ) - (0),,
2/

Zo(u,alu),€) = Zo(a(p), ) - w* . (13)
3e

The renormalization matrices involve poles in € and depend
on the renormalization scale y together with the running
dimensionless couplings from (1) denoted collectively by
a(u). They satisfy

/4282,{ = ZO = Zl{ = Zo. (14)

In what follows, we will routinely use Z and Z to denote
renormalization constants with and without explicit
dependence on the renormalization scale x. The diagonal
matrices involving powers of x° account for mass dimen-
sions of bare couplings and operators. We include them in
the definition of Zs for convenience, since we can write the
beta functions of kK in a compact form

d . . .
d]l’l/AK=K_ﬁK _YK(a) S
yk<a) = Z;I 'ZK = _2;1 'Zw (15)

and relate the matrix anomalous dimension y, to the
anomalous dimensions of the dimension-three operators

vola)=—-Zo- Z5' = —2e - Z{ - (Z7);!
= 2e+7i(a). (16)

Both yo(a) and y,(a) should be finite in the limit ¢ — 0,
which serves as a welcome check of the computation. As a
consequence, in d = 4 we have

Yo =7r. (17)

This relation can be used in two ways. Given the beta
functions of (a closed set of) the dimension-one couplings,
one can extract the matrix anomalous dimension for the
corresponding operators. In case we know y, it is possible
to reconstruct the MS beta functions for the operator
couplings, e.g., via

B, =my(ro)ii +ha(ro)a + hs(ro)s.  (18)
B, = my(ro)ia + ha(ro)m + h3(ro)sn,  (19)

Py =my(ro)i3 + ha(ro)as + h3(ro)ss-  (20)

In this paper we explicitly carry out the renormalization
of dimension-three operators and compute y, up to three
loops. In addition, we also cross-check our results at lower
loops by adding (2) to the Litim-Sannino model (1)

implemented in public computer codes ARGES [57] and

RGBeta® [54] and computing f,.

To find three-loop corrections to Z,, we consider
insertions of the operators O;_; into one-particle irreduc-
ible (1PI) Green’s functions. The corresponding Feynman
rules are given in Fig. 2. The renormalized 1PI Green’s
functions are finite and are related to the bare ones via

<[Oi]R ’ Oj>1PI = (ZO)ik ’ <0§ ’ 6{)>IPI : Zj,ext- (21)

Here O ; is a product of external fields at different space-time
points (either bare or renormalized) corresponding to the
local operator O ; with a property that (O - 07) ;. « 8". The
factors Z; ., account for the external fields renormalization

entering 0]-, €8s Ziext = Zy» Zoext = L3 ext = Zi{z for

wo=+/Z,w, and Hy=+/Zy-H. We determine the
matrix elements of (Z);; in the MS scheme order-by-order
from the requirement that there are no ¢ poles in the rhs (21).

It is important to stress that if we ignore O, ; [or the £, ;
couplings in the Lagrangian (2)], we can compute (Zy);,
and (yo);, (the latter is denoted by y,, in Ref. [37]) by

considering (O (x)y(y)w(z))p up to the two-loop order
without hitting any difficulties. At three loops there are
diagrams [see, e.g., Fig. 3(a)], which require an insertion of
the O, operator as a counterterm [Fig. 3(b)]. Because of
this, we are forced to include O, in the game. The latter
mixes with O, already at the one-loop order.* Moreover,
starting from one loop, the O5 operator is needed to account
for all the divergences appearing in four-point functions
(020" D" 4°) 11

We also compute the divergences of the two-point
functions (O;(x)¢?(y)),p; for i =1, 2, 3 and extract the
mixing of O; with O4 = 1/2(0*Tr(H) + H.c.), thus, modi-
fying (13) as

[0k = 20 (0)o + Z(04)y, (22)

-1/2
[04lr = 2;"*(04)o (23)
This gives rise to a 4 x 4 mixing renormalization matrix Z
entering

Yo=-Z2o-Zy (24)

3Correct treatment of dimension-one couplings is implemented
in RGBeta since version 1.1.5.

Speaking in other terms, the sole introduction of m, in (2)
will radiatively generate a h, coupling at one-loop level [corre-
sponding to a grey blob in Fig. 3(a)].
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e S

FIG. 2. Feynman rules for dimension-three operators. All the operators break the flavor symmetry G by “flipping” the “chirality”” of
the flavor flow, which in the case of scalar operators we indicate by a box with a cross inside.

where i = 1,...,4 and Z, is schematically depicted in
Fig. 4. If we take into account the equations of motion
(EOM) for the bare operators

-

(O4)o + Mo - (0)g =0,
Ao = {¥0/2,2uy, 2v,}
={WZ,(v/2).w*Z,(2u), u*Z,(20)} (25)
where Z, , , are renormalization constants for the corre-

sponding couplings, and express O, as a linear combina-
tion of O, we obtain another 3 x 3 matrix

schematically presented in Fig. 5. The corresponding
anomalous dimension is given by

FIG. 3. A three-loop diagram (a) with a O = y insertion that
requires a two-loop counterterm due to O, (b). The grey blob
gives rise to a one-loop contribution to (Z),;.

fo=—Z20- 2y (27)

and is different from y, (16). At a fixed point, 7, (y;,) has a
eigenvalue yj; (—yy). The other two eigenvalues of y,
coincide with those of 7,. This can be interpreted as the fact
that only two of the considered dimension-three eigenop-
erators are independent, while the remaining one is a
descendent of Tr(H) + H.c.

Before discussing results, let us note how our approach
differs from that of Ref. [37]. The authors of Ref. [37]
utilized the same IRR technique and the seminaive
treatment of ys in their three-loop calculations.
However, instead of DIANA and MATAD, they used a
private framework to deal with Feynman diagrams gen-
erated by QGRAF. In our study we do not rely on the
dummy-field method (see, e.g., Ref. [58] and references
therein) to derive the beta functions of dimensional
couplings, but extract them from Green’s functions with
insertions of the corresponding operators. Moreover, the
authors of Ref. [37] considered only the O; =yyw
operator and did not account for possible mixing with
0, 3. Because of this, the anomalous dimension’ denoted
by 7, 1 not an eigenvalue of the corresponding matrix
and, if computed at a fixed point, does not represent a
correction to canonical scaling.

In what follows, we present all our results in terms of
rescaled couplings and for the rescaled operators O’ (7). All
expressions are available in computer-readable form as
Supplemental Material [59].

>Corresponding to (y0);; = (7¢);; in our notation.
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O1

.

FIG. 4. One-particle-irreducible Green’s functions used to extract matrix elements of Z,. The factor Z;,l /2 enters the matrix Z, o due to

[04]r = Z5*(04),-

%/*./ + 01®/~.y/ e I

FIG. 5.
motion, expressing O, as a linear combination of O;_5.

IV. RESULTS

In this section, we summarize our results for f functions
for (in)finite N, and anomalous dimensions. Moreover, we
determine fixed points and universal scaling dimensions up
to the third nontrivial order in the Veneziano parameter also
for both cases.

A. Fixed points

As it is well known in perturbation theory the f functions
can be given as

da,

_ g )
=g =P BB

Px

(28)

where ﬂ)(f’) denotes the nth loop contribution, and
x=1{g,y,u,v}. In Ref. [37] they were found for the first

K 5 // 5 K
’L)/ 1 / 1 u/
- - ®/’\.7+ - -
\ \ \
\ \ \
1L N -
. - ) -
/ O 7/ O u//
v 7 /
2 - 2 - 2
®- - -« - ®- - -+ @;—.— -
A\ - \ A\
\ N\ \
- L N -
’ 7] i / ’ ]
0 ' o) e u
’l}/
3_ - 3 - 3 -
®- - -« - @;—‘—-i- ® - - -« -
- \ - \ - \
\ N\ \
- L N -

Green’s functions used to extract anomalous dimensions 7, of the dimensions-three operators with the account of equations of

time and provided both in the Veneziano limit and with
finite-N . corrections. We recomputed them independently
and provide the lengthy expressions in Appendix A 1 and
as Supplemental Material [59].

Using the 433-order f3 functions and solving f;(a;) = 0
systematically, we determine interacting fixed points up to
complete third order in the small parameter . We expressed
fixed points as a series expansion

@ = A NDe+ PV FD (N + e D (N el

+ 0(e*), (29)
where x = {g, y, u, v}. We have six possible solutions with
fixed points; however, following Refs. [5,6,14], we choose
a fully interacting UV fixed point (aj , , # 0) that exhibits
asymptotically safe behavior.

065030-6
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The coefficients c)(ci)

stationary point. We recomputed the exact expressions for cff

of series expansion can be found by solving the beta functions in this limit order by order for the

)

and found agreement with Ref. [37]

26 23(13068+/23 — 75245
c(gl) =—, cgz) =— ( V23 ) , (30)
57 370386
() _ (5025189312, + 353747709269 — 717036574321/23) (31)
7 2406768228 ’
4 43549 — 6900+/23
c;l) =—, C§-2) = ( \/_), (32)
19 20577
(3 (29734848¢; + 2893213181 — 580847448+/23) (33)
9= 44569782 ’
1 V23-1 (2) _ 365825./23 — 1476577
Cy = s Cy = s (34)
19 631028
3) _ (5173524931447+/23 — 24197965967251  416(V/23 — 12)¢3 (33)
Cu - - ’
282928976136 6859
0 2(10 + 3v/23) — 223
Cy = s (36)
19
o) 208229312 - 688363101/23 + 466520271/2(10 + 31/23) — 91531844/46(10 + 3+/23) ;
o= 67519996 ’ (37)
(3) 1
o= 4987100252 -1 104v/2
¢ + 353975384773 106 ; [498710025259776(; — 1057869750510 V2345
+67421188801474561/2(10 + 3v/23)¢5 — 13743126312065281/46(10 + 3v/23)¢5
+479791813615522776 — 103064713697904086V/23 + 746411381950388411/2(10 + 31/23)
—155858703765203341/46(10 + 3v/23)]. (38)

For convenience, we provide the numerical results in the
Veneziano limit [37]

a = 0.456¢ + 0.781¢> + 6.6106> + 24.137¢*,  (39)
a; = 0.211€ + 0.508¢% 4 3.322¢* +15.212¢*,  (40)
ai, = 0.200€ + 0.440€2 + 2.693¢> + 12.119¢*,  (41)
—ai = 0.137¢ 4 0.632¢> + 4.313€3 + 24.147¢*,  (42)

where we also include subleading terms O(e*) terms that
will be modified when the 544-result will be available [37].

In addition, Table II shows various ﬂy) evaluated at the
fixed point (a,a;,a;,a;) given above. One sees the
typical size of the coefficients that cancel at each order
of € expansion up to O(¢’) in f,, and up to O(e*) in
other beta functions. Subleading terms that do not add
up to zero due to missing high-order corrections are also
indicated. '

The functions fi’) first introduced in Ref. [14] capture
the dependence on N, and can be computed in the same

065030-7
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TABLE II. The model beta functions at the fixed point as series
in e. Cancellations between contributions from different loop
orders are presented up to O(e’) for 8, and up to O(e*) for .
Higher-order terms marked by boldface are not reliably calcu-
lated and are not summed up to zero, but (the sum) can be used to
estimate the size of typical high-order contribution.

6‘3 €4 €5 €6
() 0277419 0.94969 8.85345 13.7629
0 -0277419  -342714  -24.4312 ~120.131
2 0 247745 197319 209.597
@ 0 0 —4.15417 -37.2974
B, 0 0 0 65.9311
63 64 65
(0 0.49336 1.8551 10.4922
pe ~0.49336 ~3.11773 —28.4972
o) 0 1.26263 6.86205
“ 0 0
By 0 0 ~11.143
e et e
(1) —0.258097 ~2.26905 —9.06296
@) 0.258097 252154 22.1462
0) 0 ~0.252485 ~3.72929
,(44) 0 0 .
B 0 0 9.3539
63 64 6'5
0 ~0.992548 -9.26177 —24.2444
@) 0.992548 9.04913 82.5704
s 0 0.212636 ~10.4633
pY 0 0 -
B, 0 0 47.8627

manner as the cy). It should be noted that lim,\,c_,oo f,@ =1,
which means that the FPs found for in(finite) cases are
connected continuously. Therefore, for the infinite-N,. case

we have only c,(f), which are exact numbers. However, the

full form of f)(f) is complicated.6 Because of this, following
the ideas of [57], we fitted all the finite-N_. corrections in
the range N.€[3,100] as ratios of two second-order
polynomials up to €. The results can be found in
Appendix B. Then, we carried out another fit when ratios
of two fourth-order polynomials were considered and

obtained the following expressions:

®Available by demand from the authors.

£ N? £ _ N* — 0.534N2 + 2.485
fooN - 9 T NT_13.106N2 + 43.594°

3)  N&+8.103N2 +40.270

- , 43
Js N* —15.278N? + 59.731 (43)
AV = Ne-1 . Nt —0.976N2 + 1.185
} ¢l b NP-12.691N? 4 40.681°
£ _ N* + 6.520N2 + 32.220 "
YT NE - 15226N% 59311
£ = N* — 1.047N2 + 0.047
" T NI-5863N7 + 0428
£ N4 — 1.049N2 + 1.545
YT N Y 12.779N2 + 41.292°
o _ N+ 7.239N2 + 35870 us)
‘T N*—15.284N2 +59.770°
£ N* — 1.029N2 + 0.029
" N!-5878N2+0511°
7O N = 1.718N2 + 1.0112
" T NI 12330N7 + 38.240°
£ N* +4.258N2 4 19.300 )

© N*—14.946N2 + 56.311°

which turn out to be more accurate. The maximal value of

the mean squared error (MSE) for the f)(f) with our fourth
(second) order polynomial fits in each order of ¢ is as
follows: 10712 (4 x 10711, 10™ (8 x 1073), 8 x 107>
(4 x 107%). While the fit with the second-order polynomials
seems to provide good approximation, we restrict ourselves
to a more precise fourth-order result.

At the end, we carry our numerical comparison of the two
types of fits and exact results. The green dashed line in Fig. 6
corresponds to the second-order fit (see Appendix B), and
purple solid line is our fourth-order fit (43)—(46). One can
see that the green dashed line “misses” exact points in Fig. 6
in the presented range of N_., while the purple line goes
through the dots.

B. Critical exponents

Let us study the universal critical exponents. The
latter can be obtained as the eigenvalues of the stability
matrix

A (47)

o3I

i

which again we expand as a power series
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0.11f 0.050f
0.10¢ 0.045}
e _ 0.040}

< 0.08f "5
5 0.035}

0.07;
0.05} 0.025F
0.050f E
~0.020¢
0.045 E
~0.025}
0.040f ] :
. - —0.030}
> 0.035 14 :
0.030f —0.035¢
0.025 —0.040%
0.020f | ‘ ‘ ‘ 1 —0.045}
4 6 8 10 12
N,

FIG. 6. The dependence of couplings from the number of colors N, for fixed ¢ = 0.09. Here the purple line is our fourth-order
polynomial fit (43)—(46), the green dashed line is second-order fit (B1). The black dots correspond to exact values. It should be noted
that we omit the point N, = 3, since it lies higher in the FP’s scale, therefore the difference between the fits is not clearly visible.

0; = céi_)féi_)e + cé?fé?ez + cé?)fﬁ)?é + - (48)
and find perfect agreement with [37] (note that for 6, expansion starts at > so céll) =0):

o 104 Gy 2296 (1) (43551640704¢; + 1405590649319 — 281341851912+/23)

— PP — AAAN - s 49
€o, 171 0, = 3249 o, 15643993482 (49)
1 52 o (136601719—227833081/23) (3) 5(547695099865475491 — 111718308712462080+/23) (50)
C =, C = s C = N
% 719 02 4094823 02 2692813775855538
1y 8 20+ 633 () 2(45155739 — 91531841/23)1/20 + 61/23 (51)
Cp. =74 , Cy. = )
% 19 03 16879999
3) V20 +61/23(—918044509824(1497+/23 — 7558)¢5 + 73205713038142585 — 15289473238519518+/23) (52)
C = .
03 404906730972633
1) 16v23 (2) _ 4(68248487,/23 — 255832864) (53)
‘. =19 > ‘0T 31393643 ’
(3 2(374185327926083005811/23 — 174067504271892880236) (54)
C = .
O 278706225801048183
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Numerical evaluation of these coefficients gives in the
Veneziano limit [37]

-0, = 0.608¢* — 0.707¢* — 6.947¢* — 4.825¢%,  (55)

0, = 2.737¢ + 6.676€> + 22.1206> + 102.55¢%,  (56)

03 = 2.941¢ + 1.041¢* + 5.137¢* — 62.340¢*,  (57)

0, = 4.039¢ + 9.107¢? + 38.646¢> + 87.016¢*  (58)

and for not too large € (see below) there is only one relevant
direction corresponding to #; < 0 giving rise to an asymp-
totically safe scenario. In Eq. (58) we again highlight terms
that are not determined precisely in the 433 approximation
and will be modified by high-order terms.

Finite-N, corrections are incorporated in the factors,
which we approximate as’:

2 2 _ 326
o _ N <3)_N°‘(N“ 287)
fo, = NZ 10 fo, = (NZ‘—MY ’

19 19
N* 4+ 10.21N? +49.2

0 — 59
To N* —15.23N2 4 59.44° (59)
£ _ N2 1 £ _ N%—0.8198N2 +0.33

6 — NZ_1I0 % 7 NY—12.667N? +40.51°

N*+ 8.568N3 +44.8
fo = (60)

N% —15.770N? + 63.07°
|

£ _ N* —0.3883N2 — 0.6036
% N*—5265N2-3.04 °
£ _ N* —1.580N2 + 3.753
% N*—12.76TN? +41.189°
£ _ N* 4+ 11.09N2 + 48.6 (61)
% " N%—15.42N2 +60.86
£ _ N* —0.7726N? — 0.2459
00— N*—-5392N2-230 °
£ _ N% 4+ 16.58N2 - 11
% N*—13.33N2 4+ 45.33°
N* +61.95N2 + 357
R (62)

N%—15.64N2 + 62.73"

The maximal value of MSE for the given (second-order
result from the Appendix B) approximations are 10~'°
(10719), 1071° (1073), and 1077 (0.15) for first, second, and
third nontrivial orders in e.

C. Other anomalous dimensions

In this subsection we provide results for the scalar and
fermion anomalous dimensions. In addition, we consider
the operator Tr(H'H) coupled to m? in (1) together with
the anomalous dimensions corresponding to dimension-
three eigenoperators discussed earlier. The full expressions
for anomalous dimensions beyond the Veneziano limit can
be found in Appendix A 3 and are also available in the
Supplemental Material [59].

At the fixed point the anomalous dimensions are given as
a series expansion in e. In the Veneziano limit we have
gauge-independent coefficients

a4 (2) 14567 23761/23 (3) 8816623159 753675598 (63)
C —_ —, C — - C - - )
719 76859 6859 H 77133709346 2476099+/23
for the scalar fields, and
) 11 (o) 3738501-683100v23 (5 2879380764¢(3)+ 780746553081 — 158608932408+/23
SRS TEE 740772 T (64)

4813536456 '

which is valid in the Landau gauge & = £* = 0 (see also Ref. [37]). The gauge-independent result for m” can be cast into

4
0= 21/2(10+3v23), )=

(45155739 —-9153184+/23)1/20+61/23

T 16879999 ’
3) 20+ 6+/23(=918044509824(1497+/23 —7558)¢(3) +73205713038142585 — 15289473238519518+/23) (65)
C e k]
m? 809813461945266

tis interesting that our fourth-order fit for f gives “exact result,” which we were not able to reproduce analytically. Yet numerical

comparison up to 10000 digits shows no dlfference

065030-10



ASYMPTOTIC SAFETY IN THE LITIM-SANNINO MODEL AT ... PHYS. REV. D 109, 065030 (2024)

while gluon (G) and ghost (¢) field anomalous dimensions in the Landau gauge8 are given as

13 188725 — 333961/23
cg) = —2c<cl) =—, cg) =-2 £2> = ,
19 27436
) _ 9,0 _ 288694588 (3) + 38849548925 — 7884584928+/23 (66)
‘6 =T = 178279128 '
Substituting the coefficients into the power series, we have in the Veneziano limit and (for £ = 0) [37]
yu = 0.2105¢ + 0.4625¢> + 2.4711¢°, (67)
7, = 0.5789% + 0.6243€> + 4.8916¢°, (68)
Yo = 1.4703¢ 4+ 0.5207€> + 2.5684¢, (69)
v = =27, = 0.6842¢ 4 1.0411¢* 4 7.7599¢3. (70)
The factors that account for the finite-N_. corrections are again approximated as
£ NZ-1 FO N{ —0.819N?% 4 1.265 3) _ Nt +8.310N?% + 41.460 (71)
Nz -0 A N% —12.747N% + 41.073° H ™ N* —15.354N2 + 60.340°
P NZ-1 2 N* +0.459N2 + 3.821 (3) _ N¥+10.100N% + 51.904 72)
Yoo N LY YN —13.218N% 4+ 44.414° Y NY - 15.483N2 +61.368°
£ N —2.678N% 4 1.677 ) N&+9.603N%+ 11.895 3)  N&+47.739N2 +253.184 73)
m N4 —7468N2 49.715° m* N4 — 13.542N? + 46.829° m T N% — 15.868N2 + 64.530
(1) N2 2 N*—0.522N2 +3.152 FORs N* 4+ 9.086N2 + 48.136 (74)

fao = N2 - 110 Fowo = N* — 13217N? + 44.395° Gle) — N% — 15.440N2 4 61.028

where the maximal MSE is no worse than 3 x 10~/ in comparison to 10~! for the approximations given in Eq. (B2).
Finally, the eigenvalues for the dimension-three operator 4 x 4 anomalous dimension matrix are given by

1) (1 2) A2 3) (3
yi= Ve 4 (@D 4 DD . (75)
with
1 1 1 2 2 2 3 3 3
=l =l DDl )=l =l 79
ay 4 ) 606162 99745 3) _ 4207372301377 73545557081
= —(1+2v23), = - , = - : 77
s 19( +2v23) 7 685923 6859 " T 1537657479v/23 133709346 )
4
el :19<1+\/20+6\/E>, (78)
o 14567 237623 \/ 2(1475668498887+/23 — 7061359720318) .
= —_ ) 7
76859 6859 6859v/2461 79)
¥The result y; = —27, in the Landau gauge is the consequence of the relation for the renormalization constant for gluon-ghost-ghost

vertex Zge. = Zg - Zgz - Z,. that leads to ygee = (vg + 27¢) —ﬁ,,y/(2ag). Since /},,g(a*) =0 and in the Landau gauge Zg.. = 1, we

have y5.. =0 and y5 + 2y. = 0.
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) 8816623159 753675598 832/2(931899+/23 — 4436554)¢,

B — 80
r 133709346  2476099+/23 6859107 (80)
_ 1/3990932506333661629040635839771+/23 — 19139697164494183329626575881170 (81)

164529350253+/4922

Evaluating the coefficients in the Veneziano limit, we
obtain

Yu=71=-72=0.21053¢40.46247¢* +2.47105¢*,  (82)
y3 = 2.22982¢ + 3.88519¢% 4 20.5012¢%,  (83)

v4 = 1.68082¢ + 0.98321€ + 5.03949¢3.  (84)

One can see that all but y, is positive for € > 0 and does not
pose a problem to unitarity. Moreover, y, = —yy corre-
sponds to the linear combination of operators9 O,_, that
vanish due to the equations of motion, while y; =yy
corresponds to a linear combination of O;_5 that becomes a
descendant of Tr(H) + H.c. when EOMs are imposed.

As for the finite-N_. factors, we provide the following
approximate expressions:

f}('l’)h:f;l)’ fi’l-)h :fl(ﬁl)v fi(’l,)yz :f§1>v (85)
o N* = 0.751N2 - 0.265
7T N —5392N2 —2.300°
£ N? 4+ 5.478N? - 0.150
7 NP 13.400N2 +45.771°
() N+ 27.974N2% 4 149.100
fri = 2 ; (86)
N* —15.762N? + 63.660
£ N4 — 0.397N2 — 0.596
" T N Z5265N2 —3.036°
O N%—0.923N? +3.520
" T NT-12.924N7 142288
N* 4+ 10.300N2 + 50.500

N* — 15.454N? +61.140°

The maximal value of MSE in these fits are 10~°, while the
corresponding value for the ratio of two second-order
polynomials (B4) reaches 4 x 1072,

*This fact can be deduced by considering the renormalization
of local operator [5S/5H|, = 2;1/2 - (68/6H ).

V. CONFORMAL WINDOW

In this section we investigate the size of the UV
conformal window for the asymptotically safe theory with
action equation (1) using perturbation theory.

A. Constraints on the UV conformal window

We can find the UV conformal window directly from the
expressions for fixed points and scaling exponents given in
the previous sections. In the case when we retain only first
three nonvanishing powers of e, we will call the bound
on ¢ strict. The reason for this is that the higher-order
(“subleading”) coefficients in the power expansion (29) and
(48) are not (yet) accurately determined due to the absence
of higher loop terms in f functions. This scheme is dictated
first by the following constraints:
(i) perturbativity for couplings 0 < |a*| < 1 [60];
(i) vacuum stability «a; >0 and o 4+ a; >0 [61];
and

(iii) no fixed-point merger [14] (the collision of the UV
fixed point with an IR fixed point corresponds
to 0 =0).

The second strategy employs the approximation, where
we retain subleading terms in €, so we refer to its bounds as
subleading. There we also take into account all the above
mentioned constraints from couplings, vacuum stability,
and critical exponents.

B. Investigation of the UV conformal window

The UV conformal window can be investigated using the
above mentioned constraints. To do so, we first can equate
the perturbative expressions for FP couplings to unity
(o, + o) and scaling exponents to zero, and choose the
smallest positive solution for €. Second, we can find the
Padé approximants for these constraints and make the same
manipulations. We represent our results as a* = eP;; and
0 = e*P; j» Where P;; are Padé approximants and i + j =
2(3) for the strict (subleading) case. However, we cannot
confidently trust the obtained results, because these approx-
imants contain nonphysical poles. Nevertheless, they give
tighter constraints on the conformal window and we
provide all approximants that can be constructed from
available series together with the corresponding bounds.

(1) From perturbative expansion of couplings (39)—(42),

we note that the tightest bound on e arises from
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the gauge coupling. First, equating the gauge cou-
pling to unity, we can find ey, and gy

Estrict X 0.457, Equbl ~ 0.363. (88)

Second, we can construct the Padé approximants

@, 0.456 —3.081¢
Py =

1 —8.467¢
o 0.456 — 0.328¢
Py = _ _ 5
1-2431e — 10.331¢
ap 0.456 — 0.885¢ + 3.760¢2
P21 = (89)

1 -3.651¢

where the first line corresponds to the strict case, the
second to subleading, and find the bounds

esmcm ~0.1 17, esub1]2 ~ 0203, €sub121 ~0.243.

(90)

(i) In the same manner we can investigate the bounds
arising from the vacuum stability condition [61]:

Estrict ~ 0146, Esubl ~ 0.116. (91)

To provide more stronger constrains for €, we use the
Padé approximants:

piea _ 00625 —0.719
1 T _ <432,
1 —8.438¢
paia; 0.625 — 0.673¢

12 T 1 27.695¢ + 22812
~0.625 — 0.656¢ — 0.194¢>
- 1 —7.425¢

ooy
P21

(92)

The UV conformal window in this case is con-
strained as

Exricr, R0.087,  €quy ~0.09287, €y, ~0.09272.

(iii) After the calculation of scaling exponents (58), we
notice the behavior of 6, ;4 with same-sign correc-
tions at every order. However, the sign of leading €?
coefficient for the relevant scaling exponent 6,
differs from other loop terms, which is the indication
of possible FP merger. Thus, we can extract the
constraints from the relevant scaling exponent,
solving 6, = 0:

Caric © 0249, ey 20234, (94)
And using the Padé approximation
por _ 0608 —6.681e
= 1-9.826¢
po 06081717
2771 -0.661¢ + 9.495¢2”
0.608 — 1.129¢ — 6.455¢>
P = 5
2 1 —0.695¢ ’ (93)
we get

eslrict” ~0.091 s €subl]2 ~ 0354, €sub12, ~0.232.

(96)

It should be noted, that at 433 order we have only one fixed-
point merger. However, if the subleading tendency con-
tinues in the 544 order, it will lead to the additional 65
merger (57), which we do not study in this paper.

Moreover, we illustrate our results in Fig. 7. Here we
show up the bounds for strict and subleading approaches
(full lines) (88), (91), and (94), and their Padé approximants
(dashed lines) that provide tightest constraints (90), (93),
and (96) at 433 order. In addition, we add 211 and 322
orders for comparison. From these figures and from (88),
(90), (91), (93), (94), and (96), we can deduce that the ey,
bound is systematically tighter than the e bound, which
arise from the last summands (39) and (55). The same
situation was obtained at 322 order; see Ref. [13].

At the end, we demonstrate the size of the UV conformal
window in Fig. 8. The left panel includes €y, bounds

(93) arising from vacuum stability (91) and (93). For
0.0 3.0F 10F ]
-0.2} 2.5} gl p— 2
- — 322
. o4t 220 o ol ]
5 = 15F - — 433
' o6} % $ 4l ]
) top v N\ < . zZ A\ 1 . Padéict
—0.8f 0.5} 2 1
— 433 subl
1ok L H . . 00F v\ of: o . o k
0.0 0.1 0.2 03 0.4 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 000 005 0.0 0.5 020 025 030 ----- Padég
€ € €
FIG. 7.  e€gyjct.supt Ounds for 433 order (full lines) (88), (91), and (94), and their tighter Padé resummations (dashed lines) (90), (93),

and (96). The 211 and 322 orders are also illustrated.
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PR *
g

— o, +a)”

¢ . - PadéZl(au*‘Fa’v*)

0.3} 2 - o
02 * Effecti\‘e field t?leories . *
Tle 433 ° . 3
w [ . ° w
0.1 _Padé____ e L ]
E Asymptotic safety ° O
0.01
[ Asymptotic freedom 0.1r==
-0.1¢
- ‘ ‘ : ‘ ‘ 0.0
4 6 8 10 12
N¢
FIG. 8.

Left panel: conformal window with asymptotic safety (yellow band), also showing regimes with asymptotic freedom (green)

and effective theories (grey). Dots indicate the first few integer solutions (97) at 433 order. Moreover, this panel contains the new upper
bound on € at 433 order (91), and the tighter Padé approximant bound (dashed line) (93). Previous upper bounds at 322 [13] order also
indicated. The right panel compares different schemes (88), (91), and (94) as given by €. The dashed lines represent the asymptotic
value; the full lines represent the upper boundary for the e as functions of N,.

comparison we have also indicated the previous bound at
322 order [13]. The right panel illustrates the boundaries for
finite values of N,.. From this picture we can see that all
constraints (88), (91), and (94) share roughly the same rate
of convergence. In addition, it is clear that finite-N,
corrections contract the conformal window (full lines) in
comparison to infinite results (dashed lines).

Finally, using the tightest bound on the conformal
window which is given by the vacuum instability €y ~
0.146 (91), we obtain the smallest pair of integer values for
(N¢, Ny) compatible with asymptotic safety, which are
indicated by black dots in Fig. 8. The first few integer
solutions are

(N, Ny) = (5,28),(7,39), (8,45), (9,50), (10, 56),
(11,61), (11,62), (12,67)... (97)

C. (De)stabilizing fluctuations

Following the ideas of Refs. [13,14], let us consider into
which direction the higher loop corrections shift the beta
functions. To do this we substitute the fixed points to
order O(¢e)? back to the beta functions and take the series
expansion in € up to the first nonvanishing order. Keeping
only highest available terms in RG functions, we obtain
(cf., also Table II)

55.257 + Ng) 5

(4) _
P '322—‘4'154<m ¢

3) _ 33.923 + N2
By |30 = 1.263 (m e,
3) 19.213 + N? 4
b =—0252( ——— | ",
Pl (—8.304 TN2)¢
; 83.582 + N2
,BE' )|322 =0.213 <m 64 (98)

Negative shifts to the beta functions (Af < 0) are
supposed to stabilize the UV fixed point [13,14], while
Ap > 0, conversely, shift the zero towards larger values,
which could even destabilize it. Thus, the obtained leading
shifts for finite N gives us a qualitative picture of the trend
from higher-order loop contributions. It should be noted
that these shifts have changed their signs compared to the
previous results obtained in Refs. [13,14].

In the same manner, we insert the fixed points up to €’ to
the full available beta functions and find the subleading
shifts for finite N, (see Table II with the Veneziano limit):

183.114+N3) 6
_— | € s

= 65.931
Polass (—8.948 + N2

75.486 + N2
Bylazs = —11.143 <m> .
64.415 + N>
=9354( ————5 €.
ﬁu |433 <—8877 + N%) ‘
51.740 + N2
ﬁvl433 g 47863 (m) 65 (99)

We see that the results for f,, , change signs as compared
to (98). However, they retained their behavior as in the case
of Refs. [13,14]. Therefore, we can expect, that in the 544
order we will obtain similar results.

VI. CONCLUSION

The availability of interacting UV fixed points in particle
physics presents numerous prospects for constructing
models; see, e.g., Ref. [20]. However, comprehending
the size of the corresponding conformal window is equally
crucial for any real-world applications. In this paper we
investigated the Litim-Sannino model with action (1) at
the 433 order. Extending the findings of [5,13,14] and
confirming the results of [37], we have performed a full
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search for interacting fixed points and computed scaling
exponents and anomalous dimensions up to third order in
the small parameter € (4). It was also noted that their full
expressions for finite N, are complicated; therefore, we
performed fourth (second) order fits and provide the
corresponding approximate expressions together. By com-
paring means square errors, we conclude that the ratio of
fourth-order polynomials provide better approximation in
certain cases; see, e.g., Fig. 6.

Moreover, we studied the size of the conformal window
imposing conditions on the fixed-point values of the
couplings and scaling exponents. We used different
approximation orders and estimate the effect of subleading
corrections. We compared various restrictions coming from
the perturbativity of the strong coupling (88), vacuum
instability (91), and possible fixed-point merger (94).
Despite their qualitatively different origins, constraints
are quantitatively similar, with vacuum stability offering
the tightest bound (91). In addition, following Ref. [37] we
tried to resum the € series by means of Padé approximation
and find that it gives even stronger constraints (90), (93),
and (96). However, the presence of nonphysical poles in the
approximants used to derive the bounds undermines our
confidence in their accuracy. Perhaps this should be
explored using other types of approximations and when
high-order contributions in the 544 scheme will be avail-
able. We summarize our results in Fig. 8, where we
illustrated the asymptotic safety regime together with the
size of the UV conformal window. At the end, the
asymptotically safe quantum field theories, which lie within
the allowed conformal window, were also demonstrated in
Eq. (97) and Fig. 8.

Furthermore, we notice that the authors of Ref. [37]
mentioned that the anomalous dimension Ym, of the
fermion mass, which they computed in their paper, is
negative to the leading order in €, while all the next-to-
leading order terms are positive. Because of this, Ym, can
become negative and potentially pose a threat to unitarity
[37]. We argue that this negative leading-order result is
nothing else but the leading-order contribution to (—yg).
Positive higher-order terms computed in Ref. [37] cannot
be trusted when evaluating scaling dimensions, since at the

|

two-loop level the mixing comes into play. We account for
this mixing in the present study and compute the anoma-
lous-dimension matrix eigenvalues, one of which should be
(—yy) at any loop. But this is not the end of the story. We
also argue that if EOMs are taken into account, the
anomalous dimension matrix of dimension-three operators
is modified y, — 7, such that 7, has the same eigenvalues
as yo but with the flipped sign of the “dangerous”
eigenvalue (—yy) — yy. This can be anticipated and
represents correct scaling of the operator that enters
EOMs alongside with O, o 0*Tr(H). Our analysis shows
that all eigenvalues of the reduced anomalous dimension
matrix are positive so dimension-three operators that break
G flavor symmetry do not spoil unitarity.

We believe that our findings can be used in a more
elaborate analysis of the asymptotic safety in the Veneziano
limit and beyond the latter. It is interesting how the results
will be modified when the 544 order beta functions will be
available, e.g., in connection with possible additional FP
merger due to the potentially negative contribution of
0(64) to 93.
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APPENDIX A: RESULTS

In this appendix we provide complete expressions for the
renormalization-group functions beyond the Veneziano
limit. We follow [37] and introduce convenient abbrevia-
tions r, = N2, rp = [( + )N ™%

1. p functions

The beta functions for rescaled coupling (3) read

4de

pgz2 = 3 (A1)
26¢ 1
ﬁéz)a;Z = (25 +T - (11 + 2€)rc] a, — an(ll + 2¢)2, (A2)
_ 6309 + 954¢ —224¢>  11(11 +2¢)(e =3 11+ 2e 3
/}23)%2 — B + ( 3 It )I'c -— rcz] a; — 3 (9 —re)(11 + 2¢)%a a,
1
+4 11+ 2¢)?(3e +20)a2, (A3)
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ﬂg ay _0‘2“ { <<1853—§)€ +(198C3—1—3)e+10i9€3_%>

1184 45749\  3267(; 1616 24079
AL —— 4 - e
+<<5§3 9> (59(:3 72>€ 2 8 24)

8017 38797 37963 12947
<36§3+—> <396C3+ s )e+1089§3+ < ——}

36 18 48
+a {rﬁ (%Jr?) +r, ((62273 48§§3>e + (2?(7)23 54596‘:3) — 169485+
() (2 T, i )

+aday,[12r, + 126 + 132 + 363] + 48a,a,a,r + a,a> {—rc(10€+55) — 10’ —165¢% —

19613)

1815¢ 6655
4

89 5445
—a,air (206 + 110) + 12aZa,r (ry + 1) + a a0} { <<IZC3+ )e +(132¢3 +154)e +363¢3 + €* +1—6>
165 78287
+ <49—12C3>€ (2475 — 13285)e — 363¢; + 2363 +16]
7 77 36385 847 11e* 25267¢ 105875
3 S 2 S _ oTh _ 3 2 _ —
+a)[rc((3 6(;’3)6 +<3 66§3>e =y 12) 3~ 100¢* ~986¢ - } (A4)
pla;t = (13 +2¢)a, — 6(1 — 1), (A5)
1 1
ﬁy o= =-3 [(11 4 2¢)(2€ + 35) — 32rJag + (1 —r.)(8e + 49)a,a, + g (1 —re)((20e = 93) + 9r)ar;
—4[(11 4 2¢)(1 + rp)]aya, + 4(1 + re)az + 16rpa,a, — 8rea,a, (11 + 2¢) + 4re(1 + ry)a? (A6)

445
Aoy —agav[16r2+r (1962 )—1962— 26—649},

157 721
+aja, {rcz ( <T_ 18§3> €—81¢; +—> +1.((5443+92)e+279¢3+ 17¢* +-31)

16

893 1217

< 3653—T>€ 19853—176 —1—6:|
129r.> 70¢? 856¢ 2413
+a3{ 4° + cz((23—24é3)€—132§3+62)+rc<— T

11
+aja,a,(1-r,)(rg+1) <€+7>

11 11
+8a,a,a, <e+7> (1-rore+a,a,’ [60rc +30r¢ <€+7> +12e%+ 1626—1—528]

70¢* 641
27 6

649
+ [24&5 +T e+ 1320 +—+—

[ 11 3¢’ 59¢% 2595¢ 17413
+a,a2 _24rcrf+48rc+60rf(e+7>}+a [ ((643—28)e+39§3—162)—?+ 6 2 e }
—aia, (36rp+84)re —a, a2 (96rs +24)rp +a,a,a, [re? (80 +-440) +1¢(100€ +-490)]

[ 2
+aia, |re? (8564—#) +rp (564—75)] —a(16ry> +20re> +4r¢) —a; (32r; +8)

[ 905 25
+aia, |y <85€+7> +5€+?]
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P = 8 +daa, — (114 26)ad + 24a,a,ry, (A9

B = —24(1 + 5re)a, — 16ayai — 352a%a,re — 3(11 + 2¢)ada, — 8a,aire(5 + 41rg) +10(1 —ro)a,a,a,

- A8reaya,a, — 2(11 4 2¢)(1 — re)ayop + 4(11 + 2¢)reaia, + (11 + 2¢)a; (A9)

119 53 13
ﬂ'(;) — a;aua\’[ (368_:'; 2 ) + re (—36C3 + 8¢ + 7) — 8¢ + 4:|

131 1441 847
+ agag |:rc2(<T - 24€3>€ - 1326:3 + T) + re <(24C3 - 66)6 + 132@3 - 562 — T)
133¢ 253

56 4 } + aya,@2[rerp (14485 — 112)e 4 79283 — 616) + (112 — 144¢3)e — 7925 + 616)]

—a, { (9605 + 152) — 64ry <e +%>} + aga2ay(1 —1)(964; — 102)

14 163 14 163
+aqa ay |: <<120C3 —79> 6604‘3—Tg> + <79— 12053)6—6604‘3 49:|

605 605
+ a0 [rc ((5 — 2423)€? + (55 — 2643)e — 726¢ 5 + T) (2405 = 5)e + (26405 — 55)e + 72605 —

15¢> 32 24
+aa{ (1205 — 168) - 315¢ 3209 3 83]

4 4 16
136 N 265¢2 N 1111e 2541
4 8 16 32

+a [ (20 = 24¢3)e — 13245 + 110) + } + a,a2a, (6421 + 661]
2

[r¢2(6144¢5 + 6752) + 1¢(1536¢5 + 2912)] — a2a2[280r — 1;2(9216¢5 + 12728)]
+ 22[r((2164; + 136)e + 1188¢5 + 748) + rp(64¢ + 352))]
— 0,3 [~ (13 (537605 + 6568)) — 12(768C 5 + 1472) + 104ry]
+ ada, (226r; + 34) + 648a2a,a,ry + a1 (11525 + 2360) + 104]
+ 2a2[rg((2164; + 156)¢ + 1188¢5 + 858) + 166¢ -+ 889)]
+ a,a,@2r¢((1925 + 734)e + 10565 + 3965) (A10)

+ a a0, {—grf(—4 +rp(11 4+ 2€)) (=17 + 1653)]

+ (xuav

B = 1222 + 16a,a, + 4a,a, + 4(1 + drg)a?, (Al1)

B = —24a3r(3 + Trg) — 8(1 + drg)aya? — 352a,021; — (11 + 2¢) (3, — 4a, ) — 8(5 + 41rp) e,
+ 10(1 — ro)a,aa, — 32a,a,a, — 24aya; + (11 + 2¢)a; — 960, (A12)
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2211e 8833 119 53 13
pY = 192050, + o [—1063 —183¢% — < —} + dla,a, {rcz <36C3 - T) +r. <—36C3 + 8¢ + —> — 8¢+ —]

2 4 2 4
+ a2a?(1 —r.)(24€? + 264¢ + 726) + a,aza, (1 — 1) (1445 — 153) + a a,a,a, (1 — 1) (19253 — 204)

5 5 149 1639
—|—(xyau(xy(1 —rc)[(112— 144C3)€—792C3 +616] +agavay(l —rc> T— 120C3 €—660C3 +T

121 121
+a,a [rc ((2 —2425)6% + (22 — 26483)e — T26¢; + 7) (2485 — 2)€? + (264¢5 — 22)e + 726(; — 7}

187¢*>  180le 16995
4 4 16

+ a0 [rc(12C3 —136) — } + ada, (32212 + 130ry)

+a,dla, [rﬁ((204 —192¢5)€? + (2244 — 2112¢5)e — 580885 + 6171)

5355
+ry <(51 —4823)€? + (561 — 528¢3)e — 1260C 5 + T) 488, — 51]

+ a2 [re? (8064¢5 + 10476) + rp(1152¢5 + 6680) + 12] + a, a5 [rs? (614485 + 10544) + 1264r¢]
+ a1 (211285 + 2960) + 12 (96085 + 1844) + 132r¢] + aa,a, (642r¢ + 66) + 648a,aZa,ry
+ i [re (153685 + 1700) + 384¢5 + 772] + e, [rs(4608¢5 + 9600) + 480]
+ a,a,03[re((528¢5 + 132)e + 2904¢ 5 + 726) + (9683 + 152)e + 528(5 + 788
427 1985
+ aZad re((1928; + 268)e + 105685 + 1426) + 41e + T} + aial [(19243 + 187)e + 1056¢5 + —5
+ a,05 (9685 — 88)e? + (—10563 — 904)e — 2904¢5 — 2310]. (A13)
2. Anomalous dimension of fields and scalar mass squared

The gauge-independent scalar field anomalous dimension reads
1
yfq) —a,, (A14)

5 3
yg) =2a(rg + 1) — zayag(rc -1)- Za%(Ze + 11) + 8a,a, 1y + 2021 (g + 1), (A15)

15 15
}/S) = —4&3(41'1' + 1) + ay (—7 (I'f + l)aﬁ - 30rfau(xv — Trf(rf + 1)a%>
5 1
x ol (5 (rp + 1)(2€ + 11)a, + 5r5(2¢ + 11)a1,> +al <3C3rc —2re + 2 (2e + 11)(10¢ + 183))

1 1
0,0 12 (4885 = 5)(re = 1)(2€ + 1) + gy (re = 1) (1448w = 119r + 32¢ = 13)

- 12aua%rf(4rf + 1) - 6a3avrf(3l‘f + 7) - Zaf,rf(rf + 1)(4rf + 1) (A16)

The scalar mass term respects U; (N;) x Ug(N) global symmetry and its anomalous dimension is given by

yfnlg = 8a, + da, + 2a,, (A17)

3
72 = 220(a2 - rp) — 8y, (1 + 1) — 16a,a, + Saya,(1 = 1) - 5@ (11 +2€) = 200wy (1 + xp) = 80a,arr. (ALS)
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7 = a3 (888ry + 240) + adar, (984r¢® + 23881 + 12) + o, (331 + 33r¢)a + (331¢ + 33)a2 + 132170,
e [au (264¢ 5 + 264¢51; + 48851¢€ — brpe — 331 + 48¢3€ + 76€ + 394)

o )

+ (lyay[av(484’3 - 4-86_:31'c - 48C3rcrf + Slrcrf + Slrc + 48431‘1‘ - Slrf - 51)—|—au(96(:3 - 96C3rc + 102rc - 102)]
187¢*> 1801le 16995)

+ af, (3OC31'c —24r, —

8 8 3
149 1639 149¢ 1639
+ o, (—33043 + 33003 + 6003 Fee =~ S = = 6053+~ + T)
119r,> 53 13
+a ay (18C3r e _ 1845, + 4r, 4r° —4€+§>
+ a,0%(2664r> + 7201;) + o (44413 + 5641, + 120ry). (A19)

The anomalous dimensions of fermion (y,,), gluon (y), and ghost (y,.) fields depend on the gauge-fixing parameter . The
results up to three-loop level are given by

1 1
7 = 126+ 1) = Gy (e — 1), (A20)
o 1 1 1
Vv :—gag( —1)(E8+ &) + 3r, —4e )—|—2agay( 1)(26—|—11)+—§ay(2e+11)(2€+23), (A21)
11 1
) = _gagay(rf +1)(2e 4 11) + a§<<2rc +5(2e + 11)2>au + 4rcav>
1
X 756 3(2¢ + 11)(19245x, — 1281, + 4(41 = 3¢)e + 1217)
1 1
32aga§( —1)(2e + 11)(48(5 + 24¢ + 137) + 64agay( —1)(2e + 11)(48¢53(r. +4) = 51r. — 12¢ = 77)
1
+%ag[ 160€?(r, — 1) + 24e(r, — 1)(109 + 9r,) — 90& (r, — 1) = 27&%(r, — 1)(13 + 4¢3)
—18(r, — 1)(=331 + 2081, + 612 — 6(7 4 161.)¢3) + £(612¢(re — 1) = 27(r, — 1)(=37 + 8&3))]
11 11
- Tauavayrf@e +11) - §a%ayrf(rf +1)(2e + 11) (A22)
1
g = ¢, (36 +4e +9), (A23)
1 1
Y2 = _gag(—ng —2E 4 1. (8¢ + 44) — 28¢ — 95) — a0ty (2e + 11)2, (A24)
1 1
) :gagag(Ze-i— 11)2(3€ +20) + 32aga,(6r —31)(2¢ + 11)?
1
+ gg @[~81¢ = 278 (11 +2¢3) — 638> — 361> (2 + 1) — 54L3(—4¢ + 16r(2¢ + 1) + 16¢ + 85)
+2r, (26 + 11)(44€ + 273) — 4¢(72E + 196¢ + 347) + 6117 (A25)

1
7 =ga(e-3), (A26)
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2 _ 1
¢ 2 1
y =18 q( 3& 4 20e + 15),

(A27)
23
7Y = —ada, == a (2¢ + 11)?
1
+ ﬁag[glfg 162&2(—1 + 5_:3) - 1085(75 + 6(5 + C3))
+126(983 + 21603 + 27re (=15 + 1603)) + 56062 + 9(3569 + 153005 + 198re(=15 + 16¢3))].  (A28)

3. Anomalous dimensions for dimension-three operators

Here we collect the matrix elements of the 4 x 4 anomalous dimension for a set of dimension-three operators. Note that
we assume that the operators are rescaled according to Eq. (7):

1 a,,
(o)) = =3a,(1 -r,) +7>(11 + 2¢),

(A29)
(2) a2 253
(o' In :2agay(11+2e)(1—rc)+1—§(l—rc)(9r +20e — 93) + a3 [2r ——e(e+17) 16} (A30)
9
S = a2y [2(11 +26)(1 = 1) (re = 2) 32 T (2¢(157r, + 136¢ + 861) + 959r, + 1243)]
+a [6(11 +2¢)(1 =)l ~ e Ye (27(92¢ + 377)r, + 348312 — 4e(70€ + 1947) — 11538)]
+ a0y [3(11 +2¢)(1 —r.)l5 — (128r + 2¢(76€¢ + 895) +5247)} - la,a,a,(11 + 2¢)
lla%ay 5
+ a, a2 ((11 + 2€)* + 12r,) — 2 (11 +2€)(1 + rg)re + a a5 (4re (e + 3))
11+2 11(11 + 2¢)(1
+a E(ll+26)rcC3—%8€(46(36—41)—1217)—(14€+79)rc] _nar+ 46)( +rf)a%,ay, (A31)
(ro iz - a5™* = —4(11 4 2¢), (A32)
- @ = =8(11 4 2€)(1 — ro)a, + 8a, (11 + 26)rg + 4(11 + 2¢)2a (A33)

- 1
(75;))12.%3/2: 9(11+2€)(1—rc)|:48(_:3I‘c+E(—131rc+20€+23):|-l—ag L(11+2e)(1=1¢)[72-965]

1
+a2(11+2e) {§(320rc+4e(136+61)—231)—4853rc} Fagay(11+26)2(1—r,)[24¢5 - 5]

+aya,(11+2€e)(1 —r )re[112 = 144¢3] + a3 (11 4 2€)r¢[963r¢ + 32(5r¢ + 2))]

+ a2 (114 2€)[96¢ 31 + 32(51¢ +2)] + auat, (11 +2€)1[96 5 +480)

—a,a,[960 51, +2(180r, +4€(25¢4-263) +2761)] 4 a0, [64((11 + 2€)rg — 61, ) —288(5r.],  (A34)

(76)1s - a”? = 4(11 + 2€)*(at, + 2at,). (A35)
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(r9))1s - % = 96(11 + 2€)ad (1 + &3) + aya, (11 +2€) (1 — 1) (112 - 144¢3)
+ a2, (11 +2¢) (1 = 1) (72 = 96¢3) + aya, (11 + 2¢)2(1 — 1) (2485 — 2)
+ @, (11 4 26)[48¢5(5tp + 1) + 16(11r — 1)] + 2402(11 4 2€)2(1 — 1)
— a,a, (11 +2€)[72(11 + 2€)¢3 + 4(22¢ 4 105)] 4 9602 (11 + 2¢)re(1 + 3)
— @,a,[96(31 + 8(32r, + 12¢(e + 10) 4 297)] — (11 + 2¢)?(10e + 73)a?,

2 _3)2 (11 +2¢e)(1 +1y)
(}’5)))21 Oy /P = - 2 ,

_ a a,
9N, :J(n +26) (1= re) (14 1¢) + (11 +26)(1+6rp) + 3 (11 4 2e)r¢(9 + 5r)
a
gy [36r, + 4e(Sr + € + 16) 4 1101 + 231,
(7/(01))22 = 3ay + Sau + 12rfam

15a ay
(7’((?))22 = —l6a,a, +

2 (1 =re) — 248rpa,a, — 24r¢a,a,

9 2
—2a2(61r¢ + 13) — 602191y + 3)ry — %(11 +2e),

3
(7/(03))22 = agauay(l —r.)(96{3 — 102) — aéay(l -re) {27531‘c - 1_6<119r° —32¢ + 13)]

{303

+ aga,a,(1 —re)re(14485 — 153) + ayo3 (11 4 2¢) (1 — 1) |=— — 33@’3} + 454, 2,0,

+ a2a, [115205m¢ (4rp + 1) + 20p(251 g + 1195)] + a3 [11528 51 + 108(22r¢ + 1)]
781 1371
+ aua%rf[460863rf =+ 140(501‘1‘ — 1)] + a, a |:84(11 =+ 2€)§3rf + <71€ =+ T) Iy + 129¢ + —:|
3
+ ayre[19285(7re + 1)rg 4 6(7rg (461 + 15) — 9)] + a,a5re [48(11 +2€)¢3 + 3 (166€ + 889)}

2 3 2
Bty (83 + 467ry) + “;ay re(17 + 145r).

Y g (11 +26)(310e + 1321) + (76 - 33C3)rc}

(78)>23 = 12a, + 8a,,

13y = —16a,a, — 24a,a, +2(11 4 2€)a? — 9602 — 112r;a2 — 24(1 + 9r¢)a,a,,

(1) = @@y (1 — 1) 14485 — 153] 4 192a2a, + a,a,a,(1 — 1)[96¢5 — 102]
+ a,ad(11 4 2¢)(1 —r.)(28 — 3643) + aZa, [345645r¢ + 8(901r; + 31)]
+ a3[384¢5(4rg + 1) + 1700r; + 772] + a,0214[57685(Trg + 1) + 4(12331¢ + 769)]

1457
@} | 7211 +2e)05 + 139 + —— | + apr[1536451p + 8(259r; +47)]

+ a,af[12(11 + 2€)¢5(8r¢ + 1) + 2¢(8rg 4 37) + 88r¢ + 383]
—ay (11 +2€)[6(11 + 2¢)5 + (22€ + 105)] + 224r¢aia, + 48a,a,a,(1 + 9r),

sy ay* = =(11 + 2e)ry,
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-3/2 _(Z

(7 o1 - o™ = 2L (11 4+ 26) (1 = vy + S (11 4+ 2€) (Srp + 9)ry

473
-+ ab(ll + 2€)(6rf -+ l)rf 4 ayrf 2rc + T -+ 38¢ + 362 s

(y(Ol))SZ = 12rfaw

(733, = 202(11 + 2€)rp — 11262r¢ — 24(1 + 9rp) @, ,1p — 24,1y,

(7/8))32 = a a0, (1 —re)re[1445 — 153] + aga§(11 +2€)(1 =1 )r[28 — 363] 4 48a, a0, [1 + Orgry

+ alzlavrf[4608c3rf + 16(361rf - 8)] + 0{31}[384(:3(1 + 4rf> + 4(4371’1‘ + 141)]

1
+ a, 05 [5765(1 4 Trg)re + 12(re(387rp + 71) — 4)] + a,a5re |24(11 + 2€)5 + 3 (470€ + 2513)

+ a,@(11 4 2€)1g[84¢51y + 4(4 + Trg)] — adrg (11 + 2€)[2(69 + 14¢) + 6(11 + 2€)¢5] + 22402a,1y,

(yg>)33 =3a, + 8a, +4(1 + 4r¢)a,,

15a,a
2
(7/(0))33 = _16auay + -

(1 —r.) — 248r¢a,a, — 202 (851 + 37)r¢

9 2
— 662 (3 + 191¢) — Sayat, (1 + dry) — %(11 +2¢),

3
)3 = agaay (1 — 1) (9685 — 102) — a2ay (1 — ) {27C3rc + g (F119r +32¢ 13)}

303
+ aga,a,(1 —re)(1 + 4r) [4885 — 51] + a,a2(11 + 2¢)(1 — 1) [ﬁ_ 33(_,'3]

+ a2, [57685(1 + Tty + 556212 + 36461 + 12] + a3 [11528515 + 4(60214 + 59)]

531'1'

2
+ a0 [4608C51¢ + 60(142r¢ + 15)] + a0 [12(11 +2€){3(2 4 9rp) + 23ery +

aa,

2

+ a%rf[l92§3(llrf + S)rf + 2(rf(l484l’f + 927) + 67)] + (6591’1‘ + 275)1'1‘

427
+ avaf, {72(11 + 2€)¢3rp + €(210rp + 41) 4+ 11077 + 2] + 454rea, 0,y

9 3
-a [6_4 (11 4+ 2€)(82¢ +323) + (70 — 333)r, — 70rc} + Eaﬁay(l45rf +17)

3 5
(r )as = 2081 + ) + 2adre (14 1) + B,y = 7 (11 4+ 26)a} + Sty (1= x),
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1
)y = 2a, (1 —r,) [E (119r, — 326 + 13) — 9C3rc] —203(1 + rp)rg(1 4 4ry)

) 5 ISa%ay 5
+ a5 (11 4 2€)(1 — 1) T3 38| - 5 (14 re)re + Sa, a5 (11 + 2¢)rg

1
+a [@ (11 + 2€)(10e + 183) + (3¢5 — 2)rc] — 30, a,a,rp — 4o (1 + 4ry)

2
Sa,a

d 1522a
+T>(11 +2¢)(1 +1g) — 12a,02r¢(1 + 4rg) — 6a2a,rp(3rp +7) — ———

(1+rp),
(Yg))m : ay_l/z = —4,

<7<02))14 ) O‘y_l/2 =-10(1 - rc)ag +3(11 + 26)“«"’

1
(J/S))M Lyl = —Sa,a,(11 +2€)(1 +1¢) + a2(1 —r.) [36C3rc —1(1191‘C —32¢ + 13)} — 10a,a, (11 + 2¢)rg

+aga, (11 +2¢)(1 —r,) (12(:3 —%) —a? {1—16(11 +2¢)(10€ + 183) + (1285 + S)rc},

(79)24 = —2a,(1 +1¢) — 4,1y,

15a,a
(), = 5 (1 x) o+ 15wy, + dag (1 + 4rp)
5 2
+ daya, 1 (31 +7) + darp(1 + 4rp) — % (11 +2€)(1 + 1),

(Y(02)>34 = —2(11)(1 + rf)rf - 4aurf7

2

15 ] 5 y
S S RO % (11 + 26)ry

3
(75 )34 = 2631+ rp)rg(1 + 4ry) +

+ 15a,a,1¢ + 2051 (3rp + 7) + 8a,a,1¢(1 + 4ry).

APPENDIX B: OTHER APPROXIMATIONS FOR FINITE-N, FACTORS

(A55)

(A56)

(A7)

(A58)

(A59)

(A60)

(A61)

(A62)

In this appendix we provide the approximations for finite-NV,. factors obtained by fitting numerical data to the ratio of two

second-order polynomials in N,.. The fixed-point factors are given as

A — [0 _NPEET0 ) NP426937
! 21 ! N2-7.669 S N2-8402°
1y N2 -1 ) _N%+5.578 3) _N%—|—23.618

A = N =vasg B = Nicsao
Y 2 1o Y N2 -17518° ’ N2 -8379"°

£ N2 —0.9724 PO N; +5.612 £ N2 + 25240
C N2 e Y NZ—17.545" “ T N2-8395"°

£ _ N2 —0.9393 £ _ N2 +4.233 £ _ N; +17.972
too N2 " N2-17.355" " N2-8278°

The factors for the field anomalous dimensions and that of mé are
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£ NZ-1 £ _ NZ +5.855 3) _ N2+27.656
Nz -0 H N2 —7543° A N2_-8415"
(1 _ Ni-1 £ _ N7 + 8.285 £ N2 +31.882
YN -0 YoN2—7.747° Yo N2 84487
£ _ N2 —-0.999 @ _ N2 +21.855 £0) — NZ +114.062
m N2 -0 m N2 7977 m N2 -8562
2 2 2
1y _ Ng 2 _ N:+6959 @) _ N:+29.766
Tato = n7 - ao T =Nr=7707"  Jelo = NI-g 43T (B2)
The critical exponents corresponding to dimension-four operators are corrected by
£ _ N? £ N?+4.15 £ N2 +30.8
o N0 % T N2-7.085’ T N2-8.403"
f(l) _ N2 -1 f(g) _ N2 +5.71 f(3) _ N?2+29.7
o N2 L o N2-17507 2 N2-8473"
£ _ N2 -0.9103 2) _ NZ2+45.01 0 _ N7 +32.9
% " N2-578323" % " N2_-175524" % N2 _-8.4346°
2 2 2
(1) Nz —1.175 @) N;+295 3) N;+ 144
=, = == B3
fo, N2 —5.8011 fo, N2 —17.891 fo, N2 —8.543 (B3)
The approximate expressions for the two nontrivial eigenvalues for yy, are given as
£ N2 -1.153 2)  N:+15.14 3 N:+4+71.03
N2 -57996° N2 -7.856" N2 -8.5345°
N2-0.919 N? +6.04 N?+32
1 c 2 c 3 c
f}(/4):249 54):2—’ fi(/4):27 (B4)
N2 —5.7839 N2 —-17.6215 N2 —8.4419
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