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In this paper we analyze higher Schwarzians and show that they are closely related to the nonlinear
realization of the Virasoro algebra. The Goldstone fields of such a realization provide a new set of SLð2;RÞ
invariant higher Schwarzians that are deeply related to those of Aharonov [Duke Math. J. 36, 599 (1969)],
Tamanoi [Math. Ann. 305, 127 (1996)], and Bonora-Matone [Nucl. Phys. B327, 415 (1989); Int. J. Mod.
Phys. A 10, 289 (1995); arXiv:hep-th/9306150]. A minor change of the coset space parametrization leads
to a new set of SLð2;RÞ noninvariant higher Schwarzians now related to the Schippers [Proc. Am. Math.
Soc. 128, 3241 (2000)] and Bertilsson [Ark. Mat. 36, 255 (1998)] Schwarzians.

DOI: 10.1103/PhysRevD.109.065029

I. INTRODUCTION: STANDARD SCHWARZIAN
WITHIN NONLINEAR REALIZATION

The Schwarzian derivatives or simply Schwarzians have
been known for a long time. Their story goes back to
Lagrange who introduced a version of the Schwarzians
(see, e.g., [1] for a survey). Later on, this derivative
appeared in projective and conformal geometry as well
as in many other contexts in mathematics and mathematical
physics.
The Schwarzian derivative St is defined by the relation
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ð1:1Þ

Here, Tt ¼ ̈t=ṫ is the pre-Schwarzian derivative of tðτÞ.
Applications of the Schwarzian derivative are especially
connected with problems of univalent analytic functions
[2–7]. Despite its well-established role in mathematical
physics, the Schwarzian derivative remains somewhat mys-
terious. It is not a derivative, exactly, but what is it? Themost
known property of the Schwarzian derivative is its invari-
ance under SLð2;RÞ transformations, acting on t, i.e.

if t0 ¼ atþ b
ctþ d

; ad − bc ≠ 0 then St0 ¼ St: ð1:2Þ

The infinitesimal form of the condition (1.2) is

δt ¼ a−1 þ a0tþ
a1
2
t2; St½tþ δt� ¼ St½t�: ð1:3Þ

The parameters a−1; a0; a1 correspond to translation, dila-
tation, and conformal boost, respectively. The group
SLð2;RÞ with the commutative relations

i½Ln; Lm� ¼ ðn −mÞLnþm; n;m ¼ −1; 0; 1 ð1:4Þ

is just one dimensional conformal group.
It is interesting, but the pre-Schwarzian derivative is not

invariant under SLð2;RÞ transformations,

Tt½tþ δt� ¼ Tt½t� þ a1 ṫ: ð1:5Þ

As we will see below (1.10), the ṫ starts from a constant,
and therefore the pre-Schwarzian derivative Tt is shifted by
a constant under the transformation δt ¼ a1t2. Thus, Tt is
the Goldstone field accompanying the spontaneous break-
ing of the conformal boost. On the other hand, we have

δLog½ṫ� ¼ a0 þ a1t; ð1:6Þ

and thus Log½ṫ� is the Goldstone field for the spontaneously
broken dilatation. Finally, note that the translations δt ¼ a−1
are also spontaneously broken with tðτÞ being the corre-
sponding Goldstone field.
Within a nonlinear realization of spontaneously broken

slð2;RÞ symmetry, the natural place for the Schwarzian is
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to be associated with one of the slð2;RÞ Cartan forms
ω−1;ω0;ω1 defined in the standard way as

g−1dg¼ iω−1L−1þ iω0L0þ iω1L1; g¼eitL−1eiuL0e
i
2
z1L1 :

ð1:7Þ

Explicitly, these forms read

ω−1 ¼ e−udt; ω0 ¼ du − e−uz1dt;

ω1 ¼
1

2

�
dz1 − z1duþ 1

2
e−uz21dt

�
: ð1:8Þ

All of these forms are invariant with respect to slð2;RÞ
symmetry (1.3). Thus, one can introduce invariant time τ
and reduce the number of independent fields (inverse Higgs
phenomenon [8]) by imposing the following constraints:

e−udt ¼ dτ; ω0 ¼ du − e−uz1dt ¼ 0: ð1:9Þ

As a result of these constraints (1.9) and treating all fields
as dependent on the invariant time, τ, one can get

ṫ ¼ euðτÞ ðaÞ; z1 ¼ u̇ ¼ ̈t
ṫ
¼ Tt ðbÞ: ð1:10Þ

Substituting expressions in (1.10) into form ω1, we have

ω1 ¼
1

2
dτ

�
d
dτ

�̈
t
ṫ

�
−
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2

�̈
t
ṫ

�
2
�
¼ 1

2
Stdτ: ð1:11Þ

Thus, as was expected, the Schwarzian St appears as the dτ
projection of the Cartan form ω1 associated with the
generator of the conformal boost L1.
This approach to Schwarzians was initiated by

Galajinsky in [9]. Later on, it was generalized to the cases
of supersymmetric Schwarzians in [10–15]. Being very
productive, this approach can tell nothing about higher
Schwarzians: slð2;RÞ invariant higher Schwarzians of
Aharonov [2] as well as higher Schwarzians of Tamanoi
[3] were completely out of game. The nature of slð2;RÞ
noninvariant higher Schwarzians of Schippers [4] and
Bertilsson [5] was also unclear. The goal of the present
paper is to provide a unified description of slð2;RÞ
invariant higher Schwarzians as Goldstone fields for
spontaneously broken Virasoro symmetry spanned by
the generators fLn; n ≥ −1g. From this point of view,
noninvariant higher Schwarzians are just specific deforma-
tions of invariant ones by Tt dependent terms.

II. HIGHER SCHWARZIANS

In 1969, Aharonov gave definitions of higher-order
analogues of the Schwarzian derivative [2]. Later on,
Tamanoi introduced another set of higher order
Schwarzian derivatives [3]. Finally, Kim and Sugawa

derived relations between the Aharonov invariants and
Tamanoi’s Scwarzian derivatives [7]. Another, more physi-
cal definition of the higher Schwarzians has been formu-
lated by Bonora and Matone [16].
All these definitions lead to higher order Schwarzian

derivatives invariant with respect to slð2; RÞ transforma-
tions [(1.2) and (1.3)] and both definitions are non-
geometric ones. Using the results from the previous section,
one can propose a purely geometric definition of higher
Schwarzians. The basic idea comes from the transformation
of the Schwarzian under transformation

δt ¼ a2
6
t3 → δSt ¼ a2t0½τ�2 ¼ a2 þ � � � : ð2:1Þ

Thus, we see that the Schwarzian itself behaves like a
Goldstone boson for partially broken symmetry (2.1). It is
not too difficult to verify that transformation (2.1) together
with (1.3) form the centerless subalgebra of the Virasoro
algebra

i½Ln; Lm� ¼ ðn −mÞLnþn; n;m ≥ −1: ð2:2Þ

It is a natural guess to associate the Schwarzian with
the Goldstone fields for transformation (2.1) generated
by the operator L2. With such identification, one can
expect that higher Schwarzians will appear as the
Goldstone fields associated with the higher generators
Ln; n ≥ 3. Technically, the realization of this idea consists
in three steps:

(i) Step 1
One has to choose a proper parametrization of the

group element corresponding to the algebra (2.2)

g ¼ eitL−1eiuL0e
i
2
z1L1

Y∞
i¼2

e
i

ðiþ1Þ!ziLi : ð2:3Þ

The order of the first three exponents is fixed by the
invariance of the Goldstone field1 z1 under the
transformation generated by L0 (dilatations) (1.5).

(ii) Step 2
Next, one has to calculate the Cartan forms

Ω ¼ g−1dg ¼ i
X
n¼−1

ωnLn: ð2:4Þ

1We remember that the Goldstone z1 has to be identified with
the pre-Schwarzian Tt.
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Let us list several first Cartan forms:

ω−1 ¼ e−udt;

ω0 ¼ du − z1e−udt;

ω1 ¼
1

2

�
dz1 − z1du − e−u

�
z2 −

1

2
z21

�
dt

�
;

ω2 ¼
1

6
½dz2 − 2z2du − e−uðz3 − 2z1z2Þdt; �;

ω3 ¼
1

24
½dz3 − 2z2dz1 þ 2duz1z2 − 3duz3 − e−uðz4 − 3z1z3 − z22 þ z21z2Þdt�;

ω4 ¼
1

120

�
dz4 − 5z1z3 þ 5duz1z3 − 4duz4 − e−u

�
z5 − 4z1z4 − 5z2z3 þ

5

2
z21z3

�
dt

�
; etc: ð2:5Þ

(iii) Step 3
Finally, one has to introduce the invariant time τ and express all the Goldstone fields u; zn in terms of t½τ� and its

derivatives. Moreover, these expressions have to be invariant with respect to the whole subgroup of the Virasoro
group (2.2). All of these can be achieved by imposing the following constraints that generalize the constraints (1.9):

ω−1 ¼ dτ; ωn ¼ 0; n ≥ 0: ð2:6Þ

As a result of constraints (2.6), we obtain the following expressions for the parameters u; zn:

u ¼ Logðt0Þ;

z1 ¼
t00

t0
¼ Tt;

z2 ¼
t000

t0
−
3

2

�
t00

t0

�
2

¼ St;

z3 ¼ S0t;

z4 ¼ S00t − S2t ;

z5 ¼ Sð3Þt − 2StS0t;

z6 ¼ Sð4Þt − 2StS00t −
9

2
ðS0tÞ2 −

10

3
S3t ;

z7 ¼ Sð5Þt − 2StS
ð3Þ
t − 11S0tS00t − 10S2t S0t; etc: ð2:7Þ

One can compare our set of higher Schwarzians in (2.7) with Aharonov’s invariants [2] and Tamanoi Schwarzians [3]

Aharonov’s invariantsψk Tamanoi’s Schwarzians sk
t0½τ�

ðt½τþw�−t½τ�Þ ¼ 1
w −

P
k¼0

ψkþ1
wk

ðkþ2Þ!
t0½τ�ðt½τþw�−t½τ�Þ

1
2
t00½τ�ðt½τþw�−t½τ�Þþt0½τ�2 ¼

P
k¼0

sk wkþ1

ðkþ1Þ!

ψ1 ¼ t00
t0 ¼ Tt s0 ¼ 1; s1 ¼ 0

ψ2 ¼ St s2 ¼ St
ψ3 ¼ S0t s3 ¼ S0t

ψ4 ¼ S00t þ 2
3
S2t s4 ¼ S00t þ 4S2t

ψ5 ¼ S000t þ 3StS0t s5 ¼ S000t þ 13StS0t

ψ6 ¼ Sð4Þt þ 5StS00t þ 17
4
ðS0tÞ2 þ 4

3
S3t s6 ¼ Sð4Þt þ 19S00t St þ 13ðS0tÞ2 þ 34S3t

ψ7 ¼ Sð5Þt þ 22
3
StS

ð3Þ
t þ 17S0tS00t þ 40

3
S2t S0t s7 ¼ Sð5Þt þ 26Sð3Þt St þ 45S0tS00t þ 228S2t S0t: ð2:8Þ
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Thus, we see that the difference in Schwarzians appears already at the fourth order. The same story happened in the case
of Bonora-Matone Scwarzians [16]:

Bonora-Matone Schwarzians S2kþ1

S2kþ1 ¼
1

k
ðt0½τ�Þk∂τ

�
1

t0½τ� ∂τ
�

1

t0½τ� � � � ∂τðt
0½τ�Þk

��

S2 ¼ St

S3 ¼ S0t

S4 ¼ S00t þ
3

2
S2t

S5 ¼ S000t þ 8StS0t

S6 ¼ Sð4Þt þ 31

2
StS00t þ 13ðS0tÞ2 þ

45

4
S3t

S7 ¼ Sð5Þt þ 26StS000t þ 59S0tS00t þ 144S2t S0t; etc: ð2:9Þ

Despite the fact that we did not know the generic expressions for the Goldstone bosons zn, we can relate zn with ψn, sn
and/or Sn. Several first such relations read

z2 ¼ ψ2 ¼ s2 ¼ S2;

z3 ¼ ψ3 ¼ s3 ¼ S3;

z4 ¼ ψ4 −
5

3
ψ2
2 ¼ s4 − 5s22 ¼ S4 −

5

2
S22;

z5 ¼ ψ5 − 5ψ2ψ3 ¼ s5 − 15s2s3 ¼ S5 − 10S2S3;

z6 ¼ ψ6 −
35

4
ψ2
3 − 7ψ2ψ4 ¼ s6 −

35

2
s23 − 21s2s4 þ

140

3
s22 ¼ S6 −

35

2
S2S4 −

35

2
S23 þ

35

3
S32;

z7 ¼ ψ7 − 28ψ3ψ4 −
28

3
ψ2ψ5 þ

70

3
ψ2
2ψ3 ¼ s7 − 56s3s4 − 28s2s5 þ 350s22s3

¼ S7 − 28S2S5 − 70S3S4 þ 175S3S22; etc: ð2:10Þ

This means that if we insert in the parametrization of the
group element g (2.3) the expressions for zn in terms of ψn,
sn and/or Sn, then the same constraints (2.4) lead to proper
expressions (2.8). One should note that nonlinear expres-
sions in (2.10) include only ψn, ψn and/or Sn but not their
derivatives. So, in some sense, these are canonical trans-
formations of variables, although nonlinear.
To complete this section, note that our constraints (2.6)

are invariant with respect to the whole Virasoro algebra
(2.2). If we consider the left multiplication of our group
element g (2.3) by the element gn ¼ eanLn ,

gng ¼ g0; ð2:11Þ

we will obtain

δnt ¼ antnþ1; δnSt ¼ annðn2 − 1ÞYn;

δYk ¼ anðkþ 2nÞYkþn; ð2:12Þ

where

Yk ¼ tk−2ðt0Þ2: ð2:13Þ

It is clear that the variation of the higher Schwarzians
will provide us with a new set of expressions that will
contain both S and Yn and their derivatives. The use-
fulness of this full Virasoro symmetry is not clear for
us yet.

III. SLð2;RÞ NONINVARIANT SCHWARZIANS

In addition to the Aharonov [2], Tamanoi [3] and
Bonora-Mattone [16] versions of higher Schwarzians,
Schippers [4] and Bertilsson [5] proposed another defi-
nition of Schwarzian derivatives of higher order. They have
nice properties, but however they do not possess SLð2;RÞ
invariance. These new higher Schwarzians are defined as
follows.
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Schippers set
The Schippers set of higher Schwarzians is defined as follows [4]:

σn ≔ σ0n−1 − ðn − 2Þ t
00

t0
σn−1; σ3 ¼ St: ð3:1Þ

A few nontrivial Schwarzians have the following form:

σ3 ¼ St;

σ4 ¼ S0t − 2TtSt;

σ5 ¼ S00t − 2S2t − 5TtS0t þ 5T2
t St;

σ6 ¼ Sð3Þt − 9S0tSt − 9TtS00t þ 18TtS2t þ
45

2
T2
t S0t − 15T3

t St;

σ7 ¼ Sð4Þt − 18S00t St − 9ðS0tÞ2 þ 18S3t − 14TtS
ð3Þ
t þ 126TtStS0t þ 63T2

t S00t − 126T2
t S2t − 105T3

t S0t þ
105

2
T4
t St;

σ8 ¼ Sð5Þt − 32S000t St − 36S0tS00t þ 180S2t S0t − 20TtSð4Þ þ 360TtStS00t þ 180TðS0tÞ2 − 360TtS3t

þ 140T2
t Sð3Þ − 1260T2

t StS0t − 420T3
t S00t þ 840T3

t S2t þ 525T4
t S0t − 210T5

t St; etc: ð3:2Þ

Bertilsson set
The Bertilsson variant of higher Schwarzians is defined as follows [5]:

Sn ≔ −
2

n
ðt0Þn2 ∂

nþ1

∂τnþ1
ðt0Þ−n

2: ð3:3Þ

Several first members of this set read

S0 ¼ Tt;

S1 ¼ St;

S2 ¼ S0t − 2TtSt;

S3 ¼ S00t −
7

2
S2t − 5TtS0t þ 5T2

t St;

S4 ¼ Sð3Þt − 17S0tSt − 9TtS00t þ
45

2
T2
t S0t þ 34TtS2t − 15T3

t St;

S5 ¼ Sð4Þt −
67

2
S00t St − 22ðS0tÞ2 þ

241

4
S3t − 14TtS

ð3Þ
t þ 511

2
TtStS0t þ 63T2

t S00t −
511

2
T2
t S2t − 105T3

t S0t þ
105

2
T4
t St;

S6 ¼ Sð5Þt − 58Sð3Þt St − 95S0tS00t þ 676S2t S0t − 20TtSð4Þ þ 712TtStS00t þ 475TtðS0tÞ2 − 1352TtS3t

þ 140T2
t Sð3Þ − 2730T2

t StS0t − 420T3
t S00t þ 1820T3

t S2t þ 525T4
t S0t − 210T5

t St; etc: ð3:4Þ

A. Our modified set

It is completely clear from the explicit form of the Schippers (3.2) and Bertilsson (3.4) Schwarzians that SLð2;RÞ
symmetry breaking is caused by the presence of the pre-Schwarzian derivative Tt ¼ ̈t=ṫ in these versions of Schwarzians.
Within our approach, we can simulate such behavior as follows:

(i) Step 1
We choose the following parametrization of the Virasoro group element:

ĝ ¼ eitL−1eiuL0

Y∞
i¼2

e
i

ðiþ1Þ!ẑiLie
i
2
ẑ1L1 : ð3:5Þ

The order of the exponents forced breaking of the invariance of higher Goldstone fields ẑk; k ≥ 2 under
transformations generated by L1 and, therefore, under SLð2;RÞ.

ORIGIN OF HIGHER SCHWARZIANS PHYS. REV. D 109, 065029 (2024)

065029-5



(ii) Step 2
Next, one has to calculate the Cartan forms

Ω ¼ ĝ−1dĝ ¼ i
X
n¼−1

ωnLn: ð3:6Þ

(iii) Step 3
Finally, one has to introduce invariant time τ and impose constraints on the Cartan forms (2.6)

ω̂−1 ¼ dτ; ω̂n ¼ 0; n ≥ 0: ð3:7Þ

As a result, we will obtain the following expressions for the parameters u; ẑn:

u ¼ Logðt0Þ;
ẑ1 ¼ Tt;

ẑ2 ¼ St;

ẑ3 ¼ S0t − 2TtSt;

ẑ4 ¼ S00t − S2t − 5TtS0t þ 5T2
t St;

ẑ5 ¼ Sð3Þt − 2S0tSt − 9TtS00t þ 4TtS2t þ
45

2
T2
t S0t − 15T3

t St;

ẑ6 ¼ Sð4Þt − 2S00t St −
9

2
ðS0tÞ2 −

10

3
S3t − 14TtS

ð3Þ
t þ 28TtStS0t þ 63T2

t S00t − 28T2
t S2t − 105T3

t S0t þ
105

2
T4
t St;

ẑ7 ¼ Sð5Þt − 10S2t S0t − 11S0tS00t − 2Sð3Þt S0t − 20TtSð4Þ þ 40TtStS00t þ 55TtðS0tÞ2 þ 20TtS3t

þ 140T2
t Sð3Þ − 210T2

t StS0t − 420T3
t S00t þ 140T3

t S2t þ 525T4
t S0t − 210T5

t St; etc: ð3:8Þ

Thus, we see that changing the parametrization of the same coset (3.5) leads to the transformation of SLð2;RÞ invariant
Schwarzians (2.7) into noninvariant Schwarzians (3.8). It should be noted here that these three sets of Schwarzians, (3.2),
(3.4), and (3.8), are related quite similarly to those in (2.10):

ẑ2 ¼ σ3 ¼ S1;

ẑ3 ¼ σ4 ¼ S2;

ẑ4 ¼ σ5 þ σ23 ¼ S3 þ
5

2
S2
1;

ẑ5 ¼ σ6 þ 7σ3σ4 ¼ S4 þ 15S1S2;

ẑ6 ¼ σ7 þ 16σ3σ5 þ
9

2
σ24 þ

32

3
σ33 ¼ S5 þ

63

2
S1S3 þ

35

2
S2
2 þ

140

3
S3
1;

ẑ7 ¼ σ8 þ 25σ4σ5 þ 30σ3σ6 þ 130σ23σ4 ¼ S6 þ 84S2S3 þ 56S1S4 þ 650S2
1S2; etc: ð3:9Þ

It is important that nonlinear transformations from one set to
another include only Schwarzians themselves, without any
derivative. Thus, one can claim that the three series of
Schwarzians generate the same ring of differential operators.

IV. CONCLUSION

In this paper, a physical view was proposed on the origin
of higher Schwarzians, treating them as Goldstone fields
associated with the generators of the Virasoro algebra. The
motivation for such an association comes from the

transformation properties of higher Schwarzians under
Virasoro symmetry. Using this fact, the standard nonlinear
realization of the Virasoro symmetry was constructed,
equipped with the constraints that did the following:

(i) The first constraint

ω−1 ¼ dτ

introduced new time τ, completely inert with respect
to Virasoro symmetry (this step is mainly the same
as in the papers [9–11,13–15]).
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(ii) Next we imposed the constraints that nullified all
Cartan forms of the Virasoro group,

ωn ¼ 0; n ≥ 1:

These constraints express all Goldstone fields of our
nonlinear realization in terms of the unique field tðτÞ
(associated with the generator L−1) and its deriva-
tives. The expressions for higher Goldstone fields
provide a new set of higher Schwarzians.

We still have no generic expressions for our higher
Schwarzians. Instead, we presented the relations of our
few first Schwarzians (2.7) with those from the Aharonov,
Tamanoi, and Bonora-Matone sets (2.10).
We also explicitly demonstrated that minor change in the

coset space parametrization:

eitL−1eiuL0e
i
2
z1L1

Y∞
i¼2

e
i

ðiþ1Þ!ziLi ⇒ eitL−1eiuL0

Y∞
i¼2

e
i

ðiþ1Þ!ziLie
i
2
z1L1

together with the same constraints (1.9) leads to SLð2;RÞ
noninvariant Schwarzians (3.8). We established the rela-
tions of a few first such Schwarzians with Schippers’s
and Bertilsson’s Schwarzians (3.9).

Thus, all basic variants of higher Schwarzians have deep
relations with a set of Schwarzians that follow from a
nonlinear realization of Virasoro symmetry. It is clear that
the construction of supersymmetric generalizations of
higher Schwarzians becomes now almost straightforward
along the line similar to that considered in [10–15]. First,
one has to solve the purely technical task of finding generic
expressions for our higher Schwarzians.
Finally, note that in the recent paper [17] two possibility

to retrieve the Bertilsson higher Schwarzians [5] from the
physical systems have been discussed. However, there is
no direct relation between this paper and ours, because the
l-conformal Galilei symmetry considered there acts, in our
formulation, on the variable τ leaving all Schwarzians
invariant.
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