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We consider (1þ 1)-dimensional dilatonic black hole with two horizons, canonical temperatures of
which do not coincide. We show that the presence of quantum fields in such a background leads to a
substantial backreaction on the metric: 2D dilatonic analog of the semiclassical Einstein equations are
solved self-consistently, and we demonstrate that taking into account backreaction leads to a geometry with
two horizons with coinciding temperatures.
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I. INTRODUCTION

Spacetimes with multiple horizons are interesting back-
grounds to consider from the perspective of consistency
and/or stability when quantum fields are added. The
notable example is the Schwarzschild–de Sitter spacetime.
It is known that quantum fields in such a background in
Euclidean signature inevitably lead to the conical singu-
larity [1–5], whose presence poses a question of the
consistency of quantum field theory in the backgrounds
with multiple horizons.
Here, however, we adopt a different logic. Namely, one

can consider quantum fields in any state, which has a
sensible stress-energy tensor (e.g., conserved, etc.) in back-
grounds with Lorentzian signature. However, if a quantum
field is taken in a spacetime with a horizon, e.g., in a
thermal state that does not coincide with the canonical
temperature (Unruh, Hawking, or Gibbons-Hawking, cor-
respondingly), then its regularized stress-energy tensor
diverges at the horizon. We interpret such a situation as
leading just to a strong backreaction on the geometry by the
quantum fields (see, e.g., [6–15]).
Furthermore, if the geometry in question has multiple

horizons, and the canonical temperatures of these horizons
do not coincide, any thermal state of quantum fields leads
to divergence of the regularized stress-energy tensor on
at least one of the horizons. Then, in the situation with

multiple horizons, the regularized stress-energy tensor
inevitably has a divergence, which causes strong back-
reaction on the background geometry. In this paper, we
consider a solvable example of 2D quantum field theory
where such a conclusion can be checked. We restrict our
attention to the case when quantum fields are considered on
a classical gravitational background, i.e., gravitational field
is considered to be classical.
In [16] the authors have considered the two-dimensional

analog of Schwarzschild–de Sitter spacetime and argued
that for the thermal states the stress-energy tensor diverges
at least on one of the horizons. They also conclude that
the divergence of the stress-energy tensor signals that the
state of quantum fields is unphysical. Then, they attempt
to construct a state that is regular on both horizons. We,
however, adopt a different logic, as we have mentioned
above and which is in accordance with [17]. The point is
that thermal states in stationary backgrounds have a notable
advantage in comparison with other states: according to
the fluctuation-dissipation theorem, they are stable under
quantum corrections for self-interacting fields.1

The problem of backreaction of matter fields on back-
ground geometries has been addressed by many authors
(see, e.g., [6,7,18] for the related works). In these papers,
the Einstein equations

Gν
μ þ Λδνμ ¼ 8πGh∶T̂ν

μ∶i; ð1:1Þ
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1In [16] they consider a Gaussian theory in the background in
question. In this paper, we also restrict our attention to the
Gaussian theory, but keep in mind the effect of self-interactions.
Also, in two dimensions, the situation with the fluctuation-
dissipation theorem is different from higher dimensions due to
kinematic reasons, but we consider the 2D case as the model
example.
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are solved perturbatively:
(i) First, solution gð0Þ of the Einstein equations in the

vacuum (i.e., with the zero on the rhs) is considered
(usually a black hole with Λ ¼ 0).

(ii) Second, the stress-energy tensor for quantum fields
in the background gð0Þ is calculated.

(iii) Third, the Einstein equations are solved perturba-
tively for a new metric g on the lhs, while on the rhs
one plugs the stress-energy tensor calculated with
the metric gð0Þ.

In this approach, the new metric g is usually divergent at the
position of the horizon.
In our paper, we take a different approach. Namely, we

solve the 2D analog of Einstein equations (in dilatonic
gravity theory) self-consistently, i.e., the stress-energy
tensor is calculated for the same metric that is plugged
on the lhs of these equations. Of course, for this method to
work, one has to know the form of the expectation value of
the stress-energy tensor in a generic background. That is the
reason why at this stage we have to confine our analysis to
the 2D situation, where the exact form of the regularized
stress-energy tensor is known at any point in spacetime for
an arbitrary metric.
Note that there is another method to tackle the back-

reaction problem using the effective action approach (see,
e.g., [19–28]). The advantage of our method is that we can
explicitly calculate the quantum average of stress-energy
tensor for any level population [see Eq. (3.10)].
Usually to make the gravity in 2D dynamical one has to

add the dilaton field,

Sgrav¼ 1

16πG

Z
d2x

ffiffiffiffiffiffi
−g

p
e−2ϕ

�
R−4ωð∂μϕÞ2þ4λ2

�
; ð1:2Þ

where ω is an arbitrary constant. For particular values of
this ω parameter, this action reduces to the known theories:

(i) the ω ¼ 0 case is the Jackiw-Teitelboim theory;
(ii) if ω ¼ − 1

2
one obtains planar general relativity;

(iii) if ω ¼ −1 one has the first-order string theory.
To make the kinetic term canonical, one can always
redefine the dilaton field, but then the dilaton coupling
is modified.
The equations of motion following from the variation of

this action with respect to the metric and dilaton field,
correspondingly, are as follows:

e2ϕTgrav
μν ≡ −2ðωþ 1ÞDμϕDνϕþDμDνϕ − gμνDμDνϕ

þ ðωþ 2ÞgμνDμϕDμϕ − gμνλ2 ¼ 0; ð1:3Þ

R − 4ωDμDμϕþ 4ωDμϕDμϕþ 4λ2 ¼ 0: ð1:4Þ

The comprehensive analysis of solutions of these equations
of motion for arbitrary ω can be found in [29] (see [30–34]
for a review of this model, as well as discussion of various
quantum effects). For a particular choice of the integration

constant for the dilaton, the solution of these equations of
motion can be represented in the following form:

ϕ ¼ − logðarÞ 1
2ðωþ1Þ;

ds2 ¼ −
�
a2r2 − ðarÞ ω

ωþ1

�
dt2 þ dr2

a2r2 − ðarÞ ω
ωþ1

; ð1:5Þ

for some a related to λ and to be defined below.
We begin in Sec. II by discussing the properties of this

solution for the case when ω ¼ − 4
3
. The most important

property of such a solution is the presence of two horizons
with different temperatures. Then, in Sec. III we add
Gaussian quantum fields that live in the background of
this geometry and demonstrate that the regularized stress-
energy tensor diverges at least on one of the horizons. In
Sec. IV we solve semiclassical gravitational equations and
show that the resulting backreacted geometry has two
horizons with coinciding temperatures.

II. STARTING GEOMETRY

Solutions (1.5) with different ω correspond to different
physical situations, and we want to consider the most
similar one to the black hole in de Sitter spacetime. We are
looking for the multiple horizon scenario, where horizons
have different temperatures (surface gravity). To model this
situation, we propose to consider the case ω ¼ − 4

3
. Then

the metric takes the form

ds2 ¼ −½a2r2 − a4r4�dt2 þ dr2

a2r2 − a4r4
; ð2:1Þ

while the dilaton field acquires the form

ϕ ¼ 3

2
logðarÞ; ð2:2Þ

where a ¼ −
ffiffiffiffiffi
2λ2

3

q
. The Ricci scalar for the metric in

question is R ¼ − 4
3
λ2½1 − 6ðarÞ2�. This metric is defined

for r > 0 and possesses two horizons: at r ¼ 0 and
r ¼ 1=a. The canonical temperatures at the horizons are

T ¼
� a

2π ; r → 1=a;

0; r → 0:
ð2:3Þ

Note that the zero of the function ½a2r2 − a4r4� at r ¼ 0 is
degenerate. As a result, the corresponding temperature is
vanishing. The Penrose-Carter diagram for this spacetime
is depicted in Fig. 1. For such spacetimes that we consider,
it is useful to use other (tortoise) coordinates,

ds2 ¼ −½a2r2 − a4r4�ðdt2 − dr2�Þ; ð2:4Þ

where
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r� ¼ −
1

a2r
þ 1

a
arctanhðarÞ: ð2:5Þ

Or, using Eddington-Finkelstein coordinates,

u ¼ t − r�; v ¼ tþ r�; ð2:6Þ

we can rewrite the metric in the form

ds2 ¼ Cðu; vÞdudv;
Cðu; vÞ ¼ −a2r2ðu; vÞ þ a4r4ðu; vÞ; ð2:7Þ

where rðu; vÞ is determined from

v − u
2

¼ −
1

a2r
þ 1

a
arctanhðarÞ: ð2:8Þ

Using substitution

r ¼ 1

a coshðaXÞ ; ð2:9Þ

we can write the metric in the form

ds2 ¼ −e2νðXÞdt2 þ dX2; ð2:10Þ

where

e2νðXÞ ¼ sinh2ðaXÞ
cosh4ðaXÞ : ð2:11Þ

In these coordinates, the dilaton field is equal to

ϕðXÞ ¼ −
3

2
log coshðaXÞ: ð2:12Þ

In this paper, we use all these coordinate systems in
different situations, depending on where it is convenient
to use one of them.

III. ADDING QUANTUM FIELDS

The next step in our reasoning is to add quantum fields.
We consider real conformal field φ with the action

S ¼ Sgrav þ Smatter ¼ Sgrav −
1

2

Z
d2x∂μφ∂μφ; ð3:1Þ

just as in, e.g., [19–23], but rather than integrating the
field φ out, we explicitly quantize it and calculate the
regularized stress-energy tensor. We will adopt the canoni-
cal quantization.
It is useful to use the Eddington-Finkelstein coordinates

(2.7), in which the equations of motion for the scalar field
take the form

∂U∂VφðU;VÞ ¼ 0: ð3:2Þ

Thus, we can write down the mode decomposition of the
field operator as

φ̂ðU;VÞ ¼
Z

∞

0

dωffiffiffiffiffiffiffiffiffi
4πω

p �
â†ωeiωU þ b̂†ωeiωV þ H:c:

� ð3:3Þ

Commutation relations for the creation and annihilation
operators for the left and right moving modes are

�
â†ω; âω0

� ¼ δðω − ω0Þ; �
b̂†ω; b̂ω0

� ¼ δðω − ω0Þ: ð3:4Þ

We take the quantum field in the thermal state, for which

hâ†ωâω0 i ¼ hb̂†ωb̂ω0 i ¼ 1

eβω − 1
δðω − ω0Þ; ð3:5Þ

where β ¼ 1=T is the inverse temperature.
Then, the regularized stress-energy tensor is given by [35]

−h∶Tmatter
μν ∶ i ¼ Θμν þ

R
48π

gμν; ð3:6Þ

where

Θuu ¼
1

48π

�
2π

β

�
2

−
1

12π
C1=2

∂
2
uC−1=2;

Θvv ¼
1

48π

�
2π

β

�
2

−
1

12π
C1=2

∂
2
vC−1=2;

Θuv ¼ Θvu ¼ 0; ð3:7Þ
and Cðu; vÞ here is equal to (2.7). Then, plugging the
expression for the conformal factor Cðu; vÞ, we find that

Θuu ¼
(

1
48π

��
2π
β

	
2 − a2

�
; as r → 1

a ;

1
48π

�
2π
β

	
2; as r → 0;

ð3:8Þ

and the same expression forΘvv. We see that one can choose
the inverse temperature β such that Θμν is vanishing only on

FIG. 1. Maximal analytical extension of the metric (2.1). There
are infinite copies of this diagram extending both in vertical and
horizontal directions. Coordinates (2.1) cover only chart I (high-
lighted by green on the diagram). The boundaries of the chart are
lightlike surfaces corresponding to ar ¼ 0 and ar ¼ 1.

NONTRIVIAL SELF-CONSISTENT BACKREACTION OF … PHYS. REV. D 109, 065026 (2024)

065026-3



one of the horizons. If Θμν has a nonzero value on a horizon,
it implies that Tμ

ν and Tμν blow up on this horizon, which
leads to the substantial backreaction on the geometry.
In the coordinates (2.10), the stress-energy tensor has the

following form2:

−h∶Tmatter
tt ∶i ¼ π

6β2
þ e2νðXÞ

24π



ν0ðXÞ2 þ 2ν00ðXÞ

�
;

−h∶Tmatter
XX ∶i ¼ e−2νðXÞπ

6β2
−
ν0ðXÞ2
24π

: ð3:9Þ

Below, we will use these expressions to find a self-
consistent solution of the modified equations of motion.
We consider only thermal states in our calculations. Such

a state has level population given by the Planckian distri-
bution. However, our method allows one to extend the
calculation for any level population. For example, for
generic level population nðωÞ energy density is given by
the following expression:

−h∶Tmatter
tt ∶i ¼

Z
∞

−∞

ωdω
2π

�
nðωÞ þ Θð−ωÞ�

þ e2νðXÞ

24π

�
ν0ðXÞ2 þ 2ν00ðXÞ�; ð3:10Þ

where

hâ†ωâω0 i ¼ hb̂†ωb̂ω0 i ¼ nðωÞδðω − ω0Þ; ð3:11Þ

and Θð−ωÞ is the Heaviside step function. If nðωÞ ¼
½eβω − 1�−1, then

Z
∞

−∞

ωdω
2π



1

eβω − 1
þ Θð−ωÞ

�
¼ π

6β2
ð3:12Þ

and we obtain (3.9).

IV. BACKREACTION OF QUANTUM FIELDS
ON THE BACKGROUND GEOMETRY

Now, let us continue with the solution of the 2D dilatonic
analog of the semiclassical Einstein equations (1.1) self-
consistently, i.e., by plugging in it an arbitrary metric and
regularized stress-energy tensor of the matter fields calcu-
lated in the background of the same metric. In the 2D
dilaton gravity that we consider here, these equations of
course look different from (1.1).
Let us start with writing down nonzero components

of the gravitational stress-energy tensor in the unitary
gauge (2.10)3:

e2ϕðXÞTgrav
tt ¼ e2νðXÞ



λ2 −

2

3
ϕ0ðXÞ2 þ ϕ00ðXÞ

�
;

e2ϕðXÞTgrav
XX ¼ −λ2 − ϕ0ðXÞν0ðXÞ þ 4

3
ϕ0ðXÞ2: ð4:1Þ

Then, the 2D dilatonic analog of Einstein equations (1.1)
reduces to

λ2 −
2

3
ϕ0ðXÞ2 þ ϕ00ðXÞ ¼ 8πGe2ϕðXÞ

 
e−2νðXÞπ
6β2

þ 1

24π

�
ν0ðXÞ2 þ 2ν00ðXÞ�

!
;

−λ2 − ϕ0ðXÞν0ðXÞ þ 4

3
ϕ0ðXÞ2 ¼ 8πGe2ϕðXÞ

 
e−2νðXÞπ
6β2

−
ν0ðXÞ2
24π

!
; ð4:2Þ

where now ϕðXÞ and νðXÞ are unknown functions to be
determined from these equations.
When β ¼ 0 (the case of interest for us, as is explained

below), these equations have an obvious solution, with νðXÞ
being a linear function of X and ϕ being a constant. The
constants in the solution should be suitably adjusted accord-
ing to the values of λ andG. However, we are not looking for
such a solution. Because our solution should have an
appropriate asymptotic behavior at one of the horizons,
we want to find what happens under backreaction (due to the
quantum fields) with the solution with two horizons.
To find the solution of (4.2) with appropriate asymptotic

behavior, we have to apply numerical methods. To do that,

we need to specify boundary conditions. We will assume
that the horizon at r ¼ 0 (X ¼ ∞) remains unchanged.
Comparing with (3.8), one can see that this condition
implies that 1=β ¼ 0 (in other words, the state of the field is
the Fock space ground state). Hence, Eq. (4.2) for the

dimensionless variable x ¼ jajX (with a ¼ −
ffiffiffiffiffi
2λ2

3

q
) reads4

3

2
−
2

3
ϕ0ðxÞ2 þ ϕ00ðxÞ ¼ e2ϕðxÞ

3

�
ν0ðxÞ2 þ 2ν00ðxÞ�;

−
3

2
− ϕ0ðxÞν0ðxÞ þ 4

3
ϕ0ðxÞ2 ¼ −

e2ϕðxÞ

3
ν0ðxÞ2: ð4:3Þ

2Note that the stress-energy tensor is conserved
Dμh∶Tμν

matter∶i ¼ 0.

3Note, that the third equation δSgrav
δϕðXÞ ¼ 0 is satisfied if

Tgrav
μν ¼ 8πGh∶Tmatter

μν ∶i.
4Here we have set G ¼ 1.
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The solution of these equations for the dilaton field and for
the e2νðxÞ have the form shown in Fig. 2. These forms of the
solutions could have been guessed from the following
perspective: the solutions of (4.3) should interpolate from
the form of (2.12) and (2.11) at x ≫ x0 (where x0 is a
reference gluing point) to the solution

ϕðxÞ ≈ ϕ0 ¼ const; νðxÞ ≈ 3ffiffiffi
2

p e−ϕ0xþ const; ð4:4Þ

at x ≪ x0, as follows from (4.3). As can be seen from
Fig. 2, these are precisely solutions obeying such boundary
conditions.
There is one important point to note here. The solutions

(2.12) and (2.11) are defined in the region X > 0 [from
single valuedness of (2.9)], but the backreacted geometry of
Fig. 2 is defined on the entire axis X∈ ð−∞;þ∞Þ. The new
geometry has two horizons at X ¼ �∞, and canonical
temperatures at these two horizons are vanishing.5 Thus,
the backreacted geometry with the quantum state under
consideration is, in fact, stable.

V. CONCLUSIONS

We have started with the geometry that possessed two
horizons with different canonical temperatures. The fact
that the two horizons have different temperatures leads
to substantial backreaction of quantum fields on the

background metric—the divergence of the stress-energy
tensor on one of the horizons does not allow us to neglect
the influence of quantum fields on the metric of the
spacetime at this horizon. This happens if one considers
fields to be in a thermal state, and one could, in principle,
define a very specific state for which the regularized stress-
energy tensor is regular on both horizons (see, e.g., [16]).
However, unlike the thermal one, any another state will not
necessarily survive quantum corrections in self-interacting
theory (at least in dimensions higher than 2).
Then, we have written down the 2D dilatonic analog of

the semiclassical Einstein equations in a self-consistent
manner, i.e., the stress-energy tensor on the rhs of these
equations was calculated for an arbitrary metric, which is to
be determined from the resulting equations. Then, we have
solved these equations numerically with the boundary
condition that one of the horizons is unchanged.
We have found quite a remarkable result that the account

of the backreaction changes the geometry in a way that
the two horizons have the same (vanishing) temperature.
Hence, after the introduction of quantum fields and
accounting for the backreaction, we obtain a geometry
that is stable for the vacuum state (the thermal state with
vanishing temperature) of the quantum field.
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FIG. 2. Numerical plot of the dilaton field ϕðxÞ and for the e2νðxÞ with and without taking into account backreaction. Note that the
solution without backreaction is defined only for X > 0, while the solution with the backreaction is defined on the whole X axis.

5This can be seen from examination of the contribution
C1=2

∂
2
uC−1=2 to the stress-energy tensor at X ¼ �∞.
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