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Pointlike systems coupled to quantum fields are often employed as toy models for measurements in
quantum field theory. In this paper, we identify the field observables recorded by such models. In the case of
detector models that work in the strong coupling regime, we show that the detector’s pointer variable is
correlated with time-extended smeared field amplitudes, and it is insensitive to the particle content of the
field’s state. Then, we show that detector models that work in the weak coupling regime can account for
particle phenomenology, such as the existence of a particlelike time-of-arrival and resonant behavior.
Finally, we develop an improved field-detector interaction model, adapting the formalism of quantum
Brownian motion, that is exactly solvable. This model confirms the association of field and particle
properties in the strong and weak coupling regimes, respectively. Further, it can also describe the
intermediate regime, in which the field-particle characteristics “merge.” In contrast to standard perturbation
techniques, this model also recovers the relativistic Breit-Wigner resonant behavior in the weak coupling
regime. The modulation of particle-field duality by a single tunable parameter is a novel feature that is, in
principle, experimentally accessible.
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I. INTRODUCTION

Quantum field theory (QFT) has proved immensely
successful in describing the three fundamental interactions
(weak, strong, and electromagnetic). Despite the severe
challenges in its rigorous mathematical formulation, theo-
rists have developed pragmatic tools for calculations that
work really well and provide unambiguous predictions for a
large class of experiments. There is little reason to expect a
failure of QFT at high energies, as long as one does not
attempt to deal with gravity.
For this reason, it is really astonishing that the develop-

ment of a consistent measurement theory for local mea-
surements in QFT is an ongoing project until today. This is
not apparent in high-energy applications that focus on
scattering experiments that can be treated via S-matrix
theory (see discussion in [1,2]). The latter conceptualizes
scattering as a process with a single measurement event in
the far future, so there is no reason to employ the state-
update rule. This rule is employed, for example, in
measurements of Bell-type correlations, sequential mea-
surements, and postselected measurements. The problem is
that the usual state-update rule conflicts with relativistic

causality—see, [2–4] and references therein. For this
reason, even axiomatizations of QFT [5,6] refrained from
including a state-update rule into their axioms (see dis-
cussion in [7]).
The state-update rule is essentially the rule for joint

probabilities for multiple measurement events, and no
probabilistic theory can work in its absence. Many experi-
ments in quantum optics require the use of such proba-
bilities, for example, to describe photon bunching and
antibunching. These came to be described by photode-
tection theories, the most prominent of which is that of
Glauber [8].
Glauber’s theory was arguably the first QFT measure-

ment theory, and it proved remarkably successful. However,
its scope is limited. It works only for photons, and it
involves approximations that may not be appropriate in
setups of current interest, for example, quantum experi-
ments in space that involve long-distance propagation of
photons [9,10]. These approximations can introduce friction
with relativistic causality. More generally, the extension of
quantum information theory to the relativistic regime, in
order to take into account the effects of gravity and motion,
arguably requires and consistent a practicable theory of QFT
measurements [3,11].
A consistent and practicable measurement theory should

fulfill some requirements. A tentative and nonexhaustive
list is the following:
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(1) Causality: Probabilities are compatible with relativ-
istic causality, that is, there is no signaling outside the
light cone.

(2) Covariance: The probability assignment does not
depend on the choice of coordinate system. How-
ever, it may depend on the state of motion of
measuring apparatuses.

(3) Localization: The theory must provide a pragmatic
definition of spatially localized systems that is
compatible with experimental practice. This would
lead to the notion of multipartite systems and to the
construction of the associated probabilities.

(4) Nonrelativistic limit: The probability assignment
recovers the standard nonrelativistic measurement
theory in an appropriate limit.

(5) Practicality: It should provide concrete predictions
for experiments that cannot be modeled by S-matrix
theory, for example, in quantum optics.

A measurement theory fulfilling all these requirements
is still missing. Progress has been made on several fronts,
but a recurring feature is that when considering relativistic
measurement models the apparatus performing the meas-
urement plays a more prominent role than in the non-
relativistic counterpart.
There are two paradigms that address these challenges,

with varying degrees of success. First, histories-based
approaches and, second, local generalizations of scattering
processes.
An example of a histories-based approach is the quantum

temporal probabilities (QTP) approach [3,12–14]. This is
based on the decoherent histories approach to quantum
measurement that emphasizes emerging classicality in the
measuring apparatus [15–19]. QTP emphasizes the space-
time aspects of QFT probabilities, namely, that every
measurement record is localized in spacetime, and that
physical probabilities must correspond to genuine densities
in spacetime.
The second approach essentially formulates a QFT

version of von Neumann’s measurement theory [20,21]
that involves switching on an interaction between the
measured system and a probe in a compact region of
spacetime. In this paradigm, sequential measurements are
envisioned as sequential implementations of interactions
with independent probes, all of which interact locally with
the field [22]. Therefore, these approaches deal with a
generalization of particle physics-like scattering for model-
ing sequential measurements. When the probe is modeled as
a relativistic quantum field, as in [23–26], and such that the
interaction between apparatus and field satisfies some
locality conditions, covariance and some versions of cau-
sality are guaranteed.
Another approach to QFT measurements that falls into

the scatteringlike paradigm, is the detector model approach.
It is a pragmatic approach that is based on modeling the
coupling of the quantum field to pointlike (or extended)

quantum-mechanical systems that follow prescribed space-
time trajectories in flat or curved spacetime [27]. Standard
measurement theory is applied to the nonrelativistic detec-
tor, and the induced state-update ruled for the field can be
derived [28]. Frictions with causality and covariance arise
[29–32] and can be handled by specifying the regime of
validity of the model.
Detector models are a simple and useful tool for

exploring many issues relevant to information and mea-
surements in QFT [33]. The main example of such models
is the Unruh-DeWitt particle detector [34,35], originally
employed in the discussion of the Unruh effect. Particle
detector models, as their name suggests, were originally
intended to tackle the challenges associated with the notion
of particle in relativistic quantum field theory (QFT), that
is, to deal with the complications that a naive notion of
particle introduces in scenarios involving noninertial
observers or curved spacetimes. Certainly, many authors
argue that QFT does not admit a particle ontology [36–38].
In addition, there is controversy around field ontology (see
[39] and references therein). In this paper, we are agnostic
about this issue. We make no claim that particle detector
models are fundamental, rather we view them as useful
tools for extracting QFT phenomenology in certain
regimes (see discussion in [38]).
This paper follows the detector model approach to QFT

measurements. Our original motivation was to answer the
question:What do detectors detect? Or equivalently: Which
field observables are measured by pointlike detectors? To
this end, we considered two models, one that works well in
the strong coupling regime and one that is commonly used
in the weak coupling regime. The first model is the von
Neumann model of measurement [21] with an apparatus
that consists of one localized degree of freedom that is
strongly coupled to a scalar field and it behaves as a pointer
variable. The second model is the Unruh-DeWitt detector
coupled to the scalar field, and treated to lowest order in
perturbation theory (weak-coupling limit). For both models,
we analyze in detail the limit in which the procedure of
switching the detector on and off is irrelevant, that is, when
the detector and the field interact freely without external
influences (long-time limit). We found that in the von
Neumann model, the pointer variable is correlated with
spacetime averaged field amplitude, and we analyzed
the exact sense in which in the Unruh-DeWitt model, the
detector captures the particle aspects of the field in the
weak-coupling and long-time limit.
Our results suggest that the coupling strength is a key

factor in modulating the particle-field duality in field-
detector interactions. This property, pertaining to a funda-
mental aspect of QFT, could be measured in any setup that
allows for a tunable interaction strength of a localized system
with a quantum field, for example, in circuit quantum
electrodynamics [40], cavity optomechanics [41], Rydberg
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atoms [42] or in analogue gravity experiments with Bose-
Einstein condensates [43,44].
For this reason, we constructed a new QFT measurement

model that enables us to analyze both strong and weak
coupling, but also the interpolating regimes. This model is
an adaptation of the quantum Brownian motion (QBM)
models, that have been extensively studied in the theory of
open quantum systems [45–47]. QBM models describe a
harmonic oscillator in contact with a heat bath, itself
modeled by a large number of harmonic oscillators. With
some modifications that model can describe the measure-
ment of a quantum field by an oscillator detector.
The key point is that our model can be solved exactly, so

it goes well beyond the results obtained in the lowest order
in perturbation theory in the Unruh-DeWitt model, or
through the drastic approximations of von Neumann’s
model. We show that, indeed, the detector captures the
field aspects at strong coupling and particle aspects, such as
resonance and time-of-arrival behavior, at weak coupling.
In the regime of intermediate couplings, field and particle
characteristics “merge.” It is an advantage of solvable
models that they can be used to characterize intermediate
regimes, in which neither the field nor the particle concepts
can be used exclusively for interpreting the detector’s
response.
The structure of this paper is the following. In Sec. II, we

analyze field measurements in von Neumann’s model, and
in Sec. III, we explain in what sense the Unruh-DeWitt
model acts as a particle detector. In Sec. IV, we develop our
QBM-based measurement model, and we analyze its
properties. In Sec. V, we summarize and discuss our results.

II. FIELD MEASUREMENTS IN VON
NEUMANN’S MODEL

The simplest quantum measurement model involves the
recording of an observable Â by a single pointer variable X̂
with continuous spectrum. Let HS be the Hilbert space of
the microscopic system that is being measured and HA be
the Hilbert space of the apparatus. Let the Hamiltonian of
the system be ĤS and the Hamiltonian of the apparatus ĤA.
In an ideal apparatus, the pointer variable only changes
during the interaction with the microscopic system. Once
this interaction is over, the pointer variable X̂ is frozen. This
means that ½ĤA; X̂� ¼ 0. The essence of this analysis
remains unchanged if we take ĤA ¼ 0, or if we assume
that ĤA is negligible in comparison to the interaction
Hamiltonian.
In measurement models, it is common to assume that the

interaction between system and apparatus is switched on
for a finite time. We consider an interaction Hamiltonian of
the form

Ĥint ¼ fðtÞÂ ⊗ P̂; ð1Þ

where P̂ is the “conjugate momentum” of the pointer
variable X̂, i.e., ½X̂; P̂� ¼ i. The switching function fðtÞ
vanishes outside the time interval ½0; T�.
Let jΩi be the initial state of the apparatus, and jψ0i the

initial state of the measured system. It is straightforward to
calculate that the probability density pðXÞ for the pointer
variable at times t > T

pðXÞ ¼ hψ0jD̂†
XD̂Xjψ0i; ð2Þ

where

D̂X ¼
Z

dkffiffiffiffiffiffi
2π

p eikXhkjΩiT e−ik
R

dtfðtÞÂðtÞ ð3Þ

is the measurement operator defined in terms of the
eigenvectors of P̂ denoted as jki. In Eq. (3), T stands
for the time-ordered expansion of the exponential and ÂðtÞ
is the Heisenberg-picture operator eiĤStÂe−iĤSt. It can be
shown that the operator

Π̂X ¼ D̂†
XD̂X ð4Þ

defines a positive-operator-valued measure for the time-
averaged values of the observable Â, weighted by the
function fðtÞ [48].
Here we apply this model to the measurement of a scalar

field ϕ̂. We take Â ¼ ϕ̂ðgÞ ¼ R
d3xϕ̂ðxÞgðxÞ for some

smearing function gðxÞ that models the spatial extension
of the interaction. We work in a reference frame where the
detector is located at the coordinate origin, so gðxÞ is
peaked around x ¼ 0.
For a free field of mass m,

ĤS ¼
1

2

Z
d3xðπ̂2 þ ð∇ϕ̂Þ2 þm2ϕ̂2Þ: ð5Þ

If we denote ϕ̂tðgÞ ¼ eiĤStϕ̂ðgÞe−iĤSt The field commuta-
tion relations are

½ϕ̂t1ðgÞ; ϕ̂t2ðgÞ� ¼ i
Z

d3xd3x0Δðt1 − t2; x − x0ÞgðxÞgðx0Þ;

ð6Þ

where ϵp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
, and

Δðt;xÞ ¼
Z

d3p
ð2πÞ3ϵp

sinðp · x − ϵptÞ ð7Þ

is the commutator distribution for the Klein-Gordon field.
Consider a pointer variable is locally coupled to the field

through the interaction Hamiltonian
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Ĥint ¼ fðtÞϕ̂ðgÞ ⊗ P̂: ð8Þ

We define the spacetime smearing function Fðt; xÞ ¼
fðtÞgðxÞ, and we write the associated smeared Heisenberg-
picture field ϕ̂ðFÞ ¼ R

dtdxFðt; xÞϕ̂ðt; xÞ. Then, we find
that the probability density of the pointer variable after the
interaction with the field is given by Eq. (2) with

D̂X ¼ w½X − ϕ̂ðFÞ�; ð9Þ

in terms of

wðxÞ ¼
Z

dkffiffiffiffiffiffi
2π

p eikx−
i
2
k2δFhkjΩi; ð10Þ

where

δF ¼
Z

dtd3xdt0d3x0θðt − t0Þ

× Fðt; xÞΔðt − t0; x − x0ÞFðt0; x0Þ: ð11Þ

To derive (10) we have used the Magnus expansion for the
time-ordered exponential that appears in (3), namely,

T e−ik
R

dtfðtÞϕ̂tðgÞ ¼ exp

�
−ikϕ̂ðFÞ − i

2
k2δF

�
: ð12Þ

It is straightforward to check that
R
dxjwðxÞj2 ¼ 1, hence,

that Eq. (4) defines a positive-operator-valued-measure
(POVM). This POVM corresponds to the measurement
of time-averaged smeared-field amplitudes. Indeed, we will
associate the expectation value and variance of the pointer
variable after the interaction to the expectation value and
variance of the smeared field amplitudes.
To this end, we choose an initial state jΩi for the pointer

variables, such that hΩjX̂jΩi ¼ 0 and hΩjP̂jΩi ¼ 0, and no
initial correlation between position and momentum. Then,R
dxxjwðxÞj2 ¼ 0, and the variance N 2 of jwðxÞj2 is

N 2 ¼ σ2X þ σ2Pδ
2
F; ð13Þ

where σ2X and σ2P are the position and momentum variances
for jΩi, respectively.
It follows that

hX̂i ¼ hψ0jϕ̂ðFÞjψ0i; ð14Þ

ðΔXÞ2 ¼ ½Δϕ̂ðFÞ�2 þN 2; ð15Þ

where ψ0 the initial state of the field. This implies that the
pointer variable X̂ is correlated with the smeared field
ϕ̂ðFÞ. The correlation is not perfect, as it is characterized by
a noiseN that is intrinsic to the detector. By the uncertainty
relation σXσP ≥ 1

2
, we derive a lower bound for N ,

N ≥
ffiffiffiffiffiffiffiffi
jδFj

p
: ð16Þ

This bound does not depend on the initial state of the
apparatus, but only on the localization area of the field, and
the strength of the coupling as encoded in δF.
The signal-to-noise ratio for this system is jhX̂ij=N .

Hence, the necessary condition for a well-defined meas-
urement is that

jhϕ̂ðFÞij ≫
ffiffiffiffiffiffiffiffi
jδFj

p
: ð17Þ

For a state with a fixed number of particles, e.g., a wave
packet, it holds that hϕ̂ðFÞi ¼ 0 and as a result there is no
signal. This implies that this model cannot capture the
particle aspects of the quantum field.
To estimate the strength of the noise in a field amplitude

measurement, consider a Gaussian smearing function

Fðt;xÞ ¼ λ

4π2s3XsT
e
− x2

2s2
X
− t2

2s2
T ; ð18Þ

with spatial width sX and temporal width sT ; λ plays the
role of the coupling constant. The function F becomes
proportional to a delta function for sX; sT → 0, while the
limit of a constant interaction corresponds to σT; λ → ∞,
with λ=σT constant. We straightforwardly calculate

δF ¼ 2λ2

π7=2

Z
∞

0

p2dp
ϵp

e−s
2
Xp

2

DðsTϵpÞ; ð19Þ

where DðxÞ ≔ e−x
2 R x

0 dte
t2 is the Dawson function. For

m ≠ 0, andmsT ≫ 1, we can use the asymptotic expression
for the Dawson function DðxÞ ≃ 1

2x, to obtain δF ∼ σ−3x σ−1T ,
i.e., δF is inversely proportional to the spacetime volume of
the interaction region. For m ¼ 0,

δF ¼ λ2

2π3
sT

sXðs2X þ s2TÞ
: ð20Þ

III. THE PERTURBATIVE UNRUH-DEWITT
DETECTOR

Next, we consider the case where the field-apparatus
interaction term is much weaker compared to the
Hamiltonian ĤA of the apparatus. In this case, we can
evaluate the detection probability using perturbation
theory. The weak coupling approximation is physically
relevant, as it applies, for example to photodetection and to
neutrino detection.
The Unruh-DeWitt detectors have been used extensively

as measurement models in this regime. Induced field
observables for general particle detector models, as well
as for the particular case of the pointlike Unruh-DeWitt
model, were first presented in [49]. A more extensive
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account of the induced field observables (POVMs), as well
as a proposal for state update, was developed in [28]. The
Unruh-DeWitt model can also be used in the strong
coupling regime for a delta switching function [50,51].
Here, we analyze the detector’s response to a fixed-

particle state of the field, in the weak-coupling and long-
time limit, to establish that in this regime the model
accounts for particle phenomenology. In particular, we will
look at the phenomena of resonance and time-of-arrival.
Let us denote by jϵi, the eigenstates of the detector’s
Hamiltonian ĤA, ĤAjϵi ¼ ϵjϵi. We take the initial state
of the apparatus jΩi to coincide with the ground state of ĤA,
and we choose the energy scale so that ĤAjΩi ¼ 0. We
assume an interaction Hamiltonian of the form fðtÞμ̂ ϕ̂ðgÞ,
as in Sec. II, where μ̂ is an operator on the Hilbert spaceHA
of the apparatus. The switching function fðtÞ vanishes for t
outside ½0; T�.
To leading order in the interaction, the excitation

probability for the apparatus is

P ¼
X
ϵ>0

jμðϵÞj2
Z

dtd3x
Z

dt0d3x0Fðt; xÞFðt; x0Þ

× e−iϵðt−t0Þhψ0jϕ̂ðt0; x0Þϕ̂ðt; xÞjψ0i; ð21Þ

where μðϵÞ ¼ hϵjμ̂jΩi, and again Fðt; xÞ ¼ fðtÞgðxÞ.
Consider a field state jψ0i with a definite number of

particles. Then, P in Eq. (21) is a sum of two terms,
P ¼ P0 þ P1. The first term

P0 ¼
X
ϵ>0

jμðϵÞj2
Z

dk
2ϵk

jF̃ðϵþ ϵk; kÞj2 ð22Þ

is independent of the initial state of the quantum field, and it
is due to the excitation of the vacuum from the switching of
the interaction. In Eq. (22), F̃ðω; kÞ is the Fourier transform
of Fðt; xÞ, and dk ¼ d3k=ð2πÞ3=2. P0 functions as a noise
term in the measurement scheme; it becomes stronger for
smearing functions that are strongly localized in spacetime.
If τ is the effective duration of the interaction, the noise is
suppressed if τϵ1 ≫ 1, where ϵ1 is the energy of the first
excited state in the detector.
The second term P1 depends on the one-particle reduced

density matrix of the field ρ0ðk; k0Þ ¼ hψ0jâ†kâkjψ0i. For
simplicity, we consider a pure ρ0ðk; k0Þ ¼ ψ0ðkÞψ�

0ðk0Þ, to
obtain

P1 ¼
X
ϵ>0

jμðϵÞj2
����
Z

dkffiffiffiffiffiffiffi
2ϵk

p F̃�ðϵk þ ϵ; kÞψ0ðkÞ
����2

þ
X
ϵ>0

jμðϵÞj2
����
Z

dkffiffiffiffiffiffiffi
2ϵk

p F̃�ðϵk − ϵ; kÞψ0ðkÞ
����2: ð23Þ

is the “signal” as it depends on the initial field state, e.g., a
wave packet of the form

jψ0i ¼
Z

dkψ0ðkÞâ†ðkÞj0i: ð24Þ

A proper measurement requires a large signal-to-noise
ratio, hence, ϵ1τ ≫ 1. In this regime, the first term in
the right-hand side of Eq. (23) is negligible.
This model functions as a particle detector for suffi-

ciently large duration of the interaction. To show this, we
write the excitation probability (23) as a spacetime integral:

P1 ¼
X
ϵ>0

jμðϵÞj2
����
Z

dtd3xeiϵtFðt; xÞψNWðt; xÞ
����2

þ
X
ϵ>0

jμðϵÞj2
����
Z

dtd3xe−iϵtFðt; xÞψNWðt; xÞ
����2

where we defined the Newton-Wigner wave function [52]

ψNWðt; xÞ ¼
Z

dkffiffiffiffiffiffiffi
2ϵk

p ψ0ðkÞeikx−iϵkt: ð25Þ

Assume an almost monochromatic initial state with
momentum p0, such that ψNWð0; xÞ is concentrated around
a point x0. Then, ψNWðt; xÞ is concentrated in a world
tube W that surrounds surrounding the classical path
xðtÞ ¼ x0 þ p0t. Let C stand for the region of support
of the function F. The probability density P1 is appreciably
different from zero only if W ∩ C ≠ 0. In a semi-classical
language, this means that the bundle of classical particle
paths associated with the initial conditions cross into the
interaction region. This conforms to our classical intuitions
about the behavior of a particle detector.
Realistic field-detector couplings are typically isotropic,

that is, the smearing function gðxÞ is a function only of jxj.
In this case, F̃ depends only on k ¼ jkj, and the excitation
probability P1 involves an integral

R
dnψðk;nÞ, where

n ¼ k=jkj. Writing ψðkÞ ¼ P
l;ml

ψl;ml
ðkÞYl;ml

ðnÞ, in
terms of spherical harmonics Yl;ml

ðnÞ, we find that only
the zero angular momentum ψ0; 0ðkÞ component survives.
This means that propagation is essentially one-dimensional,
along the axis that connects the source and the detector,
again in accordance with our classical intuition. The fact
that the detector “clicks” in response to zero angular
momentum spherical waves (and not plane waves) can be
used to explain the counterintuitive behavior that was
reported in [50], that in certain spacetime dimensions the
detector’s excitation probability decreases in the monochro-
matic limit.
In the limit of an interaction that is adiabatically switched

on, that is, for fðtÞ ¼ 1, we have F̃ðϵ;kÞ ¼ 2πδðϵÞgðkÞ,
and

P1 ¼
X
ϵ>0

ϵjμðϵÞgð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

p
Þj2

8π2ðϵ2 −m2Þ jψ0;0ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 −m2

p
Þj2:
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If the energy levels of the detector are well separated, and
the initial state is approximately monochromatic, then the
detection probability is characterized by resonances with
respect to the incoming energy. However, these resonances
are not of the standard form (Breit-Wigner for scattering,
or Wigner-Weisskopf for photodetection), but they mirror
the profile of the wave function ψ0;0. This behavior is
arguably unphysical, or at least, it does not account for the
observed resonances. However, this is to be expected,
because resonances cannot be consistently identified from
the leading-order terms in perturbation theory [53,54]; the
derivation of the standard form requires at least a partial
resummation of a perturbative series—see, for example,
chapter 7 in [55], or chapter 18 in [56].

IV. QUANTUM BROWNIAN MOTION
AS A QFT MEASUREMENT MODEL

In Secs. II and III, we saw that a field-particle interaction
with an UDW-type coupling corresponds (i) to a measure-
ment of field properties if the apparatus Hamiltonian is
negligible in compared to the interaction term, and (ii) to a
measurement of particle properties if the interaction is weak
compared to the apparatus Hamiltonian. In this section, we
present a model that incorporates both cases for different
parameter regimes. Furthermore, this model does not
require the trick of switching on the field-apparatus
interaction.
To this end, we consider a Hamiltonian Ĥ ¼ ĤS þ

ĤA þ ĤI , where ĤS is the field Hamiltonian (5), the
apparatus Hamiltonian

ĤA ¼ 1

2M
P̂2 þ 1

2
Mω2

0X̂
2 ð26Þ

describes an harmonic oscillator of mass M and frequency
ω0, and the interaction Hamiltonian is ĤI ¼ λϕ̂ðgÞX̂.
The total Hamiltonian is of the quantum Brownian

motion (QBM) form

Ĥ ¼ P̂2

2M
þ 1

2
Mω2

0X̂
2 þ

X
i

�
p̂2
i

2mi
þ 1

2
miω

2
i q̂

2
i

�

þ X̂
X
i

ciq̂i; ð27Þ

i.e., it describes the interaction of a distinguished oscillator
with a bath of oscillators labeled by i.
QBM models admit exact solutions for their time

evolution [46,47,57–59]. Here, we follow the presentation
of [56]. We first define the dissipation kernel

γðtÞ ≔
X
i

c2i
2miω

2
i
cosðωitÞ; ð28Þ

and then we identify the function uðtÞ that solves the
integrodifferential equation

üðtÞ þ ω̄2uðtÞ þ 2

M

Z
t

0

dt0γðt − t0Þu̇ðt0Þ ¼ 0; ð29Þ

subject to initial conditions uð0Þ ¼ 0 and u̇ð0Þ ¼ 1. We
have defined the regularized frequency ω̄ by ω̄2 ¼ ω2

0−
2γð0Þ=M.
Then, we can solve for X̂ðtÞ and P̂ðtÞ in the Heisenberg

picture,

X̂ðtÞ ¼ u̇ðtÞX̂ð0Þ þ 1

M
uðtÞP̂ð0Þ

−
1

M

Z
t

0

dt0uðt − t0Þ
X
i

ciq̂0i ðt0Þ; ð30Þ

P̂ðtÞ ¼ M
d
dt

X̂ðtÞ; ð31Þ

where q̂0i ðtÞ stands for the evolution of the bath harmonic
oscillators in the absence of interactions.
A QBM model is specified by the distribution of

frequencies ωi and couplings ci among the environment
oscillators. These determine the dissipation kernel uniquely,
and then, the function uðtÞ, by the solution of Eq. (29). In
the context of the field-detector interaction, the bath
oscillators are labeled by the momenta k, ωi corresponds
to ϵk, the oscillator masses mi ¼ 1, and the coupling
constants ci correspond to λg̃ðkÞ, where g̃ is the Fourier
transform of the smearing function gðxÞ. The dissipation
kernel is then,

γðtÞ ¼ λ2

4π2

Z
∞

0

dkk2jg̃ðkÞ2j
ϵ2k

cosðϵktÞ; ð32Þ

while the Heisenberg-picture operators X̂ðtÞ and P̂ðtÞ are
given by

X̂ðtÞ ¼ u̇ðtÞX̂ð0Þ þ 1

M
uðtÞP̂ð0Þ

−
λ

M

Z
t

0

dt0uðt − t0Þϕ̂gðt0Þ; ð33Þ

P̂ðtÞ ¼ MüðtÞX̂ð0Þ þ u̇ðtÞP̂ð0Þ

− λ

Z
t

0

dt0u̇ðt − t0Þϕ̂gðt0Þ: ð34Þ

Here, ϕ̂gðtÞ is the Heisenberg-evolution of the smeared

field ϕ̂ðgÞ.
We assume that the apparatus oscillator is prepared in an

initial state with hX̂i ¼ 0, hP̂i ¼ 0 and cXP ¼ 0. Then, we
obtain the following equations for the mean and the
variances of the detector’s position and momentum.
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hX̂ðtÞi ¼ −
λ

M

Z
t

0

dt0uðt − t0Þhϕ̂gðt0Þi; ð35Þ

hP̂ðtÞi ¼ −λ
Z

t

0

dt0u̇ðt − t0Þhϕ̂gðt0Þi; ð36Þ

hX̂2ðtÞi ¼ σ2Xu̇
2ðtÞ þ σ2P

M2
u2ðtÞ þ λ2

M2

Z
t

0

dt0

×
Z

t

0

dt00uðt − t0Þuðt − t00Þhϕ̂gðt0Þϕ̂gðt00Þi; ð37Þ

hP̂2ðtÞi ¼ M2σ2Xü
2ðtÞ þ σ2Pu̇

2ðtÞ þ λ2
Z

t

0

dt0

×
Z

t

0

dt00u̇ðt − t0Þu̇ðt − t00Þhϕ̂gðt0Þϕ̂gðt00Þi: ð38Þ

To proceed further, we need to evaluate the function uðtÞ.
We will analyze the case m ¼ 0. For concreteness, we take
jgðkÞj2 ¼ e−k=Λ, whereΛ is an ultra-violet cutoff;Λ−1 is the
size of the interaction region. Then,

γðtÞ ¼ λ2

4π2
Λ

1þ Λ2t2
: ð39Þ

For Λ ≫ ω̄, we can approximate γðtÞ in Eq. (29) with
λ2

4π δðtÞ. Then, Eq. (29) becomes

üþ 2Γu̇þ ω̄2u ¼ 0; ð40Þ

where Γ ¼ λ2

16πM. This is the equation of a damped harmonic
oscillator, with solution

uðtÞ ¼
(
ω−1 sinðωtÞe−Γt; ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω̄2 − Γ2

p
; Γ < ω̄

w−1 sinhðwtÞe−Γt; w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2 − ω̄2

p
; Γ > ω̄:

At the strong-coupling limit, ω̄=Γ ≪ 1, and uðtÞ≃
1
2Γ ðe−

ω̄2

2Γt − e−2ΓtÞ, i.e., uðtÞ interpolates between 0 at t ¼ 0

and 1
2Γ at times t, such that Γ−1 ≪ t ≪ Γω̄−2. Therefore, we

can approximate uðtÞ ≃ 1
2Γ θðtÞ. Then, Eq. (36) becomes,

hP̂ðtÞi ¼ −
λ

4Γ
hϕ̂gðtÞi; ð41Þ

that is, the detector’s momentum observable records the
field’s expectation value. Equation (41) holds for any field
pulse that (i) arrives at the detector at times t ≫ Γ−1, and
(ii) is of duration τ, such that ω̄2τ=Γ ≪ 1. In this regime,
ðΔPÞ2ðtÞ ≃ λ2

16Γ2 ðΔϕgÞ2ðtÞ. Hence, the oscillator acts as an
antenna: it records faithfully “classical” field states, that is,
field states with small quantum fluctuations.
For an initial state with a fixed number of particles,

hX̂ðtÞi ¼ 0 and hP̂ðtÞi ¼ 0. Then, the natural quantity for a
detection signal is the energy of the harmonic oscillator,

hĤðtÞi ¼ ðΔP̂Þ2ðtÞ
2M

þMω̄2ðΔX̂Þ2ðtÞ
2

: ð42Þ

The expressions simplify if we assume an initial state that is
localized at x ¼ L, such that jLjΓ ≫ 1. Then, the signal
from incoming particles appears at times t > jLj, when
many transient noise terms have vanished. We obtain
(for m ¼ 0),

hĤðtÞi ¼ hðtÞ þN ; ð43Þ

where

N ¼ 2Γ
π

Z
∞

0

dkkjgðkÞj2ðω̄2 þ k2Þ
ðω̄2 − k2Þ2 þ 4Γ2k2

ð44Þ

is the vacuum noise, and

hðtÞ ¼ 8πΓ
����
Z

dkffiffiffiffiffiffiffi
2ϵk

p ψ0ðkÞgðkÞ
ω̄2 þ ϵ2k

ω̄2 þ ðΓ − iϵkÞ2
e−iϵkt

����2
ð45Þ

is the detection signal.1 We assume that the initial single-
particle state is almost monochromatic at k ¼ k0. Then,

hðtÞ ¼ 8πΓjgðϵ0Þj2ðϵ20 þ ω̄2Þ
ðω̄ − ϵ20Þ2 þ 4Γ2ϵ20

jψNWðt; 0Þj2; ð46Þ

where ϵ0 ¼ jk0j.
We see that the detection signal appears after the time

t ¼ jLj that the Newton-Wigner wave packet arrives at
x ¼ 0, as in the perturbative Unruh-DeWitt model of
Sec. III. Note that no switching function has been
employed. Except for noise terms, the field interacts with
the detector only when the wavepacket has reached the
locus of the detector.
We also note that for Γ ≪ ω̄, the signal is characterized

by a resonance that is independent of the shape of the initial
state. The resonance is described by the relativistic Breit-
Wigner distribution [60].
We conclude that the harmonic oscillator in this model

functions as a particle detector that records energy at small
Γ, and as an antenna that records the field’s amplitude at
large Γ. The model is well defined also in the regime of
intermediate Γ, thus interpolating between the field regime
(also described by von Neumann’s model) and the particle

1The noise term diverges logarithmically as the size of the
detector vanishes, that is, g̃ → 1. Note that we have used the
pointlike renormalized dynamics for solving the integrodiffer-
ential equation, but we kept the smearing in the source term in
order to calculate the noise. It can be shown that this noise term
represents the leading order behavior of the noise in a power
expansion involving a UV cutoff.
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regime (also described by the perturbative Unruh-DeWitt
detector).

V. CONCLUSIONS

In this article, we explored the principle of field-particle
duality using simple models for QFT measurements. We
saw that von Neumann’s theory describes the measurement
of classical field amplitude in the regime of strong field-
detector coupling. We also saw that the perturbative Unruh-
DeWitt model indeed describes particle detection in the
regime of weak field-detector coupling, with the caveat that
it does not provide a description of resonances reproducing
observed experimental results. Indeed, resonances of the
Breit-Wigner type require absorption effects that can only
be captured nonperturbatively, or after a partial resumma-
tion of the perturbative series.
Then, we presented a new measurement model that is

based on QBM. This model is exactly solvable. It enables
us to show that in the long-time limit, field amplitude
measurements occur at strong coupling and particle mea-
surements at weak coupling. It also accounts for the regime
of intermediate couplings that corresponds to the transition
from field to particle behavior. The fact that this transition
is modulated by a single parameter is a novel aspect of
field-particle duality, which we expect to be experimentally

accessible in setups that allow for tunable coupling of a
quantum oscillator with a quantum field.
Besides experimental relevance, the model presented

here is a substantial improvement over existing models for
QFT measurements that are based on the coupling of fields
to pointlike systems. Being exactly solvable, it provides a
consistent analysis of the strong coupling regime, and it
also provides a consistent description of resonances.
Furthermore, the model remains exactly solvable if we
introduce multiple detectors [58,59], for example, in order
to analyze causality in relation to field measurements, or
relativistic quantum communication [61].
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