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In semiclassical gravity, the vacuum expectation value hN̂i of the particle number operator for a quantum
field gives rise to the perception of thermal radiation in the vicinity of a black hole. This Hawking effect
has been examined only for observers asymptotically far from a Kerr black hole; here we generalize the
analysis to various classes of freely falling observers both outside and inside the Kerr event horizon.
Of note, we find that the effective temperature of the hN̂i distribution remains regular for observers at the
event horizon but becomes negative and divergent for observers reaching the (Cauchy) inner horizon.
Furthermore, the perception of Hawking radiation varies greatly for different classes of observers, though
the spectrum is generally a graybody that decreases in intensity with black hole spin and increases in
temperature when looking toward the edges of the black hole shadow.

DOI: 10.1103/PhysRevD.109.065023

I. INTRODUCTION

If a classical black hole that formed from a gravitational
collapse is immersed within a quantum field initially in a
vacuum state, someone far away from that black hole will
eventually detect excitations of that quantum field in an
effect known as Hawking radiation [1]. This radiation was
found to follow a thermal distribution in the geometric
optics (high-frequency) limit, with a temperature propor-
tional to the surface gravity ϰþ of the black hole at the event
horizon. The key feature required for such radiation to exist
is a characteristic exponential redshifting of modes near a
(quasi-)trapping horizon. As a result, the Hawking effect
can also be related to the radiation seen by, e.g., an
accelerating observer or a moving mirror model, where
such a redshifting also occurs [2,3].
The Hawking radiation detected asymptotically far from

a black hole is negligibly small for all known astrophysical
black holes, orders of magnitude below current observa-
tional capabilities. However, the radiation can take on a
substantially different form when an observer approaches
and/or falls into a black hole. For such an observer, instead
of seeing a Hawking temperature proportional to the
surface gravity ϰþ, one can define an effective temperature
function κ that tracks the rate of redshifting they perceive,
and this κ reproduces the thermal Hawking result when a
suitable adiabatic condition is met (see Sec. II B for more
details) [2,3]. One may wonder whether the Hawking
temperature closer to a black hole’s event horizon may
be high enough to observe secondary astrophysical effects,
but more importantly, the Hawking flux detected inside a

black hole can be enormous and has profound implications
for the self-consistency of black hole models in semi-
classical gravity (i.e., quantum field theory placed over a
classical background).
The perception of Hawking radiation has been analyzed

for various classes of observers during and after gravita-
tional collapse in the Schwarzschild exterior [4,5], the
Schwarzschild interior [6,7], and most recently, the
Reissner-Nordström exterior and interior [8]. The goal
of the present work is to extend this analysis to the late-
time behavior of rotating black holes described by the
Kerr metric.
What should one hope to see when analyzing the

Hawking content in the Kerr spacetime? Several results
may be anticipated from prior studies:
(1) For an inertial observer in the vicinity of the event

horizon, the effective temperature has roughly the
same order of magnitude as the standard tiny
Hawking temperature at infinity (i.e., the event
horizon is semiclassically well behaved) [4–7].

(2) For an observer in the vicinity of the inner horizon,
the effective temperature is negative and diverges in
the same manner as the Penrose blueshift perturba-
tion singularity [8–10].

(3) Hawking radiation is not confined to the radial
direction—an observer looking in an arbitrary
direction in their field of view will still see the
characteristic exponential redshifting of modes,
with higher Hawking temperatures toward the edge
of the black hole’s shadow and an increasingly
isotropic distribution as they approach the inner
horizon [7,8].

(4) The Hawking temperature can become negative
even outside of the event horizon for a black hole

*Tyler.McMaken@colorado.edu
†Andrew.Hamilton@colorado.edu

PHYSICAL REVIEW D 109, 065023 (2024)

2470-0010=2024=109(6)=065023(29) 065023-1 © 2024 American Physical Society

https://orcid.org/0000-0003-3189-8565
https://orcid.org/0000-0002-3816-5973
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.065023&domain=pdf&date_stamp=2024-03-20
https://doi.org/10.1103/PhysRevD.109.065023
https://doi.org/10.1103/PhysRevD.109.065023
https://doi.org/10.1103/PhysRevD.109.065023
https://doi.org/10.1103/PhysRevD.109.065023


close enough to extremality (e.g., for a Reissner-
Nordström charge Q=M >

ffiffiffiffiffiffiffiffi
8=9

p
, although adiaba-

ticity may not necessarily be satisfied there) [8].
One may expect to see similar features for Hawking

radiation in the Kerr spacetime, which more closely models
astrophysical black holes than simpler, nonrotating models.
Such results would confirm through entirely analytical
means the same semiclassical divergence recently seen
numerically for the renormalized stress-energy tensor at
the Kerr Cauchy horizon [11]. This divergence points toward
a semiclassical form of the cosmic censorship conjecture,
that quantum effects will always act to close off Cauchy
horizons that would otherwise serve as entryways to worm-
holes and timelike singularities. Though the true quantum
gravitational nature of a black hole interior remains elusive,
these first-order results from quantum field theory over
curved spacetime imply either that the Cauchy horizon is the
source of a roiling quantum atmosphere that marks the
boundary endpoint of spacetime itself, or that the Cauchy
horizon is so unstable that it will evaporate outward to meet
the event horizon within a matter of seconds to form an
extremal black hole or a compact horizonless object [12].
The perception of Hawking radiation for various Kerr

observers is explored in Sec. II using the geometric optics
effective temperature formalism, first in the radial direction
and then in an arbitrary direction in the observer’s field of
view. However, these results not only are unreliable at low
frequencies, but they also depend crucially on the adiaba-
ticity of the observer at each point of interest. To address
both of these concerns, in Sec. III a full numerical analysis
of the wave scattering problem is performed in order to
calculate the Bogoliubov spectrum of Hawking radiation in
the limits where such a calculation can be feasibly done, in
particular, for an observer at infinity, at the event horizon,
and at the ingoing and outgoing portions of the Cauchy
horizon. For a Reissner-Nordström black hole, such a
calculation led to the conclusion that the Hawking spectrum
appears as a graybody at the event horizon but becomes
ultraviolet divergent at the Cauchy horizon, in accord with
the geometric optics effective temperature results [8]. The
Kerr spectra computed here follow the same trends as in the
spherically symmetric case, except that here we are able to
extend the calculations to high enough frequencies to show
that the Cauchy horizon radiation does not actually diverge
in the ultraviolet regime in most cases (nor should it be
expected to—see Sec. III B for more details). However, as
an observer approaches the Cauchy horizon, they should in
general see Hawking radiation glowing brightly in every
direction they look, as if they are diving into a thick
quantum atmosphere with ever-increasing energy.

II. EFFECTIVE TEMPERATURE
FOR AN INFALLER

The perception of Hawking radiation in the high-
frequency limit is thermal and analytically calculable using

an effective temperature function κðτobÞ. This section
explores how this temperature changes for various observ-
ers around and inside a Kerr black hole.
In what follows, the mathematical and physical formal-

ism to calculate κ is detailed in Secs. II A (Setup), II B
(Geometric optics approximation), and II C (Unruh state
construction). The effective temperature κ is then
calculated for two special cases of privileged observers
in Sec. II D: (1) infallers along the black hole’s axis of
rotation and (2) what we call “horizostationary” orbiters.
Finally, the temperature for arbitrary freely falling observ-
ers, looking in an arbitrary direction, is calculated in
Sec. II E, with special focus on two cases: (1) equatorial
observers with zero angular momentum (ZAMOs), and
(2) equatorial observers with zero energy (interior Carter
observers).

A. Setup: Kerr metric and quantum field

Consider a quantum field placed over a fixed Kerr
spacetime, which is given by the line element (in Boyer-
Lindquist coordinates)1 [13]

ds2 ¼ ρ2

Δ
dr2 −

Δ
ρ2

ðasin2θdφ − dtÞ2

þ ρ2dθ2 þ sin2θ
ρ2

ðR2dφ − adtÞ2; ð1Þ

where R2 ≡ r2 þ a2, where a≡ J=M is the black hole’s
spin parameter (in terms of the black hole’s angular
momentum J and mass M), the conformal factor ρ2 ≡
r2 þ a2cos2θ contains zeros at the black hole’s ring
singularity, and the horizon function Δ≡ r2 þ a2 − 2Mr
contains zeros at the black hole’s event (r ¼ rþ) and
Cauchy (r ¼ r−) horizons.
The geodesic equations of motion in this spacetime are

separable [13]:

ṫ ¼ 1

ρ2

�
R2Pr

Δ
þ aPθ

�
; ð2aÞ

ṙ2 ¼ 1

ρ4
ðP2

r − ðK þ r2δÞΔÞ; ð2bÞ

θ̇2 ¼ 1

ρ4

�
K − a2cos2θδ −

P2
θ

sin2θ

�
; ð2cÞ

φ̇ ¼ 1

ρ2

�
aPr

Δ
þ Pθ

sin2θ

�
; ð2dÞ

1Throughout this paper we use the ð−þþþÞ metric signature
and geometric units where c ¼ G ¼ kB ¼ ℏ ¼ 1.
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where

PrðrÞ≡ R2E − aL; ð3aÞ

PθðθÞ≡ L − aEsin2θ; ð3bÞ

with an overdot representing differentiation with respect
to affine time (τ for massive geodesics and λ for
massless geodesics), with constants of motion written
in terms of the Killing energy per unit mass E, Killing
angular momentum along the axis of rotation per unit
mass L, and Carter constant K ¼ Qþ ðaE − LÞ2, and
where δ ¼ 1 for massive particles while δ ¼ 0 for
massless particles (which will be denoted with scripted
constants of motion E, L, K in contrast to the massive
particle’s constants E, L, K).
The form of the line element in Eq. (1) is unique in that

it encodes a special locally inertial, orthogonal frame
of reference called the Carter tetrad [13]. This tetrad
γm̂ ¼ fγ0; γ1; γ2; γ3g, like any tetrad, is locally flat
(γm̂ · γn̂ ¼ ηm̂ n̂) and is encoded by the line element via a
vierbein em̂μ,

ds2 ¼ em̂μen̂νγm̂ · γn̂dxμdxν: ð4Þ

The Carter frame is one of the natural generalizations of the
static frame (for Schwarzschild and Reissner-Nordström
black holes) into a stationary frame for a rotating spacetime
like Kerr. The Carter frame is particularly special in that
it is the only stationary tetrad in which the principal null
congruences are purely in the radial direction. The
(exterior) Carter vierbein reads as [14]

e0μ∂μ ¼
R2

∂t þ a∂φ
ρ
ffiffiffiffiffiffiffijΔjp ; ð5aÞ

e1μ∂μ ¼ sgnðΔÞ
ffiffiffiffiffiffiffijΔjp
ρ

∂r; ð5bÞ

e2μ∂μ ¼
1

ρ
∂θ; ð5cÞ

e3μ∂μ ¼ −
asin2θ∂t þ ∂φ

ρ sin θ
: ð5dÞ

An observer at rest in this tetrad frame (subsequently
referred to as a Carter observer) can exist as a stationary
observer anywhere outside of the event horizon. Inside the
event horizon, a similar frame can be defined (in particular,
swapping e0μ ↔ e1μ) that hosts an interior Carter observer,
who remains “stationary” in the spacelike coordinate t
(i.e., has zero energy E) [15].

Over the Kerr background one can place a canonically
quantized, massless, bosonic field sΦðxÞ with spin weight2

s. Owing to the axial symmetry of the metric encoded by
Eq. (1), the field sΦðxÞ can be decomposed into a complete
set of modes sϕωlmðxÞ, each accompanied by creation and
annihilation operators a† and a,

sΦðxÞ¼
Z

∞

0

dω
X∞
l¼0

Xl
m¼−l

ðsϕωlmaωlmþ sϕ
�
ωlma

†
ωlmÞ; ð6Þ

where

sϕωlm ¼ sfωlðr; t;φÞsSωlmðθÞ
R
ffiffiffiffiffiffiffiffiffi
4πω

p ð7Þ

(the additional factor of R is included here as in Ref. [19]
so that, among other reasons, the Wronskian of the wave
equation will be constant in r). Focusing on the scalar
(spin-0) case and dropping the spin index in what follows
for simplicity, the quantum numbers are the frequency
ω∈R, the multipolar number l∈Z≥0, and the azimuthal
number m∈Z≤l ∩ Z≥−l. Thanks to azimuthal and time
translation invariance, the mode function fωlðr; t;φÞ may
be further separated as

fωlðr; t;φÞ ¼ ψωlðrÞe�iωte�imφ: ð8Þ
If the scalar field ΦðxÞ obeys the Klein-Gordon wave

equation □Φ ¼ 0, then the polar function SωlmðθÞ will
satisfy the equation for spheroidal wave functions [20],
while the radial function ψωlðrÞ will satisfy the radial
Teukolsky equation [16]

d2ψωl

dr�2
þ Vωlmψωl ¼ 0; ð9Þ

with the scattering potential

Vωlm ≡
�
ω −

ma
R2

�
2

−
λωlmΔ̃

r
− Δ̃2 −

dΔ̃
dr�

: ð10Þ

In Eq. (10), the constant λωlm is defined in Appendix A
below Eq. (A2), the tortoise coordinate r� is defined by

dr
dr�

¼ Δ
R2

; ð11Þ

2We follow the notation of Teukolsky [16] in using the term
“spin weight” for the parameter s, which either equals the
(positive-valued) spin of the field when the ingoing component
of the wave is the dominant propagating mode, or the negative of
the field’s spin when the outgoing component of the wave is the
dominant propagating mode. However, in the Geroch-Held-
Penrose formalism [17], s is called the “boost weight” (since
it is the eigenvalue of the generator of Lorentz boosts), while the
term “spin weight” represents a separate, distinct quantity (the
eigenvalue of the Lorentz-invariant chiral spin operator). See
Sec. III C of Ref. [18] for more details.
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and the function Δ̃ is defined by

Δ̃ðrÞ≡ rΔ
R4

: ð12Þ

B. Geometric optics approximation

In the eikonal (geometric optics, or high-frequency)
approximation, the above field’s wave equation is solved
with the Ansatz

ϕωlmðxÞ ¼ AðxÞeiωΘðxÞ; ð13Þ

which leads to an equation for the eikonal phase function
ΘðxÞ at leading order in inverse powers of ω,

∂
μΘ∂μΘ ¼ 0: ð14Þ

It can be shown by covariant differentiation of Eq. (14) that
it is a geodesic equation for a null vector field kμ ≡ ∂

μΘ
normal to the family of constant-Θ hypersurfaces. Thus,
any wave scattering problem can be reduced in the geo-
metric optics limit to a ray-tracing problem along the
eikonal hypersurface-orthogonal null congruence.
The scattering problem under question is the problem of

finding the Bogoliubov coefficient between the vacuum
state of an observer and the Unruh vacuum state in the
asymptotic past. That is, if the annihilation operators of
Eq. (6) define an observer’s vacuum state j0obi via

aobj0obi ¼ 0 ð15Þ

(suppressing quantum number indices), and a completely
equivalent decomposition into a set of modes ω̄, l, and m̄
defines the vacuum state of an emitter in the past of the
observer via

aemj0emi ¼ 0; ð16Þ

then the Bogoliubov spectrum of Hawking radiation will be
given by the expectation value of the observer’s number
operator in the emitter’s vacuum:

h0emja†obaobj0emi ¼
Z

∞

0

dω̄
X∞
l¼0

Xl
m̄¼−l

jhϕemjϕ�
obij2; ð17Þ

where bra-ket notation denotes the Lorentz-invariant Klein-
Gordon inner product, which consists of a 3D integral over
an arbitrary spacelike Cauchy hypersurface Σ that termi-
nates at spacelike infinity and is orthogonal to a future-
directed unit vector nμ:

hϕ1jϕ2i≡ −i
Z
Σ
dΣ nμ

ffiffiffiffiffiffiffiffi
−gΣ

p
ϕ1 ∂

↔

μϕ
�
2; ð18Þ

where the bidirectional derivative ∂

↔

μ is defined below
Eq. (B6).
In the eikonal approximation, Eq. (17) will yield a

blackbody spectrum with a temperature κ=ð2πÞ, as long
as κ is defined as the rate of exponential redshift for a
null ray connecting a vacuum-state emitter to an infalling
observer [2,3,7]:

κðτobÞ ¼ −
d

dτob
ln

�
ωob

ωem

�
; ð19Þ

where ωi ≡ −kμẋμ is the temporal component of the four
velocity of a null particle measured in the frame of the
observer (i ¼ “ob”) or the emitter (i ¼ “em”), so that
the proper time derivative of this frequency ωi measures
the null particle’s redshift. This classical frequency ωi will
always be presented with a subscript to distinguish it from
the frequency ω of the quantum mode ϕωlm in Eq. (6) and
following.
The function κ defined by Eq. (19) is here called the

effective temperature, since it reproduces the Hawking
temperature in the geometric optics limit, so long as the
following adiabatic condition is met [5]:

ϵðτobÞ≡ 1

κ2

���� dκ
dτob

����≪ 1: ð20Þ

It should be noted that even when the adiabatic control
function ϵ defined by Eq. (20) is not small, a nonzero
effective temperature κ should still generally imply the
presence of Hawking particles in the frame of the observer,
though those particles may not necessarily follow a thermal
spectrum [2].

C. Unruh state construction

In the effective temperature formalism, the appropriate
choice of vacuum state for gravitational collapse leading to
the formation of a black hole is that of an inertial emitter in
the asymptotic past, when the spacetime is still flat and the
black hole has not yet formed. However, the Kerr metric
models an eternal black hole (or, by analytic extension, a
white hole-black hole system), not a dynamical collapse.
Thus, instead of starting with a Minkowski vacuum in the
asymptotic past, one must specify boundary conditions on
the Kerr past horizon that match the exponential redshifting
one would expect near a collapsing shell of matter, and
these boundary conditions are precisely the ones used to
define the (past) Unruh vacuum state used here. This state
exactly mimics the physical state coming from gravitational
collapse in all portions of the spacetime except along the
(now singular) past horizon and along the left leg of the
inner horizon (which in the dynamical case may not be a
Cauchy horizon as it is in Kerr; see Ref. [21] for a proposed
construction in the analogous charged case).
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The Unruh state is formally defined by taking modes
to be positive frequency with respect to the Killing vector
field ∂t along past null infinity and with respect to the
Kruskalized canonical affine field ∂U along the past
horizon [22]. The latter coordinate is defined in the physical
regions of interest by

U≡ sgnðrþ − rÞ
ϰþ

e−ϰþu; ð21Þ

where

ϰ� ≡ 1

2R2
�

dΔ
dr

����
r�

¼ � rþ − r−
2R2

�
ð22Þ

is the surface gravity at the black hole’s event horizon (ϰþ)
or Cauchy horizon (ϰ−) with the definition R2

� ≡ r2� þ a2,
and

u≡ t − r�; v≡ tþ r� ð23Þ

are the outgoing and ingoing Eddington-Finkelstein coor-
dinates, defined in the same way for both the interior and
exterior portions of the spacetime.
Since the definition of a vacuum state primarily concerns

the choice of positive frequency with respect to a timelike
coordinate, the choice of angular modes will not substan-
tially influence the final results of the calculations done
here [19]. For the Unruh modes along past null infinity,
azimuthal modes of the form expðim̄φÞ are used, while
the Unruh modes along the past horizon are taken to be
expðim̄φþÞ, where

φ� ≡ φ −Ω�t; ð24Þ

with the angular velocity Ω� of the horizon at r ¼ r�
defined in Eqs. (44) and (66). The azimuthal coordinate φþ
is regular at the horizon, and additionally, it defines the
Killing vector ∂t þ Ωþ∂φ that generates the Killing horizon
at r ¼ rþ.
In what follows, it will be shown that the Unruh state can

be encoded in the geometric optics framework by a family
of phase-aligned, freely falling emitters placed at r → ∞
for ingoing modes and r → rþ for outgoing modes.
Consider first the ingoing Unruh sector, which is defined
with no mode contributions from the past horizon and with
modes of the form expð−iω̄vÞ along past null infinity [22].
In the geometric optics limit, these ingoing modes should
follow a null congruence hypersurface orthogonal to the
eikonal phase front defined by takingΘ ¼ v along past null
infinity. However, these null geodesics could just as easily
be labeled by the proper time of an infaller asymptotically
far from the black hole: from Eqs. (2), (11), and (23), as an
infaller’s radius r is taken to infinity, the ingoing time
behaves as

lim
r→∞

dv
dτ

¼ lim
r→∞

�
ṫþ R2

Δ
ṙ

�
¼ E −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

p
: ð25Þ

If the infaller is taken to be at rest asymptotically far
from the black hole (E ¼ 1), then Eq. (25) implies that
dτ ¼ dv; i.e., the infaller’s proper time will tick at the
same rate as the null coordinate used to define the Unruh
state at past null infinity.
Now consider the outgoing Unruh sector, which is

defined with no mode contributions from past null infinity
and with modes of the form expð−iω̄UÞ along the
past horizon [22]. At the past horizon, when r → rþ
(and Δ → 0), the rate of change of an infaller’s outgoing
Eddington-Finkelstein coordinate u with respect to their
proper time will diverge:

lim
r→rþ

du
dτ

¼ 2R2Pr

ρ2Δ
þOð1Þ: ð26Þ

In order to show that the appropriate choice of coordinate
is actually U instead of u, consider how u explicitly
depends on an infaller’s proper time. First, define the
Mino time τ̃ [23] by the relation

dτ
dτ̃

¼ ρ2 ð27Þ

so that as r → rþ, Eq. (2b) can be integrated to yield the
asymptotic timelike geodesic solution

lim
r→rþ

τ̃ ¼ τ̃0 −
r − rþ
jPrj

þO½ðr − rþÞ2�; ð28Þ

with an integration constant τ̃0. Similarly, Eq. (2a) can be
integrated in the same asymptotic limit to yield the timelike
geodesic solution

lim
r→rþ

t ¼ lim
r→rþ

�Z
dr

R2Pr

ðdr=dτ̃ÞΔþ
Z

dθ
aPθ

dθ=dτ̃

�

¼
Z

dr
R2

Δ
þOð1Þ

¼ r� þOð1Þ; ð29Þ
where the final Oð1Þ term encompasses terms at least
constant in r, including terms dependent on the latitude θ.
The outgoing Eddington-Finkelstein coordinate u can
therefore be written from Eqs. (23) and (29) as

lim
r→rþ

u ¼ −2r� þOð1Þ ¼ −
1

ϰþ
ln jr − rþj þOð1Þ; ð30Þ

with the surface gravity ϰþ from Eq. (22). Inverting
Eq. (30) and substituting in the inverse of Eq. (28) gives
the well-known exponential relation

lim
r→rþ

τ̃ ∝ e−ϰþu þOð1Þ; ð31Þ
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which is precisely the relation used to define the Kruskalized
coordinateU in Eq. (21). Thus, the proper time of an ingoing
infaller asymptotically close to the event horizon labels
outgoing null geodesics in the same fashion as the
Kruskalized coordinate U used to define the Unruh state.
As can be seen from the analysis above, the choice of the

infaller emitting null rays to define the Unruh state is
independent of that infaller’s orbital parameters and angular
position, as long as they begin at rest asymptotically far
from the black hole, follow along an ingoing timelike
geodesic, and reside either at r → ∞ (for ingoing modes)
or r → rþ (for outgoing modes).
When considering the geometric optics Unruh state in the

Kerr geometry, an additional subtlety arises that is not present
in the Schwarzschild or Reissner-Nordström geometries. For
those simpler, spherically symmetric cases, an observer in
radial free fall looking down at an Unruh emitter asymptoti-
cally close to the event horizon is able to watch the same
emitter for their entire journey into the black hole. However,
for aKerr black hole, an observer in free fall generally (except
for a few privileged frames analyzed in Sec. II D) cannot
watch the same emitter at the horizon without rotating their
field of view or otherwise accelerating. The reason for the
complication is that the emitter for the outgoingUnruh state is
within the ergosphere and must orbit the black hole with the
geometry.An observerwould therefore not see the redshifting
emitter freeze in place as they approach the horizon, but
instead at late times they would see the emitter steadily
moving across the surface of the past horizon until reaching
the edge of the black hole’s shadow, becoming heavily
distorted, and reappearing on the opposite side.
As has been argued in previous studies [7], an observer

who rotates their frame of reference to follow a single
emitter will induce undesired noninertial particle creation
effects, which are fundamentally distinct from the particle
creation due to the Hawking effect. For the Kerr geometry,
one must therefore consider a family of Unruh emitters at
the event horizon, all chosen to lie along the same eikonal
wave front, so that as the observer falls toward the black
hole, their nonrotating (Fermi-Walker transported) view
will sweep across different emitters all remaining in phase
with each other (see Fig. 1).
The implementation of a family of phase-aligned Unruh

emitters is carried out in Sec. II E. The key constraint imposed
on the calculation of the effective temperature of Eq. (19) is
that the affine distance of the null geodesic measured in the
frame of the emitter must be held constant for the fixed
observer position as the emitter’s position is varied along the
horizon. The affine distance λ along a Kerr null geodesic,
analogous to the proper time τ for timelike geodesics, can be
obtained by quadrature of Eqs. (2b) and (2c):

λ ¼
Z

rob

rem

r2dr

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
r −KΔ

p þ
Z

θob

θem

a2cos2θdθ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − P2

θcsc
2θ

q : ð32Þ

This affine distance can be scaled by the null particle’s
frequency ωi to yield proper distances in the frames of the
emitter (λem) or the observer (λob):

λ ¼ λem
ωem

¼ λob
ωob

: ð33Þ

Equation (33) can then be substituted into Eq. (19) to give a
new expression for the effective temperature κ, with the
constraint that λem be kept constant:

κðτobÞ ¼ −
d

dτob
ln

�
ωobλ

λem

�
¼ −

d lnωob

dτob
−
d ln λ
dτob

: ð34Þ

D. Privileged observers

Before utilizing the constant-phase constraint necessary
for general observers sweeping across a family of horizon-
limit emitters, consider the special cases where an observer
is able to stare at a single emitter throughout their entire
free-fall descent. Such privileged frames give rise to
feasible analytic calculations of the effective temperature,
and while they are usually noninertial and require an
observer to accelerate radially or azimuthally, two excep-
tional cases will be considered here: on-axis observers free
falling along the θ ¼ 0 pole, and “horizostationary”
observers orbiting the black hole at the same angular speed
as the event horizon.

FIG. 1. An inertial observer (blue) cannot follow outgoing null
geodesics from one emitter (solid red) without rotating their
frame of reference. But if they stare in a fixed direction, the new
emitter they see (dashed red) after an infinitesimal proper time
δτob must be shifted by a radial distance δrem so that all emitters
remain in phase. Then, the total affine distance λ will change, but
the affine distance weighted by the emitter’s frequency ωem,
Eq. (33), will stay constant.
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1. On-axis observers

Geodesics along the rotational axis of a Kerr black hole,
where θ ¼ 0 and θ̇ ¼ 0, must have constants of motion
L ¼ 0 and K ¼ a2, leading to the geodesic equations

ṫ ¼ R2

Δ
E; ð35aÞ

ṙ2 ¼ E2 −
Δ
R2

�
r2δþ a2

R2

�
; ð35bÞ

θ̇2 ¼ 0; ð35cÞ

φ̇ ¼
�
1

Δ
−

1

R2

�
aE; ð35dÞ

with the same notation as in Eq. (2). A null particle
traveling outward (þ) or inward (−) along this axis will
be detected by a freely falling observer (i ¼ “ob”) or
emitter (i ¼ “em”) with frequency

ωi ¼ −kμẋμ

¼ R2

Δ

 
E�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
E2 −

Δ
R2

��
1 −

a2Δ
R4

�s !
; ð36Þ

normalized to the frequency seen by someone at rest
asymptotically far away. This frequency is independent
of the rate φ̇ at which the infaller is rotating with the
geometry as they make their descent.
A freely falling observer on the symmetry axis will then

detect two independent effective temperatures: if they look
directly downward into the pole of the black hole they will
see outgoing Hawking modes redshifting from an emitter
near the past horizon, and if they look directly upward into
the sky they will see ingoing Hawking modes redshifting
from an emitter near past null infinity. The calculation of
these effective temperatures then proceeds from an appli-
cation of the chain rule to Eq. (19),

κ� ¼ −ωob

�
ṙob
ωob

d lnωob

drob
−

ṙem
ωem

d lnωem

drem

�
; ð37Þ

which makes use of the relation

dτem
dτob

¼ ωob

ωem
: ð38Þ

An intermediate result is

dlnωi

dr
¼

2r
R2

�
1−2ωiEþ a2Δ

R4

�
−Δ0

Δ

�
1−2ωiEþa2E2

R2

�
2
�
1−ωiEþ a2

R2

�
E2− Δ

R2

�� ; ð39Þ

where a prime denotes differentiation with respect to the
Boyer-Lindquist radial coordinate r.
The effective temperature’s dependence on the observ-

er’s position r and energy E can then be calculated with the
help of Eq. (39). The part of Eq. (37) that depends on the
emitter reduces to

lim
rem→∞

ṙem
ωem

d lnωem

drem
¼ 0 ð40Þ

for ingoing modes originating from an Unruh emitter
asymptotically far from the black hole (i.e., an observer
looking straight up at the sky, measuring an effective
temperature κ−), while it reduces to

lim
rem→rþ

ṙem
ωem

d lnωem

drem
¼ ϰþ ð41Þ

for outgoing modes originating from an Unruh emitter
asymptotically close to the past horizon (i.e., an observer
looking straight down at the black hole, measuring an
effective temperature κþ).
For an infalling observer with unit energy (E ¼ 1)

descending along the rotational axis, the effective temper-
atures seen above and below are shown in Fig. 2 for a
slowly spinning black hole (a=M ¼ 0.1) and a near-
extremal one (a=M ¼ 0.96). Some analytic limits are worth
mentioning explicitly:

κþ ¼

8>>><
>>>:

ϰþ; rob → ∞
8rþR2

þ−a2Δ0ðrþÞ
2R4

þ
− 2

Δ0ðrþÞ ; rob → rþ

− R2
þþR2

−
R2
þ

1
r−r−

þOð1Þ; rob → r−

; ð42aÞ

κ− ¼
8<
:

0; rob → ∞
ϰ�r4�−4a

2r�
2R2

�ðr2�þ2a2Þ ; rob → r�
: ð42bÞ

From Eq. (42), one can see that an on-axis infaller looking
downward will see a Hawking temperature proportional
to the surface gravity ϰþ from Eq. (22) when they are
asymptotically far away, as expected. However, this effec-
tive temperature will change as they approach the black
hole—as they cross the event horizon, the effective temper-
ature will generally increase by a factor of 2 or so,
depending on the black hole’s spin a (in accordance with
assertion 1 in Sec. I). But just as was seen for an electrically
charged black hole [8], an event horizon-crossing observer
will see a negative temperature κþðrþÞ < 0 when the black
hole is close enough to extremality (in accordance with
assertion 4 in Sec. I). In the Reissner-Nordström case, a
radial free faller will see a negative temperature outside
the event horizon when Q=M >

ffiffiffiffiffiffiffiffi
8=9

p
∼ 0.943 [8], but in

the Kerr case, an on-axis free faller will see a negative
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temperature outside the event horizon when a=M ≳ 0.860.
This limiting value is similar but not equal to the spin
a=M ¼ ffiffiffi

3
p

=2 at which tidal forces change sign for an on-
axis observer crossing the Kerr event horizon [24].
However, there is no reason a priori why the tidal forces
and effective temperatures should agree (though they do in
the Reissner-Nordström case)—the tidal forces are calcu-
lated from the locally measured Riemann curvature tensor
and the geodesic deviation equation, which uses a different
expansion order compared to the eikonal Eq. (14) used to
calculate the effective temperature.
Once the on-axis infaller dips below the event horizon,

the effective temperature κþ decreases until, as shown in
Eq. (42) and Fig. 2, the effective temperature diverges to
negative infinity (in accordance with assertion 2 in Sec. I).
Such a divergence will always occur at the inner horizon of
a stationary, rotating black hole in the Unruh state, as has
been shown explicitly in Ref. [25]. Even if the observer
turns around inside the black hole and acquires E < 0, the
outgoing temperature κþ will become finite, but the ingoing
temperature κ− will then diverge to negative infinity. The
inner horizon is thus the surface beyond which the semi-
classical approximation can absolutely no longer be trusted.

2. Horizostationary observers

The second class of privileged observers to be analyzed
are those observers who orbit the black hole with the
same angular velocity as an infaller at the event horizon.

Much like a satellite in a geostationary orbit above Earth,
these “horizostationary” observers will hover above the
same spot on the event horizon as the black hole rotates, so
that they can track the same null ray originating from an
Unruh emitter as they travel along their own worldline.
Focusing on a stationary observer orbiting a Kerr black

hole in the equatorial plane (θ ¼ 90°), it is known that such
an observer will only be freely falling (four acceleration
Dẋμ=dτ ¼ 0) if their angular velocity is [26]

Ω≡ dφ
dt

¼
ffiffiffiffiffi
M

p

a
ffiffiffiffiffi
M

p � r3=2
: ð43Þ

Geodesic horizostationary observers can thus exist only at a
single spin-dependent radius, found by matching Eq. (43)
with the angular velocity of an Unruh emitter at the event
horizon, which can be found from Eq. (2) to equal

Ωþ ≡ a
R2þ

: ð44Þ

While observers can orbit with this angular velocity at any
radius above the event horizon, most will be forced to
accelerate radially unless they are at the radius

rHO ¼
�
r4þM
a2

�
1=3

: ð45Þ

FIG. 2. Effective Hawking temperatures κ� seen by an observer freely falling along the Kerr θ ¼ 0 rotational axis looking directly
inward (κþ, red curve) or outward (κ−, blue curve) at different radii rob, for two choices of the Kerr black hole spin parameter a, all in
units of the black hole massM. Solid curves indicate positive values on the log plot, and dashed curves indicate negative values. Lighter
colors indicate higher values of the adiabatic control function ϵ� from Eq. (20), which imply less confidence in the validity of the
geometric optics approximation. The inner and outer horizons are shown with gray, dotted vertical lines, and the unphysical region
below the inner horizon is grayed out. When the observer is asymptotically far away, the effective Hawking temperature κþ approaches a
constant equal to the surface gravity, but as the observer reaches the inner horizon, the effective temperature becomes negative and
diverges.
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This radius tends to infinity in the Schwarzschild a ¼ 0
limit and to the event horizon in the extremal a ¼ M limit.
A horizostationary observer at radius rHO in the equa-

torial plane will have geodesic equations of motion

ṫ ¼ 1

r2

�
R2Pr

Δ
þ aPθ

�
; ð46aÞ

ṙ2 ¼ 0; ð46bÞ
θ̇2 ¼ 0; ð46cÞ

φ̇ ¼ 1

r2

�
aPr

Δ
þ Pθ

�
; ð46dÞ

where the constants Pr and Pθ, defined by Eq. (3) evaluated
at r ¼ rHO and θ ¼ 90°, are fixed by the constraints
Ωþ ¼ φ̇=ṫ and P2

r ¼ ðP2
θ þ r2ÞΔ.

Since the horizostationary observer only moves along
the Kerr metric’s Killing fields ∂t and ∂φ, the frequency ωob

of an outgoing null geodesic seen by the observer will not
change with the observer’s proper time τob. Thus, from
Eq. (19), the only dynamic contribution to the outgoing
effective temperature κþ will be from the freely falling
emitter at the event horizon:

κþ ¼ ωob

ωem

d lnωem

dτem
: ð47Þ

The frequency ωem of an outgoing equatorial null
particle with dimensionless orbital parameters L=E and
K=E2 ¼ ða − L=EÞ2, measured in the frame of an infalling
equatorial emitter with constants of motion E, L, and
K ¼ ðaE − LÞ2, is

ωem ¼ 1

Δ

 
R2E−LLþ 2

r
ðaE−LÞða−LÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
R2−L2þ 2

r
ða−LÞ2

��
P2
r

r2
−
�
1þP2

θ

r2

�
Δ
�s !

;

ð48Þ
where the photon energy E is set to unity without loss of
generality. Even though this frequency ωem depends on the
emitter’s orbital parameters via E, L, Pr, and Pθ, the
effective temperature κþ will be independent of the
emitter’s motion once the emitter is taken to be asymp-
totically close to the event horizon, as argued in Sec. II C. If
the Unruh emitter sends a null particle along the outgoing
principal null congruence (L=E ¼ a), the frequency ωob
seen by the observer simplifies to

ωob ¼ ṫ − aφ̇ ¼ PrðrHOÞ
ΔðrHOÞ

; ð49Þ

and the effective temperature of Eq. (47) becomes

κþ ¼ ωob
Δ0ðrþÞ
2r2þ

: ð50Þ

The outgoing effective temperature seen by a horizosta-
tionary observer looking in the principal null direction,
given by Eq. (50), depends only on the black hole’s spin-to-
mass ratio a=M, varying monotonically from κþ¼1=ð4MÞ
when a ¼ 0 to κþ ¼ ffiffiffi

3
p

=M when a ¼ M.
Because the effective temperature given by Eq. (50) does

not change with the observer’s proper time, the adiabatic
control function ϵþ from Eq. (20) is identically zero, so one
may be assured that in the geometric optics (high frequency)
limit, an inertial observer orbiting at a radius rHO will see a
Planckian blackbody spectrum of Hawking radiation origi-
nating from the direction of the black hole’s past horizon.
The horizostationary observer may also look in a

variety of other directions along the equatorial plane,
by changing the photon angular momentum L in Eq. (48),
to yield a straightforward change in the effective temper-
ature (in accordance with assertion 3 in Sec. I). But
regardless of which direction they look along the past
horizon, they will always see some nonvacuum state
caused by the exponentially redshifting Hawking modes
originating from that horizon.
As a final comment, it should be noted that while the

horizostationary observer has zero four acceleration, they
will still experience a twisting force corresponding to non-
Fermi-Walker transport. The only nonzero component of
their four rotation Oμ (the angular velocity of their spatial
basis vectors with respect to comoving inertial gyroscopes)
is the polar component [26]

Oθ¼ ṫ2

r6
ðMð1−aΩþÞðð3r2þa2ÞΩþ−aÞ−r3ΩþÞ; ð51Þ

which is of order unity in the extremal case, falls below 0.1
in black hole mass units when a=M ≲ 0.9, and vanishes as
a=M → 0. This rotation will in principle induce particle
creation via the noninertial Unruh effect; however, its
contribution to the effective temperature calculated in
Eq. (50) should be negligible for all black hole spins
except those near enough to extremality.

E. General freely falling observers

For an arbitrary freely falling observer in the Kerr
spacetime, as mentioned in Sec. II C, they must generally
watch a family of Unruh emitters at different angular
positions along the black hole’s past horizon. To see why
this is the case, consider an equatorial infaller observing a
single emitter near the past horizon with an angular velocity
asymptotically approachingΩþ from Eq. (44). This observer
must possess

dφ
dt

¼ Ωþ − δΩ;
dr
dt

¼ −
krδΩ
kφ

; ð52Þ
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where kμ ≡ dxμ=dλ is the four momentum of the null
geodesic, and δΩ is the observer’s differential change in
their angular velocity as they fall inward and “catch up”with
the azimuthally varying null geodesic. This system of
equations has no apparent solution that does not involve
position-dependent constants of motion from either the
observer or the null ray. Therefore, no infalling observer
can both follow a timelike geodesic path and keep up with a
single emitter’s null ray.
Thus, in calculating the effective temperature seen by an

observer watching a family of Unruh emitters along the
past horizon, one must impose an additional constraint so
that those emitters all lie along the same eikonal wavefront.
Namely, the null affine distance, scaled by the frequency
measured in the emitter’s frame, Eq. (33), must be held
constant. Assuming in what follows that the observer and
the emitter remain fixed at the same angular position θ
throughout the course of their trajectories, variations with
respect to the observer’s proper time from Eq. (34) can
come only from the observer’s and emitter’s radial coor-
dinates. Therefore,

κ ¼ −ṙob
�
∂ lnωob

∂rob
þ ∂ ln λ

∂rob

�
− ṙem

ωob

ωem

∂ ln λ
∂rem

; ð53Þ

with the affine distance λ given by Eq. (32). One additional
assumption, as first argued in Ref. [7], is that the observer
should stare in a fixed direction, instead of rotating their
frame of reference and inducing noninertial effects. The
direction an observer looks in their field of view can be
parametrized by two viewing angles χ and ψ , where
χ ∈ ð−π; πÞ is the azimuthal angle in their local tetrad
frame along the γ1-γ3 plane (zeroed along the positive γ1
axis), and ψ ∈ ½0; πÞ is the polar angle from the γ2 axis. The
viewing angles ðχ;ψÞ, in turn, can be expressed as a
function of the four momentum of the null particle arriving
at the specified point in the observer’s field of view, which
depends on the observer’s position, the emitter’s position,
and the photon’s energy-normalized orbital parameters
L=E and K=E2. In what follows, it is assumed without
loss of generality that E ¼ 1. Then, when the viewing
angles ðχ;ψÞ are kept constant during differentiation, the
λ-dependent terms in Eq. (53) can be expanded with the
Leibniz integral rule:

∂ ln λ
∂rob

¼
�

1

krob
þ ∂L
∂rob

Z
rob

rem

dr
∂

∂L
1

kr

�
=λ; ð54aÞ

∂ ln λ
∂rem

¼ −
1

kremλ
: ð54bÞ

Equation (54) apply to equatorial geodesics with constant
polar coordinate θ ¼ π=2; the more general case will
involve derivatives of both L and K applied to the affine
distance integrands of Eq. (32).

If the photon’s angular momentum is large enough that
its trajectory contains a turning point, the integration over
the affine distance must be split in two, and as a conse-
quence, the derivatives with respect to the constants of
motion L and K in Eq. (54a) cannot be brought inside the
integral without also introducing a divergent boundary
term. In these cases, the derivatives are evaluated numeri-
cally with the aid of Richardson extrapolation.
In what follows, two different classes of observers will

be considered, as depicted in Fig. 3. The first is an
equatorial observer in free fall, with ZAMO, beginning
from rest at infinity. Such an observer has equations of
motion given by Eq. (2) with constant of motion E ¼ 1,
L ¼ 0, and K ¼ a2. The second observer, who can exist
only in the interior portion of the black hole, is defined to be
at rest in the interior Carter tetrad frame adapted from
Eq. (5). Such an observer has constants of motion E ¼ 0,
L ¼ 0, and K ¼ a2 cos2 θ [15].

1. Freely falling equatorial ZAMO

A null particle seen in the locally orthonormal tetrad
frame of an observer falling freely with zero angular
momentum in the equatorial plane will have the following
four-momentum tetrad components:

k0ob ¼
1

r2Δ

�
R2ðR2 − aLÞ þ aðL − aÞΔþ sgnðkrÞ

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðR2 − ΔÞððR2 − aLÞ2 − ðL − aÞ2ΔÞ

q �
ð55aÞ

k1ob ¼
R2k0obs − ðR2 − aLÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R4 − r2Δ
p ð55bÞ

FIG. 3. Worldlines of the two observers considered in Sec. II E: a
freely falling equatorial ZAMO (orange path) beginning at rest at
infinity and ending at the left portion of the inner horizon, and an
interior Carter observer (blue path) beginning at the intersection of
the outgoingand ingoingportionsof the rþ surface and ending at the
intersection of the outgoing and ingoing portions of the r− surface.
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k2ob ¼ 0 ð55cÞ

k3ob ¼
1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − r2Δ

p
�
ðL − aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðR2 − ΔÞ

q

− sgnðkrÞa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 − aLÞ2 − ðL − aÞ2Δ

q �
; ð55dÞ

where, as before, all quantities are normalized to unit
photon energy E.
The temporal component k0ob of Eq. (55a) is equivalent to

the frequency ωob ¼ −kμẋμ seen in the frame of the
observer. The spatial components of km̂ob give the angular
position of the geodesic in the observer’s field of view. This
position can be expressed with the viewing angles χ and ψ ,
defined by

tan χ ≡ k3ob
k1ob

; ð56aÞ

tanψ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1obÞ2 þ ðk3obÞ2

q
k2ob

: ð56bÞ

The angle χ gives the observer’s azimuthal viewing angle
away from the inward radial direction within the equatorial
plane, while the polar angle ψ extends to the view out of the
plane (here ψ is trivially constant since the observer and
emitter are both restricted to the equatorial plane; this
condition will be relaxed in the next subsection).
If the observer stares in a fixed direction χ, the null

geodesic’s angular momentum L will be found to vary with
r as determined from the relation

cos χ ¼ k1ob
k0ob

¼ R2 − ðR2 − aLÞðk0obÞ−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 − r2Δ

p : ð57Þ

In the Reissner-Nordström case [8], the analog of
Eq. (57) could be inverted to find an expression for the
photon angular momentum L in terms of the viewing angle
χ, so that the effective temperature κ could be calculated
directly as a function of χ. However, in the present case, no
such analytic inversion is possible; instead, the effective
temperature will be parametrized by values of L separately
for both ingoing and outgoing photons, and any additional
needed quantities like dL=drob will be found by implicit
differentiation of Eq. (57).
Figure 4 shows the relation between L and χ from

Eq. (57) for observers at various radii when the black hole
spin is fixed to a=M ¼ 0.96 (different values of a=M yield
qualitatively similar plots). For asymptotically distant
observers (redder colored curves), the function LðχÞ
approaches an exact sinusoid. For a Reissner-Nordström
radial free faller, this function remains odd for all radii r,
but for a Kerr ZAMO free faller, the symmetry is broken by

the nonzero spin, so that null geodesics with zero angular
momentum are not necessarily aligned with the observer’s
definition of χ ¼ 0°.
For reference, the location of the edges of the black hole

shadow is indicated in Fig. 4 by the intersection of any
given curve with the two gray horizontal lines, which lie at
the values of L that solve the equations

ṙ ¼ 0;
dṙ
dr

¼ 0; ð58Þ

parametrized by the allowed prograde (−) and retrograde
(þ) photon orbital radii at the critical values [27]

rc ¼ 2M
�
1þ cos

�
2

3
cos−1ð�aÞ

��
: ð59Þ

In terms of the photon’s orbital parameters L and K, the
edges of the black hole shadow occur at

L ¼ R2Δ0 − 4rΔ
aΔ0 ; ð60aÞ

K ¼ 16r2Δ
ðΔ0Þ2 : ð60bÞ

Once the observer is close enough to the black hole to
pass within the outermost photon orbit, they begin

FIG. 4. Azimuthal viewing angle χ from Eq. (57) for a freely
falling equatorial ZAMO as a function of a null geodesic’s
conserved angular momentum L=E, for a black hole with spin
parameter a ¼ 0.96M. A selection of different observer radii r are
shown, from distant observers (red) to observers crossing the
event horizon at rþ ¼ 1.28M (blue) to observers crossing the
Cauchy horizon at r− ¼ 0.72M (purple). Thick (thin) curves
indicate geodesics that are outgoing (ingoing) once they reach the
observer.
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receiving both outgoing and ingoing photons originating
from an emitter just above the event horizon, as shown
respectively by the thick and thin portions of each curve in
Fig. 4. Then, once the observer falls within the ergosphere
bounded by r ¼ 2M, they begin receiving photons with
divergent normalized angular momentum L=E, as shown
in Fig. 4 by the green curves that dip to negative infinity
and reappear in the positive region. In the spherically
symmetric case, such divergences happen only below the
event horizon and correspond only to a single cusp in χ
instead of a finite swath of χ values where L=E changes
sign. Such a rich structure of allowed photon geodesics
exists because the Kerr ergosphere extends above the
event horizon.
Once the observer reaches the event horizon and pro-

ceeds to the inner horizon, the size of the black hole shadow
in their field of view remains finite, still governed by the
intersections of each colored curve with the two horizontal
gray lines in Fig. 4. This black hole shadow marks the
position of the past horizon, which sources the Unruh
modes contributing to the perception of Hawking radiation.
The effective Hawking temperature seen by the freely

falling equatorial ZAMO, calculated from Eq. (53), is
plotted in Fig. 5 for a selection of observer positions from
r=M ¼ 10 down to r=M ¼ 0.73 just above the inner
horizon. This temperature depends strongly on the specific
choice of observer and exhibits a wide range of behaviors
throughout the observer’s descent, but a few general trends
are worth mentioning.
When the observer is far from the black hole (red

curves), the effective temperature is small but nonzero,
as expected. As the observer’s viewing angle χ across the
equatorial plane changes, so does the effective Hawking

temperature, with a minimum value near the center of the
black hole shadow and maximum values at the edges. Such
behavior is in accordance the limb-brightening assertion 3
in Sec. I, with the only modification that in the Kerr case,
the distribution is no longer symmetric about χ ¼ 0°.
As the observer approaches the black hole, the effective

Hawking temperature increases in all directions across the
black hole shadow, until it becomes negative for certain
values of the viewing angle χ. Just as in the case of the
on-axis observer of Fig. 2, the effective temperature can be
negative even for an observer above the event horizon,
as anticipated by assertion 4 in Sec. I.
As the observer approaches the inner horizon, the

effective temperature calculated in Fig. 5 diverges to
positive infinity (in contrast to the on-axis observer’s
negative-infinite temperature from Fig. 2). As such, the
value of κþ for an observer crossing through the inner
horizon at r=M ¼ 0.72 is not shown; instead, the value for
an observer just above the inner horizon (r=M ¼ 0.73) is
displayed, and the effective temperature for any observer
closer to the inner horizon will be inversely proportional to
the distance above the horizon.
Though not shown explicitly in Fig. 5, as the effective

temperature diverges at r → r− (when r=M < 0.73 in that
plot), the angular distribution across χ becomes more and
more isotropic. Such behavior has been previously noted in
both the Schwarzschild [7] and Reissner-Nordström [8]
cases. The key takeaway here and from these prior studies
is that the diverging Hawking radiation at the Cauchy
horizon is not confined to the single radial point in the
observer’s field of view where classical radiation diverges
via mass inflation, but instead, the diverging semiclassical
radiation is distributed uniformly across the entire surface
of the black hole’s past horizon.

2. Interior Carter observer

The interior Carter observer, who will also be called the
zero-energy observer, is the observer who is at rest in the
Carter frame defined by Eq. (5) (or, more precisely, with
the interior modifications detailed in the text below those
equations). This observer moves along the blue path in
Fig. 3 and will travel along a constant latitude θ, not
necessarily in the equatorial plane as in the previous
subsection. In the coordinate frame, the only nonzero
component of their four velocity is the timelike component
ṙ ¼ −

ffiffiffiffiffiffiffi
−Δ

p
=ρ, and in their locally orthonormal tetrad

frame, they will see null particles travel with the following
four-momentum components:

k0ob ¼
1

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −

ðR2 − aLÞ2
Δ

r
ð61aÞ

k1ob ¼ −
R2 − aL

ρ
ffiffiffiffiffiffiffi
−Δ

p ð61bÞ
FIG. 5. Effective Hawking temperature κþ for outgoing Unruh
modes as a function of a freely falling equatorial ZAMO’s
azimuthal viewing angle χ, for a selection of different observer
radii r. The parameters are identical to that of Fig. 4.
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k2ob ¼
sgnðkθÞ

ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K −

ðL − asin2θÞ2
sin2θ

s
ð61cÞ

k3ob ¼ −
L − asin2θ
ρ sin θ

: ð61dÞ

As in the previous subsection, the temporal component
k0ob of Eq. (61) is equivalent to the frequency ωob ¼ −kμẋμ
seen in the frame of the observer, and the spatial compo-
nents of km̂ob give the angular position of the geodesic in
the observer’s field of view, parametrized by the viewing
angles χ and ψ defined by Eq. (56).
Equation (56) can be solved for the photons of Eq. (61)

to yield the following relations between the viewing angles
(χ, ψ) and the photon’s orbital parameters (L, K):

L ¼ asin2θ
ffiffiffiffiffiffiffi
−Δ

p þ R2 sin θ tan χffiffiffiffiffiffiffi
−Δ

p þ a sin θ tan χ
; ð62aÞ

K ¼ ρ4ðsec2χcsc2ψ − 1Þ
ð ffiffiffiffiffiffiffi

−Δ
p þ a sin θ tan χÞ2 : ð62bÞ

Equation (62) can be used together with Eq. (53) to
calculate the effective Hawking temperature κ directly as a
function of the observer’s azimuthal and polar viewing
angles χ and ψ , respectively. Before presenting the results,
two modifications from the previous subsection are worth
noting. First, the integration of Eq. (32) to calculate the
affine distance will now include both r-dependent and
θ-dependent terms, since the observer can now look outside
of the equatorial plane. Derivatives with respect to both
L and K must then be applied to both the r-dependent and
θ-dependent integrands, in contrast to the simpler case
of Eq. (54a).
Second, while the emitter’s radius rem can always be

fixed at the value rþ (for κþ) or ∞ (for κ−), the emitter’s
polar angle θem will change for different values of the
photon’s orbital parameters L and K. It must therefore
be calculated via the same ray-tracing techniques used
throughout this section. If the back-propagated null geo-
desic originating from an equatorial observer exceeds a
Mino time λ̃ [defined in Eq. (27)] of

λ̃ > K

�
1

2
þ aða − LÞ −KffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðKþ 4aLÞKp �

ððKþ 4aLÞKÞ−1=4; ð63Þ

where K is the complete elliptic integral of the first kind,
then the photon will experience a turning point at

sin θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kþ 4aL

p
−

ffiffiffiffi
K

p

2a
: ð64Þ

Since the emitter’s polar angle θem will vary as the observer
varies their proper time τob while staring in the same fixed
direction parametrized by angles ðχ;ψÞ, Eq. (53) will in
principle include additional terms with derivatives with
respect to θem, even if both the observer’s and emitter’s
polar velocities θ̇ob and θ̇em are individually assumed to be
zero (as is the case here). To address this complication, the
dependence of θem on rob and rem is explicitly included
when evaluating the r derivatives of Eq. (53).
A freely falling observer in the interior of a Kerr black

hole with zero energy will see the black hole shadow grow
over time, as shown in Fig. 6. As the interior Carter
observer begins at rob ¼ rþ at the bifurcation point of the
past horizon and the event horizon, they initially see the
black hole shadow emerge from a single point in their field
of view along the principal null direction at χ ¼ 0°,
ψ ¼ 90° (the upper-left point in Fig. 6). Then, the black
hole shadow appears to grow in their field of view until
taking on the yellow shape in Fig. 6 when the observer
reaches the inner horizon. These are the regions that appear
as the source of outgoing Hawking modes in the observer’s
field of view.
The calculation of the effective Hawking temperature κþ

via Eq. (53) for an interior Carter observer, who follows the
blue path in Fig. 3, is presented in Figs. 7 and 8. In Fig. 7,
three specific viewing directions are chosen to track how κþ
changes as the observer travels from the event horizon to

FIG. 6. Fields of view of the black hole shadow, with edges
parametrized by Eq. (60), for the viewing angles χ and ψ defined
by Eq. (56). The view is from the perspective of a freely falling
equatorial interior zero-energy observer at different radii r within
a Kerr black hole with spin parameter a ¼ 0.96M. The shadow
initially appears as an infinitesimally small point at ðχ;ψÞ ¼
ð0°; 90°Þ when the observer is at the event horizon (dark blue),
then grows along both angular directions as the observer
approaches the inner horizon (yellow). The three black points
correspond to the three curves shown in Fig. 7.
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the inner horizon. These three directions are denoted by
the black points in Fig. 6: at the approximate center
of the shadow at ðχ;ψÞ ¼ ð90°; 45°Þ, closer to the edge at
ðχ;ψÞ ¼ ð15°; 60°Þ, and at the point of emergence
at ðχ;ψÞ ¼ ð0°; 90°Þ.
When staring along the three directions shown in Fig. 7,

the observer sees a wide range of effective temperatures.

The temperature appears to converge to a negative, infinite
value as rob → rþ, since at this point, the observer is
coincident with the past horizon singularity imposed by
the Unruh vacuum state. However, most directions the
observer might look in the sky (in fact, all but a set of zero
measure) do not actually reach this pathological diver-
gence, since the black hole shadow falls out of their range
above a certain radius.
As the interior Carter observer approaches the inner

horizon, the effective temperature does not diverge in every
direction, as it did for the equatorial ZAMO in the previous
Sec. II E 1 and for the Reissner-Nordström radial infallers
of Ref. [8]. Instead, κþ approaches a finite value in every
direction along the black hole shadow except along the
principal null directions at χ ¼ 0° and χ ¼ 180°, where κþ
does diverge to −∞ and þ∞, respectively. One of these
divergences (χ ¼ 0°;ψ ¼ 90°) is shown in Fig. 7.
The full view of the effective Hawking temperature

seen just above the inner horizon is shown in Fig. 8. The
effective temperature becomes approximately isotropic and
negligibly small across most of the surface of the past
horizon, but it diverges to �∞ and exceeds the saturation
limit of the color scale along the ingoing and outgoing
principal null directions at the top left and top right corners
of the figure.
In conclusion, the effective temperature of Hawking

radiation can be calculated in the geometric optics frame-
work for any class of inertial observers within the Kerr
spacetime, with widely varying outcomes depending on the
particular choice of orbital parameters and spacetime
positions. In this section, Sec. II, we have examined four
such classes of observers: freely falling observers along
the axis of rotation, observers in a horizostationary orbit,
equatorial infallers with zero angular momentum, and
equatorial infallers with zero energy. In the former two
cases, an effective temperature could be calculated purely
as the rate of redshift between the observer and a single
freely falling emitter in the Unruh state, while in the latter
two cases, an additional constraint that the emitted affine
distance be kept constant was required so that a family of
Unruh-state emitters could be matched to the same eikonal
wavefront as the observer pans across their field of view.
For all classes of observers examined here that reach

the black hole’s Cauchy horizon, at least one point in
their field of view contains a diverging effective Hawking
temperature. In accordance with prior studies of both
Hawking radiation [7,8] and the renormalized stress-
energy tensor [11], this semiclassically divergent behavior
appears to be generic. Though here we have not proved
that Hawking radiation temperatures will diverge for
every inner-horizon observer within the Kerr spacetime,
the fact that a divergence appears for even a single inertial
observer is enough to demonstrate that Kerr black holes
are semiclassically singular and likely unstable at the
inner horizon.

FIG. 7. Effective Hawking temperature κþ for outgoing Unruh
modes seen by a freely falling zero-energy equatorial observer in
the interior of a Kerr black hole with spin parameter a ¼ 0.96M.
The three curves show the view in the three specific directions
labeled in the plot and marked by the black points in Fig. 7.

FIG. 8. Effective Hawking temperature κþ seen by an equato-
rial interior zero-energy observer just above the inner horizon of a
Kerr black hole (with spin parameter a ¼ 0.96M). The effective
temperature is mostly (but not completely) isotropic and diverges
to �∞ along the principal null directions.
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III. BOGOLIUBOV SPECTRUM

The results of the previous section indicate that a Kerr
infaller observing at high frequencies will see an approx-
imately thermal spectrum of Hawking radiation throughout
their inward journey, until the temperature of that radiation
diverges while looking in at least one direction as they
approach the inner horizon. While these results are robust
in specific instances, they are confined to regimes in which
the observer satisfies the adiabatic condition of Eq. (20),
and further, they are not guaranteed to provide any
information about the behavior of Hawking radiation below
the high-frequency geometric optics limit.
In order to address these concerns, consider the set of

limiting cases in which the simplifying assumptions of the
effective temperature formalism can be circumvented and
the full spectrum of Hawking radiation can be calculated
directly from Eq. (17).

A. Derivation

The focus of the present section will be the cases in
which the scattering potential of the radial Klein-Gordon3

wave equation, given by Eq. (10), asymptotically reduces
to a constant in the tortoise coordinate r�. Such cases occur
when the observer is asymptotically far away and when the
observer is crossing one of the black hole’s horizons:

Vωlm →

�
ω; r → ∞
ω�; r → r�

; ð65Þ

where

ω� ≡ ω −mΩ� ¼ ω −m
a
R2
�
: ð66Þ

In these limits, the wave equation possesses asymptotic
eigenmode solutions of the form expð�iVωlmr�Þ, and the
problem of mode propagation between these limits reduces
to a 1D scattering problem in r�.
One can define the following future boundary conditions

(i.e., in the limit as the timelike coordinates text or r�int are
taken to positive infinity in their respective domains) for
each of four complete sets of radial mode solutions to the
wave, Eq. (9), corresponding to observers locally defining a
positive frequency ω and azimuthal quantum number m:

extfþob →
�
eimφ−iωu; r�ext → ∞
0; r�ext → −∞

; ð67aÞ

extf−ob →

�
eimφþ−iωv; r�ext → −∞
0; r�ext → ∞

; ð67bÞ

intfþob →
�
e−imφ−þiωu; tint → ∞
0; tint → −∞ ∪ r�ext → ∞

; ð67cÞ

intf−ob →

�
0; tint → ∞ ∪ r�ext → ∞
eimφ−−iωv; tint → −∞

; ð67dÞ

where φ�, defined in Eq. (24), is the azimuthal coordinate
that is regular for an observer crossing the horizon at
r ¼ r�. Note that these modes differ slightly from the
Eddington-Finkelstein modes used in Ref. [19] in the use of
ω rather than ω� at the outer/inner horizons, since the
modes here are constructed explicitly to match the positive-
frequency experience of a free-falling observer rather than
to provide pure eigenmode solutions to the wave equation
(more details below). These initialized modes are shown by
the solid arrows in Fig. 9. The notation for labeling these
modes is the same as in Ref. [8]; modes in the exterior
(interior) portion of the spacetime are labeled extf (intf), and
modes with canonically affine boundary conditions along a
future null boundary transverse to outgoing (ingoing) null
rays are labeled fþ (f−).

FIG. 9. Penrose diagram showing the various boundaries for a
Kerr black hole on which modes are given nonzero initial data.
Superscriptsþ (−) everywhere indicate whether modes traveling
across a surface are outgoing (ingoing). The initial data for the
emitter’s (observer’s) modes at the locations of the dotted (solid)
lines can then be propagated (back propagated) numerically using
the wave equation to define the modes throughout the entire
spacetime.

3The calculations of the Hawking spectra, and in particular the
formulas of Eq. (76), are valid for any bosonic field with integer
spin, with the only change coming from the numerically obtained
values of the scattering coefficients for a given field’s wave
equation; see Appendix A for more details. In the derivation that
follows, focus will be placed on the scalar (spin-0) case.
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The subscript “ob” in the modes of Eq. (67) is used to
indicate that each mode corresponds to the waves that would
be seen in the frame of an inertial observer positioned
asymptotically close to its respective null boundary. To see
why this is the case, consider the following analysis in analog
to that performed in Sec. II C for the modes of the emitter.
If an infalling observer is placed asymptotically far from

the black hole at rest, with E ¼ 1, the outgoing modes
encoded by extfþob will track the same eikonal wavefront as
the outgoing null congruence derived from their own
proper time, since

lim
r→∞

du
dτ

¼ lim
r→∞

�
ṫ −

R2

Δ
ṙ

�
¼ 1: ð68Þ

Similarly, if an infalling observer is placed asymptotically
close to the event horizon, they will see the ingoing waves
of extf−ob tick at a rate proportional to their own proper time:

lim
r→rþ

dv
dτ

¼ aPθ

ρ2
þ R2ðK þ r2Þ

2ρ2Pr
; ð69Þ

with the Hamilton-Jacobi parameters PrðrÞ > 0 and PθðθÞ
defined in Eq. (3). Note that while the expression on the
right-hand side of Eq. (69) does not generally reduce to
unity (although it does simplify to 1=2 for the on-axis
observer considered in Sec. II D 1), the expression is
nonetheless frozen at a constant value as r� is varied, in
contrast to the divergent behavior for outgoing waves seen
by an ingoing emitter at the event horizon from Eq. (26).
For the remaining two interior modes intf�ob, if an

infalling (ṙ < 0) observer is placed at the inner horizon
and is ingoing (Pr > 0), their proper time will be propor-
tional to the ingoing modes intf−ob, while if the observer is
outgoing (Pr < 0), their proper time will be proportional to
the outgoing modes intfþob. The constant of proportionality
is the same as the right-hand side of Eq. (69), with r now at
its inner horizon value. Thus, the modes defined by Eq. (67)

each correspond to the eikonal waves seen by an inertial,
infalling observer passing through their respective hyper-
surface boundaries.
Since each set of boundaries considered in Eq. (67) for

each of the four sets of modes forms a complete null
Cauchy hypersurface terminating at spacelike infinity, the
radial wave, Eq. (9), can be used to back propagate each
mode throughout the rest of the spacetime. Of particular
importance is the behavior of these observer modes at the
past null boundaries where the initial data for the emitter’s
Unruh modes are defined, since if both fob and fem are
known along the same Cauchy hypersurface, Eqs. (17)
and (18) can be used to compute the scalar product between
the observer’s and emitter’s modes and therefore the
spectrum of Hawking radiation.
Equivalently, one may consider propagating the emitter’s

modes forward and evaluating the mode scalar product
along the future null boundary where the initial data for the
observer’s modes are defined, instead of propagating the
observer’s modes backward to the past null boundary.
However, this task is more difficult since the Kruskal
coordinate U used to define the emitter’s Unruh modes
contains nontrivial coupling between t and r, so that the
wave equation is not separable in these coordinates when
initialized with the Unruh modes.
Fortunately, as mentioned above, the problem of finding

the observer modes at the past null boundaries is a
straightforward 1D scattering problem in r�. Define reflec-
tion coefficients R�

int;ext and transmission coefficients
T �

int;ext for the interior and exterior portions of the space-
time (with the same notation as in Ref. [8]), depicted
visually by the scattering paths in the Penrose diagrams to
the right of each of the expressions below. The boundary
conditions to be solved for the radial modes of Eq. (8),
evaluated at the mode labeled with ω, l, and m, are
provided in Eqs. (70)–(73) below. For the modes of
Eq. (67) encoded by an observer asymptotically far away
from the black hole, one has

ð70Þ

for the modes of Eq. (67b) encoded by an ingoing observer at the event horizon, one has

ð71Þ
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for the modes of Eq. (67c) encoded by an outgoing observer at the inner horizon, one has

ð72Þ

and for the modes of Eq. (67d) encoded by an ingoing observer at the inner horizon, one has

ð73Þ

The scattering coefficients in the above expressions can
be calculated through numerical means; here we use the
Teukolsky 0.3.0 package of the Black Hole Perturbation Toolkit
[28]. Since this Mathematica package is only designed to
compute exterior scattering coefficients, we have made
adaptations to the code to extend computations to the
spacetime region between the inner and outer horizons;
details on these modifications can be found in Appendix A.
The scalar product of Eq. (18) can then be evaluated

along the past null Cauchy hypersurface where the Unruh
state is initialized. The end goal is the computation of
Eq. (17), the vacuum expectation value of the particle
number operator for an observer either at infinity, the event
horizon, or the ingoing or outgoing portions of the inner
horizon. These spectral number distributions will be
labeled hNþ

extiωlm, hN−
extiωlm, hNþ

intiωlm, and hN−
intiωlm

for the respective modes of Eqs. (70)–(73).
The analysis proceeds almost identically to that of the

spherical case in Ref. [8], with one small but crucial

difference: the Kerr scattering potential of Eq. (10) asymp-
totically approaches a different constant value at infinity
compared to the values at the event horizon and the inner
horizon; see Eq. (65). Thus, observer modes that are
initialized as

ϕob ∼
eiωr

�

R
ffiffiffiffiffiffiffiffiffi
4πω

p ð74Þ

at future null infinity will be back scattered into the form

ϕob ∼
eiωþr�

Rþ
ffiffiffiffiffiffiffiffiffi
4πω

p ð75Þ

along the past horizon, and so forth.
The details for the calculation of the resulting number

operator vacuum expectation values from Eq. (17) are given
in Appendix B. The result, up to a normalization factor, is

hNþ
extiωlm ¼

�ωþ
ω

� jT þ
ext;ωj2

e
2π
ϰþωþ − 1

; ð76aÞ

hN−
extiωlm ¼ jR−

ext;ωj2
e

2π
ϰþω − 1

; ð76bÞ

hN−
intiωlm ¼

�
ωþ þmΩ−

ω

� jT −
int;ωR

−
ext;ω −R−

int;ωe
π
ϰþðωþþmΩ−Þj2

e
2π
ϰþðωþþmΩ−Þ − 1

; ð76cÞ

hNþ
intiωlð−mÞ ¼

�
ωþ þmΩ−

ω

� jT þ
int;ω −Rþ

int;ωR
−
ext;ωe

π
ϰþðωþþmΩ−Þj2

e
2π
ϰþðωþþmΩ−Þ − 1

þ
�
ωþmΩ−

ω

�
jRþ

int;ωT
−
ext;ωj2; ð76dÞ
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with the surface gravity ϰþ of Eq. (22), the horizon-limit
frequencyωþ of Eq. (66), and the transmission and reflection
coefficients T �

int;ext andR
�
int;ext of Eqs. (70)–(73). Note that in

the limita → 0, the expressions inEq. (76) reduce to the same
Schwarzschild expressions obtained in Ref. [8].
The physical interpretation of the vacuum expectation

values from Eq. (76) is that they measure the spectral
emission rate, i.e., the mean number of quanta in the mode
with frequency ω and angular mode numbers l andm, seen
by a freely falling observer at each respective location, per
the observer’s proper time τob.
One may at first sight worry that for exterior scattering,

when ω < mΩþ (and similarly, ω < mðΩþ −Ω−Þ for the
interior), the frequency prefactors in the above expressions
for hNþ

extiωlm and hN�
intiωlm become negative. This is

connected to the well-known phenomenon of superra-
diance, in which the transmission probability in a rotating
system becomes negative and the absorption probability
exceeds unity, so that scattered waves gain amplitude upon
reflection and extract energy from the black hole [29].
However, the aforementioned negative terms are exactly
canceled by the Planckian terms in the denominator of each
expression, which also become negative in the same
superradiant regimes. Therefore, the expected number of
particles seen by the observer will always remain positive.

B. Scalar modes

First, consider the Hawking radiation from massless
scalar mode excitations, with spin s ¼ 0. The more general
bosonic cases (s ¼ 1 for photons and s ¼ 2 for gravitons)
will be considered in the next section.
The Hawking spectra for the lowest set of modes (l ¼ 0,

m ¼ 0) are shown in Fig. 10. These s-wave spectra are
computed numerically for a variety of black hole spin
parameters seen by the four observers represented in
Eq. (76). First, the standard graybody spectrum seen
asymptotically far from the black hole is shown in the
upper left panel of Fig. 10. The distribution is plotted as a
spectral intensity, which scales as ω3hNi, so that a
Planckian blackbody would appear with a quadratic power
law at low frequencies and an exponential drop at high
frequencies. Such a blackbody, with a temperature given
by the surface gravity ϰþ=ð2πÞ, is plotted for each spin
parameter with a dashed curve. All the numerically
evaluated solid curves agree with the blackbody estimations
at high frequencies (i.e., the geometric optics limit).
However, at low frequencies, the graybody spectra differ
from their blackbody counterparts by a power-law index
of 2, in agreement with the analytic prediction of
Starobinsky in the limit ω → 0 [29].
While the spectrum of Hawking radiation seen by

someone looking inward from asymptotically far away
contains entirely straightforward graybody deviations at
low frequencies, the spectrum seen by someone crossing
the event horizon contains graybody deviations at high

frequencies, as shown in the upper right panel of Fig. 10.
The spectral intensity is still roughly the same order of
magnitude as that seen at infinity, in accordance with
assertion 1 in Sec. I. But at higher frequencies, the spectrum
drops to zero much more quickly than one might expect
from blackbody predictions. The reason for the dropoff is
that in the geometric optics limit, fewer outgoing modes
originating from an Unruh emitter at the horizon will be
reflected and return to the observer; instead, more will
escape as rays to infinity instead of being back scattered as
waves. Since the Hawking spectrum seen by an observer
looking outward from the event horizon is determined
entirely by these reflected modes (and not from transmitted
ingoing modes originating from past null infinity, which
do not exhibit the characteristic exponential peeling),
Hawking radiation detected at the event horizon is sup-
pressed at high frequencies.
Before discussing the Hawking spectrum seen by some-

one at the inner horizon, one feature present in all panels of
Fig. 10 is the suppression of Hawking radiation for faster-
spinning black holes. As the spin parameter a is increased
and the curves change color from dark blue to yellow, one
may note that the higher-a curves have overall lower
intensities. The faster a black hole spins, the colder it
becomes, regardless of where the observer lies within the
spacetime.
The Hawking spectra seen by an observer at the Cauchy

horizon are shown in the lower two panels of Fig. 10. The
lower left panel corresponds to an ingoing observer
looking outward at the sky above (the left portion of r−
in Fig. 9), while the lower right panel corresponds to an
outgoing observer looking inward at the past horizon
below (the right portion of r− in Fig. 9). These spectra
are plotted alongside the dashed blackbody curves (after
taking the absolute value) for the negative temperature
given by the surface gravity of the inner horizon, ϰ−=ð2πÞ.
At low frequencies, all the curves approach the same
quadratic power law, but instead of simply falling off
exponentially as the frequency ω is increased, the curves
continue to climb orders of magnitude higher than any
positive-temperature blackbody would allow. However,
the physically measurable spectral intensity does not
contain an ultraviolet divergence for nonzero rotation.
Eventually, as suspected in the Reissner-Nordström
case [8], the exponential Wien tail dominates as ω → ∞
so that the spectral intensity returns to zero. But as the spin
a decreases and the inner horizon approaches the r ¼ 0
singularity, Hawking radiation is able to access higher and
higher frequencies before reaching an ultraviolet cutoff.
The Schwarzschild limit a=M → 0 is not shown in these
lower two panels, since the spectral intensity in that case
becomes infinite at all frequencies.
It should be noted that the Cauchy horizon Hawking

spectra shown in Fig. 10 are not a priori expected to
diverge. The divergent negative Hawking temperatures
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seen at the Cauchy horizon correspond to ingoing observ-
ers looking inward (κþ for Pr > 0) and outgoing observers
looking outward (κ− for Pr < 0). In contrast, Fig. 10
shows observers at the Cauchy horizon looking in the
direction opposite the Penrose blueshift singularity—
ingoing observers looking outward and outgoing observ-
ers looking inward. Calculations for the former two
scenarios would involve the inner product of the Unruh
emitter’s Kruskal modes with the observer’s Fourier-
decomposed and back-propagated Kruskal modes [30],
which is nonetheless expected to yield an infinite spectral
intensity at all frequencies. What Fig. 10 shows is that in

addition to the classical (and likely also semiclassical)
blueshift singularity, an observer at the Cauchy horizon
will see the entire sky around them glowing brightly with
Hawking radiation.
Beyond the s-wave approximation, the Hawking spectral

intensities for higher-lmodes are shown in Fig. 11. Instead
of showing entire spectra as functions of the frequency ω,
these spectral intensities are evaluated at a specific mid-
range frequency (ω ·M ¼ 0.1) so that the dependence on
the spin parameter a can be plotted more clearly.
For an observer asymptotically far from the black hole,

the higher-l spectral intensities are shown in the upper left

FIG. 10. Graybody spectra for the Hawking s modes seen by an infalling observer at infinity (upper left panel), the event horizon
(upper right panel), and the Cauchy horizon (lower left panel for an ingoing observer and lower right panel for an outgoing observer) in
the Kerr spacetime with black hole spins a=M ¼ 0.1, 0.3, 0.5, 0.7, 0.9, 0.96, 0.99, and 0.999 (labeled with respective colors from dark
blue to yellow). Dashed curves show the corresponding positive-valued blackbody spectra with temperatures ϰþ=ð2πÞ (upper two
panels) and ϰ−=ð2πÞ (lower two panels) from Eq. (22), while the solid curves are evaluated numerically from Eq. (76).
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panel of Fig. 11. As the black hole spin a is taken to zero, all
azimuthal m modes within a given l mode converge to the
same value, as expected. These intensities in the low-a limit
drop off as l increases, so that the lowest angular mode
dominates the Hawking spectrum. In particular, the l modes
are spaced apart by 3 to 5 orders of magnitude, in agreement
with the approximate behavior predicted byStarobinsky [29]:

jT þ
extj2 ∝

ðω ·MÞ2lþ1ðl!Þ4
½ð2lÞ!�2½ð2lþ 1Þ!!�2 : ð77Þ

Additionally, note that in the upper left panel of Fig. 11, the
green curves (corresponding to positive m, with m ¼ l
located highest in each group) always lie above the
corresponding m ¼ 0 curves, while the magenta curves
(corresponding to negativem, withm ¼ −l located lowest
in each group) always lie below the corresponding m ¼ 0
curves. Physically, Hawking particles are always being
emitted preferentially with the same angular momentum as
the black hole, so that over time, the black hole will tend to
spin down as the Hawking particles carry away excess
angular momentum [31].

FIG. 11. Hawking spectral intensities for higher l and m modes, seen by an infalling observer at infinity (upper left panel), the event
horizon (upper right panel), and the Cauchy horizon (lower two panels) in the Kerr spacetime as a function of the black hole spin
parameter a=M. All modes are evaluated at a frequency of ω ·M ¼ 0.1. Each individual m mode for a given l are presented for the
observer at infinity, while the m modes are summed for each l for the other three observers.
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In the upper right panel of Fig. 11, the Hawking spectral
intensity is shown for an observer crossing the event
horizon, yielding quite different behavior from that of an
observer far away. While the l ¼ 0 mode dominates for an
asymptotically distant observer, all higher-l modes are
present when the observer is in a regime where they are
close enough to access more angular information than s
waves. While this panel plots the sum over allmmodes in a
given l mode, it should be noted that as l → ∞, all the
modes with m ¼ 0 tend to a constant value, just as quickly
as all the modes with m ¼ 0 for an observer at infinity
tend to zero—note the relationship between jT þ

ext;ωj2 and
jR−

ext;ωj2 in Eq. (A16).
The lower two panels of Fig. 11 similarly show equal

contributions from all higher-l modes in the full Hawking
spectrum seen by an infalling observer near the Cauchy
horizon. Just as expected, the spectral intensity decreases as
the black hole spin a increases, and the intensity increases
or decreases monotonically with l, except in the near-
extremal case for an outgoing observer looking inward. The
higher-l behavior demonstrated in Fig. 11 matches that of
the Reissner-Nordström model [8]. Note that as a → 0, the
observed Hawking spectral intensity diverges as the inner
horizon meets the r ¼ 0 singularity, and as a → M, the
observed Hawking radiation vanishes as the inner horizon
meets the outer horizon to create an extremal, zero-
temperature spacetime.

C. Higher-spin modes

While scalar modes (with spin 0) are commonplace in
calculations of semiclassical effects in curved spacetimes
due to the scalar wave equation’s simplicity and the
“physical enough” interpretation of modeling a single
degree of freedom from a photon field, one can obtain
more physically meaningful results by considering the
higher-spin generalization of the wave equation given
by Eq. (A2).
The Hawking particles that will be considered here

are photons from an electromagnetic field (spin 1) and
gravitons from a gravitational field (spin 2). For all integer
spins, the spectra of Eq. (76) remain Planckian, with
the only modifications arising from the scattering coef-
ficients calculated from each spin’s corresponding wave
equation [32].
The spectra for Hawking radiation from the lowest l and

mmodes of spin-1 and spin-2 fields are shown in Fig. 12. In
this plot, it can be seen that the higher-spin fields radiate
with roughly the same spectra as in the scalar case of
Fig. 10 for exterior observers. When rob → ∞, the spin-1
and spin-2 spectra peak at a slightly higher frequency than
the spin-0 spectrum (not shown), but they also trail off in
the infrared regime with a steeper power-law slope than the
spin-0 spectrum. Similarly, the spectra for an observer at
the event horizon appear almost identical for different
values of spin.

All the spectra in Fig. 12 are shown for a black hole with
angular momentum a=M ¼ 0.1. Other values of a yield
qualitatively similar results (just as in Fig. 10), but the low
value of a here is chosen since it gives the most pronounced
effects, especially given the proximity of the inner horizon
to the central singularity as a → 0.
For an observer at the inner horizon, only the spectrum

seen by an outgoing observer looking inward is shown,
since the spectra seen by an ingoing observer there for
positive values of the spin weight s are suppressed by the
vanishing of the interior reflection coefficients dictated by
the Heaviside function in Eq. (A14). If instead one chooses
s ¼ −1 and s ¼ −2 (i.e., the outgoing radiative parts of the
field; see footnote 2), as is common in Kerr perturbation
calculations for numerical feasibility, the inner horizon
spectra will appear even more ultraviolet divergent than in
the scalar case. But even for the positive spin weights
shown in Fig. 12, the spectrum of radiation produced from
electromagnetic and gravitational modes is infrared diver-
gent, indicating that an outgoing observer looking inward at
the exponentially redshifting and dimming surface of the
start that collapsed long ago will see that surface glow more
and more brightly in the infrared as they approach the
Cauchy horizon.

FIG. 12. Graybody spectra for the electromagnetic [solid
curves, ðs;l; mÞ ¼ ð1; 1; 0Þ] and gravitational [dotted curves,
ðs;l; mÞ ¼ ð2; 2; 0Þ] components of the Hawking radiation seen
by an inertial observer at Boyer-Lindquist radius rob. All spectra
are evaluated for a Kerr black hole with angular momentum
a=M ¼ 0.1. These higher-spin spectra are qualitatively similar to
their scalar counterparts from Fig. 10, except in the case of an
outgoing observer at the inner horizon, who sees an infrared-
divergent spectrum.
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IV. DISCUSSION

Hawking radiation is an observer-dependent phenome-
non. Here we have generalized the Bogoliubov coefficient
calculation of Hawking [1] to determine the effective
temperature of semiclassical radiation seen in the vacuum
state of the locally inertial rest frame of an arbitrary
observer within the Kerr spacetime. Hawking found that
if the observer is placed asymptotically far from the black
hole, they will see a small amount of approximately thermal
radiation emerge from the vacuum; here we explore the vast
parameter space of various classes of observers both inside
and outside of the black hole, all of whom will generally
see a nonzero amount of Hawking radiation, sometimes
thermal, sometimes not. This radiation appears to originate
from the black hole shadow, i.e., the dimming, redshifting
surface of the star that collapsed long ago to form the
black hole.
The main goal of this study has been to extend

the results of prior studies of Hawking radiation in
Schwarzschild [7] and Reissner-Nordström [8] black
holes to the more astrophysically relevant case of rotating
Kerr black holes. While the prior studies benefited from
spherical symmetry and needed only to examine freely
falling radial observers at different radii r, Kerr black
holes possess only azimuthal symmetry, so that the results
differ also as an observer’s latitude θ, angular momentum
L, and Carter constant K are varied.
Here we have examined five classes of observers:

those falling along the axis of rotation (Sec. II D 1), in a
horizostationary orbit (Sec. II D 2), falling along the equa-
torial plane with zero angular momentum (Sec. II E 1),
falling along the equatorial plane with zero energy
(Sec. II E 2), and crossing through either the event horizon
or the Cauchy horizon with arbitrary finite orbital param-
eters (Sec. III). In all cases, a nonzero amount of Hawking
radiation is seen regardless of where the observer is.
More importantly, from an analysis of the effective

temperature, whenever an observer reaches the Cauchy
horizon, the Hawking radiation will become blueshift
divergent (i.e., negative temperature) in at least one
direction in their field of view. Such a divergence was
not explicitly calculated in the spectral analysis of Sec. III;
instead, the cases where the Eddington-Finkelstein modes
lead to a 1D scattering problem demonstrate that an inner-
horizon observer looking in the opposite direction from the
anticipated semiclassical divergence will still see a high-
energy glow of Hawking radiation. It is worth noting that in
a dynamical gravitational collapse, the left portion of the
inner horizon reached by an ingoing observer may not be a
true Cauchy horizon as it is in the Kerr metric [21],
and therefore the Unruh state may cease to be a suitable
choice of state in that regime, in accordance with the
Fulling-Sweeny-Wald theorem [33]. However, the Unruh
behavior at the right portion of the inner horizon reached
by an outgoing observer remains valid, and the authors

nevertheless expect the conclusions of this study at all
horizons to remain robust for any astronomically realistic
black hole [34].
We additionally conclude here that the amount of

Hawking radiation seen by different Kerr observers remains
relatively independent of the spin of the quantum field, the
particular lm mode of the quantum state, and the direction
in which the observer looks. Though all of these variables
yield differing results for the Hawking radiation calcula-
tions, the key takeaways concerning the ubiquity of non-
zero semiclassical particle creation and an inner horizon
divergence remain unchanged.
One of the biggest outstanding questions that one may

ask concerning this analysis of Hawking radiation in the
framework of semiclassical gravity is how the radiation
back reacts on the spacetime. Here we have kept the
spacetime geometry fixed, but presumably if enough
radiation is present, the particles produced will possess a
gravitational field of their own that can change the under-
lying metric. Usually, one assumes that these back-reaction
effects are negligibly small and the Kerr metric can still be
used as a valid approximation of the spacetime geometry
for astrophysical, rotating black holes. We find this
assumption to be generally true for observers outside of
the event horizon. However, close to the inner horizon,
the generally divergent behavior of observed Hawking
radiation suggests that the Kerr metric is not semiclassically
self-consistent there. The backreaction for astrophysically
relevant perturbations is likely to form a strong, spacelike
singularity just above the inner horizon [15], though other
mathematical predictions also exist in the literature, such as
a weak, null singularity [35] or a rapid implosion toward
the formation of a compact horizonless object [12].
The obvious problem with attempting to analyze the

effects of backreaction from Hawking radiation in the
present framework is that each observer sees a different
amount of Hawking radiation, but they all exist in the
same background metric. Even though the radiation is
completely real from the perspective of any individual
observer, the very definition of a particle depends on an
observer’s frame of reference, a concept which seems at
first glance completely at odds with the central claim in
semiclassical gravity that particles arising from quantum
fields provide the source of curvature for a global,
classical spacetime metric.
Which observer is the one to see the actual radiation that

contributes to the underlying spacetime geometry? Is there
a preferred quantum reference frame, or will each observer
construct their own background based on the particular
backreaction they see in their own frame? The usual
approach in semiclassical gravity is to place a quantum
field in a particular global state and construct an averaged
version of that field’s net energy momentum, which can be
cast into a Lorentz-covariant (and observer-independent)
form [36,37]. This quantity, the renormalized vacuum
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expectation value hTμνiren of the field’s stress-energy tensor
(RSET), is then guaranteed to feed back into the spacetime
geometry in the standard classical way.
However, the RSET is only an averaged quantity and

cannot provide all the information that an observer is able
to access about the state of a quantum field in a curved
spacetime. Classically, the stress-energy tensor involves an
integral with each particle’s energy momentum over a
Lorentz-invariant pseudoscalar volume element,

Tμν ¼
Z

pμpνfðx; pÞ gd3p
p0ð2πℏÞ3 ; ð78Þ

where g is the number of spin states of the particle and f is
the dimensionless occupation number, which specifies
the number dN of particles with four position xμ and
four momentum pμ within the Lorentz-invariant six-
dimensional volume of phase space d3xd3p. The particle
number N, directly related to this occupation number f, is
precisely the object of study throughout this work. While
the RSET is a difficult object to calculate even for the most
symmetric spacetimes, one of the goals of this work is to
show that hNi, the more elementary object, is entirely
straightforward to calculate in the locally inertial frame of
any observer.
In conclusion, by examining the expectation value of the

number operator for a quantum field placed over a Kerr
spacetime, we have analyzed and extended the same key
ideas that were anticipated in Sec. I from prior studies
of spherically symmetric black holes: (1) The Hawking
radiation seen by generic observers passing the vicinity of
the event horizon has a negligibly weak graybody spec-
trum, (2) the Hawking radiation seen at the Cauchy horizon
possesses a divergent effective temperature for all the
classes of observers examined, (3) the Hawking radiation
originating from different directions in the sky varies
considerably for different classes of observers, and
(4) the effective Hawking temperature for certain observers
can become negative even outside of the event horizon,
though an ultraviolet divergence in the Hawking spectrum
is not seen for the limited cases considered here. From these
results it is clear that the Kerr metric cannot be trusted in its
full global form in the semiclassical approximation, as a
result of the diverging quantum radiation that would be
observed at the Cauchy horizon.

APPENDIX A: INTERIOR MODE SCATTERING
IN THE MST METHOD

The Black Hole Perturbation Toolkit (BHPT) [28] makes
use of the Mano-Suzuki-Takasugi (MST) method [38,39] to
calculate the scattering coefficients for a Klein-Gordon
field with spin weight s in the Kerr spacetime. In this
appendix, we review the implementation of this method for
the scattering of exterior modes between the event horizon
and spatial infinity, and we extend the analysis to include

the scattering of interior modes between the event horizon
and the Cauchy horizon.
The notation used throughout this appendix is self-

consistent but may differ from the notation used in the
main body of the paper; instead it is chosen to match that of
the BHPT and its relevant references. The most notable
change is that R here no longer represents the scale length
defined below Eq. (1) and instead represents the Teukolsky
radial mode function defined via the mode expansion

ϕωlm ¼ RωlmðrÞsSωlmðθÞeimφ−iωtffiffiffiffiffiffiffiffiffi
4πω

p ; ðA1Þ

vis-à-vis Eq. (7) (therefore ψωlðrÞ ¼ RωlmðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
).

The modes sSωlmðθÞ represent spin-weighted spheroidal
wave functions [20], while the radial modes RωlmðrÞ
satisfy the homogeneous radial Teukolsky equation [16]:

�
K2

ωm − 2isðr −MÞKωm

Δ
þ 4isωr − λωlm

�
Rωlm

þ Δ−s d
dr

�
Δsþ1

dRωlm

dr

�
¼ 0; ðA2Þ

for a black hole of massM and spin a, vis-à-vis Eq. (9). The
horizon function Δ is defined in the same way as in the text
following Eq. (1), the function Kωm ≡ ðr2 þ a2Þω −ma,
and the constant λωlm ≡ Elm − 2maωþ a2ω2 − sðsþ 1Þ,
where Elm is the eigenvalue of the spin-weighted spheroi-
dal wave function sSωlmðθÞ [40] and reduces to Elm →
lðlþ 1Þ in the Schwarzschild limit.
The BHPT allows for the following boundary value

problem to be solved: consider two sets of modes Rin
ωlm

(initialized on past null infinity) and Rup
ωlm (initialized on

the past horizon), which asymptotically approach the
boundary values

Rin
ωlm→

8>><
>>:
Bref
extr−1−2seiωr

� þBinc
extr−1e−iωr

�
; r→∞

Btrans
ext jΔj−se−iωþr� ; r→ rþ

Bref
int e

iω−r� þBtrans
int jΔj−se−iω−r� ; r→ r−

; ðA3Þ

Rup
ωlm→

8>><
>>:
Ctrans
ext r−1−2seiωr

�
; r→∞

Cup
exte

iωþr� þCref
extjΔj−se−iωþr� ; r→ rþ

Ctrans
int eiω−r� þCref

int jΔj−se−iω−r� ; r→ r−

; ðA4Þ

where ω� is given by Eq. (66) and the complex constants B
and C are scattering coefficients for either the reflection,
incidence, or transmission of the mode waves. The tortoise
coordinate r� is chosen to be

r� ≡ rþ 1

2ϰþ
ln

���� r − rþ
2M

����þ 1

2ϰ−
ln

���� r − r−
2M

����; ðA5Þ
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with the surface gravity ϰ� (which is negative at the
inner horizon) given by Eq. (22). Note that the forward-
propagated modes Rωlm and scattering coefficients B andC
defined here are different from the backward-propagated
modes ψob and scattering coefficients T and R used in the
main text; the relation between the two will be given at the
end of this appendix.
Conservation of the Wronskian in the scalar case

leads to the following relations between the scattering
coefficients:

jBref
extj2 þ

ωþðr2þ þ a2Þ
ω

jBtrans
ext j2 ¼ jBinc

extj2;

jCref
extj2 þ

ω

ωþðr2þ þ a2Þ jC
trans
ext j2 ¼ jCup

extj2;

Ctrans
ext

Cup
ext

¼ ωþðr2þ þ a2Þ
ω

Btrans
ext

Binc
ext

;

Ctrans
ext

Cref
ext

¼ −
ωþðr2þ þ a2Þ

ω

Btrans�
ext

Bref�
ext

;

jBref
int j2 þ

ωþðr2þ þ a2Þ
ω−ðr2− þ a2Þ jB

trans
ext j2 ¼ jBtrans

int j2;

jCup
intj2 −

ω−ðr2− þ a2Þ
ωþðr2þ þ a2Þ ðjC

trans
int j2 − jCref

int j2Þ ¼ jCref
extj2;

Btrans
int Ctrans

int − Bref
intC

ref
int ¼

ωþðr2þ þ a2Þ
ω−ðr2− þ a2Þ B

trans
ext Cup

int;

Btrans�
int Cref

int − Bref�
int C

trans
int ¼ ωþðr2þ þ a2Þ

ω−ðr2− þ a2Þ B
trans�
ext Cref

ext; ðA6Þ

where a superscript asterisk ( �) here and elsewhere
denotes complex conjugation, except in the case of the
tortoise coordinate r�. In what follows, we will focus on
the in modes; the scattering coefficients for the up modes
can be obtained from the in modes through the above
Wronskian conditions. The main results for the applica-
tion of the MST method in the exterior portion of the
spacetime will be quoted here; for a more complete
review, see Ref. [41].
The solutions to the radial wave [see Eq. (A2)] belong

to a class of functions known as confluent Heun func-
tions. However, the mathematical properties of these
functions (especially their asymptotic behavior at each
horizon) has been a mathematical enigma, and to this
day, the central two-point connection problem for these
functions still has no explicit solution. However,
Svartholm [42] and Erdélyi [43,44] early on discovered
an integral transform for confluent Heun functions with a
hypergeometric kernel, so that they could be expressed in
a series representation as the sum of (the more tractable)
hypergeometric functions.
Under the MSTmethod, two infinite series expansions of

the solutions to Eq. (A2) are found that are valid in different
but overlapping regimes. The first of these expansions,

in terms of ordinary hypergeometric functions 2F1, is valid
for all finite values of r but breaks down as r → ∞.
Defining the dimensionless parameters4

x≡ ω

ϵκ
ðrþ − rÞ; ϵ≡ 2Mω; κ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
a
M

�
2

s
;

ϵ� ≡ ϵ� τ

2
; τ≡ ϵ −mð aMÞ

κ
; ðA7Þ

such that the outer (þ) and inner (−) horizon radii are given
by r� ≡ ð1� κÞM, this first series is

Rin
ν ¼ eiϵκxj − xj−s−iϵþj1 − xjiϵ−

X∞
n¼−∞

aνnðsÞ

× 2F1ðnþ νþ 1 − iτ;−n − ν − iτ; 1 − s − 2iϵþ; xÞ;
ðA8Þ

where the parameter ν, called the renormalized angular
momentum, is a generalization of l to noninteger values
that is fixed by requiring that the series solution to the
Teukolsky equation converges.
Likewise, the second series expansion can be written in

terms of confluent hypergeometric functions and is valid
for asymptotically large values of r but fails as r → rþ. By
matching these two expansions, the coefficients aνnðsÞ
in both expansions will satisfy the same three-term recur-
rence relation that can be solved numerically to find the
minimal solution.
As r → rþ (or equivalently, as x → 0), Eq. (A8)

reduces to

Rin
ν → j − xj−s−iϵþ

X∞
n¼−∞

aνnðsÞ; ðA9Þ

while Eq. (A3) can be written in terms of the parameters of
Eq. (A7) as

Rin
ωlm → Btrans

ext

�
ϵκ

ω

�
−2s

j − xj−se−iϵþðln j−xjþκþ2κ ln κ
1þκ Þ: ðA10Þ

The coefficient Btrans
ext can then be read off by equating

the two expressions from Eqs. (A9) and (A10). A similar
matching process leads to expressions for the scattering
parameters at infinity. The resulting formulas for Btrans

ext ,
Binc
ext, and Bref

ext are given respectively by Eqs. (167)–(169)
of Ref. [41].

4As a reminder, the parameters defined here and used through-
out Appendix A should be treated independently from the notation
of the main body of the paper and instead are chosen to align with
the notation used by MST [38,39]. In particular, κ does not
represent the effective temperature, ϵ does not represent the
adiabatic control function, and τ does not represent proper time.
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Now, consider how the above formalism may be extended to the black hole’s interior. As r → r− (or equivalently, as
x → 1), based on the asymptotic behavior of the hypergeometric function with argument unity, Eqs. (A3) and (A8)
respectively reduce to

Rin
ν → eiϵκ

	
j1 − xjiϵ−

X∞
n¼−∞

aνnðsÞ
Γð1 − s − 2iϵþÞΓð−s − 2iϵ−Þ

Γð−n − ν − s − iϵÞΓðnþ νþ 1 − s − iϵÞHð−sÞ

þ j1 − xj−s−iϵ−
X∞
n¼−∞

aνnðsÞ
Γð1 − s − 2iϵþÞΓðsþ 2iϵ−Þ

Γð−n − ν − iτÞΓðnþ νþ 1 − iτÞHðsÞ


; ðA11Þ

Rin
ωlm→Bref

int exp

	
iϵ−

�
ln j1−xj−κ−

2κ lnκ
1−κ

�

þBtrans

int

�
ϵκ

ω

�
−2s

j1−xj−sexp
	
−iϵ−

�
lnj1−xj−κ−

2κ lnκ
1−κ

�

; ðA12Þ

where HðsÞ is the Heaviside step function defined by

HðsÞ≡
�
1; s ≥ 0

0; s < 0
: ðA13Þ

Equation (A11) breaks down for scalar modes when either
ω ¼ 0 or a ¼ 0; these cases, whose modes asymptotically
scale as lnð1 − xÞ, must be treated separately.
Matching Eqs. (A11) and (A12) leads to expressions for

the internal scattering parameters:

Bref
int ¼Hð−sÞeiκ½ϵþϵ−ð1þ2 lnκ

1−κ Þ�

×
X∞
n¼−∞

aνnðsÞ
Γð1− s− 2iϵþÞΓð−s− 2iϵ−Þ

Γð−n− ν− s− iϵÞΓðnþ νþ 1− s− iϵÞ ;

ðA14Þ

Btrans
int ¼ HðsÞ

�
ϵκ

ω

�
2s
eiκ½ϵ−ϵ−ð1þ2 ln κ

1−κ Þ�

×
X∞
n¼−∞

aνnðsÞ
Γð1 − s − 2iϵþÞΓðsþ 2iϵ−Þ

Γð−n − ν − iτÞΓðnþ νþ 1 − iτÞ :

ðA15Þ

The step functions in Eqs. (A14) and (A15) imply that close
to the inner horizon, only the non-negative (nonpositive)
spin-weighted components of ingoing (outgoing) waves
survive, since these are the radiative (i.e., dominant
propagating; see footnote 2) components.
The expressions above for the inner horizon scattering

coefficients can then be implemented in Mathematica
alongside the rest of the BHPT’s Teukolsky package to
compute the relevant in scattering coefficients. In order
to connect these results to the calculations in the main body
of the paper, a transformation must be made between the
two sets of scattering coefficients (B and C on the one hand
and T and R on the other). One of the main problems that
gives rise to the need for such a nontrivial matching is that
the main text’s back-propagated modes ext;intψ�

ob are ini-
tialized on the future null boundaries, while this appendix’s

forward-propagated modes Rin;up
ωlm are initialized on the past

null boundaries.
To find the back-propagated scattering coefficients, first

note that through the conservation of the Wronskian, the
transmission and reflection coefficients T �

ext;int and R�
ext;int

must satisfy the normalization conditions

jR�
ext;ωj2 þ jT �

ext;ωj2
�
ω ∓ mΩþ

ω

�
¼ 1; ðA16aÞ

ðjR�
int;ωj2 − jT �

int;ωj2Þ
�
ωþ þmΩ−

ω

�
¼ 1: ðA16bÞ

Consider first the exterior set of modes used to calculate
hN�

extiωlm, encoded by a family of observers asymptotically
close to future null infinity and the event horizon. Through
time reversal, these modes extψ�

ob map to the modes Rin;up
ωlm

by the transformation ðω; mÞ ↦ ð−ω;−mÞ, which corre-
sponds to taking the complex conjugate of the scattering
coefficients, since

Rð−ωÞlð−mÞ ¼ R�
ωlm; Btrans;ref

ð−ωÞlð−mÞ ¼ Btrans;ref�
ωlm : ðA17Þ

By matching the asymptotic relations for the complete set
of modes Rin

ωlm and Rup
ωlm in the spin-0 limit of Eqs. (A3)

and (A4) with the appropriately rescaled set of exterior
modes extψ−�

ob and extψþ�
ob from Eqs. (70) and (71), respec-

tively, one arrives at the following equalities, after fixing
Binc
ext ¼ 1 and Cup

ext ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

p
:

T þ
ext;ω ¼ Btrans�

ext;ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

q
; ðA18aÞ

Rþ
ext;ω ¼ Bref�

ext;ω; ðA18bÞ

T −
ext;ωþ ¼ Ctrans�

ext;ω ; ðA18cÞ

R−
ext;ωþ ¼ Cref�

ext;ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

q
: ðA18dÞ
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Notice the addition of the mode frequency subscripts in
the above scattering coefficients that help highlight a
key difference between the ðB;CÞ coefficients and the
ðT ;RÞ coefficients—the scattering process defined by
the former is initialized with the frequency eigenmodes
of the wave equation, while the scattering process of
the latter is initialized so that the observer always sees a
frequency ω.
Now consider the interior modes used to calculate

hN�
intiωlm, encoded by a family of observers reaching

the ingoing and outgoing portions of the inner horizon
(together with observers asymptotically close to future
null infinity, to form a complete Cauchy slice). Since the
global scattering process now depends on three singular
points and the interior scattering potential is dynamical,
the backward-propagated modes will not map trivially
onto the forward-propagated modes by time reversal.
One may instead consider the transformation ðM; rÞ ↦
ð−M;−rÞ as in Ref. [11], which leaves the radial wave
[Eq. (9)] unchanged aside from a swapping of the
asymptotic regimes at the inner and outer horizons.
However, since that transformation leaves the irregular
singular point at r → ∞ unchanged, the forward- and
backward-propagated modes must transform into linear
combinations of one another.
In order to solve for the interior scattering coefficients,

define coefficients α�in;up that form linear combinations of

the modes Rin
ωlm and Rup

ωlm. These linear combinations can
be asymptotically equated to the modes intψ−

ob initialized
along the ingoing portion of the future Cauchy slice and
the modes intψþ�

ob þ extψþ
ob initialized along the outgoing

portions of the future Cauchy slice:

ðα−inRin
ωlm þ α−upR

up
ωlmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
¼ intψ−

ob; ðA19aÞ

ðαþinRin
ωlm þ αþupR

up
ωlmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
¼ intψþ�

ob þ extψþ
ob:

ðA19bÞ
Matching the asymptotic relations for the above sets

of modes along the inner horizon leads to the linear
coefficient values

αþin ¼
Cref
int

D
; αþup ¼ −

Btrans
int

D
; ðA20aÞ

α−in ¼ −
Ctrans
int

D
; α−up ¼

Bref
int

D
; ðA20bÞ

where

D≡ ðBref
intC

ref
int − Btrans

int Ctrans
int Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2− þ a2

q
: ðA21Þ

The scattering coefficients can then be found by matching
the asymptotic relations along the event horizon and at
infinity:

T −
int;ω−

¼ ðα−in;ωBtrans
ext;ω þ α−up;ωCref

ext;ωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

q
; ðA22aÞ

R−
int;ω−

¼ α−up;ωC
up
int;ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

q
; ðA22bÞ

T þ
int;ω−

¼ αþ�
up;ωC

up�
int;ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

q
; ðA22cÞ

Rþ
int;ω−

¼ ðαþ�
in;ωB

trans�
ext;ω þ αþ�

up;ωCref�
ext;ωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

q
; ðA22dÞ

T −
ext;ωþ ¼ α−in;ωB

inc
ext;ω

T −
int;ω−

; ðA22eÞ

R−
ext;ωþ ¼ α−up;ωC

up
ext;ω

T −
int;ω−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ a2

q
; ðA22fÞ

T þ
ext;ω¼αþup;ωC

up
ext;ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þþa2

q
−Rþ�

int;ω−
R−�

ext;ωþ ; ðA22gÞ
Rþ

ext;ω ¼ αþin;ωB
inc
ext;ω −Rþ�

int;ω−
T −�

ext;ωþ : ðA22hÞ

Note that, unlike in the exterior case of Eq. (A18), the Binc

and Cup coefficients from Eq. (A22) do not need to be
fixed since all the B and C coefficients are written in a
normalization-free form. Thus, one may retain the default
normalization choice Btrans ¼ 1 used by the BHPT.
Once the scattering coefficients B and C are computed

with the help of the BHPT, Eq. (A18) can be used to
calculate the back-scattering coefficients T and R used
in Eqs. (76a) and (76b), while Eq. (A22) can be used
to calculate the back-scattering coefficients used in
Eqs. (76c) and (76d).

APPENDIX B: EVALUATION OF BOGOLIUBOV
COEFFICIENT SCALAR PRODUCTS

In this appendix, details are given for the calculation
of the inner products of Eqs. (17) and (18) leading to the
number operators of Eq. (76). Focus will be placed on the
scalar (spin-0) case, though the final result holds true for
any integer-spin modes.
For the scalar product along past null infinity (I−),

where the ingoing Eddington-Finkelstein coordinate v runs
from −∞ to ∞, one may choose

dΣnμ
ffiffiffiffiffiffiffiffi
−gΣ

p
∂μ ¼ dvdðcos θÞdφR2

∂v; ðB1Þ
while for the scalar product along the past horizon
(Hpast ¼ Hext

past ∪ Hint
past), where the outgoing Kruskal-

Szekeres coordinate U runs from −∞ to 0 in the interior
and from 0 to ∞ in the exterior, one has

dΣnμ
ffiffiffiffiffiffiffiffi
−gΣ

p
∂μ ¼ dUdðcos θÞdφþR2þ∂U: ðB2Þ
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The modes to be evaluated along these null hyper-
surfaces are those of the emitter:

ϕem →

8>><
>>:

eim̄φSω̄
l m̄

ðθÞffiffiffiffiffiffi
4πω̄

p
R

e−iω̄v; I−

eim̄φþSω̄
l m̄

ðθÞffiffiffiffiffiffi
4πω̄

p
Rþ

e−iω̄U; Hpast

; ðB3Þ

and those of one of four classes of observers, initialized
either at infinity, at the event horizon, or at the left or right
leg of the inner horizon:

ϕob →

8>>>>><
>>>>>:

Ŝv
e�imφSωlmðθÞffiffiffiffiffiffi

4πω
p

R
e∓iω̂v; I−

Ŝuext
e�imφþSωlmðθÞffiffiffiffiffiffi

4πω
p

Rþ
e∓iðω̂−mΩþÞu; Hext

past

Ŝuint
e�imφþSωlmðθÞffiffiffiffiffiffi

4πω
p

Rþ
e∓iðω̂−mΩþÞu; Hint

past

; ðB4Þ

where the upper sign corresponds to the observer modes
extϕþ

ob,
extϕ−

ob, and
intϕ−

ob, the lower sign corresponds to the
observer modes intϕþ

ob, and where quantities with hats also
take on different forms for each family of observers:

extϕþ
ob;ω∶ ω̂ ¼ ω; Ŝv ¼ Rþ

ext;ω;

Ŝuext ¼ T þ
ext;ω; Ŝuint ¼ 0;

extϕ−
ob;ω∶ ω̂ ¼ ωþmΩþ; Ŝv ¼ T −

ext;ω;

Ŝuext ¼ R−
ext;ω; Ŝuint ¼ 0;

intϕ−
ob;ω∶ ω̂ ¼ ωþmΩ−; Ŝv ¼ T −

int;ωT
−
ext;ω;

Ŝuext ¼ T −
int;ωR

−
ext;ω; Ŝuint ¼ R−

int;ω;

intϕþ
ob;ω∶ ω̂ ¼ ωþmΩ−; Ŝv ¼ Rþ

int;ωT
−
ext;ω;

Ŝuext ¼ Rþ
int;ωR

−
ext;ω; Ŝuint ¼ T þ

int;ω: ðB5Þ

Owing to the orthogonality of the spheroidal harmonics,
the angular pieces can be integrated out to yield Kronecker
δ functions between the observer’s and emitter’s mode
numbers l and m. Then one has (where the � sign is once
again defined as above)

hϕemjϕ̂�
obi ¼

δllδð�m̄Þm
4πi

ffiffiffiffiffiffiffi
ωω̄

p
�
Ŝv

Z
∞

−∞
dve−iω̄v ∂

↔

ve∓iω̂v

þ Ŝuext

Z
0

−∞
dUe−iω̄U ∂

↔

Ue∓iðω̂−mΩþÞu

þ Ŝuint

Z
∞

0

dUe−iω̄U ∂

↔

Ue∓iðω̂−mΩþÞu
�
: ðB6Þ

In evaluating the bidirectional derivative defined by

ψ ∂

↔

μϕ≡ ψ∂μϕ − ϕ∂μψ , the terms in the second and third
lines of Eq. (B6) that have the form ∂Ue∓iðω̂−mΩþÞu can be

simplified through integration by parts, yielding a surface
term that can be safely discarded:

hϕemjϕ̂�
obi ¼

δllδð�m̄Þm
4π

ffiffiffiffiffiffiffi
ωω̄

p
�
ðω̄ ∓ ω̂ÞŜv

Z
∞

−∞
dv e−iðω̄�ω̂Þv

þ 2ω̄Ŝuext

Z
0

−∞
dU e−iðω̄U�ðω̂−mΩþÞuÞ

þ 2ω̄Ŝuint

Z
∞

0

dU e−iðω̄U�ðω̂−mΩþÞuÞ
�
: ðB7Þ

The observed number operator hN̂iωlm can now be evalu-
ated via Eq. (17) by taking the square of the complex
conjugate of Eq. (B7) and summing over all emitter modes.
The integral in the first line of Eq. (B7) reduces to a Dirac δ
function that either vanishes (upper sign) or leaves a small
additive factor (lower sign)—these values can be ascer-
tained by noting that the emitter’s modes ϕem are normal-
ized along past null infinity as

hϕωlm
em jϕω̄l m̄

em i ¼ −hϕωlm�
em jϕω̄l m̄ �

em i ¼ δðω − ω̄Þδllδmm̄;

hϕωlm
em jϕω̄l m̄ �

em i ¼ 0: ðB8Þ

The integrals in the second and third lines of Eq. (B7),
on the other hand, are the origin of the Planckian
distribution. Using the definition of U from Eq. (21),
these can be evaluated in terms of Γ functions [2]. The
resulting number operator can then be found after taking
the modulus squared:

hN̂iωlf�mg ¼
1

4π2ω

Z
∞

0

dω̄ ω̄

����
�

0

2πŜvδðω̄ − ω̂Þ
�

þ ðŜuext þ ð−1Þ−zŜuintÞΓðzÞð−iω̄Þ−zϰz−1þ

����2;
ðB9Þ

where we have defined the quantity

z≡ 1� iðω̂ −mΩþÞ
ϰþ

: ðB10Þ

The squared modulus of Eq. (B9) can be simplified by
the property

jΓð1þ biÞj2 ¼ πb
sinhðπbÞ : ðB11Þ

First, consider the upper sign of Eq. (B9), corresponding
to the observer modes extϕþ

ob,
extϕ−

ob, and
intϕ−

ob [i.e., all
modes except those originating from an outgoing
observer at the inner horizon, who has expðiωtÞ instead
of expð−iωtÞ]. Then, assuming the frequencies ω̂ and ω̄
are strictly positive, the first term in the integrand of
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Eq. (B9) will vanish, and the observed number operator
will simplify to

hN̂iωlm¼ ω̂−mΩþ
ω

��Ŝuext −e
π
ϰþðω̂−mΩþÞŜuint

��2
e

2π
ϰþðω̂−mΩþÞ−1

1

2πϰþ

Z
∞

0

dω̄
ω̄

:

ðB12Þ

The integral over the emitter’s frequency modes in the
second line of Eq. (B12) diverges, but such behavior
is not a problem and is actually to be expected.
The divergence originates from the use of continuum-
normalized plane waves to initialize the modes detected
over an entire Cauchy hypersurface, which inevitably
leads to an infinite amount of Hawking radiation reaching
an observer throughout the infinite amount of time left in
the future. If instead of plane waves, a more physically
realistic choice is used to represent the observer’s modes,
such as a finite wave packet distribution, then the
resulting integral will be regularized, and the second
line in Eq. (B12) will reduce to unity [45]. In particular,
one may model the observer as a particle detector
sensitive only to frequencies within a small ϵ of ω ∼ jϵ∼
ðjþ 1Þϵ, which is turned on at a time u ¼ 2πn=ϵ for a
duration 2π=ϵ (for integers j and n). Then the observer’s
modes will appear as

ϕreg
ob ¼ 1ffiffiffi

ϵ
p
Z ðjþ1Þϵ

jϵ
dωe2πiωn=ϵϕob: ðB13Þ

At late times (large n), the above expression will yield
exactly the first line of Eq. (B12), with the remaining
terms on the second line reducing to unity. This expres-
sion for the expectation value of the number operator
hN̂iωlm reproduces Eqs. (76a)–(76c) after substituting the
respective observer quantities from Eq. (B5).
Finally, consider the lower sign of Eq. (B9), correspond-

ing to the observer modes intϕþ
ob. As in the previous case,

it will be helpful to consider a wave-packet version of the
observer’s modes, since the integral over the complex
square modulus of a Dirac delta distribution must be
regularized in some meaningful way.

For the portion of the observer’s modes along past null
infinity, performing the integral of Eq. (B13) gives

ϕreg
ob ∝ Ŝv

ffiffiffi
ϵ

p
vϵ
2
þ nπ

ei
vϵ
2
ð2j−1Þ sin

�
vϵ
2

�
: ðB14Þ

The Fourier transform of these modes over the emitter’s
frequency yields the inner product

hϕemjϕ̂reg�
ob iI− ¼ δllδð−m̄ÞmŜv

ffiffiffiffi
ω̄

ω

r
e2πiω̄n=ϵffiffiffi

ϵ
p ðB15Þ

in the frequency range ðj − 1Þϵ < ω̄ < jϵ, and 0 every-
where else. Once this quantity’s complex modulus is
squared and summed over the emitter’s modes, a constant
term will remain of the form

ð2j − 1Þϵ
2ω

Ŝv ∼
ω̂

ω
Ŝv; ðB16Þ

since for small ϵ the quantity jϵ is precisely the observer’s
frequency ω̂ back propagated to past null infinity. Thus, the
number operator of Eq. (17) for an outgoing observer at the
inner horizon reduces to

hN̂iωlð−mÞ ¼ −
ω̂−mΩþ

ω

��Ŝuext − e−
π
ϰþðω̂−mΩþÞŜuint

��2
e−

2π
ϰþðω̂−mΩþÞ − 1

þ ω̂

ω
Ŝv:

ðB17Þ

Note that in principle Eq. (B17) will contain an additional
cross term when the complex modulus of Eq. (B9) is
squared, which can be expressed in terms of incomplete
gamma functions. However, in the late-time limit of large n,
this term and its complex conjugate become negligibly
small and thus are not included here.
The expression in Eq. (B17) for the expectation value

of the number operator hN̂iωlm reproduces Eq. (76d)
after substituting the respective observer quantities
from Eq. (B5).

[1] S. W. Hawking, Black hole explosions?, Nature (London)
248, 30 (1974).

[2] C. Barceló, S. Liberati, S. Sonego, and M. Visser, Hawking-
like radiation from evolving black holes and compact
horizonless objects, J. High Energy Phys. 02 (2011) 003.

[3] C. Barceló, S. Liberati, S. Sonego, and M. Visser, Minimal
conditions for the existence of a Hawking-like flux, Phys.
Rev. D 83, 041501 (2011).

[4] E. Greenwood and D. Stojkovic, Hawking radiation as seen
by an infalling observer, J. High Energy Phys. 09 (2009) 058.

[5] L. C. Barbado, C. Barceló, and L. J. Garay, Hawking
radiation as perceived by different observers, Classical
Quantum Gravity 28, 125021 (2011).

[6] A. Saini and D. Stojkovic, Hawking-like radiation and the
density matrix for an infalling observer during gravitational
collapse, Phys. Rev. D 94, 064028 (2016).

TYLER MCMAKEN and ANDREW J. S. HAMILTON PHYS. REV. D 109, 065023 (2024)

065023-28

https://doi.org/10.1038/248030a0
https://doi.org/10.1038/248030a0
https://doi.org/10.1007/JHEP02(2011)003
https://doi.org/10.1103/PhysRevD.83.041501
https://doi.org/10.1103/PhysRevD.83.041501
https://doi.org/10.1088/1126-6708/2009/09/058
https://doi.org/10.1088/0264-9381/28/12/125021
https://doi.org/10.1088/0264-9381/28/12/125021
https://doi.org/10.1103/PhysRevD.94.064028


[7] A. J. S. Hamilton, Hawking radiation inside a Schwarzs-
child black hole, Gen. Relativ. Gravit. 50, 50 (2018).

[8] T. McMaken and A. J. S. Hamilton, Hawking radiation
inside a charged black hole, Phys. Rev. D 107, 085010
(2023).

[9] R. Penrose, Structure of space-time, in Battelle Rencontres:
1967 Lectures in Mathematics and Physics, edited by C. de
Witt-Morette and J. A. Wheeler (W. A. Benjamin, New York,
1968), pp. 121–235.

[10] M. Simpson and R. Penrose, Internal instability in a
Reissner-Nordström black hole, Int. J. Theor. Phys. 7,
183 (1973).

[11] N. Zilberman, M. Casals, A. Ori, and A. C. Ottewill,
Quantum fluxes at the inner horizon of a spinning black
hole, Phys. Rev. Lett. 129, 261102 (2022).

[12] C. Barcelo, V. Boyanov, R. Carballo-Rubio, and L. J. Garay,
Black hole inner horizon evaporation in semiclassical
gravity, Classical Quantum Gravity 38, 125003 (2021).

[13] B. Carter, Global structure of the Kerr family of gravita-
tional fields, Phys. Rev. 174, 1559 (1968).

[14] J. A. Marck and B. Carter, Solution to the equations of
parallel transport in Kerr geometry; tidal tensor, Proc. R.
Soc. A 385, 431 (1983).

[15] T. McMaken and A. J. S. Hamilton, Geometry near the inner
horizon of a rotating, accreting black hole, Phys. Rev. D
103, 084014 (2021).

[16] S. A. Teukolsky, Rotating black holes: Separable wave
equations for gravitational and electromagnetic perturba-
tions, Phys. Rev. Lett. 29, 1114 (1972).

[17] R. P. Geroch, A. Held, and R. Penrose, A space-time
calculus based on pairs of null directions, J. Math. Phys.
(N.Y.) 14, 874 (1973).

[18] A. J. S. Hamilton and T. McMaken, Wave equations in
conformally separable, accreting, rotating black holes, Phys.
Rev. D 106, 124031 (2022).

[19] N. Zilberman, M. Casals, A. Ori, and A. C. Ottewill, Two-
point function of a quantum scalar field in the interior region
of a Kerr black hole, Phys. Rev. D 106, 125011 (2022).

[20] E. Berti, V. Cardoso, and M. Casals, Eigenvalues and
eigenfunctions of spin-weighted spheroidal harmonics in
four and higher dimensions, Phys. Rev. D 73, 024013 (2006).

[21] A. Krasiński and K. Bolejko, Avoidance of singularities in
spherically symmetric charged dust, Phys. Rev. D 73,
124033 (2006).

[22] W. G. Unruh, Notes on black-hole evaporation, Phys. Rev.
D 14, 870 (1976).

[23] Y. Mino, Perturbative approach to an orbital evolution
around a supermassive black hole, Phys. Rev. D 67,
084027 (2003).

[24] H. C. D. Lima Junior, L. C. B. Crispino, and A. Higuchi,
On-axis tidal forces in Kerr spacetime, Eur. Phys. J. Plus
135, 334 (2020).

[25] T. McMaken, Semiclassical instability of inner-extremal
regular black holes, Phys. Rev. D 107, 125023 (2023).

[26] O. Semerák, Stationary frames in the Kerr field, Gen.
Relativ. Gravit. 25, 1041 (1993).

[27] J. M. Bardeen, W. H. Press, and S. A. Teukolsky, Rotating
black holes: Locally nonrotating frames, energy extraction,
and scalar synchrotron radiation, Astrophys. J. 178, 347
(1972).

[28] Black Hole Perturbation Toolkit, 10.5281/zenodo.7037850
(Accessed May 2022).

[29] A. A. Starobinsky, Amplification of waves reflected from a
rotating “black hole”, Sov. Phys. JETP 37, 28 (1973).

[30] A. Lanir, A. Levi, A. Ori, and O. Sela, Two-point function
of a quantum scalar field in the interior region of a
Reissner-Nordstrom black hole, Phys. Rev. D 97,
024033 (2018).

[31] S. W. Hawking, Particle creation by black holes, Commun.
Math. Phys. 43, 199 (1975).

[32] D. N. Page, Particle emission rates from a black hole. II.
Massless particles from a rotating hole, Phys. Rev. D 14,
3260 (1976).

[33] S. A. Fulling, M. Sweeny, and R. M. Wald, Singularity
structure of the two-point function in quantum field theory
in curved spacetime, Commun. Math. Phys. 63, 257 (1978).

[34] A. J. Hamilton and P. P. Avelino, The physics of the
relativistic counter-streaming instability that drives mass
inflation inside black holes, Phys. Rep. 495, 1 (2010).

[35] M. Dafermos, The interior of charged black holes and the
problem of uniqueness in general relativity, Commun. Pure
Appl. Math. 58, 445 (2005).

[36] C. Moller, The energy-momentum complex in general
relativity and related problems, Colloq. Int. CNRS 91, 15
(1962).

[37] L. Rosenfeld, On quantization of fields, Nucl. Phys. 40, 353
(1963).

[38] S. Mano, H. Suzuki, and E. Takasugi, Analytic solutions of
the Teukolsky equation and their low frequency expansions,
Prog. Theor. Phys. 95, 1079 (1996).

[39] S. Mano and E. Takasugi, Analytic solutions of the
Teukolsky equation and their properties, Prog. Theor. Phys.
97, 213 (1997).

[40] A. Fletcher, Spheroidal wave functions. by C. Flammer.
pp. ix, 220. 68s. 1957. (Stanford University Press, Stanford,
California), Math. Gaz. 43, 217218 (1959).

[41] M. Sasaki and H. Tagoshi, Analytic black hole perturbation
approach to gravitational radiation, Living Rev. Relativity 6,
6 (2003).

[42] N. Svartholm, Die Lösung der Fuchsschen Differentialglei-
chung zweiter Ordnung durch hypergeometrische Polynome,
Math. Ann. 116, 413 (1939).
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