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In this paper we study U(N) colored HOMFLY-PT polynomials of torus links in the double scaling limit
(polynomial variable ¢ — 1, N — oo keeping ¢V fixed). We show that, in this limit, the colored
HOMFLY-PT polynomial of any (La, Lf3) torus link can be expressed in terms of the colored HOMFLY-PT
polynomial of (L, L) torus link. Using the connection between matrix models and the Chern-Simons field
theoretic invariants, we show that the colored torus link invariants are uniquely expressed in terms of
connected correlation functions of operators in U(N) matrix model. We determine the leading
and subleading contribution to some of the correlators at large N from the matrix model approach and
find that they match exactly with those obtained from the corresponding colored HOMFLY-PT

polynomials.
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I. INTRODUCTION

The famous discovery of Jones polynomial [1,2] by
Vaughan Jones in 1984 led to a rejuvenation of the
mathematical theory of knots and links. A knot K is an
embedding of a circle S' inside a three-manifold M
whereas a link £ is a collection of two or more knots
linked in a nontrivial way. Two knots /C; and /C, are
considered to be equivalent if one can be deformed to
another through any of the three Reidemeister moves. The
central problem of knot theory is to classify different knots
and links. To address this classification problem there
comes various polynomial invariants viz. Alexander poly-
nomial [3], Jones polynomial, HOMFLY-PT polynomial
[4,5], etc., in the order of increasing sophistication.

Knot theory has become of spectacular interest to
physicists ever since Witten’s seminal work giving an
intrinsically three-dimensional definition of Jones polyno-
mial from the perspective of quantum field theory [6]. The
Chern-Simons theory, a three-dimensional gauge theory

“archana_phy @iitb.ac.in
kushal16@iiserb.ac.in
Suvankar@iiserb.ac.in

Sramadevi @iitb.ac.in

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2024/109(6)/065021(22)

065021-1

with an underlying gauge group G, provides a natural
framework to compute the topological invariants of three-
manifolds and of knots and links embedded inside those
three-manifolds. In particular, the correlation function of
the observables of Chern-Simons theory, viz. Wilson loop
operators, is nothing but the Jones polynomial when the
gauge group at consideration is SU(2) and the representa-
tions put on the Wilson loops are that of the fundamental
representation (R =[J) of SU(2). Likewise, with the
fundamental representations of G = SU(N) and SO(N)
we obtain HOMFLY-PT polynomial and Kauffman poly-
nomial [7], respectively. If other higher-dimensional rep-
resentations are placed on the Wilson loops then we obtain
the corresponding colored polynomials.

In this work we confine ourselves to a class of links
called torus links that can be embedded on the surface of a
torus in such a way that they do not cross over themselves.
Any L component torus link can be denoted as (La, Lp)
where La and Lf denote the number of times the link wraps
around the meridian and the longitude of the torus,
respectively. Here @ and S are coprime to each other.
These torus links can be obtained as a closure of La strand
braid with (La — 1)L crossings. We will study these torus
link invariants in the double scaling limit of the Chern-
Simons theory associated with the gauge group U(N). This
limit is defined as follows:

N
N,k — o such that 1 = —— = fixed,
N +k

(1.1)
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where k is the coupling constant of the Chern-Simons
theory. In terms of the variable g = exp({%;) the above
limit can be rephrased as

g— 1,N - oo, such that ¢¥ = fixed. (1.2)
By two of the authors, it has been shown that in this limit
the invariants for a specific set of torus links viz. (2,2m)
torus links can be expressed in terms of (2, 2) torus link
(also called the Hopf link) invariant [8]. Interestingly, this
result can be generalized for any arbitrary L component
torus link. In particular, we show that in the double scaling
limit we can express the (La, Lf) torus link invariant in
terms of (L, L) torus link invariant.

Although the partition function of Chern-Simons theory
can be obtained for some three-manifolds, the calculation
of correlation functions is difficult in general. However, in
the double-scaling limit one can use the saddle point
approximation to compute some of the correlation func-
tions. In particular, the correlation function that corre-
sponds to the (2, 2) torus link invariant was computed in
Ref. [8] by mapping the problem to that of an incompress-
ible fluid with initial and final fluid densities being related
to the representations placed on the two component knots.
In this paper we further study the correlation functions
corresponding to the (L, L) torus link in the double scaling
limit, for any arbitrary L. We obtain an exact expression for
the leading contribution of such link invariants using the
saddle point approximation [8,9]. We validate this result by
explicitly computing the colored HOMFLY-PT poly-
nomials for the (3, 3) torus link carrying same/different
representations on its three components.

It is well-known in knot theory, that all knot invariants
reduce to unknot invariants in the double-scaling limit.
Similarly, any L component link invariant reduces to the
product of L unknot invariants. The intertwining between
the components is not captured in this limit. These
observations are also seen in the matrix model results
using saddle point approximation. Specifically, the leading-
order contribution to any n-point correlator in the large-N
limit is the product of n one-point correlators. Hence, we
need to investigate the subleading corrections to capture the
intertwining between the component knots constituting the
link. The subleading corrections to the knot invariants are

|

captured by the connected piece of correlation functions in
the matrix model approach. We use the techniques devel-
oped in Ref. [10,11] to compute the connected pieces. We
then validate the results for the subleading contributions of
Hopf link invariants for some specific representations
placed on the components of the link. Further, we show
that any knot or link invariant modulo the leading con-
tribution (i.e., subtracting the leading contribution from the
link invariant) can be uniquely written in terms of con-
nected correlation function of operators in U(N) matrix
model. These connected correlators are related to the
reformulated invariants (which are written in terms of
the colored HOMFLY-PT polynomials) [12].

The organisation of the paper is as follows: In Sec. I we
review how to obtain the correlation function of links in
U(N) Chern-Simons theory. In Sec. Il we write down
explicitly the U(N) invariant of (2,2m) torus link
embedded inside three manifold S3. In Sec. IV A we review
the double scaling limit of (2, 2m) torus link invariant [8].
Section IV B contains the generalization of this result for
any L component (La, Lf) torus link invariant. In Sec. V
we discuss how one can express the (L,L) torus link
invariant in terms of a correlation function involving L
Schur polynomials. An analytic expression for the leading
contribution of any (L, L) torus link invariant is obtained in
the large-N limit using the saddle point approximation.
Particularly we validate this result by tabulating the colored
HOMEFLY-PT polynomial of the (3, 3) torus link. Sub-
leading contributions to the link invariants are discussed in
Sec. VI. In that same section we also argue how the torus
knot/link invariants with arbitrary representations can be
expressed in terms of connected correlation functions of
operators in U(N) matrix model. Finally, in Sec. VII
we summarize our results and elaborate on the future
outlook.

II. LINK INVARIANTS IN U(N) CHERN-SIMONS
THEORY

The three-dimensional Chern-Simons theory on a
manifold M corresponding to the gauge group U(N) can
be written as a sum of SU(N) and U(1) Chern-Simons
actions [13],

T

k 2 k
s_—/ Tr(AAdA+ZANANA +—1/ Tr(B A dB)
47TM 3 4 M

k y 2
= A d®xe"PTr (AﬂayAp +ZA

3

ki 5
ﬂAl,Ap> +4—A4 A3 xe" PTr(B,,aDBp),

L (2.1)

where A, B are the gauge connections for the gauge groups SU(N), U(1), respectively, and k, k; are the respective coupling
constants. Thus, the partition function of U(N) Chern-Simons theory obtained, by integrating over gauge-inequivalent

connections, is a product of two partition functions,
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2V (] = / [DAJ[DB]eS = Z5VM)[M] x ZVD)[M].

(2.2)

As the action is explicitly metric independent, the corre-
sponding partition function is a topological invariant of the
three-manifold M. The other topological invariants asso-
ciated with links can be described by expectation value of
Wilson-loop operators in Chern-Simons theory. For an
oriented knot X in an irreducible representation R, the
Wilson-loop operator is defined as

Wr(K) = (TrgHW[K])(Tr, HE[K]),  (2.3)
where
HWIK] = P{exp% A} and H®[K] = P{exp]{ B}
K K
(2.4)

are the holonomies of the SU(N) and U(1) gauge con-
nections, respectively. The symbol P denotes path order-
ing. Note that the representation R € U(N) involves
representation Re€ SU(N) and charge ne U(1). Given
(R.n), we can define U(N) representation R in the
following way:

{li+S,
n; =
s,

where [; (n;) is the number of boxes in the ith row
corresponding to the Young diagram of SU(N) (U(N))
representation R (R) and s is any integer. The total number
of boxes of representation R, known as the charge of U(1)
theory, is given by n =¥ n; The relation between
SU(N) Chern-Simons theory to 8u(N), Wess-Zumino
Witten conformal field theory implies that the /;’s of the
SU(N) representations must obey /; < k. Such representa-
tions are known as integrable representations. With suitable
choice of s, we can shift the range of n; appropriately.

If instead we have a link £ made up of L number of
component knots /C, each carrying representation R, of
U(N) gauge group, then the Wilson loop operator of L is

i=1..,N-1

N (2.5)

W, .r, [L] =[] Wr,[Kd]- (2.6)

The correlation function of this topological operator yields
the link invariant of £ corresponding to U(N) Chern-
Simons theory,

_ 1 z ezS
7o, A8 (11w <)
—me,__,, (L)(M7kl)W§ ...... &, (M.k)
2.7)

These link invariants can be computed using one of the two
framings:
(i) Standard framing where the self-linking numbers of
the component knots are zero;
(i1) Vertical framing where the self-linking number of
any component knot is equal to its crossing number.
In fact, the link invariants in standard framing are
unchanged under all the three Reidemeister moves and
are called ambient isotopy invariants. However, the link
invariants in vertical framing, referred to as framed link
invariants, are unchanged only under the Reidemeister
moves II and III. These framed link invariants are known
in the knot theory literature as regular isotopy invariants.
In this work, we will confine ourselves to framed links
[£; f] where the framing f = {f,,..., f.} is a set of L
integers, each element of the set denoting the self-linking
number (or framing number) of the component knot.
Let us consider the three manifold M to be S3. The U(1)
invariant of [£; f] is given as

where [k, denotes the linking number between the
components /C, and K,. For the polynomial invariant of
U(N) Chern-Simons theory to be a function only of two
variables

-
g = exp <k+mN> and v =gV, (2.9)

in the U(1) invariant (2.8) we need to make the following

replacement for the charge n(®) and the coupling constant
ky [13,14].

ki — k+ N. (2.10)

We will elaborate the salient features of computing the
(La, L) torus link invariants in the following section.
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III. TORUS LINK INVARIANTS IN U(N)
CHERN-SIMONS THEORY

Torus links with L components are characterised by two
integers (La, L) where a and f are coprime to each other.
These links can be obtained from the closure of a braid with
La strands. The braid word for a right-handed (La, Lf)
torus link, in terms of the braid generators b;, is

B(La,Lﬂ) = (b]bz...bLa_])L/j. (31)
The corresponding mirror image of this link is left handed
and its braid word becomes (b7'b3!...b7L )/. As an
illustration, we show in Fig. 1 a two component (L = 2)
torus link (with @ = 1, f = m) and its mirror image, where
m is any positive integer. The dotted lines in this figure
indicate the closure of the two-strand braid. For clarity, we
now discuss the colored HOMFLY-PT polynomial for these
(2,2m) torus links before getting into arbitrary L compo-
nent torus links.

A. (2,2m) torus-link invariant

Given a braid word (3.1), there is a systematic procedure
of directly writing down the invariants of links that are
obtained from the closure of such braids [15]. Basically, we
use the basis where the braiding generators are diagonal.
As any two consecutive generators b; and b;.; do not
commute, we need to perform a suitable unitary trans-
formation to go from one basis to another. The invariant of
the right-handed (2,2m) torus link (refer to Fig. la),
closure of a simple two-strand braid with braid word
b3™, involves the eigenvalues only of the braiding generator
b,. In vertical framing, the eigenvalues for the right-handed
braiding generator b; on two parallelly oriented strands
carrying representations R; and R, of SU(N) gauge group
is given by [16]

Cr, +CR2) Cr

Ry Ry) = (—1)mtenen g~ ()4 % R R, @R,,
(3.2)

where eg , €g,, €, = *1, g is defined in Eq. (2.9) and Cy, ,
the quadratic Casimir of representation R, is defined as

U? I j@ o) _
Cr, = =3y +§Zj:zj (Y =2j+N+1). (3.3)

a

2.2m);f 2.2m);f 2.2m);f
W%,,Rz) ‘f]<S3,k) :WL((I)J[(Z)))‘] (53,]() XW%I.RZ >f](S3,k>

e

@m : ' (2m

croming) | ‘ / croming) |

QX

(b) Left handed
(linking number -m)

(a) Right handed
(linking number +m)

FIG. 1. (2,2m) torus link; closure of two parallelly oriented
strands with 2m crossings.

Here l,(.“) denotes the number of boxes in the ith row of

representation R, and [(?) =3, l,(»a). Using the above
braiding eigenvalue (3.2), we can write down the colored
HOMFLY-PT polynomial of the (2,2m) torus link with
framing f = {f}, f»} of the component knots and linking
number m [13],

W%2,2m);f](s3’ k) — qf1CR|+f2CR2

(dim,R,) (2 )"

R,ER,®R,

J1Cr, +/2Cr, (dlqut)
R, ER,®R,

_CRI +CR2 +% 2m
X \q 2 2 s

=q

(3.4)

where the g-dimension of a representation is defined as

(@) _qla) |+ . x

L =1 +Jj—1 —qg 2

dim,R,= [] =l =iy W, =11
1<i<j<N -1, q:—q
(3.5)

The U(N) invariant of framed (2,2m) torus link can be
written using (2.7), (2.8), and (3.4) as

YD p@) Cry +Cry

. 2 (a) 2 .
in fa(n ir 2(+m
:eXp<k+N§_: <N ) >eXp<k+N (

C
gl ST (dim R,
R,ER | QR,

(3.6)
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Note that, in writing the above expression we have used the
fact that the quadratic Casimir and g-dimension of a U(N)
representation R, is same as that of the quadratic Casimir

In terms of these variables, we express the U(N) invariant
of the framed (2, 2m) torus link as

and g-dimension of SU(N) representation R,, W’[/zzl %nz /] (83, k) = ¢/ ® +f2KRZZ (dim, R,)
(a) N R
1 (@) e —
Cr, = 52 (Y =2+ N+1)=Cp, X (g R TR RO, (3.10)
(3.7) Hereafter, we refer kg, to be the quadratic Casimir
of U(N) representation R,. The invariants for arbitrary
(@) _ (@) 4 5 - L-component torus links can be compactly written using
[0, =n" + j—i]
dim, R, = H ! [ - ] f=dim,R,. (3.8)  these quadratic casimirs x5 and g-dimension of represen-
I<i<j<N I g tations [17]. We will briefly present the explicit form of
these link invariants in the following subsection.
We introduce kg, in terms of the number of boxes nfa)
the ith row of the Young diagram of representation R, B. (La.Lp) torus link invariant
1 For a general two-component right-handed torus link
52 Ea l —-2i+N+1). (3.9)  (2a,2p) carrying U(N) representations R and R, on the
i=1 component knots, the polynomial invariant is [17,18]
|
(2a, 2/)’ 3 2 _“_/’;(R _Ble=D) ) R RV
W R, (87, k) = H (g 7my— 27 Z CR R, 0% 5%,(q, V), (3.11)
i=1 RiFa(nV4+n?)
where
(X0 leam]
CRI,RZ = Z W)(RI(CA(U) Z 2 ')(Rz( ))(R( C(am +A<))())
AD gD (n ) AQER? (n )
20 A2 _ L =A2
leal phils — ph :
sk@0) =Y —aeaw () [ mr—ma=dmR.  v=¢". (3.12)
An(® (n ) i=1 q —q
|
Here x5 in terms of ki (3.9) can be written as total number of elements belonging to the conjugacy class
cp@ having the same cycle structure. yz (cy@) is the
R = Z”i(”i —2i+1)=2kg - N Z"i- (3.13) corresponding character labeled by representation R,.
i i The sum of two partitions is the sum of each of the elements
The notation A@WFn(@ means that A = (A§“>, of the respective partitions,

A<2a), Aga), ...) is a partition, in other words a sequence of

positive integers with A > AL > Aga) > -, satisfying
£(A@)
S A (3.14)

where #(A@) is the highest value of i for which A\ is
nonzero,
£(A@) = max {i|Al(-”)

> 0}.

The conjugacy class associated to the partition A@ is
(a)

(3.15)

and it consists of one A

A<2 >—cycle, one Ag )

denoted as ¢, -cycle, one

-cycle, and so on. |c,w| denotes the

AD 4 A® = (A 4 AP AY + AP ALY AP,
(3.16)
and (A),) implies the partition (@A, aAy, aAs, ...).

Rewriting the torus link invariant (3.11) in terms of
variable kp we get,

R (5 k= g o e
1,732
R, /2
xS R s (q.v). (3.17)
RFa(nV+n?)

If the component knots are having f| and f, self-linking
numbers, which we denote as f = {f,,f,}, then the
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polynomial invariant will have an additional framing
factor
[(2a.28) Kr +fak 2a.2,

WICRDIN(SE k) = ¢ W (83, k). (3.18)
Now, we can generalize the colored HOMFLY-PT poly-
nomial for an arbitrary L component torus link (La, Lf),
with self-linking number f = {f1, ...f } of the component
knots, as

W[ LOItIIIJﬂ <Hq fa—ap K'Ra>
x>

RiFa(n® 4 gnl))

.....

(3.19)
where
CR, . ﬁ Z |CA<“)| ( )
RiviiRy = (n@) AAONE
a=1 “\(@)pla) .
X ){R, (C(A(])+-~-+A<L>)<{Z)) . (320)

In Ref. [8], two of the authors have analyzed the double-
scaling limit (1.1) and (1.2) of the two-component (2, 2m)
torus link invariants. Particularly, these invariants were
shown to be expressed in terms of (2, 2) torus link
invariants. We believe that this must be generalizable for
an arbitrary L-component torus link (La,Lp). In the
following section we present our result after briefly
reviewing the works on (2,2m) torus links.

IV. TORUS LINK INVARIANTS IN THE
DOUBLE-SCALING LIMIT OF U(N)
CHERN-SIMONS THEORY

As discussed in the introduction, the double-scaling limit
(1.1) of U(N) Chern-Simons theory involves the Chern-

Simons coupling k — oco. The range of the n P (2.5) for the
integrable representations R, at large k can be chosen as

<nlf) <<l <5

l\)l??‘

(4.1)

For the representation R, we define a set of N variables
{9(“) 9(“)}
1 > YN B

m): N + k)
Wi (8%, k) = exp[ ( ((f1

Za

(1) _p0)

(@) 2 @ N-1
0" = h;" — ——— 4.2
! N+ k ( ! 2 ’ (4.2)

where, h\¥

@ — pl L N - (4.3)

It is easy to check that in the double-scaling limit the
variables «91(-“) range from —z to z. The quadratic Casimir of
representation R, (3.9) can be expressed in terms of these

variables as

KR N+k Za 1>. (4.4)

In the large N limit, the set of discrete variables 6; becomes a
continuous function

0\ > 0@ (x), where x = .

( cl0.1]. (4.5

All the discrete summations over i are then replaced by
integration over x,

(4.6)

%Z::/Oldx.

Moreover the distribution of 6;, in the large N limit is
captured by a distribution function

1 N
=52 80-0;) =

i=1

(4.7)

such that [ dfc(0) =
of 6; we can write

N 3r@) = [ assioro) =

Now we will incorporate the continuum limit discussed
above for the (2,2m) torus link invariant.

1. Hence, for any arbitrary functions

/ d0s(0)f(0). (4.8)

A. (2,2m) torus link invariant in the double-scaling limit

The invariant ng %" v ]( k) (3.10) can be expressed

using the {6;} variables (4.2) as

- m@eﬁm)} exp [—H (F1+ famm)

0 —g"
expl: Zl# log | sin(-=—)|] im(N + k) (12
exp e zi:@i .

o7, expls ol log [sin(R/)|

065021-6
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Here 9( ) 9<

[

and 9< ) are the set of variables corresponding to representations R, R,, and R,, respectively. In the double

scaling limit with appropriate replacement of the discrete variables in terms of the continuous functions (4.5), (4.6), and

(4.7), the above invariant becomes

W[(2,2m>:f](53’ 1) =GV (m

where

iN?
G (m, 2, 01,0,) = exp [4 - </ doo*((f,

X exp {—

is dependent on framing f and

x log

F(m,2) = / DO (x)] exp [N; dx ][ dy
sin (9(” (x) — 6% (y)) H

2
lm;\/; / dxO (x)Z}

xexp{4

(4.12)

is independent of framing. Observe that the function
GY)(m, 1, 0,,0,) depends only on the given representa-
tions R and R, and is independent of R,. However,
F(m, ) involves the ) integration which is constrained,
since it runs only over the irreducible representations R,
appearing in the tensor product of R and R,. Therefore,
this function F(m,A) is difficult to evaluate even in the
large-N limit. Note that, the space of functional integra-
tion over @) (x) in F(m, 1) remains the same for any value
of m. As a result, the function F(m, 1) has the following

property:

F(m,2)

= F(1,/m). (4.13)

With m =1, Wg(zz 331) /] (8, k) becomes the invariant of

framed Hopf link. Therefore, by exploiting the property
|

>%ﬁ<ymﬁmp

(fl—aﬂze

,ﬂ,al,az)f(m,/l), (4.10)
—mu@+w—m@@0]
2 2
N (fl+f2_m)—%/dxfdylog|sin(ml(y—x))|] (4.11)

(4.13), we can see that a framed (2,2m) torus link
invariant can be expressed in terms of a framed Hopf
link invariant as follows:

[22mif] (g3 3 — G (m,1,0,0,)
o g

,A/m, oy, 0,)

x WIZZ(§3 2 /m). (4.14)
That is, we first find the distribution functions oy, o,
corresponding to the representations 2, R, placed on the
two component knots. After which we can write the Hopf
link invariant as a function of o4, 6,, and A. Then the link
invariant for (2, 2m) torus link as a function of 1 becomes
proportional to the Hopf link invariant with 4 replaced by
A/m but importantly, keeping o, and o, fixed while
performing such a replacement.

In the following subsection we generalize (4.14) for any
L-component torus link (La, L) embedded inside S°.

B. (La,Lp) torus link invariant
in the double-scaling limit

Let us first focus on arbitrary 2 component torus links
(2a,2p). Using the expression of kg in terms of the set of

N variables 9 ) (4.4) we can express the (2a, 2p3) torus link
invariant (3. 18) as

)

. 3_
cenp| =T T (14 - 2aﬁ+§>]

0 _g
. 1NN 1 .00
- N”+ k) 29@1 exp3 2o, log | sin(*—51)|] '

(4.15)

exp[3 X1 og [ sin () ]
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We now take the double-scaling limit with the appropriate replacement of the discrete variables in terms of the continuous

functions (4.5), (4.6), and (4.7),

WIEA($3 2) — exp {% ( / d00%((F, — af)or (0) + (f2 — aﬁ)az(e))>] exp[

dral

2
AN <f1+fz—2aﬁ+ﬁ>]

(4.16)

, N 2 [ dx f dylog| sin(220500)
< 00016 o0 i [ dotPa0) exply [ dxf dviog| s |
’ e

= @pdona)r (L),

where

A2
G (a, B, A 6y,06,) = exp {l

inAN?

xexp[

and

f<§’i) /[Dg()] “ exp[ /dx][dylog

When a = f# = 1, we get the double scaling limit of Hopf

link invariant. We exploit the symmetry of F ((ﬁ—l,/l) under
s A
—-1 d A->—, 4.20
S~ 1 an - a (4.20)

to write down the invariant of any 2 component torus link in
terms of Hopf link invariant as

g(f) (a7ﬁ7/1761762)
G(f)(ls lvﬁ’alvgz)

12201 3 ﬂ)
XWeio, | $7— .
(557

Similar exercise for any arbitrary L-component torus link
(3.19) is straightforward and we find that (La, L) torus
link invariant can be expressed in terms of (L, L) torus link
invariant as follows:

Walz?y,Zﬂ f](S3 /1) _

(4.21)

Na, B, Aoy, ....00)
g(f)(l,l,m,o'],...,GL)
ittt A
o S5, — .
W ( ﬁ/a>
(4.22)

}](S% ) =

.....

< () - e<><y>>

Xp [N{fdx £ dylog|sin(zA(y — x))|]

(4.17)

i ([ 40071~ ap)on(0) + (72 -y )
(fl + fo —2ap + )——/dx][dylog|sm(m1(y x))@ (4.18)

(4.19)

ipN?
}exp {4710(/1 / d9926t(9):|.
|

Thus, given a (L, L) torus link invariant in variable 4 with
oy, ...,07 being the eigenvalue densities of the component
knots, the (La, Lp) torus link invariant (carrying the same
eigenvalue densities) in variable 4 becomes proportional to
the (L, L) torus link invariant with 4 replaced by 77 while
keeping o4, ..., 0; unaltered.

We can explicitly work out the (L, L) link invariants
(3.19) with components carrying different representations
whose Young diagrams have small number of boxes. For
these representations, we can infer the leading and
subleading terms for a general (La,Lp) link invariant
in the double-scaling limit (4.22). Extracting such leading
and subleading contributions appear to be practically
difficult for representations with large number of boxes.
In Ref. [8], large-N contributions for the two component
Hopf link invariant was determined by mapping it
to a one-dimensional fluid equation, where the initial
and final fluid densities correspond to two of the repre-
sentations placed on the two component knots. However,
such a procedure is not generalizable for a (L, L) torus
link with L > 2. The matrix model method appears

to be an efficient approach to handle such difficulties.

In the following section, we will briefly review U(N)
matrix model and the computation of the correlators
corresponding to the torus link invariants in the double-
scaling limit.
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V. TORUS LINK INVARIANTS AND MATRIX
MODELS AT LARGE N

Study of the partition function and the correlators in U(N)
matrix model at large N will allow us to deduce the leading
and subleading contributions of torus link invariants. Within
the matrix model approach, we obtain analytic results for
these contributions at the following two instances:

(i) Representations having small number of boxes
(small as compared to N,k — o0); these are vali-
dated with those obtained from explicit colored
HOMLFLY-PT polynomials;

(i) Large symmetric representations placed on the
component knots.

We now focus on the invariant of a framed Hopf link,
embedded on a three-manifold S°/Z »» Which can equiva-
lently be written in terms of the modular transformation
matrices (S, 7) of u(N), Wess-Zumino conformal field
theory. The explicit form of Hopf link invariant on $°/Z,
with representations R and R, on the two components is
given by

VR

($%/Z,.k ZSRIRSRZRT;;;Q

‘SR R ‘SR —
= 2R ST .
Z SOR SOR RR

The summation runs over all the irreducible integrable
representations R of u(N),. Considering R; and R, to be
trivial representations we obtain the partition function of
Chern-Simons theory on $°/Z,,

1

(5.1)

2(8%/Z, k) =) _SirT k- (5.2)
R

In the double-scaling limit (1.1) the partition function is
dominated by a single representation. Contributions due to
other representations are suppressed by O(1/N?). This is the
standard saddle point approximation. The Hopf link invariant
defined in (5.1) is unnormalized. We can define the normal-
ized invariant as

Ve (83/2,.k)
Z($/Z,.k)

VR (83/2,.k) = (5.3)

such that V%z;zz (8%/7,, k) with the representations R and
R, being trivial becomes identically equal to one. Note that,
with p = 1, Vi % (83/Z,,. k) becomes a Hopf link (3.10)
embedded inside three manifold S with framing of compo-
nent knots f = {1, 1}.

In order to proceed further we explicitly write down the
modular transformation matrix S for u(N), [19],

N—l/2
(kN

27!1’1(“) (®)

WM detM (R, Ry),

Sg,r, = (—i)NWV=1/2

(5.4)

where for any integrable representations R, and R,

.
L pi(ROB;(Ry) |, ij=1,....N

MR Ry) —exp| =

(5.5)

n(@ . N+1

— 1 J—

N 2

Here, as before, n(?/?) and nl(.a/ %) denote the total number of
boxes and the number of boxes in the ith row correspond-
ing to the Young diagram of R/, respectively.

The other modular transformation matrix 7 is given by

$:(R,) = n" — (5.6)

. C
TRaRb = eXp |:27” <Q’Ru - 24):| 573“73[7. (57)

O and ¢ denote the conformal weight of representation R
and central charge, respectively

KR N(Nk +1)
= —_— d =
Or ane ¢ N+k

(k+N) (5:8)

Next we want to_calculate the ratio of modular trans-
formation matrices —3~ appearing in Eq. (5.1). Instead of
representlng a Young d1agram by the set of box numbers

{ni } we use the variables 6; defined in Eq. (4.2). Since in
the double scaling limit 8; ranges between —z and 7, we can
arrange them as eigenvalues of an N x N unitary matrix,

U = diag(e, ..., e). (5.9)

After some calculation one can show that the ratlo Sox SRR can
be expressed as

(5.10)

where the Schur polynomial sz (U) of the unitary group
element U in representation R, is

det[e ia»h(,")]
det[e?i(N=1)]"

sg,(U) = (5.11)
Note that the notation U used in Eq. (5.10) corresponds to
representation R on its left-hand side i.e., the diagonal
elements of U correspond to h; (4.3) of R. The unnormal-
ized Hopf link invariant, therefore can be expressed as'

'Note the difference between the expressions of Hopf link here
and in [8].
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~ (2.2 PN(Nk+1) -
VR (8/2,. k) = ¢ 5 g =Sk, (U)sr, (U),
R
(5.12)

where ¢ is the (k + N)th root of unity (2.9). In Eq. (5.12)
each R corresponds to a unitary matrix U in an ensemble of
unitary matrices. The summation over R therefore corre-
sponds to summation over unitary matrices. The factor S5,
when written in terms of @; variables, reduces to
Vandermonde measure for unitary matrices. Thus in the
large N limit we can write

;sgn = /Hd&in sin? (9" ;9f> = /[DU], (5.13)

i<j

where we have ignored few 6 independent overall factors
which does not affect our analysis. Hence, the partition
function (5.2) can be written as a zero-dimensional unitary

matrix model with weight factor e=(V+5’S] a5

0. —0.
Z(S3/Zps k) _/HdelH Sin2< ! 5 ]>e_(N+k)ZS[9]’

i<j

(5.14)

N /g2 g2 x _
s[o] :ff_iz (%‘E) +w. (5.15)

i=1

Note that, in order to arrive at the above result we have
replaced p in Eq. (5.2) by —ip. The normalized Hopf link
invariant (5.3) is therefore given as the integral of two Schur
polynomials, s (U) and sg, (U), over the unitary ensemble
with the aforementioned weight factor,

Vi k. (83/2Z,,.k)

= Z(S3/IZk)/[DU]e-(N+k)zs[e]SRl(U)SR2(U)
P

= <SR1(U)SR2(U)>- (5.16)

?Such a matrix model appears in different contexts in Chern-
Simons theory. For example a similar matrix model was considered
in [20]. In [20] the matrix model was expressed in terms of weights
of a simply-laced group G. One can use the relation between the
weight and the number of boxes in a Young diagram (see
Appendix B of [21]) and using the relations (4.2), (4.3) express
the matrix model in terms of eigenvalues of unitary matrices (up to
some overall constant factor) as in Eq. (5.14). Also, the spectral
curve (which is the leading contribution to the expectation value of
resolvent) for (P, Q) torus knot was computed in [20]. Here we
compute leading as well as subleading contributions to different
torus link invariants in arbitrary representations in the double-
scaling limit and explicitly show that those are in agreement with the
respective colored HOMFLY-PT polynomials.

(1)

For large R, and R, [i.e., when the number of boxes n;

and n?) become of order N or k, in the double-scaling limit]

it is difficult to calculate the correlation function even using
the saddle point approximation. However, if R and 'R, are
small, one can find the leading-order contribution to

Vglz%z (8%/Z,.k) by computing sg (U) and sg,(U) on
the classical solution that extremizes the partition func-
tion (5.2).

A. Leading contribution to (L,L) torus link invariant
for small representations

For a (2,2) torus link invariant when the “size” of R, and
R, placed on the component knots are much smaller than
N, they do not back react on the classical solution extrem-
izing the partition function. Hence, we can consider the
operators s, (U) and sz, (U) as probe and evaluate them
on the background solution (5.18).

Let us define a distribution function for the variables
{6;} in the large N limit as

1 x
p(0) :N;(S(G—H,-), such that /_ﬂdﬁp(e) =1. (5.17)
It was shown in Ref. [9] that in the double scaling limit
(1.1) the partition function (5.2) is dominated by the

following distribution function’:

0) = L tannt J1- <" ith
= tanh~!' /1 - ——— wit
Pl0) =577 an cos2(6/2)

-2 sec! e™/P <0 <2 sec! /P, (5.18)

which is a solution to the following saddle point equation
obtained from the partition function (5.14)

0-0 p
/ /
%p(ﬁ)cot( 5 )dé’ 7277/19'

Therefore, in the probe approximation the Hopf link
invariant (5.16) can be computed by evaluating the
Schur polynomials on the solution (5.18),

(5.19)

VD ($/2Z,.0) = sp, (D)sg, (D). (5.20)

where U corresponds to the distribution (5.18).

*In this paper we have used the no-cap solution. In the double
scaling limit Chern-Simons theory admits a phase transition at
some critical value of 1. Beyond that critical value the dominant
distribution is given by a capped eigenvalue density. As a result
the behavior of correlation functions and hence knot/link invar-
iants will change. We have commented on this in the conclusion
section.
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The Schur polynomial admits a character expansion [22],

-

_zymmwm

sg,(U) = Y0 (U),  (5.21)

7@ Z]‘('(a)

where

K= (K9 k50 k... suchthat Ykl =n(@, (5.22)
and

(a) a a)
Yoo (U) = [[(TrUn”, o = [[RO14, (5.23)

r

where 1@ is the total number of boxes in representation
Ry c(k) = 14728735 . is the conjugacy class of the
symmetric group G, of degree nl®), consisting of k(,a)
cycles of length 1, ki
(@)
>

cycles of length 2, and so on. In

other words, k;’ denotes the number of r-cycle of the

conjugacy class ¢(k“)). ;(R”(c(lz(a))) is the corresponding
character, in representation R,.

Since to each vector k'’ we can associate a conjugacy
class c(l_é(a)), the sum over £ in (5.21) represents a sum
over all possible conjugacy classes subjected to the con-
dition (5.22). Thus, in the probe approximation, computa-
tion of the Hopf link invariant reduces to computation of
the quantities Y;w (U) on the solution (5.18).

In the large-N limit the expectation value of TrU” is
dominated by the background solution i.e.,

(TrU"y - TrU" = N/ e p(0)do
= N/cos rOp(0)dé = Np,, (5.24)
where

Py = /cos rOp(0)de, (5.25)

with p(0) as given in (5.18). Therefore, in the large-N limit
sg,(U) is given by
|

..V r,(83/2,.0)] =N

= (£ V3"(8%/2,.2)))

7@
N P T A
sg,(U) = E Tl |Nk’ pr
£ r

i@

7(a)
0 xR, (c(K7)) £
— E NK() a r’ ,
= 7@ Hp
K

r

where K@) = Zkﬁ‘”. (5.26)

For small representations k<,“>’s are O(1) numbers. Hence

Zjw s are also O(1) numbers. As a result the N dependence
of sp_(U) is given by N¥ . Therefore, in the large-N limit
sg, (U) is dominated by a conjugacy class for which K (@) js
maximum subjected to (5.22). Using (5.22) we can replace
k) in K@ and find

K@ =n@ 1§ — 2k~ (5.27)

Hence, the maximum value of K is given by kg”) =nl@

and k) = k¥) = ... = 0. This choice reduces Eq. (5.22)

to k9 = (n("),O, 0,...), as a result the Schur polynomial

(5.26) evaluated on the classical solution becomes
2z, (1)

SRa(U) — Nn(a)p?(a) ARaN" 7

G (5.28)

where p; can be evaluated using (5.25) and is given by

(5.29)

IR, (1”(“>) is the character of the conjugacy class consisting
of n(9) number of 1-cycles in representation R,,. Thus, the
leading contribution (denoted by #.c.) to the unknot
invariant in fundamental representation is given by
2.1 -

2.V (8%/2,,2)] = so(T) = Npy, (5.30)
the superscript (2, 1) refers to an unknot obtained as closure
of a two-strand braid with one crossing. Therefore, the

leading contribution to the Hopf link invariant in the
double-scaling limit can be expressed as (5.20)

(1) (2)
n(‘)+n(2>pn“)+n(2) AR, (ln ))(Rz (ln )
1

(nM) (@)1
a0 2, (1" Vg, (177)

CRICE

(5.31)

It shows that the leading contribution of the Hopf link invariant with small representation placed on the component knots is
proportional to appropriate powers of the leading contribution of unknot invariant in fundamental representation. Likewise,
the leading contribution of unknot carrying arbitrary representation is
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e[Vl (53/2,.2)]

)
(1))(721(1"1)

_ (2.1
= (f.c.[VD (n(1>)!

)(S3/Zp,

A))"

(5.32)

We can generalize (5.31) for (L, L) torus link invariant in
the probe approximation and it is given by

(@)
HNW a<1" )
))!

ﬁ

te Ve (82,

V(s*/z,.2)].
(5.33)

For the (3, 3) torus link, with the three component knots
carrying some specific representations with a small number
of boxes in the corresponding Young diagrams, we tabulate
the colored HOMFLY-PT polynomials and the leading
contributions in Table 1. Note that in order to match the
matrix model result (5.33) with the tabulated ones we need
to follow the prescription as mentioned below:

(i) First, replace p — ip in the expressions obtained
by matrix model calculations to compensate the
replacement p — —ip done earlier [see below
Eq. (5.19)];

(ii) then set p =1, since the colored HOMFLY-PT
polynomials are obtained for framed links embedded
inside S°.

Explicitly, it implies that

(53/2,,,) D=l ), (5.34)

.....

L
..... S’%/Z kZS T7_2[7)€ar:[ls73a(

When these modifications are taken into account, the
expression of p; (5.29) becomes identical to the leading-
order contribution of the vertical framing U(N) invariant

W(é 2 (83, 4) of an unknot with fundamental representation
placed on its component.

The leading contributions as obtained from the colored
HOMFLY-PT polynomials of (3, 3) torus links (refer to
Table 1) are in exact agreement with those (5.33) obtained
using the eigenvalue density (5.18) extremizing the parti-
tion function.

It is to be noted that, in the large-N limit the evaluation of
leading contribution using the eigenvalue density of the
dominant representation is only possible when the repre-
sentations placed on the component knots of the link are
much smaller as compared to the rank N of the gauge group
at consideration.

For a large representation R, the total number of boxes
n'@ is of O(N) which implies some of the ks (5.22) can
also become of O(N). As a result, the denominator z; in
Eq. (5.21) will no longer be of O(1). Hence the above
saddle point analysis will not give correct answer in such
scenarios. However, we have a way to find the leading
contribution for a class of large representations which will
be addressed in the following subsection.

B. Leading contribution to (L,L) torus link invariant for
large symmetric representations

In this section, we provide a large-N expression for the
(L, L) link invariant when all the representations are large
symmetric representations. The U(N) invariant for the
(L,L) torus link, embedded inside three manifold

S3/ Z,, carrying integrable representations R, ..., R, on
the component knots is given by
L
U) = <HSRH(U)>. (5.35)
a=1

Using the character expansion for Schur polynomial (5.21) and (5.13), in the double-scaling limit we can express the above

invariant as

-

L (a) :
(L.L) 3 _ 1 ar,(c(k)) N2 sEE ) o
VR m, (8 Z,,0) = 5575 —— [ [DO]e™ P , (5.36)
, p 2(8°/2,,%) o aI:[l Zja)
where
@A) _—l/de 9][d9’ 0 loe | 4sin2 0—0¢ £/ ) ¢ o 2p(1=2)
Sei p(0)] = =3 | d0p(0) +d0'p(¢) log |dsin® (—— | | + = [ p(O)( 7 =15 )dO+=—57—
! 1 ir

— a2k k) log {N/d@p(é’)e 9} (5.37)
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- - OB

For a given k', ...k, [[DO)e™'Sa PO is domi-
nated by a classical configuration satisfying the saddle
point equation,

][p(e’) cot <0 _2 9/> do

(L)
50 Z +k )eirﬂ.

(5.38)

This is a coupled equation because the moments of the
distribution p, = [ dfp(0)e™” appear in the last term and
hence difficult to solve. The last term is proportional to
1/N2. Apparently, it seems that this term will not be
important to find p(6) in the large-N limit but if any of the
R, is large such that n(® is of O(N?), then following (5.22)

some of the k&) can also be of O(N?). In such cases we
cannot neglect the last term to solve for p(6).

However, in the case of all representations (R ,) large but
completely symmetric, there can be at most k boxes in the

first row and hence n(® < k. As a result all the kg”) s are
less than (or equal to) k. Therefore in the large-N limit we
can still neglect the last term. This suggest us that in order
to compute V%}"L,_?RL(S3 /Z,,4) for large symmetric repre-
sentations we can still use the probe approximation and

calculate the Schur polynomials on the background sol-
ution (5.18). Thus, the (L, L) link invariant (5.35) becomes

L
Vi g, (8)2,.0) = [[sr, (D), (5.39)
a=1

where U corresponds to the density distribution solving
(5.19). Note that, unlike (5.28), s¢_(U) will no longer be

dominated by the conjugacy class having n(“) number of
1-cycles.

Since the character of any conjugacy class of the
permutation group for a completely symmetric representa-
tion is 1, the Schur polynomial (5.26) can be written as

£@
k;

0~ Sl
Z ()

— K9 log K1Y + kﬁ’”ﬂ :

(5.40)

subjected to the condition ), kY = n@. We use the
Lagrange multiplier a!® to extremize the above summa-
tion. Suppose

a N r a a a
o = 3 (K 1og (M)~ K og K+ 417

+al@ (Zrk@ - n<a>> . (5.41)
Extremizing (%) with respect to K9 we find,
o Npr e
K = 2P gra® (5.42)

r

The Lagrange multiplier (®

ing £\

can be obtained by substitut-
in the equation )", kW = pl@),

(a)

(a) n
et = 543
Er pre N (5.43)
Finally, evaluating (?) on the solution we find
- Np «
(@) = N pral) _ (a) pla) 5.44
H Er e a\n (5.44)
Hence, we have
sg,(0) = e, (5.45)

We can use this result to find the Schur polynomial
evaluated on the classical solution. Analytically it is
challenging to find the Schur polynomial for any arbitrary
values of 4. However, we can find it for small A.

For small 4 the eigenvalue distribution (5.18) is given by

P [2mh @
272 4

We can compute p, by using the formula (5.25) with p(6)
as defined above and range of @ lying from —2+/27z1/p to
274/ p. The result is as follows:

p(0) = (5.46)

o1

p (5.47)

Using (5.43) we can find that the Lagrange multiplier is
given by

(a)
ald) = log( £ ) + (1 +2¢¢ )”/1
1 4 @ p

(5.48)

where k(@) = (@) can be evaluated to obtain,
H@ =logsr, = (1+«@)log(1l + @) — k(@ log (@
(@) (1 (@A
_ O+ ) (5.49)

p
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Substituting H@ in Eq. (5.45) and then using (5.39) we can
deduce the leading-order contribution for (L, L) torus link
invariant whose components carry arbitrary large symmet-
ric representations.

To understand how different components are intertwined
in a link we have to go beyond the leading contribution.
From the matrix model point of view, the subleading
correction is captured by the connected piece of the
correlator. The computation of the connected piece
becomes tedious involving resolvent and contour integra-
tion for a general (L,L) torus link. However, one can
extract the subleading contributions from the colored
HOMFLY-PT polynomials (as in Table 1) when small
representations are placed on the component knots of the
torus link.

In order to confirm that the subleading contribution from
the colored HOMFLY-PT matches with the matrix model
approach, we will explicitly present the computation of
connected correlator for the Hopf link invariant in the
following section.

VI. SUBLEADING CORRECTIONS
TO THE HOPF LINK INVARIANT

In this section we compute the subleading contribution to
the invariant of Hopf link. From (5.16) we note that the
Hopf link invariant is equal to correlation of two Schur
polynomials. Let us consider that both the component knots
of the link are in fundamental representation i.e.,
Ry =R, =0. The character expansion of the Schur
polynomial (5.21) tells us that sg(U) = TrU. Thus the
Hopf link invariant with both the components in funda-
mental representations can be expressed as

VEe($3/Z,.k) = (TrUTIU). (6.1)
Likewise, an unknot invariant in fundamental representa-
tion is given by

VeV ($3/2,, k) = (TrU). (6.2)
We introduce a rescaled trace operator,
1
Tru™ :NTrU’", meZ (6.3)

V(Dz_’é)(S3/Zp, ) = NXTrU)} + (2(TrU)(TtU), + (TrUTrU),) + (’)< > ,

1 1
V(Dz’l)(53/zp,/1) = N<TI'U>0 + N (TrU>1 + O(m) .

such that (7rU™), when evaluated on saddle point gives a
O(1) number, i.e., the leading contribution to (Z7rU™)
becomes of O(1). The corrections to (7rU™) are sup-
pressed by higher powers of N. In terms of rescaled trace
operators, the Hopf link and unknot invariants can be
written as

V(83 /2, k) = N(TtUTU),

VEV($3/2,.k) = N(TrU). (6.4)

We define the connected piece of a two-point function in
the following way [10]:

(TtUTrU), = N*((TtUTrU) — (TtU)?), (6.5)

where we have put an overall factor of N? on the right-hand
side such that the leading contribution of (Z7rU7tU), is
again of O(1). This connected piece can be expressed in
terms of the Hopf link and unknot invariants as

VEA($3/Z,.k) - (VE($3)Z,, k) = (TrUTTU),.
(6.6)

In the large-N limit, (Z7rU) admits the expansion
1 1
(TrU) :(TrU>0+m<TrU>1+O N ) (6.7)

where (71U), = p; (5.29) is the expectation value of 71U
evaluated on the saddle point (5.18) and (7tU), is the
subleading contribution. Therefore, from (6.5) we see that
the subleading contribution to the two-point correlator,

(TrUTrU) = (TrU)§ + % (2(TrU)y(T1U),

+(TTUTTO),) + (9(%) (6.8)

is the bracketed term multiplying 1/N?. It suggests that at
the large-N perturbation, we can write the Hopf link and
unknot invariants (6.4) as

1
N?

(6.9)

The subleading correction to Hopf link invariant has two parts. (7tU),(7rU),, which being a product of the leading and
subleading contributions to the unknot invariant is insensitive to the intertwining between the two component knots constituting
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Hopf link. The other contribution (Z7rU7tU),, viz. the
connected piece of the two-point correlator, contains infor-
mation about how the two unknots are intertwined in a Hopf
link when all the representations are fundamental. That is, it
contains the information about the topological nature of the
Hopf link. Instead of fundamental, if we consider the Hopf
link in some other representations, the structure of the right-
hand side of (6.6) will be very different. We shall discuss this
at the end of this section.
Our next goal is to compute (7rU), and (TrUTrU),

using the methods developed in [10, 11] and show that
the matrix model results are consistent to those obtained
from the HOMFLY-PT polynomials.

A. Calculation of (Z7rU), and (Z7rU7TrU),

Introducing a set of complex variables z; = i, the
partition function (5.14) can be written as

2(83/z,) /HdzA eNLLVE) . (6.10)
where A(z;) = [];-;(z; —z;)* and the potential V(z;) is
given by

p 2 zp
Al : 1 - A1
V(zi) = =~ (logz,)* +logz, - (6.11)

In the large-N limit with the continuous variables x = i/N,
z; > z(x) and >°; = N [! dx, we can write

N 1
-N> V(z) = -N? / dxV(z(x)),  (6.12)
i=1 0
where

V(z) = —L(logz)2+logz—%. (6.13)

iy )

Following (5.17) we define the eigenvalue density in the
complex z-plane as

— <%Z§(z—zi)>.

i=1

(6.14)

In the large-N limit the above density satisfies the saddle

point equation,
2][dw'o(w) = V'(2).

(6.15)

“The techniques to compute subleading corrections developed
in Refs. [10,11] are for Hermitian matrix models. Here we
develop the similar techniques for unitary matrix models.

1. One-loop correlator

We introduce the one-loop correlator (also known as
resolvent) R(z) as

_ 1 1 _1 . —1-m m
R(z)_N<TrZ_U>_Nm;)z (TrU™).  (6.16)

Since (TrU™)/N <1 for any m, R(z) is an analytic
function in the complex z plane both inside and outside
the circle |z| = 1. In diagonal basis the eigenvalues of U lie
on |z| = 1 circle. Hence the function R(z) has poles at the
eigenvalues of U. In the large N limit, the eigenvalues get
accumulated and form a distribution on disconnected finite
arcs on the unit circle. As a result R(z) develops branch cut
singularities on these arcs. Using (6.14) we can write

p(w) '

R(z) = /dwz_—w

Using the Sokhotski-Plemelj theorem,

fim [ dx— )

e—0 Xo — X F i€

(6.17)

= ][dxmj:iﬂf(xo), (6.18)
XO — X
we find that the resolvent satisfies

lg%(R(z +ie) + R(z —ie)) = V'(z) (6.19)

and

Li_r)%(R(z + ie) — R(z — ie)) = —27xip(z). (6.20)

Moreover R(z) has the following asymptotic (z — o)
structure:

1
_+Z—2<TI'U>

R(z—> o) = +Zi3<TrU2)—|—O(1/Z4). (6.21)

Thus, R(z) is the generating function for (Z7rU™) for
different m > 0. The resolvent R(z) admits a perturbative
large-N expansion

1
N2

R(z) = Ro(z) + =z Ri(z) +---. (6.22)

The leading contribution of the resolvent, Ry(z) can be
obtained by solving the Dyson-Schwinger equation [23,24]
in the N — oo limit. Ry(z) also has a branch cut on the unit
circle. The eigenvalue density p(z) can be determined from
the discontinuity of Ry(z) on the branch cut. The higher-
genus contributions R, (z), R,(z), etc., then can be calculated
using loop equations order-by-order [11]. For a given
potential V' (w), if the eigenvalue density has support between
a and b on the unit circle then R (z) can be expressed as [25]
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(z=a)(z=b)
a)(w—b)’

where C is a counterclockwise contour around the branch cut
between a and b. The spectral edges (a, b) can be found using
the properties of the asymptotic expansion of Ry(z). We can
do the contour integral (6.23) for the potential V(w) given in
Eq. (6.13). Since the potential (5.15) is an even function of 0,
the eigenvalue density is symmetric about & = 0. As a result,
in the complex z-plane the branch cuts of R(z) are symmet-
rically located on the unit circle about the real axis. Hence, we
can take

Ry(z) = ! % d—w.vl(w) (6.23)

2 Je2miz—w \ (w—

a=>b"1=¢" (6.24)

The final answer is given by

Z*(cosf—z+Vz*—2zcosO+1)
1—zcos@++vz2—2zcosO+1 |
(6.25)

I p
Ro(z)=———L"
0(8) =3, =47 108

It is easy to check that Ry(z) has a branch cut singularity
between® = +2 sec™! ¢™/? on the unit circle in the complex
z plane. This implies the spectral edges are given by

a=b"" = exp(2isec™! e™/P), (6.26)
Using an expression analogous to (6.20), we can calculate the
discontinuity of Ry(z) and find the leading eigenvalue
density. The answer is given in (5.18). The coefficient of
1/z?% in the asymptotic expansion of R(z) can be computed
and that matches with leading contribution of the expectation
value of 71U given in (5.29) for p = 1.

Our next goal is to compute R;(z). The coefficient of
1/7* in the asymptotic expansion of R;(z) gives 1/N?
correction of (7rU) viz. (7tU),. We follow the prescrip-
tion given in [11] to write R;(z) in terms of a series of
functions. We shall not elaborate on the method in this
paper. R,(z) is given by

B1(3) =g ()~ () + 02 ),

16
(6.27)
where
) LG)
X (Z)—Ecba (2).
1
w(e) = -9,
1
72() = 1 (@7 (@) =1V (M),
1
1
) =5 (@7 (2) =y (2)],) (6.28)

The functions @ ( ) and d>< >( ) are given by

(M _ 1
®a"(2) (z—a)"\/(z—a)(z—b)’
)y _ 1
" (z) = ERTSOY rTeet (6.29)

M, and J, are given by the following contour integrals:

TR £ |
27i (@ (w—a)(w—Db)
!
¢ 27l (w—b)"\/(w—a)(w—Db)
Evaluating the contour integrals (6.30) we find,
4A 4A
M, T 320 S T N1 32 S TP
@ (\/a+b) b2(\/a++/b)
__4A(5Va+4vb) __4A(#/a+5vb)
TseP(Varvh? T 3 (VakVh)
(6.31)
where A = — ;. Plugging all these expressions in (6.27)

we finally arrive at

wA(1+z)(1—8zcosO—6z+z%)sin?d
12p(1—2zcosf+z2)>/?

Ri(z)=-— (6.32)

We expand R;(z) asymptotically to obtain

(3cosﬁ+5)+0(l>‘

12pz?

mAsin*g  ndsin®

Ri(z) =—

12pz?

Thus, from the asymptotic expansion we collect the
coefficient of 1/z% and get

27k

misin?d w1 - e__)
T = - 21— - 34
(), = -2 - (634)
Following the prescription (5.34) we find
2inl
(Truy, = A=) (6.35)

12

The result (6.35) matches exactly with the subleading
contribution of the vertical framing U(N) invariant of an
unknot W(Dz'l)(S3,/1) carrying fundamental representation
on its component.
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2. Two-loop correlator

We next compute the leading connected piece of
two-point function (7rU7rU). We define two-loop
correlator as

1 1 1
R(Z,W) = m Trz_—UTrw —

U>. (6.36)

In the large-N limit the two-loop correlator is equal to the
product of two one-loop correlators R(z) and R(w). There
is a connected subleading piece, denoted by R(“)(z, w) and
suppressed by a factor of N2,

1
_R<"’) (Z’ W)

R(zw) = RER(Y) + 1

(6.37)
Our goal is to find the connected piece of the two-point
correlator. For the partition function (6.10), the eigenvalue
density can be written as

N
p(z) = <%Z5(Z - Z[)> = —%%(Z)log Z. (638)
i=1

S8V(x)
V(y)
a similar analysis we can write

Here we have used the fact that 5(x —y). Repeating

= —N2(p(zw) — p(p(w).  (6.39)

where

pleow) = (3 a2t =)

i,j=1

(6.40)

In the large-N limit, p(z,w) is also decomposed into a
product of two eigenvalue densities p(z) and p(w). The

We know that using the definition of eigenvalue density, the
one-loop correlator R(z) can be expressed as (6.17). After a
little algebra we find that

d
/ v 5R(Z) — —/du/dU pC(u’ 'U) .
w—v68V(v) (z—u)(w—0)
Using the definition (6.40) we can express two-point
correlator as

p(u,v)
R(z,w) = du/dv—.
= [ (= u)(w—1)
Likewise, for the connected components of R(z,w) and
p(u, v) we can write

(6.43)

(6.44)

R (z,w) = / du / dv%. (6.45)
Thus, we have
[ R

Using the analytic properties (6.19) of R(z) about the cut
we find that

R (z +ie,w) + R)(z —ie,w) = — (6.47)

(z=w)*
Since R(z,w) is symmetric in z and w a similar property
holds for the w variable also. The connected piece of the
resolvent, R()(z,w) being discontinuous about the cut,
R (z,w) + m must change sign as we cross the cut for
both the arguments. Therefore, we take an ansatz for
R()(z,w) as follows:

connected subleading contribution p.(z,w) is suppressed R .)( ) 1 <1 O(z,w) > h
2 Iz,w) = — — , Where
by the 1/N~ factor, 2(z —w)? \/G—(Z“)W
1 o(z) = (z=a)(z=b). (6.48)
plz.w) = p2)p(w) + 5 pe(zw). (6.41)
QO(z,w) is symmetric meromorphic in its arguments.
Hence, we find O(z,w) can be found for a one-gap solution from the
properties of R(°)(z, w). From the definition of R(z, w) we
%p(z) = —pc(z.w). (6.42)  see that it is regular as z — w. Expanding R()(z, w) near
sV (w) w = z we arrive at
|
. 1 0(z,z) (w=2) ( o'(w)Q(z, W)) >
RO (z,w) = — 1 - — 0,,0(z,w) - —2=—2 ) 6.49
== (1= o (w2l =T (049
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Therefore, to make R(¢)(z,w) finite at z = w we have

/
limQ(z,w) =o(z) and limde(z,w):#. (6.50)
w—Z w—2Z
Q(z,w) must be regular at the spectral edges; hence,
Q(z,w) must be a polynomial. Since R(z,z) goes
as 1/z% asymptotically, for the one-cut solution Q(z,z)
must be a polynomial of order 2. The above conditions
can uniquely determine Q for a one-cut solution and it is
given by
1

0(z,w) :zw—i(a—i—b)(z—kw)—kab. (6.51)
The leading contribution of (7rU7tU), can be obtained
from the Z,# coefficient of R(¥)(z,w) in its asymptotic
expansion. After a careful computation we find that,

~b?  w
16 F_ (e = 1),

e (TruTi)| = & (6.52)

where we have used the expressions of the spectral edges
(6.26). With the prescription (5.34) of analytic continuation
p — ip, followed by setting p = 1 we arrive at

£.c[(TrUTTU),] = 27 (2™ — 1), (6.53)

te. [vgj”(s3 /Z., )\)} _

We know that [(5.35) and (5.21)]

V(8% )2y, k) = (scry),  where sy = % (T1U?) + N7 (TrUTV) .

Hence, we have

(21) (o3 L v o3 : N 2y, 1
V(52 k) = 5 (VD (S /Zp,k:)> = 5 (T2U%) + 5 (RUTD), .

N |

The result (6.53) matches exactly with the following result
from the HOMFLY-PT polynomials:

22),f={1.1 2.1 2
WIED=II 8 2y - WEV(S,2)%. (6.54)
This suggests that (7rU7TrU), evaluated in (6.52) is exact in
N. Any further large-N corrections of (Z7rU7rU), from the
matrix model approach will vanish. Thus, we have

2mh , _2xh

(TrUTrU), =€ (e 7 —1). (6.55)

B. Knot/link invariants and connected correlators

So far we have confined ourselves to Hopf link
invariant with fundamental representation placed on its
components. Now we look at the connected piece of two-
point correlator carrying some low-dimensional represen-
tations apart from the fundamental ones. Using the fact
that Schur polynomials for any arbitrary representation
can be written as a sum over different powers of TrU"”
(5.21), we can express the large-N results of any (torus)
knot or link invariant modulo its leading contribution in
terms of connected correlation functions of TrU”. For
example, consider the unknot invariant in representation

[T ie. \7%”(53 /Z,, ). Using (5.32) the leading
contribution can be read off to be

(e.c. [vg’”(s?’ /Z,, )\)] )2 . (6.56)
2

(6.57)

(6.58)

This expression can also seen to be consistent using cabling prescription [26] and Frobenius relation in group theory

2,1
[12,14,27]. In a similar fashion V(B )

H

1 2 N 1
V(2’1)(53/Zp, k) — 3 (VS’I)(S?)/ZW k;)) = —5<{J'1“U2> + §<(.TI"U{.TI“U>C.

(S 3/ Ly, k) admits a relation

(6.59)

Thus, we see that when we change the representations, the unknot invariants (modulo the leading contribution) have
different expansions in terms of correlation functions of 7rU™ operators.
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A similar analysis can be done for a two-component Hopf link whose invariant \7[(32’]2)5(53 / Zp7 k) = <SEDSD> satisfies,

VEI (S22, k) — V(S /2y, k)VED (S3 )2, k) = N(TXUNTIUTLU)..
(6.60)
+%<iTrUiTrU7rU>c+ (TTUTTU?)..

1
2
In fact any n-point correlator can be expressed in terms of the connected correlators as

nC2
N2

(TrU)"*(TrUTrU), + ]S;

(TrU---TrU) = (TrU)" +

n times

(TrU)"3(TrUTrUTrU),

"C
+ N: (TrU)"*(*Co(TrUTTU)2 + (TrUTTUTTUTTU),)

n

C
+ N55 (TrUY'S(3C(TrUTrU) (TrUTTUTrU), + ((TrU)?),)

n,

+ 566 (TrU)"°(°Co((TrU) (TrU)*), + °C5((TrU))Z + ((TrU)°),)

T (6.61)

In order to validate the result with the colored HOMFLY-PT polynomial we compute the leading contribution of (6.60) in
the matrix model side. It is given by [(5.29) and (6.52)]

te. [vgg}mw [Zp, N) = VED (537, AV (53 /2, )\)} = N{(TtU)o(TrUTU ),
27
l—e 7P \ _2mx / _2m
—Np(m>e ST )

Performing the analytic continuation p — ip followed by setting p = 1 (5.34) the above expression becomes identical to
the one obtained from the corresponding colored HOMFLY-PT polynomials,

(6.62)

. %N , .
te. [Wé%f =58 ) — w2 D (53 Wi (g8, )\)] - ’—Ae““sin?m. (6.63)

i
We provide one more example before concluding this section,

2
VOS2, ) = (V) (8%/2,, ) = NUTU)XTUTLU),

+N(TeU(TrUTUTTU ) + (T2U) (‘.TrU‘J'rU2>C)

5 , 1 (6.64)
+Z<‘J'rU‘J'rU>C + Z(‘J’rU‘J’rU‘J’rU‘J’rU)c

PP+ L (TRUPTU?),.

Again we can compute the leading contribution of (6.64) in the double-scaling limit using the matrix model results (5.29)
and (6.52),

2
e [VEL (S)Zy\) — (vg’j”(s?’/zp,x)) } = N2 (TxU) 2 (TeUTU),

_2ma 2
- () e F ().
™

(6.65)
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Now we analytically continue p — ip and set p = 1 (5.34) to get

S 2
e WIERT=II(s8 3 — (W (s7,0) }

We see from Egs. (6.6), (6.60), and (6.64) that as we change
the representations associated with two of the components
of Hopf link, the expansion in terms of correlation
functions also get modified. Therefore, any unknot or
Hopf link invariant (modulo the leading contribution) with
arbitrary representations placed on the components can be
uniquely expressed in terms of different connected corre-
lation functions. For example, from Egs. (6.58) and (6.59)

we see that unknots in representations [ | | and H are

expressed in terms of (7rU) and (7rU7tU),.. However,
they differ by the sign of (7tU) term. Using the character
expansion for Schur polynomial (5.21) and Eq. (6.61) one
can similarly express any (L,L) torus link invariant
uniquely in terms of connected correlation functions.

It is also to be noted that the evaluation of the
corresponding leading contributions as in Egs. (6.62)
and (6.64) using the matrix model results (5.29) and
(6.52) was possible because we have placed low-
dimensional representations on the two component knots
of the Hopf link. If we put arbitrary large representations it
will be difficult to evaluate the explicit expressions of
leading contributions with the matrix model techniques.
This is because the results (5.29) and (6.52) involve the
density distribution which extremizes the partition function
of the manifold and any link carrying large representation
will backreact on that solution.

Moreover, for any arbitrary L component torus link the
computation of the connected correlator seems technically
challenging from the matrix model side, even with low
dimensional representations placed on the component knots.
Because such invariants will involve higher point connected
correlators, which are difficult to handle. Nonetheless, for
low representations the colored HOMFLY-PT polynomial
(3.19) allows us to obtain the subleading contribution for any
L > 2. For example the polynomials tabulated in Table 1
will help us to get the subleading contribution to the (3, 3)
torus link invariant.

VII. CONCLUSION

In this paper, we have discussed the torus link invariants
in U(N) Chern-Simons theory embedded inside three
manifold S* as well as $°/Z,,. In the double-scaling limit
(1.1), it has been shown that any (La,Lp) torus link
invariant in S (3.19) can be expressed in terms of an (L, L)
torus link invariant where a and f are coprime to each other.
Our result is depicted in Eq. (4.22). Using the explicit
expression of the (La, Lf3) invariant (3.19) we can evaluate

2iN? 5o
= e Asindr.

e (6.66)

|
the polynomial for some low-dimensional representations
placed on the L-component knots of the link (e.g., see
Table 1). Consequently, in the large-N limit, we can deduce
their leading and subleading contributions. However, for
links carrying higher-dimensional representations this pro-
cedure seems practically challenging. Matrix model tech-
niques seem to provide some handle of such difficulties at
certain instances. For example, when the representations
placed on the component knots of any (L, L) torus link
(5.35) is large (i.e., comparable to rank N of the gauge
group in the limit N — oo) but completely symmetric we
can determine the leading contribution (5.49) to the
invariant by using the eigenvalue density (5.18) that
dominates partition function (5.2) of the manifold
S3/ Z,. Moreover, for low-dimensional representations,
using the aforementioned density distribution, we have
written down an analytic expression of the leading con-
tribution of any (L,L) torus link invariant (5.33). The
leading contribution of the torus link invariant being
proportional to the leading contribution of the unknot
invariant, it does not capture the intertwining information
of the component knots constituting the link. To capture
such an information the study of connected piece of the
correlators in Chern-Simons theory become necessary.
From the matrix model approach, we analyze in detail
the connected piece of a two-point correlator (6.5), which is
basically the subleading contribution to the Hopf link
invariant when both the component knots carry fundamen-
tal representations (6.6). Our detailed analysis lead to the
result in Eq. (6.52) and it matches exactly with the one
obtained using the HOMFLY-PT polynomials (6.53). We
also obtain the subleading contribution to the unknot
invariant carrying fundamental representation (6.34), using
the techniques of matrix model. It is interesting to see that if
we place low-dimensional representations, other than the
fundamental ones, then the Hopf link or unknot invariant
modulo the corresponding leading contribution take differ-
ent structures expressed in terms of correlators of 7rU"
operators as shown in Egs. (6.58), (6.59), (6.60), and
(6.64). As a validation, we specifically evaluate the leading
contribution of (6.60) and (6.64) using our matrix model
computations (5.29), (6.52) and find the result to agree with
the respective colored-HOMFLY-PT polynomials.

Note that, in the double scaling limit Chern-Simons
theory admits a third-order phase transition similar to
Douglas-Kazakov phase transition [9]. This means the
integrable representation (5.18) that dominates the partition
function (5.2) changes at some critical value of 1. As at
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result the correlation functions when evaluated on the
leading solution must change its behavior at the critical
value. However, the origin of such behavior is not clear
from the perspective of HOMFLY-PT polynomials.
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