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We investigate the transmission of classical and quantum information between three observers in a
general globally hyperbolic spacetime using a quantum scalar field as a communication channel. We build a
model for a quantum broadcast channel in which one observer (sender) wishes to transmit (classical and
quantum) information to two other observers (receivers). They possess some localized two-level quantum
system (a qubit) that can interact with the quantum field in order to prepare an input or receive the output
of this channel. The field is supposed to be in an arbitrary quasifree state, the three observers may be in
arbitrary states of motion, and no choice of representation of the field canonical commutation relations is
made. The interaction of the field and qubits is such that it allows us to obtain the map that describes this
channel in a nonperturbative manner. We conclude by analyzing the rates at which information can be
transmitted through this channel and by investigating relativistic causality effects on such rates.
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I. INTRODUCTION

Network information theory is the area of knowledge
that studies classical communication problems involving
multiple parts. Here, the word “classical” stands not only
for the fact that the information being transmitted is classic
(bits) but also for the physical systems in which such
information is encoded, i.e., systems that can be described
by some area of classical physics (such as electromagnet-
ism). One particular case of interest is the broadcast
channel, where typically one sender wishes to transmit
information to multiple receivers (like radio and TV
stations broadcasting their signals, for example).
Nowadays, one of the main goals of quantum informa-

tion theory is to extend several results of information theory
to the quantum world [1,2], investigating any new features
or advantages that can arise when one uses quantum
systems to encode, process, and transmit information.
The quantum network information theory comprises the
studies of communication protocols using quantum sys-
tems to convey classical (bits) or quantum (qubits) infor-
mation. In particular, the classical broadcast channels can
be extended to the so-called quantum broadcast channels,
where one sender transmits classical or quantum input
information to many receivers using a quantum system as a
communication channel with quantum outputs [3–6].
Such communication scenarios are very suitable for

analyzing how relativistic effects can influence one’s ability
to communicate using quantum channels. This could be

due to the existence of nontrivial spacetime structures such
as black hole event horizons, Cauchy horizons, and causal
horizons arising from the relativistic relative motion
between senders and receivers or even due to the expansion
of spacetime [7].
In order to consistently analyze quantum information

theory in general spacetimes, one should use quantum field
theory in curved spacetimes (QFTCS) [8]. This approach
was used by several authors to analyze the communication
process in relativistic settings, with particular attention
being paid to Minkowski [9–21], Schwarzschild [22–26],
or asymptotically flat cosmological spacetimes [27–29].
However, only recently [30] a communication model valid
in general globally hyperbolic spacetimes and in which the
parts that convey information can move in arbitrary world-
lines and interact with the quantum field (used as commu-
nication channel) only in the vicinity of its worldlines was
developed (and, since then, other works in this context have
emerged as, for instance, Refs. [31,32]). This is interesting
for two reasons; firstly, it allows the analysis of infor-
mation exchange between more general observers, not only
observers following orbits of some Killing field (which
does not even exist in spacetimes lacking timelike sym-
metries). Secondly, the model studied in [30] allows one to
investigate the outputs of the quantum communication in a
nonperturbative manner and thereby is suitable to inves-
tigate both the causality as well as the communication
between parts lying in early and future asymptotic regions
(limits that would invalidate results obtained by perturba-
tive methods).
In the present paper, we generalize the analysis of [30].

This is done by constructing a model for classical-quantum,
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quantum-quantum, and entanglement-assisted quantum-
quantum broadcast channels. We consider an arbitrary
globally hyperbolic spacetime in which one observer
(Alice) wants to convey classical (or quantum) information
to two receivers (Bob and Charlie) using a quantum scalar
field as a communication channel. The three observers will
use two-level quantum systems (qubits) to locally interact
with the quantum field in order to send or receive infor-
mation. The observers may be in arbitrary states of motion,
the interaction between the detectors and the field is similar
to the one given by the Unruh-DeWitt model [33], and
the field may initially be in an arbitrary quasifree state [8].
We suppose, however, that the two levels of each qubit
have the same energy. This model is interesting because
the evolution of the system can be computed exactly, and
therefore we will obtain nonperturbative results for the
communication rates associated with such a broadcast
channel. As we will see, causality in the information
exchange is explicitly manifest in our results.
This work is organized as follows. In Sec. II we will

present the quantization procedure of a free scalar field
on a globally hyperbolic spacetime as well as the class of
states we will be using. In Sec. III we describe the
interaction between the qubits and the field and determine
the quantummap that relates the information Alice wants to
convey to the final joint state of Bob’s and Charlie’s qubits.
In Sec. IV we investigate the rates at which information can
be transmitted using this broadcast channel, as well as the
influence of the spacetime curvature or relative motion of
observers in the communication process. In Sec. V we give
our final remarks. We assume metric signature ð−þþþÞ
and natural units in which c ¼ ℏ ¼ G ¼ kB ¼ 1, unless
stated otherwise.

II. FIELD QUANTIZATION

Let us consider a free, real scalar field ϕ propagating
in an arbitrary four-dimensional globally hyperbolic
spacetime ðM; gÞ, where M denotes the four-dimensional
spacetime manifold and g its Lorentzian metric. Let the
spacetime be foliated by Cauchy surfaces Σt labeled by the
real parameter t. The field is described by the action,

S≡ −
1

2

Z
M

ϵM
�∇aϕ∇aϕþm2ϕ2 þ ξRϕ2

�
; ð1Þ

where ϵM ¼ ffiffiffiffiffiffi−gp
dx0 ∧ � � � ∧ dx3 is the spacetime volume

4-form,m is the field mass, ξ∈R, R is the scalar curvature,
∇a is the torsion-free covariant derivative compatible with
the metric g, and g≡ detðgμνÞ in some arbitrary coordinate
system fxμg. The extremization of the action (1) gives rise
to the Klein-Gordon equation,

�
−∇a∇a þm2 þ ξR

�
ϕ ¼ 0: ð2Þ

In the canonical quantization procedure, we promote the
real field ϕ to an operator1 that satisfies the “equal-time”
canonical commutation relations (CCR)

½ϕðt;xÞ;ϕðt;x0Þ�Σt
¼ ½πðt;xÞ; πðt;x0Þ�Σt

¼ 0; ð3Þ

½ϕðt;xÞ; πðt;x0Þ�Σt
¼ iδ3ðx;x0Þ; ð4Þ

where x≡ ðx1; x2; x3Þ are spatial coordinates on Σt and
πðxÞ is the conjugate momentum defined as

π ≡ δS

δϕ̇
; ð5Þ

with the notation ϕ̇≡ ∂tϕ. In addition, we may formally
write the canonical Hamiltonian of the field as

HϕðtÞ≡
Z
Σt

d3xðπðt;xÞϕ̇ðt;xÞ − L½ϕ;∇aϕ�Þ; ð6Þ

with

d3x≡ dx1 ∧ dx2 ∧ dx3 ð7Þ

and

L½ϕ;∇aϕ�≡ −
1

2

ffiffiffiffiffiffi
−g

p �∇aϕ∇aϕþm2ϕ2 þ ξRϕ2
� ð8Þ

being the Lagrangian density.
To find a representation of the CCR, Eqs. (3) and (4), we

define an antisymmetric bilinear map σ acting on the space
SC of complex solutions of Eq. (2) as

σðψ1;ψ2Þ≡
Z
Σt

ϵΣna½ψ2∇aψ1 − ψ1∇aψ2�; ð9Þ

where ϵΣ represents the proper-volume 3-form on the
Cauchy surface Σt and na its future-directed normal unit
vector. It allows us to define the Klein-Gordon product as

hψ1;ψ2i≡ −iσðψ̄1;ψ2Þ; ð10Þ

and, although this product is not positive-definite on SC, we
may choose any subspace H ⊂ SC (the so-called one-
particle Hilbert space) such that: (i) SC ≃H⨁H̄2; (ii) the
KG product is positive definite onH, thus making ðH; h; iÞ
a Hilbert space3; and (iii) given any u∈H and v∈ H̄,
hu; vi ¼ 0. (See [8] for details.) The Hilbert space that
comprises the field states is defined as the symmetric Fock

1Rigorously, an operator-valued distribution.
2For the sake of mathematical precision, we note that one must

first suitably Cauchy-complete SC for this decomposition to be
valid.

3After its completion with respect to the norm induced by h; i.

BARCELLOS and LANDULFO PHYS. REV. D 109, 065020 (2024)

065020-2



space FsðHÞ and the quantum field operator is formally
defined as

ϕðt;xÞ≡X
j

�
ujðt;xÞaðūjÞ þ ūjðt;xÞa†ðujÞ

�
; ð11Þ

where fujg comprise an orthonormal basis for H and
aðūÞ=a†ðvÞ are the usual annihilation/creation operators
associated with the modes u=v, respectively. They satisfy
the commutation relations

�
aðūÞ; a†ðvÞ� ¼ hu; viI; ð12Þ

with I being the identity operator on FsðHÞ. The vacuum
state associated with this representation of the CCR is the
normalized vector j0i that satisfies aðūÞj0i ¼ 0 for every
mode u∈H.
In order to make it mathematically well-defined, the

quantum field operator must be defined as an operator-
valued distribution. To this end, let S ⊂ SC be the space of
real solutions of Eq. (2) whose restriction to Cauchy
surfaces have compact support and K∶ S → H be the
projection operator that takes the positive-norm part of
any ψ ∈S. If C∞

0 ðMÞ denote the set of all smooth
compactly supported real functions on M, we define the
map E∶ C∞

0 ðMÞ → S acting on some test function
f∈C∞

0 ðMÞ as

EfðxÞ≡ AfðxÞ − RfðxÞ; ð13Þ

where Af and Rf are the advanced and retarded solutions
of the Klein-Gordon equation with source f, respectively.
Hence, they satisfy

PðAfÞ ¼ PðRfÞ ¼ f; ð14Þ

with P≡ −∇a∇a þm2 þ ξR representing the Klein-
Gordon differential operator.
Now, for each test function f∈C∞

0 ðMÞ, we define a
smeared quantum field operator by

ϕðfÞ≡ i
�
aðKEfÞ − a†ðKEfÞ�; ð15Þ

which satisfies the covariant version of the CCR,

½ϕðf1Þ;ϕðf2Þ� ¼ −iΔðf1; f2ÞI; ð16Þ

where

Δðf1; f2Þ≡
Z
M

ϵMf1ðxÞEf2ðxÞ ð17Þ

for all f1; f2 ∈C∞
0 ðMÞ. As shown in [8], Eq. (15) can be

obtained by formally integrating Eq. (11) weighed by the
test function f, i.e.,

ϕðfÞ ¼
Z
M

ϵMϕðxÞfðxÞ: ð18Þ

The above construction has the downside that there are
infinitely many choices of H satisfying properties (i)–
(iii) listed below Eq. (10) and their respective Fock spaces
are, in general, unitarily inequivalent. As discussed in [30],
this issue can be avoided through the algebraic approach
to quantum field theory (QFT). For more details, see
Refs. [8,34].
In this work, we will focus on a particular class of states;

the quasifree states is defined as follows. Given a real inner
product μ∶ S × S → R satisfying,

jσðφ1;φ2Þj2 ≤ 4μðφ1;φ1Þμðφ2;φ2Þ; ð19Þ

for all φ1;φ2 ∈S, we define a quasifree state ωμ associated
with μ by the relation

ωμ½WðEfÞ�≡ e−μðEf;EfÞ=2; ð20Þ

for all f∈C∞
0 ðMÞ, where the so-called Weyl operators

WðEfÞ are defined by

WðEfÞ≡ eiϕðfÞ; f∈C∞
0 ðMÞ: ð21Þ

The vacuum, n-particle, and thermal states are examples of
quasifree states.

III. THE QUANTUM BROADCAST CHANNEL

A typical broadcast communication scenario involves the
transmission of information between one station (sender)
and several receivers who will decode the information
independently. Let us consider a model in which one
observer, Alice, wants to transmit separate information
to two other observers, Bob and Charlie, using the quantum
field ϕ as a broadcast channel. Suppose that the field
is initially in some quasifree state ωμ.

4 Suppose also that the
three observers follow arbitrary trajectories in the curved
spacetime and that each one of them possesses a two-level
quantum system that may interact with the quantum field at
their will. The two-dimensional Hilbert spaces associated
with Alice’s, Bob’s, and Charlie’s qubits are denoted by
HA, HB, and HC, respectively.
The communication setup, illustrated by Fig. 1, is as

follows. In order to transmit information to Bob and
Charlie, Alice prepares her qubit in some initial quantum
state ρA−∞ and switches on its interaction with the field for a
finite time interval ΔtA (measured by the parameter t). To
measure the information imprinted by Alice on the field’s

4We note, however, that the results from this section apply
to any algebraic state ω which satisfies ω½WðEfÞ�∈Rþ for all
f∈C∞

0 ðMÞ.
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state, Bob and Charlie initially prepare their qubits in
suitable states ρB−∞ and ρC−∞ and then they switch on each of
their qubit interaction with the field for finite time intervals
ΔtB and ΔtC, respectively. For the sake of simplicity, we
will consider here the case where:
(QB1) Bob lets his qubit interact with the field only after

Alice finishes her transmission.
(QB2) Charlie lets his qubit interact with the field only

after Bob finishes his measurement process.
Such communication setup is implemented by means of

the Hamiltonian

HðtÞ≡HϕðtÞ þHintðtÞ; ð22Þ

where Hϕ is the field Hamiltonian in Eq. (6) and Hint is the
Hamiltonian that describes the interaction between each
qubit and the field which, in the interaction picture, is
given by

HI
intðtÞ≡

X
j

ϵjðtÞ
Z
Σt

d3x
ffiffiffiffiffiffi
−g

p
ψ jðt;xÞϕðt;xÞ ⊗ σzj; ð23Þ

where j∈ fA; B;Cg, with A, B, and C labeling Alice’s,
Bob’s, and Charlie’s qubit, respectively. Here, σzj is one of
the Pauli matrices fσxj ; σyj ; σzjg associated with qubit j;
ψ jðt;xÞ is a smooth real function satisfying ψ jjΣt

∈C∞
0 ðΣtÞ

for all t, which models the finite range of interaction
between qubit j and the field (i.e., the interaction occurs
only at some vicinity of each qubit worldline); and ϵjðtÞ is a
smooth and compactly-supported real coupling function
modeling the finite-time coupling of qubit j with the field.
Each coupling function has support

supp ϵj ¼
�
Ti
j; T

f
j

�
; ð24Þ

where Ti
j and Tf

j represent the time (with respect to the
parameter t) in which each qubit interaction with the field
is switched on and off, respectively. Here, we denote
Δtj ≡ Tf

j − Ti
j. Thus, the hypotheses (QB1) and (QB2)

previously listed can be summarized as

Ti
C ≥ Tf

B ≥ Ti
B ≥ Tf

A: ð25Þ

The interaction between each qubit and the field given by
Eq. (23) is very similar to the Unruh-DeWitt model [33].
However, we assumed that the two levels of each qubit have
the same (zero) energy. As we shall see, this assumption
allows us to calculate the evolution operator of the system
and trace out the field degrees of freedom in a non-
perturbative manner, thus making this model interesting to
investigate both the causality in the information exchange
process as well as the communication between parts lying
in early and future asymptotic spacetime regions. We note
that one could also have given an energy gap 2 δj for
each qubit j in z-direction by adding Hj ¼ δjσ

z
j to the total

Hamiltonian in Eq. (22) and still keep the model exactly
solvable. This would change it to

H ¼ Hϕ þHA þHB þHC þHint; ð26Þ

but would keep the interaction Hamiltonian in the inter-
action picture, Eq. (23), unchanged. Hence, all the results
we describe in the following would remain the same.
The interaction-picture time-evolution operator at late

times, associated with the foliation Σt, can be written as the
time-ordered expression,

U ≡ T exp

�
−i

Z
∞

−∞
dtHI

intðtÞ
�
: ð27Þ

It can be computed nonperturbatively by using the Magnus
expansion [35],

U ¼ exp

"X∞
n¼1

Ωn

#
; ð28Þ

where

Ω1 ¼ −i
Z

∞

−∞
dtHI

intðtÞ; ð29Þ

Ω2 ¼ −
1

2

Z
∞

−∞
dt

Z
t

−∞
dt0

�
HI

intðtÞ; HI
intðt0Þ

�
; ð30Þ

Ω3 ¼
i
6

Z
∞

−∞
dt
Z

t

−∞
dt0

Z
t0

−∞
dt00

n�
HI

intðtÞ;
�
HI

intðt0Þ;HI
intðt00Þ

��
þ �

HI
intðt00Þ;

�
HI

intðt0Þ;HI
intðtÞ

��o
; ð31Þ

FIG. 1. The figure depicts the quantum broadcast protocol
being used. The dashed lines display the worldlines of the sender,
Alice (A, Red), and receivers, Bob and Charlie (B and C, blue).
The solid lines in each worldline depict the interaction interval of
each observer’s qubit with the quantum field. Here, Σt1 and Σt2
represent two Cauchy surfaces of the spacetime.
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and so on. By using Eqs. (18), (23), and (29), we get

Ω1 ¼ −i
X
j

ϕðfjÞ ⊗ σzj; ð32Þ

where we have defined

fjðt;xÞ≡ ϵjðtÞψ jðt;xÞ: ð33Þ

Now, by making use of Eqs. (18) and (23) together with
Eqs. (16), (25), and (30) we can cast Ω2 as

Ω2 ¼ iΞI −
i
2
ΔðfA; fBÞσzA ⊗ σzB −

i
2
ΔðfA; fCÞσzA ⊗ σzC

−
i
2
ΔðfB; fCÞσzB ⊗ σzC; ð34Þ

where Ξ is the c-number

Ξ≡ 1

2

X
j

Z
∞

−∞
dt ϵjðtÞ

Z
t

−∞
dt0ϵjðt0ÞΔjðt; t0Þ;

with

Δjðt; t0Þ≡
Z
Σt

d3x
ffiffiffiffiffiffi
−g

p Z
Σt0

d3x0 ffiffiffiffiffiffiffi
−g0

p
ψ jðt;xÞΔðx; x0Þ

× ψ jðt0;x0Þ;

and we recall that ½ϕðxÞ;ϕðx0Þ�≡ −iΔðx; x0ÞI is the un-
smeared version of Eq. (16). Finally, since ½HI

intðtÞ; HI
intðt0Þ�

is proportional to the identity, we get

Ωk ¼ 0 for k ≥ 3: ð35Þ

Using the Zassenhaus formula

eAþB ¼ eAeBe−
1
2
½A;B�; ð36Þ

valid whenever ½A;B� is a proportional to the identity,
together with Eqs. (28), (32), (34), and (35) we obtain the
following unitary evolution operator:

U ¼ eiΞe−iϕðfCÞ⊗σzCe−iϕðfBÞ⊗σzBe−iϕðfAÞ⊗σzA : ð37Þ

Now that we have the exact evolution operatorU, we can
use it to evolve the initial state of the 3 qubitþ field system
and then trace out the field and Alice’s qubit degrees of
freedom. This procedure allows us to obtain the final state
of Bob’s and Charlie’s qubits after the communication
protocol has ended. This is the state that they will measure
to recover the information that Alice has sent. Explicitly,
the final Bobþ Charlie state is given by

ρBC ≡ trϕ;A
�
UρA−∞ ⊗ ρB−∞ ⊗ ρC−∞ ⊗ ρωU†�; ð38Þ

where ρj−∞ and ρω are the initial states of qubit j and the
field, respectively.
To compute the trace in Eq. (38), let us cast the operators

in Eq. (37) as

e−iϕðfjÞ⊗σzj ¼ cos ½ϕðfjÞ� − i sin ½ϕðfjÞ� ⊗ σzj; ð39Þ

where

cos ½ϕðfjÞ�≡ 1

2
½WðEfjÞ þWð−EfjÞ� ð40Þ

and

sin ½ϕðfjÞ�≡ 1

2i
½WðEfjÞ −Wð−EfjÞ�; ð41Þ

whereWðEfÞ is defined in Eq. (21). By plugging Eqs. (37)
and (39) into Eq. (38) and then taking the partial traces on ϕ
and A, a direct calculation yields,

ρBC ¼ ðΓcccccc þ ΓsccccsÞρBC−∞ þ ðΓcsccsc þ ΓssccssÞσzBρBC−∞σzB þ ðΓccsscc þ ΓscsscsÞσzCρBC−∞σzC
þ ðΓcssssc þ ΓssssssÞσzB ⊗ σzCρ

BC
−∞σ

z
B ⊗ σzC þ �ðΓccscsc þ ΓscscssÞσzBρBC−∞σzC þ H:c:

�
−
�ðΓcssccc þ ΓsssccsÞρBC−∞σzB ⊗ σzC þ H:c:

�þ �ðΓcscccs − ΓssccccÞhσzAiρA−∞ρBC−∞σzB þ H:c:
�

þ �ðΓccsccs − ΓscscccÞhσzAiρA−∞ρBC−∞σzC þ H:c:
�þ �ðΓcsscss − ΓssscscÞhσzAiρA−∞σzBρBC−∞σzB ⊗ σzC þ H:c:

�
þ �ðΓcssscs − ΓssssccÞhσzAiρA−∞σzCρBC−∞σzB ⊗ σzC þ H:c:

�
; ð42Þ

where H.c. stands for Hermitian conjugation, and we have defined

ρBC−∞ ≡ ρB−∞ ⊗ ρC−∞; ð43Þ

hσzAiρA−∞ ≡ trðσzAρA−∞Þ; ð44Þ

and
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Γαβγδϵζ ≡ ωμ

�
F α½ϕðfAÞ�F β½ϕðfBÞ�F γ½ϕðfCÞ�

× F δ½ϕðfCÞ�F ϵ½ϕðfBÞ�F ζ½ϕðfAÞ�
�
; ð45Þ

with α; β; γ; δ; ϵ; ζ∈ fc; sg, F cðxÞ≡ cos x, and F sðxÞ≡
sin x. We note that we have written the algebraic field state
ωμ as a density matrix with tr½ρωWðEfÞ�≡ ωμ½WðEfÞ�.
Furthermore, we have used the fact that the expected value
of odd functions of the field operator vanishes since we are
assuming that ωμ is a quasifree state (a consequence of
Wick’s theorem).
Now, each Γαβγδϵζ in Eq. (42) can be evaluated by

substituting Eqs. (40) and (41) in Eq. (45) and then using
the identity,

WðEf1ÞWðEf2Þ ¼ e
i
2
Δðf1;f2ÞW½Eðf1 þ f2Þ�; ð46Þ

for all f; f1; f2 ∈C∞
0 ðMÞ, to simplify the product of

the Weyl operators. By substituting these coefficients in
Eq. (42) one finds the explicit form of the state ρBC, which
is given in Eq. (A1) of the Appendix. The expression in
Eq. (A1) allows one to write the final joint state for Bob’s
and Charlie’s qubits given any initial state configuration for
the three qubitsþ field.
To define a quantum broadcast channel, we must choose

suitable initial states for Bob and Charlie qubits in order to
obtain a quantum map relating the initial state of Alice’s
qubit ρA−∞ (which encodes the messages) to the final states
that will be probed by them (to decode the messages). Since
Bob only performs measurements in his own two-level
system, we calculate the expression for the reduced state of
his qubit, i.e.,

ρB ≡ trCðρBCÞ: ð47Þ

Taking the trace in Eq. (A1) relative to Charlie’s degrees of
freedom, we obtain

ρB ¼ 1

2

�
1þ νB cos ½2ΔðfA; fBÞ�

�
ρB−∞

þ 1

2

�
1 − νB cos ½2ΔðfA; fBÞ�

�
σzBρ

B
−∞σ

z
B

þ i
2
νB sin ½2ΔðfA; fBÞ�hσzAiρA−∞ ½ρB−∞; σzB�; ð48Þ

where

νB ≡ ωμðW½Eð2fBÞ�Þ ¼ e−2μðKEfB;KEfBÞ; ð49Þ

with μ be the inner product associated with the field
quasifree state ωμ as in Eq. (20). Note that it is the last
term in Eq. (48) that contains the information encoded by
Alice, and thus it will be useless for Bob to choose the
eigenstates j0iB and j1iB of σzB as his initial state ρB−∞ since
this term would vanish. Furthermore, since σzB commutes

with the interaction Hamiltonian, he won’t recover any
information either if he performs projective measurements
on this basis. To choose a suitable state ρB−∞ that maximizes
the chances of success in their communication, suppose for
simplicity that Alice encodes a pair of messages in states
ρA−∞þ and ρA−∞− which will be decoded by Bob using a set
of projective measurements in the x-direction,

	
FBþ ≡ jþiBBhþj; FB

− ≡ j−iBBh−j


; ð50Þ

where σxBj�iB ¼ �j�iB. From Eq. (48), we conclude that
the probability that Bob measures l ¼ � given that Alice
has encoded the message k ¼ � in ρA−∞k is

pðljkÞ≡ tr
�
FB
l ρ

B
k

� ¼ 1

2
ð1þ lνBΛkÞ; ð51Þ

where

Λk ≡ 2R
	
βBðcos½2ΔðfA; fBÞ�

− ihσzAiρA−∞k
sin½2ΔðfA; fBÞ�Þ



and βB ≡ Bh0jρB−∞j1iB. From these two equations, we
see that it is the second term Λk that contains the
information encoded by Alice on her qubit state, and thus
we are motivated to choose a state ρB−∞ that makes βB a pure
imaginary number, which will make the first term of Λk
vanish while maximizing the amplitude of the second term.
This motivates us to choose

ρB−∞ ≡ jyþiBBhyþj; ð52Þ

where

jyþiB ≡ 1ffiffiffi
2

p �j0iB þ ij1iB
� ð53Þ

is an eigenstate of σyB (in this case, βB ¼ −i=2). With this
choice, we can write Eq. (51) as

pðljkÞ ¼ 1

2

�
1 − lνBhσzAiρA−∞k

sin½2ΔðfA; fBÞ�
�
: ð54Þ

Now we turn our attention to Charlie. The final reduced
state for his qubit is

ρC ≡ trBðρBCÞ: ð55Þ

Taking the trace in Eq. (A1) relative to Bob’s degrees of
freedom and using Eq. (52) we obtain
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ρC ¼ 1

2
ð1þ νC cos ½2ΔðfA; fCÞ� cos ½2ΔðfB; fCÞ�ÞρC−∞

þ 1

2
ð1 − νC cos ½2ΔðfA; fCÞ� cos ½2ΔðfB; fCÞ�Þ

× σzCρ
C
−∞σ

z
C þ i

2
νC sin ½2ΔðfA; fCÞ� cos ½2ΔðfB; fCÞ�

× hσzAiρA−∞ ½ρC−∞; σzC�; ð56Þ

where

νC ≡ ωμðW½Eð2fCÞ�Þ ¼ e−2μðKEfC;KEfCÞ: ð57Þ

To obtain Eq. (56), we explicitly used the choice in Eq. (52),
which implies that hσzBiρB−∞ ≡ trðσzBρB−∞Þ ¼ 0. By a com-
pletely similar reasoning as the one used to choose Bob’s
initial state, we are motivated to choose Charlie’s initial
qubit state as

ρC−∞ ≡ jyþiCChyþj; ð58Þ

where σyCjyþiC ¼ jyþiC.
Now, the quantum broadcast channel is completely

characterized by a linear, completely positive and trace-
preserving (CPTP) quantum map E which takes ρA−∞ into a
final state ρBC, i.e.,

ρBC ¼ EðρA−∞Þ: ð59Þ

By substituting the initial states of Bob’s and Charlie’s
qubits given in Eqs. (52) and (58) into Eq. (A1), we find the
explicit expression for the quantum broadcast channel E.
For the sake of clarity, due to its lengthy expression, we
write its explicit form in Eq. (A7) of the Appendix.
For later use, we will denote the reduced channels

EB∶ A → B, EC∶ A → C by

EBðρA−∞Þ≡ trC½EðρA−∞Þ�; ð60Þ

ECðρA−∞Þ≡ trB½EðρA−∞Þ�; ð61Þ

respectively. It then follows from Eqs. (A7), (60), and (61)
that they can be explicitly written as

EBðρA−∞Þ ¼
1

2
IB þ νB

2
cos ½2ΔðfA; fBÞ�σyB

−
νB
2
sin ½2ΔðfA; fBÞ�hσzAiρA−∞σxB ð62Þ

and

ECðρA−∞Þ ¼
1

2
IC þ νC

2
cos ½2ΔðfA; fCÞ� cos ½2ΔðfB; fCÞ�σyC

−
νC
2
sin ½2ΔðfA; fCÞ� cos ½2ΔðfB; fCÞ�

× hσzAiρA−∞σxC: ð63Þ

Given an initial state ρA−∞ prepared by Alice on her qubit,
these expressions for EB and EC determine the final local
states of Bob’s and Charlie’s qubit, respectively.

IV. ACHIEVABLE COMMUNICATION RATES

Now that we have constructed a model for a relativistic
quantum broadcast channel, we can investigate at which
rates classical and quantum information can be reliably
transmitted by Alice to Bob and Charlie. We first review a
few protocols for quantum broadcast communication pub-
lished in the literature and then we investigate the achiev-
able rates for our quantum broadcast channel E defined
in Eq. (59).

A. Unassisted classical communication

Let us begin with the investigation of unassisted trans-
mission of classical information. We follow the protocol
presented in [3], where more details can be found. We
evaluate achievable rates for our model and then we discuss
how causality is explicitly manifest in our results.
Suppose Alice wishes to transmit a common message

m∈M intended for both receivers while sending additional
personal messages mB ∈MB and mC ∈MC intended for
Bob and Charlie, respectively. Each message is chosen
from one of the following sets,

M ¼ f1;…; jMjg; Mj ¼ f1;…; jMjjg; ð64Þ

with j∈ fB;Cg and jMj denoting the cardinality of M.
Since the broadcast channel E is noisy, Alice needs to do a
suitable block coding on the possible messages and then
make n independent uses of the channel in order to be able
to reliably convey the information. More precisely, Alice
maps each message triple ðmB;m;mCÞ to a codeword
xnðmB;m;mCÞ which is then associated with a quantum
state ρAn

xnðmB;m;mCÞ defined in the space H⊗n
A . Then, she

transmits ρAn
xnðmB;m;mCÞ by making n independent uses of the

channel E. The output of the channel is the state

ρBnCn
xnðmB;m;mCÞ ≡ E⊗n

�
ρAn
xnðmB;m;mCÞ

�
ð65Þ

defined on H⊗n
B ⊗ H⊗n

C . To decode the message, Bob
chooses a positive-operator valued measure (POVM)
fFBn

mB;mjðmB;mÞ∈MB ×Mg which acts on the system Bn.
Similarly, Charlie chooses a POVM fGCn

m;mC jðm;mCÞ∈
M ×MCg which acts on the system Cn. We say that an
error has occurred when at least one message is incorrectly
decoded. Hence, the error probability associated with the
transmission of the triple ðmB;m;mCÞ is

peðmB;m;mCÞ≡ 1 − tr
h�
FBn
mB;m ⊗ GCn

m;mC

�
ρBnCn
xnðmB;m;mCÞ

i
:
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The transmission rates associated with each message are
defined as

R≡ 1

n
log2jMj; Rj ≡ 1

n
log2jMjj: ð66Þ

These rates essentially measure how many bits of classical
information are sent per channel use. If, given an ϵ > 0, the
average probability of error p̄e is bounded by ϵ, i.e.,

p̄e ≡ 1

jMBjjMjjMCj
X

mB;m;mC

peðmB;m;mCÞ ≤ ϵ; ð67Þ

the classical-quantum broadcast channel coding protocol
described above is said to be a ðn; RB; R; RC; ϵÞ code. We
say that a rate triple ðRB; R; RCÞ is achievable if given ϵ,
δ > 0 there exists a ðn; RB − δ; R − δ; RC − δ; ϵÞ code for
sufficiently large n. Hence, saying that a rate triple is
achievable means that classical information can be reliably
transmitted at rates arbitrarily close to them.
The achievable rates depend highly on the coding and

decoding techniques chosen by the sender and receivers.
The best known achievable rate region for general broad-
cast channels is attained through the so-called Marton
coding scheme. Following [3], we investigate here the
quantum version of this protocol.
Suppose for simplicity that no common message is

meant to be sent, i.e., let us consider a ðRB; 0; RCÞ quantum
broadcast channel. In this scenario, one strategy they can
use is the Marton coding scheme, where one chooses two
correlated random variables U and V, with joint probability
distribution denoted by p and reduced probability distri-
butions denoted by pU and pV . Such a pair of random
variables is usually referred to as binning variables. Then,
for each mB ∈MB and mC ∈MC, one generates codewords
unðmBÞ and vnðmCÞ according to the reduced probability
distributions pUðuÞ and pVðvÞ. Next, the codewords are
mixed together into a single codeword xnðmB;mCÞ accord-
ing to a deterministic function x ¼ fðu; vÞ. With this
approach, it follows that a rate pair ðRB; RCÞ is achievable
if it satisfies [3]

0 ≤ RB ≤ IðU;BÞσ; ð68Þ

0 ≤ RC ≤ IðV;CÞσ; ð69Þ

RB þ RC ≤ IðU;BÞσ þ IðV;CÞσ − IðU;VÞσ; ð70Þ

where

IðX;YÞρ ≡ SðXÞρ þ SðYÞρ − SðXYÞρ ð71Þ

is the mutual information of a state ρXY , with

SðαÞρ ¼ −trðρα log ραÞ;

α ¼ X, Y, being the von Neumann entropy of ρα, α ¼ X, Y.
Here, ρX ¼ trYρXY and ρY ¼ trXρXY . The states σ in
Eqs. (68)–(70) are obtained by suitably (partially) tracing
out the degrees of freedom of the density matrix

σUVBC≡X
u;v

pðu;vÞjuihujU ⊗ jvihvjV ⊗ E
�
ρAfðu;vÞ

�
; ð72Þ

with pðu; vÞ being the joint probability distribution of the
random variables U and V.
We begin our analysis by deriving bounds for the

achievable rates through the Marton coding scheme applied
to our relativistic quantum broadcast channel. To evaluate
Eq. (68), we take partial traces relative to V and C in
Eq. (72), obtaining

σUB ≡X
u

pUðuÞjuihujU ⊗ ωB
u ; ð73Þ

where we have written pðu; vÞ ¼ pVjUðvjuÞpUðuÞ, whereas

ωB
u ≡X

v

pVjUðvjuÞEB

�
ρAfðu;vÞ

�
: ð74Þ

A state like σUB in Eq. (73) is called a classical-quantum
state. For this class of states, a straightforward calculation
shows that [2]

IðU;BÞσ ¼ S

�X
u

pUðuÞωB
u

�
−
X
u

pUðuÞS½ωB
u �: ð75Þ

In order to compute ωB
u and its von Neumann entropy, let

us decompose the initial state of Alice’s qubit in terms of
Bloch vectors, i.e.,

ρAfðu;vÞ ¼
1

2

�
IA þ rfðu;vÞ · σA

�
; ð76Þ

where rfðu;vÞ ≡ ðxfðu;vÞ; yfðu;vÞ; zfðu;vÞÞ, IA is the identity in
HA, σA ≡ ðσxA; σyA; σzAÞ, and krfðu;vÞk2 ¼ x2fðu;vÞ þ y2fðu;vÞþ
z2fðu;vÞ ≤ 1. From Eqs. (62), (74), and (76) we get

ωB
u ¼ 1

2
IB þ νB

2
cos ½2ΔðfA; fBÞ�σyB

− z̄u
νB
2
sin ½2ΔðfA; fBÞ�σxB; ð77Þ

where z̄u ≡P
v pVjUðvjuÞzfðu;vÞ, and thus we can further

write

ωB ≡X
u

pUðuÞωB
u ¼ 1

2
IB þ νB

2
cos ½2ΔðfA; fBÞ�σyB

− z̄
νB
2
sin ½2ΔðfA; fBÞ�σxB; ð78Þ

where z̄≡P
u;v pðu; vÞzfðu;vÞ.
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Now, by using standard diagonalization, we find that ωB
u

has eigenvalues pB
u and 1 − pB

u , where

pB
u ≡ 1

2
þ νB

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z̄2usin2½2ΔðfA; fBÞ� þ cos2½2ΔðfA; fBÞ�

q
;

ð79Þ

whereas ωB has eigenvalues pB and 1 − pB, with

pB ≡ 1

2
þ νB

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z̄2sin2½2ΔðfA; fBÞ� þ cos2½2ΔðfA; fBÞ�

q
:

ð80Þ

Therefore, we can now write Eq. (75) as

IðU;BÞσ ¼ HðpBÞ −
X
u

pUðuÞHðpB
u Þ; ð81Þ

where HðxÞ≡ −xlog2x − ð1 − xÞlog2ð1 − xÞ, x∈ ½0; 1�.
Following similar steps, we can show that

IðV;CÞσ ¼ HðpCÞ −
X
v

pVðvÞHðpC
v Þ; ð82Þ

where

pC
v ≡ 1

2
þ νC

2
j cos ½2ΔðfB; fCÞ�j

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z̄2vsin2½2ΔðfA; fCÞ� þ cos2½2ΔðfA; fCÞ�

q
ð83Þ

with z̄v ≡P
u pUjVðujvÞzfðu;vÞ, and

pC ≡ 1

2
þ νC

2
j cos ½2ΔðfB; fCÞ�j

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z̄2sin2½2ΔðfA; fCÞ� þ cos2½2ΔðfA; fCÞ�

q
: ð84Þ

Now, let us note thatHðxÞ is a monotonically decreasing
function when x ≥ 1=2. From Eqs. (79) and (80), we have

pB
u ≤

1

2
þ νB

2
ð85Þ

and

pB ≥
1

2
þ νB

2
j cos ½2ΔðfA; fBÞ�j; ð86Þ

and thus it follows that

HðpB
u Þ ≥ H


1

2
þ νB

2

�
ð87Þ

and

HðpBÞ ≤ H


1

2
þ νB

2
j cos ½2ΔðfA; fBÞ�j

�
: ð88Þ

As a result, from Eq. (81), we conclude that

IðU;BÞσ ≤ CðEBÞ; ð89Þ

where

CðEBÞ≡H


1

2
þ νB

2
j cos ½2ΔðfA; fBÞ�j

�
−H


1

2
þ νB

2

�
ð90Þ

is the classical capacity of the reduced channel EB, given in
Eq. (62), as shown in [30]. We note that the upper bound in
Eq. (89) can be attained if we choose random variables
U;V ¼ f0; 1g with pðu; vÞ ¼ 1=4 for all u, v, associated
with Bloch vectors rfð0;0Þ ¼ rfð0;1Þ ¼ ð0;0;þ1Þ and rfð1;0Þ ¼
rfð1;1Þ ¼ ð0; 0;−1Þ. By using such choices together with
Eq. (68), we conclude that Alice can reliably convey classi-
cal information to Bob at rates arbitrarily close to CðEBÞ.
Similarly, we can show from Eqs. (82)–(84) that

IðV;CÞσ ≤ CðECÞ; ð91Þ

where

CðECÞ≡H


1

2
þ νC

2
j cos ½2ΔðfB; fCÞ� cos ½2ΔðfA; fCÞ�j

�

−H


1

2
þ νC

2
j cos ½2ΔðfB; fCÞ�j

�
; ð92Þ

is the classical capacity of the reduced channel EC given
in Eq. (63). The upper bound can be attained, e.g.,
if we choose random variables U;V ¼ f0; 1g with
pðu; vÞ ¼ 1=4 for all u, v, associated with Bloch vectors
rfð0;0Þ ¼ rfð1;0Þ ¼ ð0;0;þ1Þ and rfð0;1Þ ¼ rfð1;1Þ ¼ ð0;0;−1Þ.
Hence, from Eq. (69), we conclude that Alice can reliably
convey classical information to Charlie as well at rates
arbitrarily close to CðECÞ.
It is important to highlight that causality is explicitly

manifest on the bounds of the achievable rates. First, we
note that the achievable rates RB between Alice and Bob are
bounded by CðEBÞ, which does not depend on the inter-
action between Charlie’s qubit and the quantum field. This
should indeed be the case as, from hypothesis (QB2) in
Sec. III, Charlie cannot influence the communication
between Alice and Bob since he does not perform any
actions before Bob finishes his measurement process.
Furthermore, the presence of the commutator ΔðfB; fCÞ
in Eq. (92) indicates that when Bob and Charlie let
their qubits interact with the quantum field in causally
connected regions of the spacetime, noise from Bob’s
actions can influence on the rate RC of communication
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between Alice and Charlie. Additionally, we note that
whenever ΔðfA; fjÞ ¼ 0, we have

CðEjÞ ¼ 0 ð93Þ

for j ¼ B, C. Hence, when Alice and Bob (or Charlie)
interact with the field in causally disconnected regions of
the spacetime, the achievable rate in Eq. (68) [or Eq. (69)]
will reduce to RB ¼ 0 (or RC ¼ 0).
To this day, no one has been able to prove that the

Marton rate region given by Eqs. (68)–(70) is optimal for
general broadcast channels, not even in the classical case.
However, it is generally conjectured that the Marton rate
region indeed represents the full capacity region of general
broadcast channels. If this is the case, then our analysis
shows that causality will not be violated when transmit-
ting classical information, no matter which communication
protocol is chosen.

B. Unassisted and entanglement-assisted
quantum communication

Let us now turn our attention to the communication of
quantum information. Following [5], we present a father
protocol for entanglement-assisted quantum communica-
tion through quantum broadcast channels that can be used
to investigate at which rates Alice can send classical or
quantum information to Bob and Charlie when they share
an unlimited supply of entanglement. This protocol can
also be adapted to investigate communication rates for
quantum information transmission with no prior shared
entanglement. After reviewing the father protocol, we
investigate both quantum communication scenarios applied
to our model of quantum broadcast channel constructed
in Sec. III.
Let us suppose that Alice has access to two quantum

systems TA and TA0 while Bob and Charlie possess similar
quantum systems TB and TC, respectively. All systems
possesses the same dimension dTA

≡ dimHTA
. Suppose

further that Alice shares maximally entangled states with
both Bob and Charlie,

jΦTATki ¼ 1ffiffiffiffiffiffiffi
dTA

p XdTA−1
i¼0

jiiTA
⊗ jiiTk

; ð94Þ

where the above state is defined on HTA
⊗ HTk

, with
k ¼ B, C and fjiiTα

g is an orthonormal set of vectors on
HTα

, α ¼ A, B, C.
In order to study the transmission of quantum informa-

tion, we first note that whenever Alice is able to transmit the
entanglement she shares with some reference system to
each receiver, she will be able to send arbitrary quantum
states to each of them. Hence, suppose that Alice possesses
two quantum systems A1 and A2 respectively entangled
with reference systemsR1 and R2 and that these systems are

in states jΦAjRji defined on HAj
⊗ HRj

for j ¼ 1, 2.5 Her

goal is to send her share of jΦA1R1i and jΦA2R2i to Bob and
Charlie, respectively.
The initial global state of the system is

jφi≡ jΦA1R1ijΦA2R2ijΦTATBijΦTA0TCi ð95Þ

and we will denote ρφ ≡ jφihφj. In order to use the
quantum channel E to share her entanglement with R1

and R2 to Bob and Charlie (and hence, convey quantum
information), Alice uses a CPTP map C∶ HA1

⊗ HA2
⊗

HTA
⊗ HTA0 → H⊗n

A in order to encode her shares of the
quantum systems (TA; TA0 ; A1, and A2), into a state of n
qubits. The global state then reads,

ρ̃AnR1R2TBTC ≡ �
C ⊗ IR1R2TBTC

�ðρφÞ; ð96Þ

where IR1R2TBTC is the identity operator of the joint system
R1R2TBTC. Next, by making n independent uses of the
channel E, Alice sends her total encoded state to Bob and
Charlie, which results in the global state

ωBnCnR1R2TBTC ≡ �
E⊗n ⊗ IR1R2TBTC

��
ρ̃AnR1R2TBTC

�
: ð97Þ

Bob and Charlie decode their share of the global state
by using the CPTP maps DB∶ H⊗n

B ⊗ HTB
→ HB0 and

DC∶ H⊗n
C ⊗ HTC

→ HC0 , respectively. Hence, the final
global state is

ζB
0C0R1R2 ≡ �

DC ⊗ DB ⊗ IR1R2

��
ωBnCnR1R2TBTC

�
: ð98Þ

We define the entanglement-assisted quantum commu-
nication rates as

Q̃B ≡ 1

n
log2dA1

; Q̃C ≡ 1

n
log2dA2

; ð99Þ

where dAj
≡ dimHAj

and j ¼ 1, 2. These rates of quantum
communication measure how many qubits are being sent
per channel use.
The communication process will be good if given a small

ϵ > 0 we have

��ζB0C0R1R2 − ρB
0C0R1R2

φ

��
1
≤ ϵ; ð100Þ

where

kOk1 ≡ tr
� ffiffiffiffiffiffiffiffiffiffi

O†O
p � ð101Þ

is the trace norm of an operator O. Here, ρB
0C0R1R2

φ is the
analogous of the initial state in the composite system

5As a result, the quantum state being transmitted by Alice to
the receiver j, j ¼ B, C, is ρAj ≡ trRj

jΦAjRjihΦAjRj j.
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B0C0R1R2, i.e., given the initial state in Alice’s laboratory

ρA1A2R1R2
φ ≡ jΦA1R1ihΦA1R1 j ⊗ jΦA2R2ihΦA2R2 j; ð102Þ

we define

ρB
0C0R1R2

φ ≡ �
IA1→B0 ⊗ IA2→C0��

ρA1A2R1R2
φ

�
; ð103Þ

where IA1→B0
(or IA2→C0

) is the identity map between the
quantum systems A1 (or A2) and B0 (or C0).
The communication protocol described here is named as

a ðn; Q̃B; Q̃C; ϵÞ code if it satisfies Eq. (100) for every input
state ρA1A2R1R2

φ . Again, we say that a rate pair ðQ̃B; Q̃CÞ is
achievable if given any ϵ, δ > 0 there exists a ðn; Q̃B − δ;
Q̃C − δ; ϵÞ code for sufficiently large n.
Now, given a general broadcast channel E∶ A → BC

and an arbitrary mixed state ρAA1A2 defined on HA ⊗
HA1

⊗ HA2
, it can be shown [5] that a entanglement-

assisted quantum rate pair ðQ̃B; Q̃CÞ is achievable if

0 ≤ Q̃B ≤
1

2
IðA1;BÞσ; ð104Þ

0 ≤ Q̃C ≤
1

2
IðA2;CÞσ; ð105Þ

Q̃B þ Q̃C ≤
1

2

�
IðA1;BÞσ þ IðA2;CÞσ − IðA1;A2Þσ

�
; ð106Þ

where the mutual information quantities are evaluated
relative to the state

σA1A2BC ≡ �
E ⊗ IA1A2

��
ρAA1A2

�
: ð107Þ

In addition to entanglement-assisted quantum commu-
nication, the father protocol presented here can be adapted
to obtain achievable rates for unassisted quantum commu-
nication. To this end, we simply ignore the existence of the
quantum systems TA, TA0 , TB, and TC and follow the exact
same procedure. As shown in [5], given an arbitrary mixed
state ρAA1A2 defined on HA ⊗ HA1

⊗ HA2
, it follows that

the following unassisted quantum rate region is achievable:

0 ≤ QB ≤ IðA1iBÞσ; ð108Þ

0 ≤ QC ≤ IðA2iCÞσ; ð109Þ

where σ is given by Eq. (107) and

IðAiBÞσ ≡ SðBÞσ − SðABÞσ
is the quantum coherent information between systems A
and B.
Now, let us return to the relativistic quantum broadcast

channel constructed in Sec. III. To analyze if Alice can send

entanglement (and, as a result, an arbitrary state ρA) to Bob
through the broadcast channel, let us note that we may
purify the mixed state ρAA1A2 by adding an environment
system E such that

ρAA1A2 ¼ trEðjψAA1A2EihψAA1A2EjÞ; ð110Þ

where jψAA1A2Ei∈HA ⊗ HA1
⊗ HA2

⊗ HE is a pure state.
Let us decompose it as

jψAA1A2Ei ¼
X1
a¼0

X1
a1¼0

X1
a2¼0

Xd−1
e¼0

caa1a2ejaiAja1iA1
ja2iA2

jeiE;

ð111Þ

where jaiA, ja1iA1
, and ja2iA2

are eigenstates of σzA, σ
z
A1
,

and σzA2
, respectively. Furthermore, fjeiEg is some ortho-

normal basis for HE, with d≡ dimHE being as large as
needed, and

X1
a¼0

X1
a1¼0

X1
a2¼0

Xd−1
e¼0

jcaa1a2ej2 ¼ 1: ð112Þ

By defining

jζaiA1A2E ≡ X1
a1¼0

X1
a2¼0

Xd−1
e¼0

caa1a2eja1iA1
ja2iA2

jeiE ð113Þ

and

ζA1A2

aa0 ≡ trEðjζaiA1A2EA1A2E
hζa0 jjÞ; ð114Þ

we can write Eq. (110) as

ρAA1A2 ¼
X1
a¼0

X1
a0¼0

ζA1A2

aa0 ⊗ jaiAAha0j: ð115Þ

By using Eq. (115) in Eq. (107) and taking the partial trace
over C and A2, we obtain

σA1B ¼
X1
a¼0

ζA1
aa ⊗ EBðjaiAAhajÞ; ð116Þ

where ζA1
aa ≡ trA2

ðζA1A2
aa Þ and we have used the fact that

EBðjaiAAha0jÞ ¼ δaa0EBðjaiAAhajÞ; ð117Þ

which can be proven by a direct calculation using Eq. (62).
We now define the density matrices

SB
a ≡ EBðjaiAAhajÞ; ð118Þ
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and

τA1
a ≡ kζak−2ζA1

aa; ð119Þ

with kζak2 ≡ trðζA1
aaÞ. This allows us to rewrite Eq. (116) as

σA1B ¼
X1
a¼0

kζak2τA1
a ⊗ SB

a ; ð120Þ

and we note that trðSB
a Þ ¼ trðτA1

a Þ ¼ 1 and

X1
a¼0

kζak2 ¼
X1
a¼0

X1
a1¼0

X1
a2¼0

Xd−1
e¼0

jcaa1a2ej2 ¼ 1: ð121Þ

Hence, we have shown that σA1B is a separable state, which
implies that the reduced channel from Alice to Bob lies in
the class of the entanglement-breaking channels. As shown
in [36], the coherent information is nonpositive for sepa-
rable states like σA1B, i.e.,

IðA1iBÞσ ≤ 0: ð122Þ

Following similar steps, one can also show that
IðA2iCÞσ ≤ 0. As a result, the unassisted achievable rate
region given by Eqs. (108) and (109) reduces to

QB ¼ QC ¼ 0: ð123Þ

We do not know, to this day, if the region defined by
Eqs. (108) and (109) characterizes the full capacity region
for general quantum broadcast channels. If this is the case,
our analysis implies that Alice cannot send qubits to the
receivers without prior shared entanglement. Since the
reduced channels EB and EC are entanglement breaking,
Alice cannot transmit the needed entanglement to establish
quantum communication by using only the quantum
broadcast channel E.
On the other hand, we can investigate if this limitation

changes when the three observers perform an entanglement-
assisted quantum communication protocol like the one in the
beginning of this section. In this scenario, we recall that
Eqs. (104)–(106) give an achievable (entanglement-assisted)
quantum rate region that we shall analyze now.
First, we show that Alice can indeed send quantum

information to Bob when they initially share entanglement
as follows. We choose the initial input state to be

ρAA1A2 ≡ jΦAA1ihΦAA1 j ⊗ ρA2 ; ð124Þ

where ρA2 is arbitrary and jΦAA1i is the maximally
entangled state

jΦAA1i≡ 1ffiffiffi
2

p
X1
a¼0

jaiAjaiA1
: ð125Þ

For this particular state, Eq. (120) can be written as

σA1B ¼ 1

2

X1
a¼0

jaiA1A1
haj ⊗ SB

a ; ð126Þ

which is a cq-state as the one in Eq. (73). Following the
same steps that led to Eq. (81), one can show that

IðA1;BÞσ ¼ CðEBÞ; ð127Þ

where CðEBÞ is defined in Eq. (90). On the other hand, for
this particular input state, we get

σA2C ¼
"X1
a¼0

1

2
SC

a

#
⊗ ρA2 ; ð128Þ

σA1A2 ¼
"X1
a¼0

1

2
jaiA1A1

haj
#
⊗ ρA2 ; ð129Þ

where SC
a ≡ ECðjaiAAhajÞ. Since we get these product

states, it follows that

IðA2;CÞσ ¼ IðA1;A2Þσ ¼ 0: ð130Þ

In view of Eqs. (104)–(106), we conclude that Alice will
be able to convey quantum information to Bob at a rate
arbitrarily close to

Q̃B ¼ CðEBÞ=2 ð131Þ
when they initially share unlimited amounts of entangle-
ment, provided that they let their qubits interact with the
field in causally connected regions of the spacetime. Note
that this is in contrast with the unassisted case previously
discussed. On the other hand, this particular achievable rate
region derived here implies that Q̃C ¼ 0 in view of Eq. (130).
Similarly, by switching A1 by A2 in Eq. (124), one can

show that Alice will be able to transmit quantum states to
Charlie (but not to Bob) at a rate arbitrarily close to

Q̃C ¼ CðECÞ=2 ð132Þ
when they communicate assisted by shared entanglement.
Furthermore, initial tripartite entangled states ρAA1A2 will,

in general, lead to simultaneously nonvanishing rate pairs
provided that sender and receivers interact with the field in
causally connected regions of spacetime. For example, by
choosing the initial input state to be a pure maximally
entangled GHZ state,

ρAA1A ¼ jGHZihGHZj; ð133Þ
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where

jGHZi≡ 1ffiffiffi
2

p
X1
a¼0

jaiAjaiA1
jaiA2

; ð134Þ

one can show by a similar direct calculation that the
following entanglement-assisted quantum rate region is
achievable:

Q̃B ≤
1

2
CðEBÞ; ð135Þ

Q̃C ≤
1

2
CðECÞ; ð136Þ

Q̃B þ Q̃C ≤
1

2
½CðEBÞ þ CðECÞ − 1�: ð137Þ

In [37], the authors investigate the classical channel
capacity CðEBÞ of the reduced channel EB from Alice to
Bob for the case where both observers follow inertial or
accelerated worldlines on Minkowski spacetime. In some
scenarios, the authors show that one can tune the param-
eters of the channel to achievable capacities close to 1.
Considering that CðECÞ has a similar expression, if we
consider the case where ΔðfB; fCÞ ≈ 0, we can argue in
favor of also tune the channel parameters to make CðECÞ
close to 1. Under these assumptions, Eqs. (135)–(137)
imply that Alice would be able to simultaneously transmit
quantum information to Bob and Charlie when assisted by
prior entanglement. Hence, the relativistic quantum broad-
cast constructed in Sec. III seems to impose no limitation to
simultaneous entanglement-assisted communication from
Alice to both receivers.

V. CONCLUSIONS

In this paper, we have built a relativistic quantum
broadcast channel by using a bosonic quantum field in a
general globally hyperbolic spacetime. In this context, we
have explored relativistic effects on the communication of
classical and quantum information in a covariant manner,
where the parts conveying the information are moving in
arbitrary states of motion with the field being in an arbitrary
(quasifree) state.
To construct the quantum broadcast channel, we have

considered that Alice (the sender) prepares some input state
ρA−∞ for her qubit and switches on its interaction with the
field for a finite time. After that, Bob (the first receiver) lets
his qubit interact with the field for a finite time interval,
thus obtaining a final state possibly containing information
encoded by Alice. Similarly, after Bob finishes his meas-
urement, Charlie performs an interaction between his
qubit and the quantum field to try to recover information
imprinted by Alice in the field state. We were able to trace
the field degrees of freedom nonperturbatively and showed

that suitable initial states for Bob’s and Charlie’s qubits can
be chosen in order to maximize the signaling between Alice
and the receivers. This procedure defines a fully relativistic
quantum broadcast channel E.
With this channel, we were able to investigate at which

rates Alice can reliably convey classical and quantum
information to Bob and Charlie. By considering first a
scenario where the three observers do not share prior
entanglement, we found that Alice can reliably convey
classical information to both Bob and Charlie and at which
rates she can perform this task. However, we have shown
that the broadcast channel presented here breaks entangle-
ment and thus, Alice cannot convey quantum information
to Bob and Charlie following an unassisted strategy.
Nevertheless, we have shown that this situation changes
when they perform entanglement-assisted quantum com-
munication. In this scenario, we were able to find achiev-
able rates that Alice can achieve when sending qubits to the
receivers provided that they initially share entangled states.
We were also able to show that all rates that were

analyzed here vanish when the interactions between qubits
and field occur in causally disconnected regions, an effect
that is manifest in all expressions bounding the classical
and quantum rates of communication even with the use of
quantum resources like entanglement. Thus, our investi-
gation provides good evidence that causality is not violated
throughout the communication process, reinforcing the
fundamental principles of relativistic physics.
Our study shows that quantum network information

theory in general spacetimes is a rich and promising area
of research, shedding light on several aspects of the
interplay between quantum information theory and rela-
tivity. We believe that this work may provide tools to
investigate open problems concerning quantum gravity, in
particular, the fate of the information that has fallen in
(evaporating) black holes. The preservation of causality
observed in our analysis reaffirms the robustness of
fundamental physical principles, even in the realm of
quantum information theory in curved spacetimes. We
hope that following the path we presented here could lead
us to unveil fundamental aspects of physics that should be
present in a full quantum theory of gravity.
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APPENDIX: FULL EXPRESSION FOR THE
QUANTUM BROADCAST CHANNEL MAP

As discussed in Sec. III, each Γαβγδϵζ coefficient defined
in Eq. (45) can be evaluated by using Eqs. (40) and (41)
together with the product relation given by Eq. (46). Then,
we substitute these coefficients in Eq. (42), obtaining
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ρBC ¼ 1

4
ð1þ νB cos½2ΔðfA; fBÞ� þ νC cos½2ΔðfA; fCÞ� cos½2ΔðfB; fCÞ�ÞρBC−∞ þ 1

4
ð1 − νB cos½2ΔðfA; fBÞ�

þ νC cos½2ΔðfA; fCÞ� cos½2ΔðfB; fCÞ�ÞσzBρBC−∞σzB þ 1

4
ð1þ νB cos½2ΔðfA; fBÞ� − νC cos½2ΔðfA; fCÞ�

× cos½2ΔðfB; fCÞ�ÞσzCρBC−∞σzC þ 1

4
ð1 − νB cos½2ΔðfA; fBÞ� − νC cos½2ΔðfA; fCÞ� cos½2ΔðfB; fCÞ�ÞσzB

⊗ σzCρ
BC
−∞σ

z
B ⊗ σzC þ iνB

4
sin½2ΔðfA; fBÞ�hσzAiρA−∞

�
ρBC−∞ þ σzCρ

BC
−∞σ

z
C; σ

z
B

�þ iνC
4

sin½2ΔðfA; fCÞ�

× cos½2ΔðfB; fCÞ�hσzAiρA−∞
�
ρBC−∞ þ σzBρ

BC
−∞σ

z
B; σ

z
C

�þ Λþ
c

8

�
ρBC−∞ − σzBρ

BC
−∞σ

z
B − σzCρ

BC
−∞σ

z
C þ σzB ⊗ σzCρ

BC
−∞σ

z
B ⊗ σzC

�
þ Λ−

c

8

�	
ρBC−∞; σzB ⊗ σzC



− σzBρ

BC
−∞σ

z
C − σzCρ

BC
−∞σ

z
B

�þ iΛþ
s

8
hσzAiρA−∞

�
ρBC−∞ − σzCρ

BC
−∞σ

z
C; σ

z
B

�
þ iΛ−

s

8
hσzAiρA−∞

�
ρBC−∞ − σzBρ

BC
−∞σ

z
B; σ

z
C

�þ iνC
4

cos½2ΔðfA; fCÞ� sin½2ΔðfB; fCÞ�
��
ρBC−∞; σzB ⊗ σzC

�
þ σzBρ

BC
−∞σ

z
C − σzCρ

BC
−∞σ

z
B

�
−
νC
4
sin½2ΔðfA; fCÞ� sin½2ΔðfB; fCÞ�hσzAiρA−∞

	
ρBC−∞ − σzCρ

BC
−∞σ

z
C; σ

z
B



; ðA1Þ

where we have defined the following coefficients:

Λ�
c ≡ νþBC cos ½2ΔðfA; fB þ fCÞ� � ν−BC cos ½2ΔðfA; fB − fCÞ�; ðA2Þ

Λ�
s ≡ νþBC sin ½2ΔðfA; fB þ fCÞ� � ν−BC sin ½2ΔðfA; fB − fCÞ�; ðA3Þ

νj ≡ ωμðW½Eð2fjÞ�Þ; ðA4Þ

ν�BC ≡ ωμðW½Eð2fB � 2fCÞ�Þ: ðA5Þ

As discussed in Sec. III, we are motivated to fix the initial states for Bob’s and Charlie’s qubit as given in Eqs. (52) and
(58). We write these states in terms of their Bloch vectors, i.e.,

ρj−∞ ¼ Ij þ σyj
2

; ðA6Þ

where j ¼ B, C. By substituting Eq. (A6) in Eq. (A1), and by using the standard commutation relations of the Pauli
matrices, we obtain the following expression describing the quantum broadcast channel map:

EðρA−∞Þ ¼
1

16
ð1þ νB cos ½2ΔðfA; fBÞ� þ νC cos ½2ΔðfA; fCÞ� cos ½2ΔðfB; fCÞ�ÞðIB þ σyBÞ ⊗ ðIC þ σyCÞ

þ 1

16
ð1 − νB cos ½2ΔðfA; fBÞ� þ νC cos ½2ΔðfA; fCÞ� cos ½2ΔðfB; fCÞ�ÞðIB − σyBÞ ⊗ ðIC þ σyCÞ

þ 1

16
ð1þ νB cos ½2ΔðfA; fBÞ� − νC cos ½2ΔðfA; fCÞ� cos ½2ΔðfB; fCÞ�ÞðIB þ σyBÞ ⊗ ðIC − σyCÞ

þ 1

16
ð1 − νB cos ½2ΔðfA; fBÞ� − νC cos ½2ΔðfA; fCÞ� cos ½2ΔðfB; fCÞ�ÞðIB − σyBÞ ⊗ ðIC − σyCÞ

−
νB
4
sin ½2ΔðfA; fBÞ�hσzAiρA−∞ðσxB ⊗ ICÞ −

νC
4
sin ½2ΔðfA; fCÞ� cos ½2ΔðfB; fCÞ�hσzAiρA−∞ðIB ⊗ σxCÞ

þ Λþ
c

8
σyB ⊗ σyB −

Λ−
c

8
ðσxB ⊗ σyCÞ −

Λþ
s

8
hσzAiρA−∞ðσxB ⊗ σyCÞ −

Λ−
s

8
hσzAiρA−∞ðσ

y
B ⊗ σxCÞ −

νC
4
cos ½2ΔðfA; fCÞ�

× sin ½2ΔðfB; fCÞ�ðσzB ⊗ σxCÞ −
νC
4
sin ½2ΔðfA; fCÞ� sin ½2ΔðfB; fCÞ�hσzAiρA−∞ðσzB ⊗ σyCÞ: ðA7Þ

By taking partial traces relative to each qubit, one recovers Eqs. (62) and (63).
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