PHYSICAL REVIEW D 109, 065020 (2024)

Relativistic quantum broadcast channel
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We investigate the transmission of classical and quantum information between three observers in a
general globally hyperbolic spacetime using a quantum scalar field as a communication channel. We build a
model for a quantum broadcast channel in which one observer (sender) wishes to transmit (classical and
quantum) information to two other observers (receivers). They possess some localized two-level quantum
system (a qubit) that can interact with the quantum field in order to prepare an input or receive the output
of this channel. The field is supposed to be in an arbitrary quasifree state, the three observers may be in
arbitrary states of motion, and no choice of representation of the field canonical commutation relations is
made. The interaction of the field and qubits is such that it allows us to obtain the map that describes this
channel in a nonperturbative manner. We conclude by analyzing the rates at which information can be
transmitted through this channel and by investigating relativistic causality effects on such rates.
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I. INTRODUCTION

Network information theory is the area of knowledge
that studies classical communication problems involving
multiple parts. Here, the word “classical” stands not only
for the fact that the information being transmitted is classic
(bits) but also for the physical systems in which such
information is encoded, i.e., systems that can be described
by some area of classical physics (such as electromagnet-
ism). One particular case of interest is the broadcast
channel, where typically one sender wishes to transmit
information to multiple receivers (like radio and TV
stations broadcasting their signals, for example).

Nowadays, one of the main goals of quantum informa-
tion theory is to extend several results of information theory
to the quantum world [1,2], investigating any new features
or advantages that can arise when one uses quantum
systems to encode, process, and transmit information.
The quantum network information theory comprises the
studies of communication protocols using quantum sys-
tems to convey classical (bits) or quantum (qubits) infor-
mation. In particular, the classical broadcast channels can
be extended to the so-called quantum broadcast channels,
where one sender transmits classical or quantum input
information to many receivers using a quantum system as a
communication channel with quantum outputs [3-6].

Such communication scenarios are very suitable for
analyzing how relativistic effects can influence one’s ability
to communicate using quantum channels. This could be
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due to the existence of nontrivial spacetime structures such
as black hole event horizons, Cauchy horizons, and causal
horizons arising from the relativistic relative motion
between senders and receivers or even due to the expansion
of spacetime [7].

In order to consistently analyze quantum information
theory in general spacetimes, one should use quantum field
theory in curved spacetimes (QFTCS) [8]. This approach
was used by several authors to analyze the communication
process in relativistic settings, with particular attention
being paid to Minkowski [9-21], Schwarzschild [22-26],
or asymptotically flat cosmological spacetimes [27-29].
However, only recently [30] a communication model valid
in general globally hyperbolic spacetimes and in which the
parts that convey information can move in arbitrary world-
lines and interact with the quantum field (used as commu-
nication channel) only in the vicinity of its worldlines was
developed (and, since then, other works in this context have
emerged as, for instance, Refs. [31,32]). This is interesting
for two reasons; firstly, it allows the analysis of infor-
mation exchange between more general observers, not only
observers following orbits of some Killing field (which
does not even exist in spacetimes lacking timelike sym-
metries). Secondly, the model studied in [30] allows one to
investigate the outputs of the quantum communication in a
nonperturbative manner and thereby is suitable to inves-
tigate both the causality as well as the communication
between parts lying in early and future asymptotic regions
(limits that would invalidate results obtained by perturba-
tive methods).

In the present paper, we generalize the analysis of [30].
This is done by constructing a model for classical-quantum,
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quantum-quantum, and entanglement-assisted quantum-
quantum broadcast channels. We consider an arbitrary
globally hyperbolic spacetime in which one observer
(Alice) wants to convey classical (or quantum) information
to two receivers (Bob and Charlie) using a quantum scalar
field as a communication channel. The three observers will
use two-level quantum systems (qubits) to locally interact
with the quantum field in order to send or receive infor-
mation. The observers may be in arbitrary states of motion,
the interaction between the detectors and the field is similar
to the one given by the Unruh-DeWitt model [33], and
the field may initially be in an arbitrary quasifree state [8].
We suppose, however, that the two levels of each qubit
have the same energy. This model is interesting because
the evolution of the system can be computed exactly, and
therefore we will obtain nonperturbative results for the
communication rates associated with such a broadcast
channel. As we will see, causality in the information
exchange is explicitly manifest in our results.

This work is organized as follows. In Sec. II we will
present the quantization procedure of a free scalar field
on a globally hyperbolic spacetime as well as the class of
states we will be using. In Sec. III we describe the
interaction between the qubits and the field and determine
the quantum map that relates the information Alice wants to
convey to the final joint state of Bob’s and Charlie’s qubits.
In Sec. IV we investigate the rates at which information can
be transmitted using this broadcast channel, as well as the
influence of the spacetime curvature or relative motion of
observers in the communication process. In Sec. V we give
our final remarks. We assume metric signature (— + ++)
and natural units in which ¢ =4 = G = kg =1, unless
stated otherwise.

II. FIELD QUANTIZATION

Let us consider a free, real scalar field ¢ propagating
in an arbitrary four-dimensional globally hyperbolic
spacetime (M, g), where M denotes the four-dimensional
spacetime manifold and g its Lorentzian metric. Let the
spacetime be foliated by Cauchy surfaces X, labeled by the
real parameter . The field is described by the action,

=L Vv ). 1)
M

where e,y = /=@dx" A - -+ A dx? is the spacetime volume
4-form, m is the field mass, £ € R, R is the scalar curvature,
V, is the torsion-free covariant derivative compatible with
the metric g, and g = det(g,,) in some arbitrary coordinate
system {x*}. The extremization of the action (1) gives rise
to the Klein-Gordon equation,

(=VeV, +m? + ER) ¢ = 0. (2)

In the canonical quantization procedure, we promote the
real field ¢ to an operator' that satisfies the “equal-time”
canonical commutation relations (CCR)

[(2,x), ¢, x")]5, = [2(2, %), 2(1,X)]5, = 0, (3)
(2. %), 2(2.x")]5, = i8*(x.x'), (4)

where x = (x!,x%,x%) are spatial coordinates on X, and

z(x) is the conjugate momentum defined as
T=—, (5)

with the notation ¢ = 0,¢. In addition, we may formally
write the canonical Hamiltonian of the field as

Hy(1) = / Px(a(t.x)p(1.x) - LIp.Vof)).  (6)

with
dx =dx' A dx® A dx? (7)
and
1
L1,V = =5 V=G(VubVh + 2+ RP)  (8)

being the Lagrangian density.

To find a representation of the CCR, Egs. (3) and (4), we
define an antisymmetric bilinear map o acting on the space
SC of complex solutions of Eq. (2) as

o(yi.y) = /2 esn®lyo Vo =y V), )

where ey represents the proper-volume 3-form on the
Cauchy surface X, and n“ its future-directed normal unit
vector. It allows us to define the Klein-Gordon product as

(W1, w2) = —io(F1,y2), (10)

and, although this product is not positive-definite on S¢, we
may choose any subspace H C S (the so-called one-
particle Hilbert space) such that: (i) S® ~ H@ﬂz; (ii) the
KG product is positive definite on H, thus making (H, (,))
a Hilbert space’; and (iii) given any ue ™ and veH,
(u,v) = 0. (See [8] for details.) The Hilbert space that
comprises the field states is defined as the symmetric Fock

1Rigorously, an operator-valued distribution.

For the sake of mathematical precision, we note that one must
first suitably Cauchy-complete S¢ for this decomposition to be
valid.

3 After its completion with respect to the norm induced by (, ).
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space §,(H) and the quantum field operator is formally
defined as

¢(1.x) = [u;(t,x)aliiy) + (1, %)a" (u))],

J

(11)

where {u;} comprise an orthonormal basis for H and
a(it)/a’(v) are the usual annihilation/creation operators
associated with the modes u/ v, respectively. They satisfy
the commutation relations

la(it),a’ (v)] = (u. )1,

with I being the identity operator on &, (). The vacuum
state associated with this representation of the CCR is the
normalized vector |0) that satisfies a(i)|0) = O for every
mode u € H.

In order to make it mathematically well-defined, the
quantum field operator must be defined as an operator-
valued distribution. To this end, let S € S be the space of
real solutions of Eq. (2) whose restriction to Cauchy
surfaces have compact support and K: & - H be the
projection operator that takes the positive-norm part of
any yeS. If CP(M) denote the set of all smooth
compactly supported real functions on M, we define the
map E: CP(M) —> S acting on some test function
fecCy(M) as

(12)

Ef(x) = Af(x) - Rf(x). (13)
where Af and Rf are the advanced and retarded solutions
of the Klein-Gordon equation with source f, respectively.
Hence, they satisfy
P(Af) = P(Rf) = . (14)

with P =-VV, +m? + R representing the Klein-
Gordon differential operator.

Now, for each test function f e Cy (M), we define a
smeared quantum field operator by

¢(f) = i[a(KEf) - a"(KEf)], (15)
which satisfies the covariant version of the CCR,
[p(f1): p(f2)] = —iA(f1, f2)I, (16)
where
A= [ enhWER ()
M

for all fy, f, € C¥(M). As shown in [8], Eq. (15) can be
obtained by formally integrating Eq. (11) weighed by the
test function f, i.e.,

¢makwmmn (18)

The above construction has the downside that there are
infinitely many choices of H satisfying properties (i)—
(iii) listed below Eq. (10) and their respective Fock spaces
are, in general, unitarily inequivalent. As discussed in [30],
this issue can be avoided through the algebraic approach
to quantum field theory (QFT). For more details, see
Refs. [8,34].

In this work, we will focus on a particular class of states;
the quasifree states is defined as follows. Given a real inner
product y: S x § — R satisfying,

lo(@1.92) P < 4u(@1. @1)u(@2. 92). (19)
for all ¢, ¢, €S, we define a quasifree state ), associated
with u by the relation

w0, [W(Ef)] = eHEFENL2, (20)
for all fe€CP(M), where the so-called Weyl operators
W(Ef) are defined by

W(Ef) =),  feCP(M). (21)
The vacuum, n-particle, and thermal states are examples of
quasifree states.

III. THE QUANTUM BROADCAST CHANNEL

A typical broadcast communication scenario involves the
transmission of information between one station (sender)
and several receivers who will decode the information
independently. Let us consider a model in which one
observer, Alice, wants to transmit separate information
to two other observers, Bob and Charlie, using the quantum
field ¢ as a broadcast channel. Suppose that the field
is initially in some quasifree state wﬂ.4 Suppose also that the
three observers follow arbitrary trajectories in the curved
spacetime and that each one of them possesses a two-level
quantum system that may interact with the quantum field at
their will. The two-dimensional Hilbert spaces associated
with Alice’s, Bob’s, and Charlie’s qubits are denoted by
Ha, Hp, and H, respectively.

The communication setup, illustrated by Fig. 1, is as
follows. In order to transmit information to Bob and
Charlie, Alice prepares her qubit in some initial quantum
state p4, and switches on its interaction with the field for a
finite time interval Az, (measured by the parameter ¢). To
measure the information imprinted by Alice on the field’s

“We note, however, that the results from this section apply
to any algebraic state @ which satisfies w[W(Ef)]€R™ for all
fEeCEM).
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FIG. 1. The figure depicts the quantum broadcast protocol
being used. The dashed lines display the worldlines of the sender,
Alice (A, Red), and receivers, Bob and Charlie (B and C, blue).
The solid lines in each worldline depict the interaction interval of
each observer’s qubit with the quantum field. Here, X, and X,
represent two Cauchy surfaces of the spacetime.

state, Bob and Charlie initially prepare their qubits in
suitable states pZ . and p€,, and then they switch on each of
their qubit interaction with the field for finite time intervals
Atg and At, respectively. For the sake of simplicity, we
will consider here the case where:
(QB1) Bob lets his qubit interact with the field only after
Alice finishes her transmission.
(QB2) Charlie lets his qubit interact with the field only
after Bob finishes his measurement process.
Such communication setup is implemented by means of
the Hamiltonian
H(1) = Hy (1) + Hin (1), (22)
where H  is the field Hamiltonian in Eq. (6) and Hjy is the
Hamiltonian that describes the interaction between each
qubit and the field which, in the interaction picture, is
given by

i) = e ) [ exvmm e oo (23)

where j€{A, B,C}, with A, B, and C labeling Alice’s,
Bob’s, and Charlie’s qubit, respectively. Here, o7 is one of
the Pauli matrices {o% o}, ],0} associated w1th qubit j;
(1, x) is a smooth real function satisfying y [z € C3°(Z,)
for all ¢, which models the finite range of interaction
between qubit j and the field (i.e., the interaction occurs
only at some vicinity of each qubit worldline); and €;(¢) is a
smooth and compactly-supported real coupling function
modeling the finite-time coupling of qubit j with the field.
Each coupling function has support

suppe; = [T%, Tﬂ, (24)

where Tj. and Tf represent the time (with respect to the
parameter 7) in which each qubit interaction with the field
is switched on and off, respectively. Here, we denote

At; =T} — Ti. Thus, the hypotheses (QBI) and (QB2)
prev10usly hsted can be summarized as

TL>Th>Ty>T) (25)

The interaction between each qubit and the field given by
Eq. (23) is very similar to the Unruh-DeWitt model [33].
However, we assumed that the two levels of each qubit have
the same (zero) energy. As we shall see, this assumption
allows us to calculate the evolution operator of the system
and trace out the field degrees of freedom in a non-
perturbative manner, thus making this model interesting to
investigate both the causality in the information exchange
process as well as the communication between parts lying
in early and future asymptotic spacetime regions. We note
that one could also have given an energy gap 2 §; for
each qubit j in z-direction by adding H; = 6,07 to the total
Hamiltonian in Eq. (22) and still keep the model exactly
solvable. This would change it to

H=H,+Hy+ Hg+ Hc + Hiy, (26)

but would keep the interaction Hamiltonian in the inter-
action picture, Eq. (23), unchanged. Hence, all the results
we describe in the following would remain the same.

The interaction-picture time-evolution operator at late
times, associated with the foliation %,, can be written as the
time-ordered expression,

U=Texp

S [Camo] e

It can be computed nonperturbatively by using the Magnus
expansion [35],

U =exp ZQn , (28)
n=1
where
@ =i [~ artil, o), (29)

Hi, ()], (30)

:__/ dt/ dt L
/ dr / ar / " { [Hb (). [Hb (#), HE ()]

o [H (). [H(0). H}m< >]]}, (31)
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and so on. By using Egs. (18), (23), and (29), we get

Q) =-iy ¢(f;) ® o, (32)
J
where we have defined
fi(t.x) = ¢€;()y;(1.x). (33)

Now, by making use of Egs. (18) and (23) together with
Egs. (16), (25), and (30) we can cast €, as

— i z z i z z
QZ = l':‘I_EA<fAva)6A ® Op _EA(fA’fC)GA ® o¢c

A(f5.fc)op ® ot (34)

where E is the c-number

1 oo t
EEEZ/_ dtej(t)/ die;(1)A;(t. 1),
Jj (o] —Q0

with

Aj(t,t/)z/z d3x,/—g[E dx'\/ =gy (1. x)A(x, x')
xyri(t,x'),

and we recall that [¢(x), p(x')] = —iA(x,x')] is the un-
smeared version of Eq. (16). Finally, since [H! (1), H ()]
is proportional to the identity, we get

Q, =0 fork>3. (35)
Using the Zassenhaus formula
eATB — pAeBemalA Bl (36)

( cceeece J’_r‘sccccs) I—BC
+ ( cssssc + Fssrsss)aB ® 0 BC GB ® GC
[ Fcrsccc + Fssrccs)p—

[ cesees

(r
(r

+ +

cssses

scsccc)<6A>pé ,OBEOJZC —+ HC] +

sssscc)<GA> A O%pBC O-B ® O-C +H.c. ]

valid whenever [A, B] is a proportional to the identity,
together with Egs. (28), (32), (34), and (35) we obtain the
following unitary evolution operator:
U = ¢iEe=ih(fc)®0¢ p=ith(f5)®0% p—ith(f4)®0 (37)
Now that we have the exact evolution operator U, we can
use it to evolve the initial state of the 3 qubit + field system
and then trace out the field and Alice’s qubit degrees of
freedom. This procedure allows us to obtain the final state
of Bob’s and Charlie’s qubits after the communication
protocol has ended. This is the state that they will measure
to recover the information that Alice has sent. Explicitly,
the final Bob + Charlie state is given by
pEC =try 4 (Uple ® pPes ® pCo ® p,UT).  (38)
where pj;oo and p,, are the initial states of qubit j and the
field, respectively.

To compute the trace in Eq. (38), let us cast the operators
in Eq. (37) as

e I8 = cos [ (f;)] - isin[p(f;)] ® % (39)
where

cos [(F)] = 5 W(EF,) + W(-Ef)]  (40)
and

sin [p(F))] = = [W(EF,) - W(=Ef,)],  (41)

2i

where W(EY) is defined in Eq. (21). By plugging Egs. (37)
and (39) into Eq. (38) and then taking the partial traces on ¢
and A, a direct calculation yields,

+ (Ceseese + Usseess)052%0% + (Cecssee + Usesses)0ep2%0¢

[(Tecsese + Tsesess)05p 5% 0% + Hee.]

% ® o6+ He.| + [(Teseces = Dsseeee) (040 0 _pBS0o% + Hee |

[(Cessess = Dassese) (05) 1, 0505 0% ® o7 + Hec!]

where H.c. stands for Hermitian conjugation, and we have defined

pES =p

<0-f\ >p*ﬁm

and

(42)
o ® Pl (43)
= tr(03pls). (44)
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Faﬂyﬁeé’ =wy (Fu[(ﬁ(fA)]fﬂ[qﬁ(fB)}fy[¢(fC)]
X f(s[¢(fc)]fe[¢(f3)]~7:5[¢(fA)D» (45)

with a,f,7,6,¢,{ €{c,s}, F.(x)=cosx, and F(x)=
sin x. We note that we have written the algebraic field state
w, as a density matrix with trlp,W(Ef)] = w,[W(Ef)].
Furthermore, we have used the fact that the expected value
of odd functions of the field operator vanishes since we are
assuming that @, is a quasifree state (a consequence of
Wick’s theorem).

Now, each I'y3,5, in Eq. (42) can be evaluated by
substituting Egs. (40) and (41) in Eq. (45) and then using
the identity,

PA

W(Ef)W(Ef,) = e* U RDIWIE(f) + f5)].  (46)

for all f,f,f,eCy (M), to simplify the product of
the Weyl operators. By substituting these coefficients in
Eq. (42) one finds the explicit form of the state p?C, which
is given in Eq. (Al) of the Appendix. The expression in
Eq. (A1) allows one to write the final joint state for Bob’s
and Charlie’s qubits given any initial state configuration for
the three qubits + field.

To define a quantum broadcast channel, we must choose
suitable initial states for Bob and Charlie qubits in order to
obtain a quantum map relating the initial state of Alice’s
qubit p2 ., (which encodes the messages) to the final states
that will be probed by them (to decode the messages). Since
Bob only performs measurements in his own two-level
system, we calculate the expression for the reduced state of
his qubit, i.e.,

pP? =tc(pPC). (47)

Taking the trace in Eq. (A1) relative to Charlie’s degrees of
freedom, we obtain

. %(HUBcos[zA(fA,fB)])
N % (1 = vpcos 2A(f4, 5)])05p w0
+ éuB sin [2A(f4. f5)/(0%) ., [P2- 0B). (48)
where

[EQ2fp)]) = e+ KEMKER) - (49)
with p be the inner product associated with the field
quasifree state @, as in Eq. (20). Note that it is the last
term in Eq. (48) that contains the information encoded by
Alice, and thus it will be useless for Bob to choose the
eigenstates |0) z and | 1)z of 6% as his initial state pZ_, since
this term would vanish. Furthermore, since 6% commutes

vg =, (W

with the interaction Hamiltonian, he won’t recover any
information either if he performs projective measurements
on this basis. To choose a suitable state p® ., that maximizes
the chances of success in their communication, suppose for
simplicity that Alice encodes a pair of messages in states
Ay and pA _ which will be decoded by Bob using a set
of projective measurements in the x-direction,

{F8 = +)pp(+]. FE = |-)ps(-I}. (50)

where o}|+); = £|£),. From Eq. (48), we conclude that
the probability that Bob measures / = 4 given that Alice
has encoded the message k = =+ in p?_, is

(14 lvgAy), (51)

l\)l'—‘

p(llk) = tr(Fl pk)
where

A= Zm{ﬁB(COS[ZAOCAv f5)]
- i<fo>,/jmk Sin[zA(anfB)])}

and fz = p(0|pB,|1)z. From these two equations, we
see that it is the second term A; that contains the
information encoded by Alice on her qubit state, and thus
we are motivated to choose a state pZ that makes 35 a pure
imaginary number, which will make the first term of A;
vanish while maximizing the amplitude of the second term.
This motivates us to choose

(52)

Péoo = ‘y+>BB<

where

Y+l = 7 (1005 +il1)5) (53)

is an eigenstate of ¢} (in this case, fz = —i/2). With this
choice, we can write Eq. (51) as

(1- ZVB<6,Z4>p’3°°k Sin2A(fa. f5)]).  (54)

N[ =

p(llk) =

Now we turn our attention to Charlie. The final reduced
state for his qubit is

p© =trp(p®C). (55)

Taking the trace in Eq. (A1) relative to Bob’s degrees of
freedom and using Eq. (52) we obtain

065020-6
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o = 5 (1 -+ e cos RA(f 4, )] os RA( . fe) s
451 = cos 2A(f . fo)) cos [2A(F. o))
X 0pCatte + v sin RA(f . f)] s RA (i £)]
X (0 [P 2] (56)
where
e = 0, (WIEQRfQ)]) = e MREIeRER)  (57)

To obtain Eq. (56), we explicitly used the choice in Eq. (52),
which implies that (%) 5 = tr(6jpE,) = 0. By a com-
pletely similar reasoning as the one used to choose Bob’s
initial state, we are motivated to choose Charlie’s initial
qubit state as

pgoo = |y+>Cc<y+ ) (58)

where o[y, )c = [yi)c-
Now, the quantum broadcast channel is completely

characterized by a linear, completely positive and trace-
preserving (CPTP) quantum map € which takes p, into a
final state p2¢, i.e.,

pPC = E(pls).

By substituting the initial states of Bob’s and Charlie’s
qubits given in Egs. (52) and (58) into Eq. (A1), we find the
explicit expression for the quantum broadcast channel €.
For the sake of clarity, due to its lengthy expression, we
write its explicit form in Eq. (A7) of the Appendix.

For later use, we will denote the reduced channels
Egi A> B, Ec: A— Cby

58 (péoo) = trC[g(péoo)]’

5C(péoo) =g [g(pém)]’

respectively. It then follows from Egs. (A7), (60), and (61)
that they can be explicitly written as

(59)

(60)

(61)

1 v
Ea(ple) =3 1n 5 e AU fallh

- %B sin 2A(f . fB)[(05) 0 05 (62)

and

Ec(ps) = %Ic + %COS 2A(fa, fc)l cos 2A(f, fc)log

_ %CSin 2A(f4. fe) cos 2A(fp. fo)l

X <GZA>p/ﬁ00 O-)é'

(63)

Given an initial state p2, prepared by Alice on her qubit,
these expressions for £z and &£, determine the final local
states of Bob’s and Charlie’s qubit, respectively.

IV. ACHIEVABLE COMMUNICATION RATES

Now that we have constructed a model for a relativistic
quantum broadcast channel, we can investigate at which
rates classical and quantum information can be reliably
transmitted by Alice to Bob and Charlie. We first review a
few protocols for quantum broadcast communication pub-
lished in the literature and then we investigate the achiev-
able rates for our quantum broadcast channel £ defined
in Eq. (59).

A. Unassisted classical communication

Let us begin with the investigation of unassisted trans-
mission of classical information. We follow the protocol
presented in [3], where more details can be found. We
evaluate achievable rates for our model and then we discuss
how causality is explicitly manifest in our results.

Suppose Alice wishes to transmit a common message
m € M intended for both receivers while sending additional
personal messages mp €My and mc € M intended for
Bob and Charlie, respectively. Each message is chosen
from one of the following sets,

M=A{1,..., M|}, M;={1,....|M;|}, (64)
with j€{B,C} and |M| denoting the cardinality of M.
Since the broadcast channel £ is noisy, Alice needs to do a
suitable block coding on the possible messages and then
make n independent uses of the channel in order to be able
to reliably convey the information. More precisely, Alice
maps each message triple (mp, m,mc) to a codeword
x"(mg, m, m¢) which is then associated with a quantum

state pfn”( defined in the space H$". Then, she

mpy.m.mc)

transmits p?,;'( by making n independent uses of the

mpg.m,mc)

channel €. The output of the channel is the state

Bncn — oQ@n An
px"(’"m’”-’"c) =< (px"(m;;,m,mc)> (65)

defined on H?" ® H?”. To decode the message, Bob
chooses a positive-operator valued measure (POVM)
{F .|(mg.m) € Mg x M} which acts on the system B,.
Similarly, Charlie chooses a POVM {GS.|(m.m¢) €
M x M} which acts on the system C,. We say that an
error has occurred when at least one message is incorrectly

decoded. Hence, the error probability associated with the
transmission of the triple (mg, m, m¢) is

pe(mg,m,me) =1 — tr[(FE,”B,m ® Gg{.’mc),DB"C” }

x"(mg.m.mc)
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The transmission rates associated with each message are
defined as

SI'—‘

1
Rzzlog2|M|, R; =—log,|M||. (66)
These rates essentially measure how many bits of classical
information are sent per channel use. If, given an € > 0, the
average probability of error p, is bounded by ¢, i.e.,

_ 1
Pe =1 Tar1a7 1 Z pe<mB’m7mC)S€’ (67)

|MB| |M| |MC| mg.m,me

the classical-quantum broadcast channel coding protocol
described above is said to be a (n, Rg, R, R¢, €) code. We
say that a rate triple (Rg, R, R¢) is achievable if given e,
6 > 0 there exists a (n,Rz —6,R — 8, Rc — 8, €) code for
sufficiently large n. Hence, saying that a rate triple is
achievable means that classical information can be reliably
transmitted at rates arbitrarily close to them.

The achievable rates depend highly on the coding and
decoding techniques chosen by the sender and receivers.
The best known achievable rate region for general broad-
cast channels is attained through the so-called Marton
coding scheme. Following [3], we investigate here the
quantum version of this protocol.

Suppose for simplicity that no common message is
meant to be sent, i.e., let us consider a (R, 0, R¢) quantum
broadcast channel. In this scenario, one strategy they can
use is the Marton coding scheme, where one chooses two
correlated random variables U and V, with joint probability
distribution denoted by p and reduced probability distri-
butions denoted by p; and py. Such a pair of random
variables is usually referred to as binning variables. Then,
for each mp € Mg and m € M -, one generates codewords
u"(mg) and v"(m¢) according to the reduced probability
distributions py(u) and py(v). Next, the codewords are
mixed together into a single codeword x"(mg, m¢) accord-
ing to a deterministic function x = f(u,v). With this
approach, it follows that a rate pair (Rg, R¢) is achievable
if it satisfies [3]

0 <Ry <I(U;B),, (68)
0<Rc<I(V;C), (69)
Rz +Rc <I(U;B),+1(V;C),—1(U,V),, (70)
where
I(X;Y), =8(X),+S(Y), - S(XY), (71)
, with

is the mutual information of a state p*¥

S(a), = —tr(p*log p“).

a = X, Y, being the von Neumann entropy of p%, a = X, Y.
Here, pX = tryp*Y and pY = tryp*?. The states o in
Egs. (68)—(70) are obtained by suitably (partially) tracing
out the degrees of freedom of the density matrix

UVBC_§ pbtl)

u,v

Wl! @ ) (o]’ ®E(Y ). (72)

with p(u, v) being the joint probability distribution of the
random variables U and V.

We begin our analysis by deriving bounds for the
achievable rates through the Marton coding scheme applied
to our relativistic quantum broadcast channel. To evaluate
Eq. (68), we take partial traces relative to V and C in
Eq. (72), obtaining

o =3 pulwlw) (! @t (73)

where we have written p(u, v) = pyy(v|u) py(u), whereas

C()g = ZPV\U(Uh’t)gB (p?(u,v))' (74)

A state like 6V in Eq. (73) is called a classical-quantum
state. For this class of states, a straightforward calculation
shows that [2]

1U:B), - s{Zpau)wﬂ ~ S powSlt]. (75)

In order to compute w? and its von Neumann entropy, let
us decompose the initial state of Alice’s qubit in terms of
Bloch vectors, i.e.,

A

pf(u,z) (IA + Cf(uw) ) (76)

l\.)l>—

where ¥/, ) = (Xf(u0) V() Zf(u))» 1a 18 the identity in

HA9 ) = (0-)/(&’ GZ\v 6,Z4)? and ||rf(u,v)||2 = szf(,,u)) + y}(w/,)%—

Z?‘(u-v) < 1. From Egs. (62), (74), and (76) we get
: 1
Wy = EIB + 7005 [2A(fa. f5)]oB
_vp . .
— 2y EB s [ZA(fA’fB)]GB’ (77)

where Z, =), pyju(v|u)zp(..). and thus we can further
write

@ _Zpy I—IB'F?COS[ZA(anfB)] B
- ngsin RA(fa.fp)loy.  (78)

where =5, , p(u, U)Zf(u.v)'
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Now, by using standard diagonalization, we find that w?
has eigenvalues p? and 1 — p5, where

B
Pu

4 1/73 \/Z%Sil’lz[ZA(fA’fB)] + cos?[2A(f 4, £5)]
(79)

1
2

whereas @® has eigenvalues p? and 1 — p®, with

1 v .
PP=5+ 73 \/zzsm2[2A(fA,fB)} + cos?[2A(fa. f)]-
(80)
Therefore, we can now write Eq. (75) as
I(U;B), = H(p Zpu (81)
where H(x) = —xlog,x — (1 — x)log,(1 —x), x€][0,1].
Following similar steps, we can show that
(V C ZPV pv (82)
where
C 1 Ve
Py =5+ = |cos 2A(f3. fc)]l
2 2
X \/ZSICRA(f. fO)] + oS RA(fy. )] (83)
with z, = >, pU|V(u|1))zf(M>, and
PC =5+ 2 eos [2A(F, £l
x \/Zzsinz[ZA( Faifo)l +cos?RA(fa fO)l. (84)

Now, let us note that H(x) is a monotonically decreasing
function when x > 1/2. From Egs. (79) and (80), we have

1
B<_4 2 85
PiS5+5 (85)
and
B 1 Up

PP 25+ 2cos Ay Sl (86)

and thus it follows that

1 v

H(pB)y>H(-+2 87

and

1 v
H?) < (547 1eos DALl ) (85)
As a result, from Eq. (81), we conclude that
I(U:B), <C(Ep).

where

C(€p) = HGJ?B | cos [2A(fA,fB)]|> —H<%+%B>

is the classical capacity of the reduced channel £, given in
Eq. (62), as shown in [30]. We note that the upper bound in
Eq. (89) can be attained if we choose random variables
U,V ={0,1} with p(u,v) = 1/4 for all u, v, associated
with Bloch vectors r (g o) =T7(0.1) = (0,0, +1) and r(; o) =

r11) = (0,0,—1). By using such choices together with
Eq. (68) we conclude that Alice can reliably convey classi-
cal information to Bob at rates arbitrarily close to C(Ep).

Similarly, we can show from Eqgs. (82)—(84) that

1(V;C), <C(Ec), ©n

where

C(éc) = H (5 +°F cos AU foll os(28(7u S )

- {5+ 5 oos 2 ] ). 92)

is the classical capacity of the reduced channel £, given
in Eq. (63). The upper bound can be attained, e.g.,
if we choose random variables U,V = {0,1} with
p(u,v) = 1/4 for all u, v, associated with Bloch vectors
rf(o())—rflo (00 +1) and rf(()l)—l‘fll (OO )
Hence, from Eq. (69), we conclude that Alice can reliably
convey classical information to Charlie as well at rates
arbitrarily close to C(E¢).

It is important to highlight that causality is explicitly
manifest on the bounds of the achievable rates. First, we
note that the achievable rates R between Alice and Bob are
bounded by C(Ep), which does not depend on the inter-
action between Charlie’s qubit and the quantum field. This
should indeed be the case as, from hypothesis (QOB2) in
Sec. III, Charlie cannot influence the communication
between Alice and Bob since he does not perform any
actions before Bob finishes his measurement process.
Furthermore, the presence of the commutator A(fg, f¢)
in Eq. (92) indicates that when Bob and Charlie let
their qubits interact with the quantum field in causally
connected regions of the spacetime, noise from Bob’s
actions can influence on the rate R- of communication
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between Alice and Charlie. Additionally, we note that
whenever A(f4, f;) = 0, we have

C(&) =0 (93)

for j = B, C. Hence, when Alice and Bob (or Charlie)
interact with the field in causally disconnected regions of
the spacetime, the achievable rate in Eq. (68) [or Eq. (69)]
will reduce to Rz =0 (or R = 0).

To this day, no one has been able to prove that the
Marton rate region given by Egs. (68)—(70) is optimal for
general broadcast channels, not even in the classical case.
However, it is generally conjectured that the Marton rate
region indeed represents the full capacity region of general
broadcast channels. If this is the case, then our analysis
shows that causality will not be violated when transmit-
ting classical information, no matter which communication
protocol is chosen.

B. Unassisted and entanglement-assisted
quantum communication

Let us now turn our attention to the communication of
quantum information. Following [5], we present a father
protocol for entanglement-assisted quantum communica-
tion through quantum broadcast channels that can be used
to investigate at which rates Alice can send classical or
quantum information to Bob and Charlie when they share
an unlimited supply of entanglement. This protocol can
also be adapted to investigate communication rates for
quantum information transmission with no prior shared
entanglement. After reviewing the father protocol, we
investigate both quantum communication scenarios applied
to our model of quantum broadcast channel constructed
in Sec. III.

Let us suppose that Alice has access to two quantum
systems T4 and T4 while Bob and Charlie possess similar
quantum systems T and T, respectively. All systems
possesses the same dimension dy, = dimHy,. Suppose
further that Alice shares maximally entangled states with
both Bob and Charlie,

| ]

V dTA =0

where the above state is defined on Hy, ® Hy,, with
k=B, C and {]i),} is an orthonormal set of vectors on
HTG,’ a :A, B, C.

In order to study the transmission of quantum informa-
tion, we first note that whenever Alice is able to transmit the
entanglement she shares with some reference system to
each receiver, she will be able to send arbitrary quantum
states to each of them. Hence, suppose that Alice possesses
two quantum systems A; and A, respectively entangled
with reference systems R; and R, and that these systems are

TaTyy —
|FaTk)

)7, ® li)z,. (94)

in states |®4%/) defined on H,, ® H, for j = 1, 2.7 Her
goal is to send her share of |®*1%1) and |®*2%2) to Bob and
Charlie, respectively.

The initial global state of the system is

o) = |@AF) @A) [TaTs) [T Te) (95)

and we will denote p, = [p)(¢p|. In order to use the
quantum channel £ to share her entanglement with R;
and R, to Bob and Charlie (and hence, convey quantum
information), Alice uses a CPTP map C: H,, ® Ha, ®

Hr, ® Hy, — Hz" in order to encode her shares of the

quantum systems (74, T4, A, and A,), into a state of n
qubits. The global state then reads,

pARIRTATC = (C Q IR'RzTBTC)(P(,,)’ (96)

where IR1R2TsTc jg the identity operator of the joint system
R|R,TyT. Next, by making n independent uses of the
channel &, Alice sends her total encoded state to Bob and
Charlie, which results in the global state

B CRIRTaTe — (g®n ® IRiR:TsTc) (ﬁA,,RIRJETc), (97)

Bob and Charlie decode their share of the global state
by using the CPTP maps Dp: H§" ® Hr, - Hp and
Dc: HE" @ Hy, — Hc, respectively. Hence, the final
global state is

é’B’C’Rle = (DC ® Dy ® IRle) (a)B”C,,RleTBTc)_ (98)

We define the entanglement-assisted quantum commu-
nication rates as

- 1 - 1
Op =—logyd,,, Qc =—logyd,,, (99)
n n

where d A = dim HAj and j = 1, 2. These rates of quantum
communication measure how many qubits are being sent
per channel use.

The communication process will be good if given a small
€ > 0 we have

||CB’C’R1R2 _ng’RleHl <e, (100)

where
10, = tu(VO0) (101)
is the trace norm of an operator O. Here, ng/R'RZ is the

analogous of the initial state in the composite system

>As a result, the quantum state being transmitted by Alice to
the receiver j, j = B, C, is p" = trg [@4%) (@Y.
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B'C'R|R,, i.e., given the initial state in Alice’s laboratory

PR = @ (@R @ @) @R (102)
we define
pg/C/RlRa = (Z'A]—»B ® IAZ_’C/) (pA 142R, RZ), (103)

where 74178 (or Z42~C") is the identity map between the
quantum systems A, (or A,) and B’ (or C').

The communication protocol described here is named as
a(n,Qp. Oc, €) code if it satisfies Eq. (100) for every input
state pé‘AzR‘Rz. Again, we say that a rate pair (Qg, Q) is
achievable if given any ¢, § > 0 there exists a (n, Qp — 6,
Qc — 8. €) code for sufficiently large n.

Now, given a general broadcast channel £: A — BC
and an arbitrary mixed state p*4142 defined on H, ®
Ha, ® Hy,, it can be shown [5] that a entanglement-
assisted quantum rate pair (Qg, Q) is achievable if

050y <3 1(413B),. (104)
05 0c <5145 0), (105)
05+ 0c <3 [1(AB), +1(4:C), ~ 1(A1342),]. (106)

where the mutual information quantities are evaluated
relative to the state
5A1ABC — (5 ® 1A1A2) (pAA,Az). (107)
In addition to entanglement-assisted quantum commu-
nication, the father protocol presented here can be adapted
to obtain achievable rates for unassisted quantum commu-
nication. To this end, we simply ignore the existence of the
quantum systems 74, T/, T, and T and follow the exact
same procedure. As shown in [5], given an arbitrary mixed
state p**142 defined on Hy ® Hy, ® Hy,, it follows that
the following unassisted quantum rate region is achievable:
0<Qp<IA

1B, (108)

0< 0c < 1(45)C),. (109)
where o is given by Eq. (107) and
1(A)B), = S(B), = S(AB),

is the quantum coherent information between systems A
and B.

Now, let us return to the relativistic quantum broadcast
channel constructed in Sec. III. To analyze if Alice can send

entanglement (and, as a result, an arbitrary state p*) to Bob
through the broadcast channel, let us note that we may
purify the mixed state p#4142 by adding an environment
system E such that

Ay — rp ([yANiAaE) (

W AAAE|),

7 (110)

p

where [yA44:E) e H, @ Hy, ® Ha, ® Hp is a pure state.
Let us decompose it as

SR ) )

a=0 a;=0 a,=0 e=0

d—1
Caa]aze|a ‘al Ay |a2>A2| >E

(111)

where [a)4, |ai)4,, and |a,),, are eigenstates of 0%, o7 ,
and o7, respectively. Furthermore, {|e)} is some ortho-

normal basis for Hy, with d = dim H being as large as
needed, and

11 1 d-l
YD leananl? = (112)
a=0 a;=0 a,=0 e=0
By defining
11 d-l
|Ca AAE = Z Z Caa,aye al Ay ‘a2>A2| >E (113)
a;=0a,=0 e=0
and
CI:;AZ = trE(|Ca>A1A2EA1AzE<Ca' )’ (114)
we can write Eq. (110) as
A“Z-ZZC*““@Ia aald]. (115)

a=0 a'=0

By using Eq. (115) in Eq. (107) and taking the partial trace
over C and A,, we obtain

Z a ® Ep(|a)spfa

= try,(a 4:72) and we have used the fact that

); (117)

which can be proven by a direct calculation using Eq. (62).
We now define the density matrices

), (116)

where C wa

Ep(la)aald]) = S,aEp(la)sqla

&% = 53(|‘1>AA<0

), (118)
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and

7' = ||all2ak, (119)

with [|£, || = tr(£52). This allows us to rewrite Eq. (116) as

i
=D ldPea © &k (120)
a=0
and we note that tr(&2) = tr(z3') = 1 and
1 d-1
Z Ial> = Z Z Z > NP =1 (121)
a=0 a;=0 a,=0 e=0

Hence, we have shown that 612 is a separable state, which
implies that the reduced channel from Alice to Bob lies in
the class of the entanglement-breaking channels. As shown
in [36], the coherent information is nonpositive for sepa-
rable states like o415, i.e

1(A,)B), <0.

. (122)
Following similar steps, one can also show that
1(A;)C), < 0. As a result, the unassisted achievable rate
region given by Eqs. (108) and (109) reduces to

Qp=0c=0 (123)
We do not know, to this day, if the region defined by
Egs. (108) and (109) characterizes the full capacity region
for general quantum broadcast channels. If this is the case,
our analysis implies that Alice cannot send qubits to the
receivers without prior shared entanglement. Since the
reduced channels £z and £ are entanglement breaking,
Alice cannot transmit the needed entanglement to establish
quantum communication by using only the quantum
broadcast channel £.

On the other hand, we can investigate if this limitation
changes when the three observers perform an entanglement-
assisted quantum communication protocol like the one in the
beginning of this section. In this scenario, we recall that
Eqgs. (104)—(106) give an achievable (entanglement-assisted)
quantum rate region that we shall analyze now.

First, we show that Alice can indeed send quantum
information to Bob when they initially share entanglement
as follows. We choose the initial input state to be

AALA,

P = (@A) (@AM @ ph, (124)

where p% is arbitrary and |®*1) is the maximally
entangled state

(125)

I
=55
a=0

For this particular state, Eq. (120) can be written as

(] ® &3, (126)

which is a cg-state as the one in Eq. (73). Following the
same steps that led to Eq. (81), one can show that
1(Ay;B), = C(Ep). (127)

where C(Ep) is defined in Eq. (90). On the other hand, for
this particular input state, we get

G
No l=C A,
ot ;2@1 ® p, (128)
.
ot =1 S la)a, <a|1 ® pt (129)
L a=0

where &S = E¢(|a),,(al). Since we get these product
states, it follows that
In view of Egs. (104)—(106), we conclude that Alice will

be able to convey quantum information to Bob at a rate
arbitrarily close to

Oy =C(Ep)/2

when they initially share unlimited amounts of entangle-
ment, provided that they let their qubits interact with the
field in causally connected regions of the spacetime. Note
that this is in contrast with the unassisted case previously
discussed. On the other hand, this particular achievable rate
region derived here implies that O~ = 0 in view of Eq. (130).
Similarly, by switching A; by A, in Eq. (124), one can
show that Alice will be able to transmit quantum states to
Charlie (but not to Bob) at a rate arbitrarily close to

Oc =C(Ec)/2

when they communicate assisted by shared entanglement.

Furthermore, initial tripartite entangled states p*4142 will,
in general, lead to simultaneously nonvanishing rate pairs
provided that sender and receivers interact with the field in
causally connected regions of spacetime. For example, by
choosing the initial input state to be a pure maximally
entangled GHZ state,

(131)

(132)

P = (GHZ)

(133)
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where

1 1
IGHZ>E;§g;thauJ@M, (134)

one can show by a similar direct calculation that the
following entanglement-assisted quantum rate region is
achievable:

05 < 5C(Es). (135)
Oc <5C(E0) (136)
05 +0c <5 [C(E) +CE) =1 (137)

In [37], the authors investigate the classical channel
capacity C(Ep) of the reduced channel £z from Alice to
Bob for the case where both observers follow inertial or
accelerated worldlines on Minkowski spacetime. In some
scenarios, the authors show that one can tune the param-
eters of the channel to achievable capacities close to 1.
Considering that C(E-) has a similar expression, if we
consider the case where A(fg, fc) ~0, we can argue in
favor of also tune the channel parameters to make C(E()
close to 1. Under these assumptions, Eqgs. (135)—(137)
imply that Alice would be able to simultaneously transmit
quantum information to Bob and Charlie when assisted by
prior entanglement. Hence, the relativistic quantum broad-
cast constructed in Sec. III seems to impose no limitation to
simultaneous entanglement-assisted communication from
Alice to both receivers.

V. CONCLUSIONS

In this paper, we have built a relativistic quantum
broadcast channel by using a bosonic quantum field in a
general globally hyperbolic spacetime. In this context, we
have explored relativistic effects on the communication of
classical and quantum information in a covariant manner,
where the parts conveying the information are moving in
arbitrary states of motion with the field being in an arbitrary
(quasifree) state.

To construct the quantum broadcast channel, we have
considered that Alice (the sender) prepares some input state
pA. for her qubit and switches on its interaction with the
field for a finite time. After that, Bob (the first receiver) lets
his qubit interact with the field for a finite time interval,
thus obtaining a final state possibly containing information
encoded by Alice. Similarly, after Bob finishes his meas-
urement, Charlie performs an interaction between his
qubit and the quantum field to try to recover information
imprinted by Alice in the field state. We were able to trace
the field degrees of freedom nonperturbatively and showed

that suitable initial states for Bob’s and Charlie’s qubits can
be chosen in order to maximize the signaling between Alice
and the receivers. This procedure defines a fully relativistic
quantum broadcast channel &.

With this channel, we were able to investigate at which
rates Alice can reliably convey classical and quantum
information to Bob and Charlie. By considering first a
scenario where the three observers do not share prior
entanglement, we found that Alice can reliably convey
classical information to both Bob and Charlie and at which
rates she can perform this task. However, we have shown
that the broadcast channel presented here breaks entangle-
ment and thus, Alice cannot convey quantum information
to Bob and Charlie following an unassisted strategy.
Nevertheless, we have shown that this situation changes
when they perform entanglement-assisted quantum com-
munication. In this scenario, we were able to find achiev-
able rates that Alice can achieve when sending qubits to the
receivers provided that they initially share entangled states.

We were also able to show that all rates that were
analyzed here vanish when the interactions between qubits
and field occur in causally disconnected regions, an effect
that is manifest in all expressions bounding the classical
and quantum rates of communication even with the use of
quantum resources like entanglement. Thus, our investi-
gation provides good evidence that causality is not violated
throughout the communication process, reinforcing the
fundamental principles of relativistic physics.

Our study shows that quantum network information
theory in general spacetimes is a rich and promising area
of research, shedding light on several aspects of the
interplay between quantum information theory and rela-
tivity. We believe that this work may provide tools to
investigate open problems concerning quantum gravity, in
particular, the fate of the information that has fallen in
(evaporating) black holes. The preservation of causality
observed in our analysis reaffirms the robustness of
fundamental physical principles, even in the realm of
quantum information theory in curved spacetimes. We
hope that following the path we presented here could lead
us to unveil fundamental aspects of physics that should be
present in a full quantum theory of gravity.
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APPENDIX: FULL EXPRESSION FOR THE
QUANTUM BROADCAST CHANNEL MAP

As discussed in Sec. III, each I'yp,5. coefficient defined
in Eq. (45) can be evaluated by using Eqgs. (40) and (41)
together with the product relation given by Eq. (46). Then,
we substitute these coefficients in Eq. (42), obtaining
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1 1
pPe = 4 (1 4+ vg cos2A(f . f5)] + ve cos[2A(fa. )] cos2A(f 5. fo)])PES + 2 (1 —vpcos2A(f4, f5)]

+ v cos2A(f 4, fc)] cos2A(f . f )] )ogpEioy + % (1 +vpcos[2A(f 4, f)] — v cos[2A(f 4. fc)]
x cos[2A(f . fo)))oepPSot + % (1 —vp cos[2A(f 4, fB)] — ve cOs[2A(f 4, f )] cos2A(f 5. fc)])o%

® 0%4pBCo% @ ot +TSIH[2A(fA,fB)KUA>p _PES + oepBS ot 0% + TSIH[zA(anfC)]

Al

X cos[2A(fB,fc)]<o-Z> _[PBS 4 050" 0% ot + (P55, — 6%4pBS 0% — 0tpPS 06 + 0% @ tpBS 0% @ of)
At

({,0_00, op ® GZC} — oppESlot — oppES Z) + o <fo>pém [ﬂg — oepPot, GB]

8
2_ (Ao 5~ ] B cos2A (o )] S2A . 1) ([0 0% © ]
+ RS0~ opSioh)  “CSRA(f 0, £ )| SRy, FloR) {25 = Pt o). (A1)
where we have defined the following coefficients:

AE = e S DAy, o + Fe)] £ Vi €08 PA( 4. f = ) (A2)

AF = i SN RA( 4o fy + 1)) % i S A, £ = fO)) (A3)

= 0 (WIEQS,), (A)

Vie = w,(WIEQSy +210). (A3)

As discussed in Sec. III, we are motivated to fix the initial states for Bob’s and Charlie’s qubit as given in Egs. (52) and
(58). We write these states in terms of their Bloch vectors, i.e.,

p]—oo:%, (A6)

where j = B, C. By substituting Eq. (A6) in Eq. (Al), and by using the standard commutation relations of the Pauli
matrices, we obtain the following expression describing the quantum broadcast channel map:

E(p) = 3¢ (1+ 1 €05 PA(F 4. f )] 0 €08 A, Fo)] 0 Ay, Fel) Uy + 03) ® (L + %)
b1 (1= 0 00 PA( 4. f)] + v 005 A, f)] 05 Ay fO) Ty = o) ® U +02)
1 (14 05005 DA 4. f )] = v <05 DA, Foll 05 A f)) U +03) ® (U = %)
1 (1= s DAy, )] = vecos AU v, f )] cos PA(f 5. Fl) (1 = o) ® (e = %)
= sin RAUA S, (0 ® c) =5 sin A, )] cos RA(f . fe){6h) 1, (15 ® o)
+ 20 @ 0y =2 (0 @ o) ()0, (0 © 01— (0h),0, (0 @ 02) ~“Ccos A £
xsin2A(f5. £c))(0% ® 02) = “Csin A (. Fo)]sin Ay, F) (0 (05 ® ). (A7)

By taking partial traces relative to each qubit, one recovers Egs. (62) and (63).
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