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A flat 3-brane probing a five-dimensional anti–de Sitter space has the same symmetries and symmetry
breaking pattern as one probing a five-dimensional de Sitter space with two time directions. Despite the
seemingly different physical setups, we show that the effective field theory of the brane bending mode is
identical in both cases. In particular, despite “wrong” signs in the Dirac-Born-Infeld (DBI) action for the
two-time de Sitter case, the theories have the same S-matrix. This is consistent with the expectation that
effective field theories are determined solely by their degrees of freedom and pattern of symmetry breaking,
even in the case of spacetime symmetries. We comment further on the equivalence between the Weyl/
dilaton and DBI representations of the EFT of broken conformal symmetry.
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I. INTRODUCTION

Effective field theory (EFT) is a tool with which we can
efficiently describe physics at low energies and long
distances, even without detailed knowledge of a complete
underlying short distance theory. It is generally believed
that the low energy dynamics of a system, and hence the
structure of its effective field theory, is determined solely by
its light degrees of freedom, their symmetry group G, and
the pattern of spontaneous symmetry breaking by which the
group is broken to some subgroup H ⊂ G.
In the simplest case where G is an internal symmetry

group in a relativistic theory, i.e. G commutes with the
Poincare symmetries, Goldstone’s theorem guarantees that
there will be a massless scalar degree of freedom for each
broken symmetry generator [1,2]. These Goldstone scalars
parametrize the cosetG=H and, since they are massless, are
always present in the effective field theory. The fact that the
effective theory is determined by the degrees of freedom
and the symmetry breaking pattern is implicit in the coset
construction [3–5] (see [6,7] for reviews), via which the
invariant building blocks of the effective theory of the
Goldstones, and the covariant derivatives through which
they couple to other modes, are constructed solely from
knowledge of the symmetry group and its breaking pattern.

In the case where the broken symmetries involve space-
time symmetries, the situation is more subtle. For example,
the number of Goldstone modes is in general less than the
number of broken generators, and the coset construction has
to be supplemented by the addition of inverse Higgs con-
straints to eliminate the unphysical Goldstones [5,6,8–15]. In
this paper, as a test of whether the symmetry breaking pattern
determines the low energy theory in this more general
situation,wewill study twoexamples of spacetime symmetry
breaking which are seemingly physically distinct, but in
which the pattern of symmetry breaking is the same.
Consider the effective theory describing the small fluctu-

ations of a flat Lorentzian 3-brane embedded into a fixed flat
five-dimensional Lorentzian bulk, so that there is one space-
like extra dimension transverse to the brane. The presence of
the brane spontaneously breaks the five-dimensional isom-
etry algebra down to the four-dimensional isometry algebra,
isoð1; 4Þ → isoð1; 3Þ. There is a single Goldstone scalar, ϕ,
which parametrizes the fluctuations into the extra dimension,
and the lowest-order part of the EFT governing its dynamics
is the Dirac-Born-Infeld (DBI) Lagrangian [16,17],

L¼−Λ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð∂ϕÞ2

Λ4

r
¼ const−

1

2
ð∂ϕÞ2þ 1

8Λ4
ð∂ϕÞ4þ�� � ;

ð1:1Þ

where Λ is a scale set by the tension of the brane. This is
called the “correct sign”DBI model, because theOðp4Þ part
of the four-point tree amplitude, determined by the ð∂ϕÞ4
term in (1.1), is positive,

A4 ¼
1

4Λ4
ðs2 þ t2 þ u2Þ; ð1:2Þ
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consistent with positivity bounds that follow from assuming
a standard UV completion [18].
Suppose instead that the extra dimension is timelike, so

that we have a Lorentzian 3-brane embedded into a flat
five-dimensional Lorentzian bulk with two time directions.
In this case, the fluctuations are described by

L ¼ Λ4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ð∂ϕÞ2
Λ4

r
¼ const −

1

2
ð∂ϕÞ2 − 1

8Λ4
ð∂ϕÞ4 þ � � � ;

ð1:3Þ

which has a different sign under the square root. This is
known as the “wrong sign” DBI theory [19–21]; by
adjusting the overall sign of the Lagrangian we have kept
the correct sign for the kinetic term, but now the ð∂ϕÞ4 term
has a different sign and we get a negative Oðp4Þ four-point
tree amplitude,

A4 ¼ −
1

4Λ4
ðs2 þ t2 þ u2Þ; ð1:4Þ

which is not consistent with the positivity bounds of [18].
Because the amplitude is different from that of the correct
sign theory, the theory is physically different, as is to be
expected because a space with two time dimensions seems
to be physically quite different and, some would say,
pathological; in fact it is tempting to interpret the
wrong-sign amplitude (1.4) as a sign of such pathology.
From the symmetry point of view, the physical difference
between the two theories is also not surprising; the higher
dimensional space with two time directions has a different
isometry algebra, isoð2; 3Þ, so the symmetry breaking
pattern that we would like to say characterizes the EFT
is now isoð2; 3Þ → isoð1; 3Þ, different from that of the
correct sign theory.
Now consider a similar setup but let the flat brane be

embedded into a bulk five-dimensional Lorentzian maxi-
mally symmetric space of constant negative curvature, i.e.
anti–de Sitter space (AdS). We denote the bulk space as
AdS1;4, to indicate that it is a standard AdS space with one
time and four space dimensions. Its isometry algebra is
soð2; 4Þ, so the symmetry breaking pattern is soð2; 4Þ →
isoð1; 3Þ. The DBI Lagrangian in this case reads

L ¼ 1

L4
e4Lϕ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2LϕL4ð∂ϕÞ2

q �

¼ −
1

2
ð∂ϕÞ2 þ L4

8
ð∂ϕÞ4 þ on shell trivialþ � � � ; ð1:5Þ

where L is the radius of the bulk AdS space (which we have
set to the same scale as the brane tension for simplicity). The
sign of the Oðp4Þ part of the four-point tree amplitude,
determined by the sign of the ð∂ϕÞ4 term, is again positive.

Next, in analogy with the two-time example above,
consider embedding the flat 3-brane into a maximally
symmetric space of constant positive curvature, but with
two time directions, i.e. a two-time de Sitter (dS) space,
denoted dS2;3. The DBI Lagrangian now has a minus sign
under the square root,

L ¼ −
1

L4
e4Lϕ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2LϕL4ð∂ϕÞ2

q �

¼ −
1

2
ð∂ϕÞ2 − L4

8
ð∂ϕÞ4 þ on shell trivialþ � � � ; ð1:6Þ

and the Oðp4Þ part of the four-point tree amplitude is now
negative. As in the flat bulk case, from a physical point of
view a two-time de Sitter space seems quite different from,
and more pathological than, a standard AdS space, so this
different sign in the amplitude might be expected.
However, from the symmetry point of viewwe encounter a

puzzle: the two-time de Sitter space has exactly the same
symmetry algebra as the standard AdS space, namely
soð2; 4Þ. This can be seen by realizing AdS1;4 as the surface
ηABYAYB ¼ −L2 embedded into an auxiliary ambient six-
dimensional two-time Minkowski space with Cartesian
coordinates YA and metric ηAB ¼ diagð−1;−1; 1; 1; 1; 1Þ.
In this same auxiliary space, dS2;3 can be realized as the
surface ηABYAYB ¼ þL2. This manifests the common
soð2; 4Þ symmetry of the two spacetimes. In both cases
the brane breaks the symmetry to isoð1; 3Þ, so we have two
effective theories that share the exact same symmetry break-
ing pattern yet appear to be physically distinct, with different
four-point amplitudes, onewith a correct sign and the other a
wrong sign. Is this a counterexample to the expectation that
the symmetry breaking pattern determines the EFT in the
case where there is spacetime symmetry breaking?
In what follows, we will study this apparent counterex-

ample more carefully. The punchline is that higher-order
terms in the effective theory are important in this case; the
Oðp4Þ part of the four-point tree amplitude gets contribu-
tions from higher curvature and extrinsic curvature terms
on the brane. When these terms are all accounted for,
amplitudes in the two theories can be seen to match. This
means that the AdS1;4 and dS2;3 theories are actually
equivalent, i.e. there exists in this case a complicated field
redefinition that changes a “wrong sign” DBI theory into a
“correct” sign theory. We will find this field redefinition
explicitly through the coset construction. It also means that,
at least in this example, the on-brane physics of a fixed bulk
spacetime with two time dimensions is indistinguishable
from that of a standard bulk spacetime, and so there should
be no pathology associated with the extra time dimension.
This is not the case in the flat bulk example; in this case the
higher-order terms cannot contribute to the Oðp4Þ part of
the four-point amplitude and so the correct sign and wrong
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sign theories are physically distinct, as expected from their
distinct symmetry breaking patterns.

A. Conventions

We use the mostly plus metric signature and the curvature
conventions of [22]. For amplitudes, we use all incoming
momenta, and the Mandelstam invariants for the massless
4-particle amplitudes are defined by s ¼ − 1

2
p1 · p2,

t ¼ − 1
2
p1 · p3, u ¼ − 1

2
p1 · p4. Given aD ×D matrix with

componentsMμ
ν, traces ofmatrix products are denoted using

square brackets, e.g. ½M� ¼ Mμ
μ, ½M2� ¼ Mμ

νMν
μ,

½M3� ¼ Mμ
νMν

ρMρ
μ, etc. The elementary symmetric poly-

nomials are defined as

Sn½M� ¼ M½μ1
μ1 � � �Mμn�

μn ; ð1:7Þ

where the antisymmetrization is with weight 1. We have
Sn½M� ¼ 0 for n > D, and we also define S0½M� ¼ 1. The
first few are

S0ðMÞ ¼ 1;

S1ðMÞ ¼ ½M�;

S2ðMÞ ¼ 1

2!
ð½M�2 − ½M2�Þ;

S3ðMÞ ¼ 1

3!
ð½M�3 − 3½M�½M2� þ 2½M3�Þ;

S4ðMÞ ¼ 1

4!
ð½M�4 − 6½M�2½M2� þ 8½M�½M3�

þ 3½M2�2 − 6½M4�Þ: ð1:8Þ

Useful formulas are

detðMÞ ¼ SDðMÞ; det ð1þMÞ ¼
XD
n¼0

SnðMÞ: ð1:9Þ

II. FLAT BRANE IN AN AdS1;4 BULK

We begin by describing the EFT of a flat Minkowski
3-brane with the standard signature ð−;þ;þ;þÞ, which we
denoteM1;3, fluctuatingwithin a fixed five-dimensional bulk
AdS space, with the standard signature ð−;þ;þ;þ;þÞ,
which we denote AdS1;4. This is a standard brane-world
setup in which the extra dimension is spacelike.
AdS1;4 of radius L can be realized as (the universal cover

of) the surface of the hyperbola ηABYAYB ¼ −L2 embedded
into an auxiliary ambient six-dimensional two-time
Minkowski space with coordinates YA, A ¼ 0;…; 5 and
metric ηAB ¼ diagð−1;−1; 1; 1; 1; 1Þ. We will use Poincare
coordinates ðρ; xμÞ on AdS1;4, μ ¼ 0;…; 3, given by

Y0 ¼ L coshðρ=LÞ þ 1

2L
eρ=Lx2;

Y1 ¼ eρ=Lx0;

Y2 ¼ L sinhðρ=LÞ − 1

2L
eρ=Lx2;

Yiþ2 ¼ eρ=Lxi; i ¼ 1; 2; 3: ð2:1Þ

Here in the expressions for Y0, Y2, and below, x2 ≡ ημνxμxν

(not to be confused with the second component of xμ) where
ημν ¼ diagð−1; 1; 1; 1Þ is the flat Minkowski metric. The
AdS1;4 metric in these coordinates reads

ds2 ¼ dρ2 þ e2ρ=Lημνdxμdxν: ð2:2Þ

Following the procedure discussed in [23], we take a
unitary gauge in which the xμ are used as coordinates on the
brane, and so we embed the brane into AdS1;4 via
ρðxÞ ¼ LϕðxÞ, xμðxÞ ¼ xμ. The field ϕðxÞ will be the
dynamical brane bending mode. The induced metric,
inverse metric, covariant measure, and extrinsic curvature
are then expressed in terms of ϕ as follows,

gμν ¼ e2ϕημνþL2
∂μϕ∂νϕ;

gμν ¼ e−2ϕðημν−L2e−2ϕγ2∂μϕ∂νϕÞ; ffiffiffiffiffiffi
−g

p ¼ e4ϕ

γ
; ð2:3Þ

Kμν ¼
γ

L
ðe2ϕημν − L2

∂μ∂νϕþ 2L2
∂μϕ∂νϕÞ; ð2:4Þ

where

γ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2e−2ϕð∂ϕÞ2

p : ð2:5Þ

The isometries of the AdS1;4 space are induced via the 15
Lorentz generators of the six-dimensional ambient space,
and form the algebra soð2; 4Þ. Via the procedure discussed
in [23], they induce the following transformations on ϕ,

Pμϕ ¼ −∂μϕ;

Jμνϕ ¼ ðxμ∂ν − xν∂μÞϕ;
Dϕ ¼ −1 − xμ∂μϕ;

Kμϕ ¼ −2xμ þ ½−2xμxν∂ν þ ðx2 þ L2e−2ϕÞ∂μ�ϕ: ð2:6Þ

These are the symmetry transformations of the EFT. They
satisfy the soð2; 4Þ commutation relations

½D;Pμ�¼−Pμ; ½D;Kμ�¼Kμ; ½Kμ;Pν�¼2Jμν−2ημνD;

½Jμν;Kσ�¼ημσKν−ηνσKμ; ½Jμν;Pσ�¼ημσPν−ηνσPμ;

½Jμν;Jρσ�¼ημρJνσ−ηνρJμσþηνσJμρ−ημσJνρ; ð2:7Þ

EQUIVALENCE OF EFTS AND TIMELIKE EXTRA DIMENSIONS PHYS. REV. D 109, 065019 (2024)

065019-3



with all those not shown vanishing. The Pμ and Jμν are
linearly realized on ϕ and form a subalgebra which is the
four-dimensional Poincare algebra isoð1; 3Þ, whereas the
rest are nonlinearly realized. The symmetry breaking
pattern is thus

soð2; 4Þ → isoð1; 3Þ: ð2:8Þ

Any Lagrangian constructed from the induced metric
and measure (2.3), its curvature Rμνρσ, and the extrinsic
curvature (2.4) will have the symmetries (2.6), but as
pointed out in [24] there are a finite number of actions that
give field equations for ϕ that are second order in
derivatives and hence free of extra ghostly [25,26] degrees
of freedom. These are known as DBI Galileon terms, and
they consist of all the Lovelock terms [27] on the brane and
the boundary terms corresponding to Lovelock terms in the
bulk. For our 3-brane there are five such terms,1

LðAdSÞ
1 ¼ 1

4L4
e4ϕ;

LðAdSÞ
2 ¼ −

1

L4

ffiffiffiffiffiffi
−g

p
;

LðAdSÞ
3 ¼ 1

L3

ffiffiffiffiffiffi
−g

p
K ¼ 1

L3

ffiffiffiffiffiffi
−g

p
S1ðKÞ;

LðAdSÞ
4 ¼ −

1

L2

ffiffiffiffiffiffi
−g

p
R ¼ 1

L2

ffiffiffiffiffiffi
−g

p �
−2S2ðKÞ þ 12

L2

�
;

LðAdSÞ
5 ¼ 3

2L
ffiffiffiffiffiffi
−g

p �
−
1

3
K3 þ K2

μνK −
2

3
K3

μν

− 2

�
Rμν −

1

2
Rgμν

�
Kμν

�

¼ 1

L
ffiffiffiffiffiffi
−g

p �
6S3ðKÞ − 9

L2
S1ðKÞ

�
: ð2:9Þ

All of these Lagrangians except L1 are expressed using
only the metric and measure (2.3), its curvature, and the
extrinsic curvature (2.4). In the second equalities we have
made use of the Gauss-Codazzi equations,

Rμνρσ ¼ KμρKνσ − KμσKνρ −
1

L2
ðgμρgνσ − gμσgνρÞ; ð2:10Þ

to eliminate intrinsic curvatures in terms of extrinsic curva-
tures; once this is done these Lagrangians take the form of
symmetric polynomials (1.7) of the extrinsic curvature (2.4).
The termL1 is the only one that cannot bewritten in terms of
invariants; it is a Wess-Zumino term [28], and can be
interpreted as the 5-volume enclosed between some arbitrary
reference surface and the brane [23].

The terms L2 and L4 are the cosmological constant and
Einstein-Hilbert terms on the brane (the only nontrivial
Lovelock invariants in four dimensions). The term L3 is the
Gibbons-Hawking boundary term for a bulk Einstein-
Hilbert term [29–31], and the term L5 is the boundary
term for a bulk Gauss-Bonnet term. The Gauss-Bonnet
term on the brane is a total derivative, and so we have the
following total derivative combination,

LðAdSÞ
total derivative ¼

ffiffiffiffiffiffi
−g

p ðR2
μνρσ − 4R2

μν þ R2Þ

¼ 8
ffiffiffiffiffiffi
−g

p �
3S4ðKÞ − 1

L2
S2ðKÞ þ 3

L4

�
: ð2:11Þ

This can be used to eliminate the fourth-order symmetric
polynomial S4ðKÞ in terms of the lower-order symmetric
polynomials. Since SnðKÞ ¼ 0 for n > 4, this means that
the non-Wess-Zumino Galileons consist of precisely the
nontrivial symmetric polynomials.
In an EFT there is no a priori reason to restrict to terms

such as the Galileons that generate second-order equations
of motion, and in general all terms compatible with the
symmetries should be present and arranged in a derivative
expansion. However, as discussed in [32], we will be
concerned with equivalences between theories that ulti-
mately derive from field redefinitions induced from some
invertible change of coordinates on the coset space of the
Goldstones; an invertible field redefinition should not
generate new degrees of freedom and so any equivalences
should be visible within the class of Galileon theories.
(There are possible loopholes to this expectation, for
example multifield theories with higher-order equations
that nevertheless propagate no extra degrees of freedom
[33–36], such as the “beyond Horndeski” theories [37,38],
but this does not occur in our case and we can stay within
the class of second-order theories.)

A. Amplitudes

The S-matrix is invariant under general perturbative field
redefinitions, so given two theories, the matching of any
given S-matrix element is a necessary condition for the
theories to be equivalent. We thus turn to computing some
amplitudes for scattering ϕ fluctuations in the above AdS
Galileon theory, in order to compare later with the dS
version of the theory.
The general Galileon theory is a linear combination of

the five terms (2.9)

LðAdSÞ ¼ c1L
ðAdSÞ
1 þ c2L

ðAdSÞ
2 þ c3L

ðAdSÞ
3

þ c4L
ðAdSÞ
4 þ c5L

ðAdSÞ
5 ; ð2:12Þ

where ci, i ¼ 1;…; 5 are dimensionless coefficients.
We compute amplitudes by expanding in powers of ϕ.

Demanding absence of a linear (tadpole) term so that ϕ ¼ 0

1We follow here the normalizations of Eq. (29) of [23], with
fðϕÞ ¼ eϕ=L followed byϕ → Lϕ, andwith the addition of overall
powers of L so that the Lagrangians have mass dimension 4.
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is a background solution imposes the following condition
among the coefficients

c1 − 4c2 þ 16c3 − 48c5 ¼ 0: ð2:13Þ

Expanding to second order in the fields, we find that the
mass term vanishes by (2.13), and there is a kinetic term
− 1

2
Z
L2 ð∂ϕÞ2 with

Z ¼ c2 − 6c3 þ 12c4 − 6c5: ð2:14Þ

In order to have a stable vacuum around which to define the
perturbative S-matrix, we must demand Z > 0.
At higher orders, the potential terms all vanish by (2.13)

and the Lagrangian has only derivative interactions (which
do not depend on c1). At cubic order, we can remove all the
interactions by making the field redefinition

ϕ → ϕ −
1

2
ϕ2 þ L2

2Z
ðc3 − 6c4 þ 9c5Þð∂ϕÞ2: ð2:15Þ

Once all this is done, the interactions start at quartic order,

LðAdSÞ ¼ −
1

2

Z
L2

ð∂ϕÞ2 þ Z
8

�
1þ 2

Z
ðc3 − 6c4 þ 9c5Þ

�
ð∂ϕÞ4

þ 1

2

�
c4 − 4c5 −

1

2Z
ðc3 − 6c4 þ 9c5Þ2

�

× L2ð∂ϕÞ2ð∂μ∂νϕÞ2
þ on shell trivialþOðϕ5Þ: ð2:16Þ

Here we have used (2.14) to elimiate c2 in favor of Z.
We can now compute amplitudes by canonically normal-

izing the field, ϕ ¼ Lffiffiffi
Z

p ϕ̂, and using the Feynman rules.
Since we have removed the cubic vertices, the four-point
amplitude is easy to compute: there are no exchange
diagrams, so the on-shell four-point amplitude comes only
from a contact diagram with the vertex drawn from the ϕ4

terms. There are two structures, a p4 part and a p6 part,
coming from the four and six derivative ϕ4 terms respec-
tively,

AðAdSÞ
4 ¼ 1

4Z

�
1þ 2

Z
ðc3 − 6c4 þ 9c5Þ

�
L4ðs2 þ t2 þ u2Þ

þ 3

2Z2

�
c4 − 4c5 −

1

2Z
ðc3 − 6c4 þ 9c5Þ2

�
L6stu:

ð2:17Þ

We see here that the higher Galileons contribute to the four-
point amplitude at order p4. This is unlike the case of the
flat bulk DBI theory, where only L2 contributes, as
mentioned in the Introduction.
The five-point amplitude is also simple to compute; since

there is no factorization channel for a five-point process

with no on-shell nontrivial cubic interactions, the amplitude
comes only from the five-point contact diagram with the
vertex drawn from the ϕ5 terms. It contains p4, p6, and p8

parts,

AðAdSÞ
5 ¼ A1L5

X5
1≤i<j

ðpi · pjÞ2 þ A2L7
X5
1≤i<j

ðpi · pjÞ3

þ A3L9

�X5
1≤i<j

ðpi · pjÞ4 − 2ððp1 · p2Þ2ðp3 · p4Þ2

þ permsÞ
�
; ð2:18Þ

where

A1 ¼ −
2

Z3=2

�
1þ 2

Z
ðc3 − 6c4 þ 9c5Þ

�
;

A2 ¼
12

Z5=2

�
c4 − 4c5 −

1

2Z
ðc3 − 6c4 þ 9c5Þ2

�
;

A3 ¼ −
6

Z5=2

�
c5 −

ðc4 − 4c5Þðc3 − 6c4 þ 9c5Þ
Z

þ ðc3 − 6c4 þ 9c5Þ3
3Z2

�
: ð2:19Þ

III. FLAT BRANE IN A DS2;3 BULK

We now consider a flat 3-brane probing a five-
dimensional de Sitter space with two time dimensions,
which we call dS2;3. dS2;3 is the maximally symmetric
space with positive curvature and signature ð−;−;þþþÞ.
It can be realized as the surface ηABYAYB ¼ L2 embedded
into the same auxiliary ambient six-dimensional two-time
Minkowski space with coordinates YA, A ¼ 0;…; 5 and
metric ηAB ¼ diagð−1;−1; 1; 1; 1; 1Þ that we used for
AdS1;4. The analog of Poincare coordinates ðρ; xμÞ on
dS2;3 are given by

Y0 ¼ L sinhðρ=LÞ þ 1

2L
eρ=Lx2;

Y1 ¼ eρ=Lx0;

Y2 ¼ L coshðρ=LÞ − 1

2L
eρ=Lx2;

Yiþ2 ¼ eρ=Lxi; i ¼ 1; 2; 3; ð3:1Þ

where as before, in the expressions for Y0, Y2 and below,
x2 ≡ ημνxμxν with ημν ¼ diagð−1; 1; 1; 1Þ the Minkowski
4-metric. The dS2;3 metric in these coordinates reads

ds2 ¼ −dρ2 þ e2ρ=Lημνdxμdxν: ð3:2Þ
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Embedding the brane via ρðxÞ ¼ LϕðxÞ, xμðxÞ ¼ xμ, the
induced metric, inverse metric, invariant measure, and
extrinsic curvature are expressed as follows,

gμν ¼ e2ϕημν − L2
∂μϕ∂νϕ;

gμν ¼ e−2ϕðημν þ L2e−2ϕγ2∂μϕ∂νϕÞ; ffiffiffiffiffiffi
−g

p ¼ e4ϕ

γ
;

ð3:3Þ

Kμν ¼
γ

L
ðe2ϕημν þ L2

∂μ∂νϕ − 2L2
∂μϕ∂νϕÞ; ð3:4Þ

where

γ ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − L2e−2ϕð∂ϕÞ2

p : ð3:5Þ

Note that compared with the AdS case there is now a minus
sign under the square roots.
The isometries of the dS2;3 space are induced via the 15

Lorentz generators of the six-dimensional ambient space,
exactly the same as those which induce the isometries of
AdS1;4, and so the isometry algebra of dS2;3 is also soð2; 4Þ.
The induced transformations on ϕ take the same form as
(2.6) except for the special conformal generators Kμ, which
now have an opposite sign in front of the exponential term,

Pμϕ ¼ −∂μϕ;

Jμνϕ ¼ ðxμ∂ν − xν∂μÞϕ;
Dϕ ¼ −1 − xμ∂μϕ;

Kμϕ ¼ −2xμ þ ð−2xμxν∂ν þ ðx2 − L2e−2ϕÞ∂μÞϕ: ð3:6Þ
They satisfy the same soð2; 4Þ commutation relations (2.7).
The Pμ and Jμν are linearly realized while the rest are
nonlinearly realized, thus the symmetry breaking pattern is
soð2; 4Þ → isoð1; 3Þ, the same as for the AdS theory (2.8).
The Galileon Lagrangians are

LðdSÞ
1 ¼ 1

4L4
e4ϕ;

LðdSÞ
2 ¼ −

1

L4

ffiffiffiffiffiffi
−g

p
;

LðdSÞ
3 ¼ 1

L3

ffiffiffiffiffiffi
−g

p
K ¼ 1

L3

ffiffiffiffiffiffi
−g

p
S1ðKÞ;

LðdSÞ
4 ¼ −

1

L2

ffiffiffiffiffiffi
−g

p
R ¼ 1

L2

ffiffiffiffiffiffi
−g

p �
2S2ðKÞ − 12

L2

�
;

LðdSÞ
5 ¼ 3

2L
ffiffiffiffiffiffi
−g

p �
−
1

3
K3 þ K2

μνK −
2

3
K3

μν

þ 2

�
Rμν −

1

2
Rgμν

�
Kμν

�

¼ 1

L
ffiffiffiffiffiffi
−g

p �
6S3ðKÞ − 9

L2
S1ðKÞ

�
: ð3:7Þ

In the second equalities we have made use of the Gauss-
Codazzi equations which now have some additional minus
signs due to the fact that the extra dimension is timelike and
the bulk space is positively curved,

Rμνρσ ¼−KμρKνσþKμσKνρþ
1

L2
ðgμρgνσ −gμσgνρÞ: ð3:8Þ

Note also that there is a different sign among the terms
involving the intrinsic curvature in the first expression for
L5, because of the timelike extra dimension [39].
The total derivative term resulting from the Gauss-

Bonnet invariant on the brane now reads,

LðdSÞ
total derivative ¼

ffiffiffiffiffiffi
−g

p ðR2
μνρσ − 4R2

μν þ R2Þ

¼ 8
ffiffiffiffiffiffi
−g

p �
3S4ðKÞ − 1

L2
S2ðKÞ þ 3

L4

�
: ð3:9Þ

A. Amplitudes

We now compute the four- and five-point amplitudes in
the dS theory in order to compare to those of the AdS
theory in Sec. II A.
The general Galileon theory is a linear combination

LðdSÞ ¼ d1L
ðdSÞ
1 þ d2L

ðdSÞ
2 þ d3L

ðdSÞ
3 þ d4L

ðdSÞ
4 þ d5L

ðdSÞ
5 ;

ð3:10Þ

where di, i ¼ 1;…; 5 are dimensionless coefficients.
As before we expand in powers of ϕ. Demanding

absence of a tadpole so that ϕ ¼ 0 is a background solution
imposes the constraint

d1 − 4d2 þ 16d3 − 48d5 ¼ 0: ð3:11Þ

At second order in the fields the mass term vanishes by
(3.11), and there is a kinetic term − 1

2
Z
L2 ð∂ϕÞ2 with

Z ¼ −d2 þ 6d3 þ 12d4 þ 6d5; ð3:12Þ

which must satisfy Z > 0 in order for the background to be
stable.
The cubic terms are eliminated by making the field

redefinition

ϕ → ϕ −
1

2
ϕ2 þ L2

2Z
ðd3 þ 6d4 þ 9d5Þð∂ϕÞ2; ð3:13Þ

and once this is done, the Lagrangian takes the form
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LðdSÞ ¼ −
1

2

Z
L2

ð∂ϕÞ2 þ Z
8

�
−1þ 2

Z
ðd3 þ 6d4 þ 9d5Þ

�
ð∂ϕÞ4 þ 1

2

�
d4 þ 4d5 −

1

2Z
ðd3 þ 6d4 þ 9d5Þ2

�
L2ð∂ϕÞ2ð∂μ∂νϕÞ2

þ on shell trivialþOðϕ5Þ: ð3:14Þ

We have used (3.12) to eliminate d2 in favor of Z.
For the four-point amplitude we obtain

AðdSÞ
4 ¼ 1

4Z

�
−1þ 2

Z
ðd3 þ 6d4 þ 9d5Þ

�
L4ðs2 þ t2 þ u2Þ þ 3

2Z2

�
d4 þ 4d5 −

1

2Z
ðd3 þ 6d4 þ 9d5Þ2

�
L6stu; ð3:15Þ

and for the five-point amplitude we obtain

AðdSÞ
5 ¼ A1L5

X5
1≤i<j

ðpi · pjÞ2 þ A2L7
X5
1≤i<j

ðpi · pjÞ3 þ A3L9

�X5
1≤i<j

ðpi · pjÞ4 − 2ððp1 · p2Þ2ðp3 · p4Þ2 þ permsÞ
�
; ð3:16Þ

where

A1 ¼ −
2

Z3=2

�
−1þ 2

Z
ðd3 þ 6d4 þ 9d5Þ

�
;

A2 ¼
12

Z5=2

�
d4 þ 4d5 −

1

2Z
ðd3 þ 6d4 þ 9d5Þ2

�
;

A3 ¼ −
6

Z5=2

�
d5 −

ðd4 þ 4d5Þðd3 þ 6d4 þ 9d5Þ
Z

þ ðd3 þ 6d4 þ 9d5Þ3
3Z2

�
: ð3:17Þ

IV. COMPARISON OF AMPLITUDES

In both the AdS1;4 and dS2;3 cases, the Minkowski brane
breaks the symmetry soð2; 4Þ to isoð1; 3Þ, so both theories
have a single scalar degree of freedom realizing exactly the
same symmetry and symmetry breaking pattern. If the
degrees of freedom, symmetry and symmetry breaking
pattern determine an EFT, the AdS and dS theories should
be exactly the same, despite the opposite signs within the
DBI square roots, and the scattering amplitudes in Sec. II A
should match those in Sec. III A.
In each case, we have computed the four-point ampli-

tude, which has an order p4 part and an order p6 part, and
the five-point amplitude, which has order p4, p6, and p8

parts. A priori, this totals five different terms that must
match. We find that they all match if we take the following
relations among the coefficients,

0
BBBBBB@

d1
d2
d3
d4
d5

1
CCCCCCA

¼

0
BBBBBBBB@

1 0 0 0 0

0 1 0 0 0

1
8

0 3
2

0 − 15
2

0 − 1
6

0 1 0

1
24

0 1
6

0 − 3
2

1
CCCCCCCCA

0
BBBBBB@

c1
c2
c3
c4
c5

1
CCCCCCA
; ð4:1Þ

which has the inverse

0
BBBBBB@

c1
c2
c3
c4
c5

1
CCCCCCA

¼

0
BBBBBBBB@

1 0 0 0 0

0 1 0 0 0

1
8

0 3
2

0 − 15
2

0 1
6

0 1 0

1
24

0 1
6

0 − 3
2

1
CCCCCCCCA

0
BBBBBB@

d1
d2
d3
d4
d5

1
CCCCCCA
: ð4:2Þ

This relation preserves the tadpole vanishing conditions
(2.13), (3.11), and also preserves the kinetic normalization
constant Z in (2.14), (3.12) once the tadpole conditions are
enforced.
With this relation, the four-point and five-point ampli-

tudes in the two theories match, despite the wrong sign DBI
terms in the dS2;3 theory. This is due to the fact that the
higher-order Galileons contribute to the amplitudes at lower
order; for example if we include only the lowest-order DBI
terms LAdS

1;2 in the AdS theory, as in (1.5), the amplitude is
matched by a dS theory that has the higher-order terms,
whose contribution reverses the wrong sign in (1.6).
On closer inspection, this may be less than convincing

because in each case the p4 part of A5 has the same
coefficient structure as the p4 part of A4, and the p6 part of
A5 has the same coefficient structure as the p6 part of A4.
As we will review in Sec. V, this theory is equivalent to
the dilation effective theory of spontaneous conformal

EQUIVALENCE OF EFTS AND TIMELIKE EXTRA DIMENSIONS PHYS. REV. D 109, 065019 (2024)

065019-7



symmetry breaking, and these amplitude relations are a
consequence of the soft theorems in this theory [40–44].
Indeed, the structure of our amplitudes here matches those
of the dilaton theory which can be found in [45,46]. We
have four free coefficients in each theory after imposing the
tadpole vanishing condition, and so it would seem that after
discounting these redundant structures, there is enough
freedom to equate these amplitudes, and so we should
really compute more amplitudes to get a nontrivial check of
equivalence. Rather than compute more amplitudes, we
will instead show directly that the two theories are
equivalent by finding the invertible field redefinition that
relates them.

V. EQUIVALENCE THROUGH THE COSET
CONSTRUCTION

The coset construction [3–5] is an algorithmic method
for constructing Lagrangians realizing a given symmetry
breaking pattern (we refer to Sec. 2 of [28] for a review of
the method in our conventions). In this section, we will see
that the two different cases, the AdS and dS Galileon
theories, differ by a reparametrization of the coset, and thus
are equivalent under a field redefinition. This field redefi-
nition generalizes the “AdS/CFT equivalence transforma-
tion” of [11], which was applied to the Galileons in [32].

A. Weyl theory

We start by implementing the coset construction directly
on the standard soð2; 4Þ commutation relations (2.7). This
leads to the Weyl parametrization of the theory, also known
as the dilaton effective action, since it describes the dilaton
of spontaneous conformal symmetry breaking.
We parametrize the coset via

V ¼ ey·PeπDeξ·K; ð5:1Þ

where yμ are the spacetime coordinates and π; ξμ para-
metrize the broken symmetry generators. The Maurer-
Cartan form is

ω ¼ V−1dV ¼ ωα
PPα þ ωDDþ ωα

KKα þ
1

2
ωαβ
J Jαβ; ð5:2Þ

and its components are [11,12,28,47]

ωα
P ¼ eπdyα;

ωD ¼ dπ þ 2eπξμdyμ;

ωα
K ¼ dξα þ ξαdπ þ eπð2ξαξνdyν − ξ2dyαÞ;

ωαβ
J ¼ −4eπξ½αdyβ�; ð5:3Þ

where the indices have been raised and lowered with the
flat metric ημν.

Due to the ½Kμ; Pν� commutation relation we may impose
the inverse Higgs constraint ωD ¼ 0, giving the relation

ξμ ¼ −
1

2
e−π∂μπ: ð5:4Þ

Plugging back into (5.3), we have

ωα
P ¼ eπdyα;

ωα
K ¼ 1

2
e−π

�
∂νπ∂

απ − ∂ν∂
απ −

1

2
ð∂πÞ2δαν

�
dyν;

ωαβ
J ¼ 2∂½απdyβ�: ð5:5Þ

The invariant vielbein eμα is extracted from ωP via
ωα
P ≡ eμαdyμ,

eμα ¼ eπδαμ: ð5:6Þ

(Here and below, we use α; β;… to denote indices that
behave like Lorentz indices, and μ; ν;… to denote indices
which behave like spacetime indices.) From this we compute
the invariant metric and measure via gμν ¼ eμαeνβηαβ,

gμν ¼ e2πημν; gμν ¼ e−2πημν;
ffiffiffiffiffiffi
−g

p ¼ e4π: ð5:7Þ

The other invariant building block in addition to the
metric is the covariant derivative of the Goldstones, given
via ωα

K ¼ Dμξ
αdyμ. Converting to space indices,

Dμξν ¼ ðωKÞμβeναηβα, it becomes

Dμξν ¼
1

2
∂μπ∂νπ −

1

2
∂μ∂νπ −

1

4
ð∂πÞ2ημν: ð5:8Þ

Equivalently, we can use the Ricci tensor of the metric (5.7),

RμνðgÞ ¼ 2∂μπ∂νπ − 2∂μ∂νπ −□πημν − 2ð∂πÞ2ημν
¼ 4Dμξν þ 2Dρξ

ρgμν: ð5:9Þ

The Galileon Lagrangians [48], i.e. the ones that have
second-order equations of motion, are nothing but the
symmetric polynomials made from the covariant derivative
Dμξν, contracted and integrated with the metric and
measure (5.7). The only exception is L3, which is a
Wess-Zumino term [28] and cannot be built directly in
terms of the invariants (the would-be term ∝ ffiffiffiffiffiffi−gp

S2½Dξ� is
a total derivative in D ¼ 4). The Lagrangians are2

2We use the normalizations of Eq. (168) of [23], with π → −π.
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LðWeylÞ
1 ¼ −

1

4L4

ffiffiffiffiffiffi
−g

p ¼ −
1

4L4
e4π;

LðWeylÞ
2 ¼ −

1

12L2

ffiffiffiffiffiffi
−g

p
R ¼ −

1

L2

ffiffiffiffiffiffi
−g

p
S1½Dξ� ¼ −

1

2L2
e2πð∂πÞ2;

LðWeylÞ
3 ¼ 1

2
ð∂πÞ2□π þ 1

4
ð∂πÞ4;

LðWeylÞ
4 ¼ L2 ffiffiffiffiffiffi

−g
p 1

8

�
7

36
½R�3 − ½R�½R2� þ ½R3�

�

¼ L2 ffiffiffiffiffiffi
−g

p
24 S3½Dξ�

¼ L2

2
e−2πð∂πÞ2

�
−2S2½∂∂π� þ

1

2
ð∂πÞ2□π −

1

2
ð∂πÞ4

�
;

LðWeylÞ
5 ¼ L4 ffiffiffiffiffiffi

−g
p 1

192

�
31

18
½R�4 − 13½R2�½R�2 þ 9½R2�2 þ 20½R�½R3� − 18½R4�

�

¼ L4 ffiffiffiffiffiffi
−g

p
96 S4½Dξ�

¼ L4

2
e−4πð∂πÞ2

�
6S3½∂∂π� − 6ð∂πÞ2S2½∂∂π� þ 5ð∂πÞ4□π −

14

4
ð∂πÞ6

�
: ð5:10Þ

We have normalized the Lagrangians with the scale L so as
to aid the comparison to the AdS and dS theories, but this is
not a scale intrinsic to the construction at this point.
The symmetry transformations induced by the trans-

formations on the coset are

Pμπ ¼ −∂μπ; ð5:11Þ

Jμνπ ¼ ðxμ∂ν − xν∂μÞπ; ð5:12Þ

Dπ ¼ −1 − xμ∂μπ; ð5:13Þ

Kμπ ¼ −2xμ þ ð−2xμxν∂ν þ x2∂μÞπ: ð5:14Þ

These are symmetries of the Lagrangians (5.10). They
satisfy the commutations relations (2.7).
Note that, unlike the DBI theories, these Lagrangians

(5.10) appear as a pure derivative expansion, i.e. the nth
Lagrangian contains only terms with 2n − 2 derivatives.
This means that the power counting for figuring out which
terms contribute to the amplitudes at any given order in the
external momenta is simple. For example, the order p4 part
of the four-point amplitude famously [49] only gets

contributions from the 4-derivative Wess-Zumino term

LðWeylÞ
3 . In the DBI theories on the other hand, the power

counting gets mixed up between the terms and, as we have
seen, the same order p4 four-point amplitude gets con-
tributions from the higher-order terms.

B. AdS theory

As shown in [11], the AdS-DBI theory is equivalent to
the Weyl theory, and is obtained by choosing a different
parametrization of the coset (5.1). It was later shown that
the Galileon terms are mapped into each other under this
reparametrization [32]. Here we will review how this
works, and we will use a slightly different parametrization
of the coset that makes the smooth limit between the two
more transparent and shows how to extend to the dS case.
To get the AdS theory we change the basis in the algebra

from fKμ; D; Pμ; Jμνg to fK̂μ; D; Pμ; Jμνg, where

K̂μ ¼ Kμ þ L2Pμ: ð5:15Þ

In this basis the commutators (2.7) become

½D;Pμ� ¼ −Pμ; ½D; K̂μ� ¼ K̂μ − 2L2Pμ; ½K̂μ; Pν� ¼ 2Jμν − 2ημνD; ½K̂μ; K̂ν� ¼ 4L2Jμν;

½Jμν; K̂σ� ¼ ημσK̂ν − ηνσK̂μ; ½Jμν; Pσ� ¼ ημσPν − ηνσPμ;

½Jμν; Jρσ� ¼ ημρJνσ − ηνρJμσ þ ηνσJμρ − ημσJνρ; ð5:16Þ
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with all others vanishing. The advantage of this para-
metrization over that of [11,32] will be that we can
transparently see how the original basis, and hence the
Weyl theory, is recovered as L2 → 0, and how the dS theory
is obtained from L2 → −L2.
We now parametrize the coset as

V ¼ ex·PeϕDeΛ·K̂; ð5:17Þ

where xμ are the spacetime coordinates and ϕ;Λμ para-
metrize the broken directions.
The Maurer-Cartan form is

ω ¼ V−1dV ¼ ω̂α
PPα þ ω̂DDþ ω̂α

K̂
K̂α þ

1

2
ω̂αβ
J Jαβ; ð5:18Þ

and its components are

ω̂D ¼ 1 − L2λ2

1þ L2λ2

�
dϕþ 2eϕ

λμ
1 − L2λ2

dxμ
�
; ð5:19Þ

ω̂α
P ¼ −

2L2

1þ L2λ2
λαdϕþ eϕ

�
dxα −

2L2

1þ L2λ2
λαλμdxμ

�
;

ð5:20Þ

ω̂α
K̂
¼ 1

1þ L2λ2
½dλα þ λαdϕþ eϕð−λ2dxα þ 2λαλμdxμÞ�;

ð5:21Þ

ω̂αβ
J ¼ −

4

1þ L2λ2
ðL2λ½αdλβ� þ eϕλ½αdxβ�Þ; ð5:22Þ

where

λμ ≡ 1

L
Λμ tanðLΛÞ

Λ
; Λ ¼ ffiffiffiffiffiffiffiffiffiffiffi

ΛμΛμ
p

: ð5:23Þ

Note that these reduce to the corresponding Weyl theory
quantities in (5.3) as L2 → 0.
We impose the inverse Higgs constraint ωD ¼ 0, which

has the solution,3

λμ ¼ −
e−ϕ∂μϕ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L2e−2ϕð∂ϕÞ2

p : ð5:24Þ

The invariant vielbein eμα is extracted from ωP via
ωα
P ≡ eμαdyμ,

eμα ¼ eϕδαμ −
2L2

1þ L2λ2
ðeϕλαλμ þ λα∂μϕÞ; ð5:25Þ

which gives the invariant metric via gμν ¼ eμαeνβηαβ,

gμν ¼ e2ϕημν þ L2
∂μϕ∂νϕ; ð5:26Þ

which is nothing but the brane-induced metric in (2.3). It
reduces to the Weyl metric in (5.7) as L2 → 0.
The covariant derivative of the Goldstones, the invariant

building block, is given through DμΛν ¼ ðωKÞμβeναηβα,
and takes the form

DμΛν ¼
1

2L

�
Kμν −

1

L
gμν

�
; ð5:27Þ

whereKμν is the extrinsic curvature in (2.4). It reduces to its
Weyl counterpart (5.8) as L2 → 0.
The AdS Lagrangians (2.9) can all be expressed in terms

of symmetric polynomials of this invariant, with the

exception of LðAdSÞ
1 which is a Wess-Zumino term,

LðAdSÞ
1 ¼ 1

4L4
e4ϕ;

LðAdSÞ
2 ¼ −

1

L4

ffiffiffiffiffiffi
−g

p
;

LðAdSÞ
3 ¼ 1

L2

ffiffiffiffiffiffi
−g

p �
2S1ðDΛÞ þ 4

L2

�
;

LðAdSÞ
4 ¼ ffiffiffiffiffiffi

−g
p �

−8S2ðDΛÞ − 12

L2
S1ðDΛÞ

�
;

LðAdSÞ
5 ¼ L2 ffiffiffiffiffiffi

−g
p �

48S3ðDΛÞ þ 48

L2
S2ðDΛÞ

þ 18

L4
S1ðDΛÞ − 12

L6

�
: ð5:28Þ

In addition, the total derivative (2.11) becomes

LðAdSÞ
total derivative ¼ L4 ffiffiffiffiffiffi

−g
p �

384S4ðDΛÞ þ 192

L2
S3ðDΛÞ

þ 64

L4
S2ðDΛÞ

�
; ð5:29Þ

and can be used to eliminate S4ðDΛÞ in favor of the lower-
order symmetric polynomials.
The symmetry transformations induced by the trans-

formations on the coset are precisely those in (2.6), and
they satisfy the commutations relations (2.7).

C. dS theory

To find a coset parametrization for the dS theory, we
simply take L2 → −L2 in (5.15),

3There is another solution with a minus sign in front of the
square root, but we choose this one because it matches to the
solution (5.4) when L2 → 0. Choosing the other solution would
put a minus sign in front of the extrinsic curvature in (5.27).
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K̂μ ¼ Kμ − L2Pμ; ð5:30Þ

which now satisfies the commutators

½D;Pμ� ¼ −Pμ; ½D; K̂μ� ¼ K̂μ þ 2L2Pμ; ½K̂μ; Pν� ¼ 2Jμν − 2ημνD; ½K̂μ; K̂ν� ¼ −4L2Jμν;

½Jμν; K̂σ� ¼ ημσK̂ν − ηνσK̂μ; ½Jμν; Pσ� ¼ ημσPν − ηνσPμ;

½Jμν; Jρσ� ¼ ημρJνσ − ηνρJμσ þ ηνσJμρ − ημσJνρ: ð5:31Þ

We parametrize the coset as

V ¼ ex·PeϕDeΛ·K̂; ð5:32Þ

the Maurer-Cartan form is

ω¼V−1dV¼ ω̂α
PPαþ ω̂DDþ ω̂α

K̂
K̂αþ

1

2
ω̂αβ
J Jαβ; ð5:33Þ

and its components are

ω̂D̂ ¼ 1þ L2λ2

1 − L2λ2

�
dϕþ 2eϕ

λμ
1þ L2λ2

dxμ
�
; ð5:34Þ

ω̂α
P ¼ 2L2

1 − L2λ2
λαdϕþ eϕ

�
dxα þ 2L2

1 − L2λ2
λαλμdxμ

�
;

ð5:35Þ

ω̂α
K̂
¼ 1

1 − L2λ2
½dλα þ λαdϕþ eϕð−λ2dxα þ 2λαλμdxμÞ�;

ð5:36Þ

ω̂αβ
J ¼ 4

1 − L2λ2
ðL2λ½αdλβ� − eϕλ½αdxβ�Þ; ð5:37Þ

where

λμ ≡ 1

L
Λμ tanhðLΛÞ

Λ
; Λ ¼ ffiffiffiffiffiffiffiffiffiffiffi

ΛμΛμ
p

: ð5:38Þ

The inverse Higgs constraint is ωD ¼ 0 and the solution
which smoothly reproduces the corresponding Weyl theory
solution in (5.4) as L2 → 0 is

λμ ¼ −
e−ϕ∂μϕ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − L2e−2ϕð∂ϕÞ2

p : ð5:39Þ

The invariant vielbein is

eμα ¼ eϕδαμ þ
2L2

1 − L2λ2
ðeϕλαλμ þ λα∂μϕÞ; ð5:40Þ

and the invariant metric is

gμν ¼ e2ϕημν − L2
∂μϕ∂νϕ; ð5:41Þ

which is the same as the brane-induced metric (3.3).
The covariant derivative of the Goldstones, the invariant

building block, is given by

DμΛν ¼
1

2L

�
−Kμν þ

1

L
gμν

�
; ð5:42Þ

where Kμν is the extrinsic curvature (3.4).
The dS Lagrangians (3.7) can all be expressed in terms of

symmetric polynomials of this invariant, with the exception
of LðdSÞ

1 which is a Wess-Zumino term,

LðdSÞ
1 ¼ 1

4L4
e4ϕ;

LðdSÞ
2 ¼ −

1

L4

ffiffiffiffiffiffi
−g

p
;

LðdSÞ
3 ¼ 1

L2

ffiffiffiffiffiffi
−g

p �
−2S1ðDΛÞ þ 4

L2

�
;

LðdSÞ
4 ¼ ffiffiffiffiffiffi

−g
p �

8S2ðDΛÞ − 12

L2
S1ðDΛÞ

�
;

LðdSÞ
5 ¼ L2 ffiffiffiffiffiffi

−g
p �

−48S3ðDΛÞ þ 48

L2
S2ðDΛÞ

−
18

L4
S1ðDΛÞ − 12

L6

�
: ð5:43Þ

The total derivative (3.9) becomes

LðdSÞ
total derivative ¼ L4 ffiffiffiffiffiffi

−g
p �

384S4ðDΛÞ − 192

L2
S3ðDΛÞ

þ 64

L4
S2ðDΛÞ

�
: ð5:44Þ

The symmetry transformations induced by the trans-
formations on the coset are precisely those in (3.6), and
they satisfy the commutations relations (2.7).
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D. Mapping Weyl to AdS

The find the relation between the Weyl and AdS theories,
we equate the Maurer-Cartan forms (5.2) and (5.18).
Expressing K̂μ in terms of Kμ, Pμ using (5.15) and reading
off the coefficients of the algebra elements Pα, Kα, D, Jαβ
respectively gives

ωα
P ¼ ω̂α

P þ L2ω̂α
K̂
; ð5:45Þ

ωα
K ¼ ω̂α

K̂
; ωα

D ¼ ω̂α
D; ωαβ

J ¼ ω̂αβ
J : ð5:46Þ

One can check that these are all satisfied by the following
change of coordinates on the coset [11],

yμ ¼ xμ þ L2e−ϕλμ; eπ ¼ eϕ

1þ L2λ2
; ξμ ¼ λμ;

ð5:47Þ

or inversely,

xμ ¼ yμ−L2
e−π

1þL2ξ2
ξμ; eϕ ¼ð1þL2ξ2Þeπ; λμ ¼ ξμ:

ð5:48Þ

This is the field redefinition that connects the Weyl and
AdS theory.4 Note that the coordinates also change by a

field-dependent transformation, so if expanded out the
transformation would involve an infinite series in powers
of the fields and derivatives. The transformation is however
explicitly invertible; it reduces to the identity as L2 → 0,
and it preserves the vacuum solution ϕ ¼ π ¼ 0.
Furthermore, if the fields fall to zero asymptotically, as
for example in S-matrix scattering experiments, the coor-
dinates xμ and yμ asymptotically become equal to each
other exponentially fast, and so this redefinition will
preserve the S-matrix.
We can find the transformation of the vierbein and

measure from the relation (5.45) (here we use hats to
distinguish the AdS vierbein and metric from the Weyl
vierbein and metric),

eμαdyμ ¼ êμαdxμ þ L2DμΛαdxμ ¼ ðδνμ þ L2DμΛνÞêναdxμ;
ð5:49Þ

ffiffiffiffiffiffi
−g

p
dDy¼ detðeμαÞdDy¼ detðδνμþL2DμΛνÞdetðêμαÞdDx

¼ detðδνμþL2DμΛνÞ
ffiffiffiffiffiffi
−ĝ

p
dDx: ð5:50Þ

The transformation of the invariant building blocks can
be found from

ωα
K ¼ ω̂α

K̂
⇒ Dμξ

αdyμ ¼ DμΛαdxμ ⇒ Dβξ
αeμβdyμ ¼ DβΛαêμβdxμ

⇒ Dβξ
αðδνμ þ L2DμΛνÞêνβdxμ ¼ DβΛαêμβdxμ ⇒ Dβξ

αðδβγ þ L2DγΛβÞêμγdxμ ¼ DβΛαêμβdxμ

⇒ ðδγβ þ L2DβΛγÞDγξ
α ¼ DβΛα: ð5:51Þ

In matrix notation, this becomes

Dξ ¼ 1

1þ L2DΛ
DΛ; DΛ ¼ 1

1 − L2Dξ
Dξ; ð5:52Þ

manifesting how they become equal in the limit L2 → 0.
Note that we have expressed the relation between building
blocks in the form in which they have only Lorentz indices,
because the relation takes its simplest form in this case.
Since the Lagrangians are always expressed as traces of
contractions of these building blocks, they can be freely
traded for their Lorentz indexed form.

We can now use these relations to map the Weyl and AdS
Galileon terms into each other, as described in [32].
Starting with the AdS Galileons written in terms of DΛ
(5.43), we use (5.52) to transform the invariants and (5.50)
to transform the measure. The result can then be written in
terms of the Weyl Galileons expressed in terms of Dξ

(5.10). This does not work for LðAdSÞ
1 since it cannot be

expressed in terms of the invariants, so in this case we use
(5.48) directly to transform e4ϕ → ð1þ L2ξ2Þ4e4π , and to
compute

dxμ

dyν
¼ δμν − L2

∂ν

�
e−π

1þ L2ξ2
ξμ
�
; ð5:53Þ

and use it to transform the measure d4x ¼ detðdxμdyνÞd4y. The
result can be expressed as a combination of the Weyl
Galileons.

4There is a potential subtlety in that the inverse Higgs
constraints for different coset parametrizations may not map into
each other. This does not affect the cases studied here, but can be
an issue in other cases such as those with higher co-dimension
branes [50].

KURT HINTERBICHLER and SAMANTA SAHA PHYS. REV. D 109, 065019 (2024)

065019-12



The transformations can be summarized as5

0
BBBBBBBB@

LðAdSÞ
1

LðAdSÞ
2

LðAdSÞ
3

LðAdSÞ
4

LðAdSÞ
5

1
CCCCCCCCA

¼

0
BBBBBBBB@

−1 1
2

− 1
8

1
48

− 1
384

4 −1 0 1
24

− 1
96

−16 2 0 1
12

− 1
24

0 12 0 − 1
2

0

48 −30 0 − 5
4

1
8

1
CCCCCCCCA

0
BBBBBBBB@

LðWeylÞ
1

LðWeylÞ
2

LðWeylÞ
3

LðWeylÞ
4

LðWeylÞ
5

1
CCCCCCCCA
:

ð5:54Þ

Note that LðAdSÞ
2;3;4;5 do not contribute to the Wess-Zumino

term LðWeylÞ
3 since S2ðDξÞ vanishes as a total derivative in

D ¼ 4. Only the AdS Wess-Zumino term LðAdSÞ
1 contrib-

utes to LðWeylÞ
3 , as expected since an invertible map should

map non-Wess-Zumino terms only into other non-Wess-
Zumino terms, and Wess-Zumino terms should be mapped
into each other modulo non-Wess-Zumino terms (note that
Wess-Zumino-ness is only well defined modulo non-Wess-
Zumino terms). The mapping from Weyl to AdS Galileons
can be obtained by inverting (5.54),

0
BBBBBBBB@

LðWeylÞ
1

LðWeylÞ
2

LðWeylÞ
3

LðWeylÞ
4

LðWeylÞ
5

1
CCCCCCCCA

¼

0
BBBBBBBB@

0 1
8

− 5
128

1
96

− 1
384

0 0 − 1
16

1
24

− 1
48

−8 0 1
8

0 − 1
8

0 0 − 3
2

−1 − 1
2

0 −48 −15 −4 −1

1
CCCCCCCCA

0
BBBBBBBB@

LðAdSÞ
1

LðAdSÞ
2

LðAdSÞ
3

LðAdSÞ
4

LðAdSÞ
5

1
CCCCCCCCA
:

ð5:55Þ

Parts of the inverse can also be checked directly by
transforming the non-Wess-Zumino Weyl Galileons, but
as pointed out in [32], the total derivative (5.29) must be
used to reexpress the terms quartic in DΛ in favor of the
lower-order terms.
Despite the fact that the matrices in (5.54), (5.55) contain

only fixed pure numbers, this mapping is actually a one
parameter family of maps parametrized by L2. This is
obscured by our decision to use L to set the scale of the
Weyl and AdS Lagrangians. For example, suppose we
choose a new independent mass scale, sayΛ, to parametrize
the Weyl Lagrangians, and ask for the transformation of the

Weyl kinetic term LðWeylÞ
2 normalized by Λ,

−
1

2
Λ2e2πð∂πÞ2 ¼ −

1

16
Λ2L2LðAdSÞ

3 þ 1

24
Λ2L2LðAdSÞ

4

−
1

48
Λ2L2LðAdSÞ

5 : ð5:56Þ

The right-hand side now has a regular limit as L2 → 0
which reproduces the Weyl term, followed by an expansion
in powers of L2,

−
1

2
Λ2e2πð∂πÞ2 ¼ −

1

2
Λ2e2ϕð∂ϕÞ2 þOðL2Þ: ð5:57Þ

It is clear that the map thus gives a one parameter
deformation of the Weyl theory parametrized by L2, and
since the transformation ultimately stems from a field
redefinition, L2 is a redundant parameter. In particular,

in our example with only the kinetic term LðWeylÞ
2 , the right-

hand side is secretly a free theory, since the left-hand side
is, and so it is clear that the scale L2 is a fake scale. Since
the deformation is analytic in the redundant parameter L2,
there is nothing preventing us from taking it to be negative,
and this is how we arrive at the dS theory.

E. Mapping Weyl to dS

To find the relation between the Weyl and dS theories,
we equate the Maurer-Cartan forms (5.2) and (5.33),

ωα
P ¼ ω̂α

P − L2ω̂α
K̂
; ð5:58Þ

ωα
K ¼ ω̂α

K̂
; ωα

D ¼ ω̂α
D; ωαβ

J ¼ ω̂αβ
J : ð5:59Þ

These are all satisfied by the following change of coor-
dinates on the coset,

yμ ¼ xμ − L2e−ϕλμ; eπ ¼ eϕ

1 − L2λ2
; ξμ ¼ λμ;

ð5:60Þ

or inversely,

xμ ¼ yμþL2
e−π

1−L2ξ2
ξμ; eϕ ¼ð1−L2ξ2Þeπ; λμ ¼ ξμ:

ð5:61Þ

The transformation of the measure is (the hatted metric is
the dS metric),

ffiffiffiffiffiffi
−g

p
dDy ¼ det ðδνμ − L2DμΛνÞ

ffiffiffiffiffiffi
−ĝ

p
dDx; ð5:62Þ

and the transformation of the invariant building block is

ðδγβ − L2DβΛγÞDγξ
α ¼ DβΛα; ð5:63Þ

or in matrix notation,

5The numerical values in our matrices (5.54) and (5.55) differ
from those in [32] due to our different choices for normalizing the
Lagrangians. We agree with their values when changing to their
normalizations.
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Dξ ¼ 1

1 − L2DΛ
DΛ; DΛ ¼ 1

1þ L2Dξ
Dξ: ð5:64Þ

The transformations from dS to Weyl Galileons is

0
BBBBBBBB@

LðdSÞ
1

LðdSÞ
2

LðdSÞ
3

LðdSÞ
4

LðdSÞ
5

1
CCCCCCCCA

¼

0
BBBBBBBB@

−1 − 1
2

− 1
8

− 1
48

− 1
384

4 1 0 − 1
24

− 1
96

−16 −2 0 − 1
12

− 1
24

0 12 0 − 1
2

0

48 30 0 5
4

1
8

1
CCCCCCCCA

0
BBBBBBBB@

LðWeylÞ
1

LðWeylÞ
2

LðWeylÞ
3

LðWeylÞ
4

LðWeylÞ
5

1
CCCCCCCCA
;

ð5:65Þ

and the inverse is

0
BBBBBBBB@

LðWeylÞ
1

LðWeylÞ
2

LðWeylÞ
3

LðWeylÞ
4

LðWeylÞ
5

1
CCCCCCCCA

¼

0
BBBBBBBB@

0 1
8

− 5
128

− 1
96

− 1
384

0 0 1
16

1
24

1
48

−8 0 1
8

0 − 1
8

0 0 3
2

−1 1
2

0 −48 −15 4 −1

1
CCCCCCCCA

0
BBBBBBBB@

LðdSÞ
1

LðdSÞ
2

LðdSÞ
3

LðdSÞ
4

LðdSÞ
5

1
CCCCCCCCA
:

ð5:66Þ

F. Mapping AdS to dS

The mapping from AdS to dS Galileons can now be
obtained by composing the map from AdS to Weyl and the
map from Weyl to dS. The result is

0
BBBBBBBB@

LðdSÞ
1

LðdSÞ
2

LðdSÞ
3

LðdSÞ
4

LðdSÞ
5

1
CCCCCCCCA

¼

0
BBBBBBBB@

1 0 1
8

0 1
24

0 1 0 1
6

0

0 0 3
2

0 1
6

0 0 0 1 0

0 0 − 15
2

0 − 3
2

1
CCCCCCCCA

0
BBBBBBBB@

LðAdSÞ
1

LðAdSÞ
2

LðAdSÞ
3

LðAdSÞ
4

LðAdSÞ
5

1
CCCCCCCCA
; ð5:67Þ

and the inverse is

0
BBBBBBBB@

LðAdSÞ
1

LðAdSÞ
2

LðAdSÞ
3

LðAdSÞ
4

LðAdSÞ
5

1
CCCCCCCCA

¼

0
BBBBBBBB@

1 0 1
8

0 1
24

0 1 0 − 1
6

0

0 0 3
2

0 1
6

0 0 0 1 0

0 0 − 15
2

0 − 3
2

1
CCCCCCCCA

0
BBBBBBBB@

LðdSÞ
1

LðdSÞ
2

LðdSÞ
3

LðdSÞ
4

LðdSÞ
5

1
CCCCCCCCA
: ð5:68Þ

In terms of the coefficients ci, di of the general Lagrangians
(2.12), (3.10) this map becomes the maps (4.1), (4.2) which
preserves the S-matrix elements that we computed. These

maps preserve the tadpole vanishing conditions (2.13),
(3.11), confirming that the map preserves the vacuum
solution ϕ ¼ 0. They also preserve the kinetic normaliza-
tion constant Z in (2.14), (3.12) once the tadpole conditions
are enforced, confirming that they are indeed perturbative
field redefinitions.

VI. DISCUSSION

We have studied the DBI theory in which a flat brane is
embedded into a standard AdS bulk or a dS bulk with two
time dimensions. These two bulks have the same isometry
algebra, and in both cases the symmetry breaking pattern is
the same. Although the dS theory has a wrong sign DBI
action due to the timelike extra dimension, we find that the
two theories are nevertheless equivalent, related by an
invertible field redefinition that we constructed by general-
izing the “AdS/CFT equivalence transformation” of [11]
(which we could thus also call a “dS/CFT equivalence
transformation”). This confirms, despite the seemingly
different physical setups, the expectation that an effective
field theory is determined solely by its degrees of freedom
and symmetry breaking pattern. In particular, it confirms
that there is a unique EFT for conformal symmetry
breaking [51], which we have seen can take the form of
a(n) (A)dS-DBI theory, Weyl/dilaton theory, or any of the
infinite other possible ways of parametrizing the coset. The
Weyl/dilaton theory has the advantage that the derivative
power counting is manifest in the Lagrangians, whereas the
(A)dS-DBI parametrizations make explicit the geometric
realization of the symmetry breaking, albeit in different
geometries with different numbers of time dimensions.
We considered only cases where the brane is flat, so that

we could study S-matrix elements of the theory, but a
similar story should also go through for the DBI theories in
which a curved brane is embedded into a(n) (A)dS bulk
[23,52–54].
Physics in a spacetime with more than one time

dimension is often considered to be pathological for various
reasons, such as a lack of causality, unitarity, stability, well-
posedness, etc. (see e.g. [55,56] for overviews). However,
even if such pathologies are unavoidable, it can be asked
whether scenarios with extra dimensions might allow for
timelike extra dimensions, with our four-dimensional uni-
verse containing only a single time direction, in such a way
that the pathologies associated to the extra times are
sequestered safely away from our Universe. Such higher
dimensional scenarios with extra time dimensions have
been considered before [57–67], with varying answers as to
whether the supposed pathologies manifest themselves in
our four dimensions or remain confined in the extra
dimensions.
The equivalence we studied here is an example where the

on-brane physics of a fixed bulk spacetime with two time
dimensions is indistinguishable from that of a spacetime
with one time dimension, which implies there should be no
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pathology associated with the extra time dimension. One
could argue that this is because the extra dimension is
nondynamical, and thus essentially a formal device for
implementing the desired symmetries (as in e.g. 2T physics
[68] or F-theory [69], or bulk Chern-Simons-like theories
that are introduced to describe the physics of chiral
anomalies, in which case the bulk has no metric at all,
much less a signature). Thus our conclusion would likely
change once the bulk becomes dynamical in any way, as for
example in Dvali-Gabadadze-Porrati [70] or Randall-
Sundrum [71] type setups. In these cases all the issues
associated with two-time physics would presumably mani-
fest themselves. It may be interesting to study this in more

detail, and it may also be interesting to study some
intermediate cases where one keeps the bulk nondynamical
but gives dynamics to the brane geometry, either through
the induced metric as in [24] or via an additional dynamical
metric as in [33].
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