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We highlight some universal features concerning the role of spacetime curvature in the entanglement
induced between quantum probes coupled to a quantum field in a suitable vacuum state. The probes are
initially causally disconnected and nonentangled. We explore the parameter space fω; d0; v0g spanned by
the energy gap ω of the detectors, and the initial values of separation distance d0 and relative velocity v0,
both covariantly defined in arbitrary curved spacetime. We also obtain numerical results in de Sitter
spacetimes and use these to explore strong curvature regime, while also corroborating our perturbative
results in arbitrary curved spacetime. Our analysis shows that curvature can induce entanglement features in
certain regions of the above parameter space, in a manner which facilitates using entanglement as a probe of
spacetime curvature.
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I. INTRODUCTION

Entanglement—one of the key features of quantum
mechanics—is also of fundamental importance in studying
phenomena at the interface of gravity and quantum physics.
Such an interface has conventionally been associated with
the domain of quantum gravity, but of course it does not
have to be. Interesting aspects associated with the study of
low energy quantum systems in nonsingular curved back-
grounds can in fact provide significant insights into what
one might expect in the extreme, quantum gravitational
conditions. Work along these lines has gained considerable
attention over the past decade, particularly in the light of
universal role that gravity might play in quantum processes
such as decoherence and entanglement [1], and the question
of whether this has any implication for the quantum nature
of gravity [2,3]. In this work, we will focus on identifying
how entanglement between quantum probes, mediated
through their coupling to a quantum field, is affected by
spacetime curvature. A deeper question we would like to
ask is whether a measure of entanglement can be used to
reconstruct the curvature of spacetime. This would be in the
spirit of the broader formalism, developed by one of us and
collaborators, which aims to describe spacetime in terms of
nonlocal, bi-tensorial objects such as Synge world function
and correlators; for recent reviews and relevant references,
see [4,5].
Unruh-de Witt (UdW) detectors provide the simplest and

the most operational way to study such effects. It is well

known that individual UdW detectors probe vacuum
fluctuations of the quantum field which they are coupled
to. When a pair of such detectors are employed, entangle-
ment in the vacuum of the quantum field can be transferred
to that between the two detectors. What makes this latter a
more operationally and conceptually appropriate probe
of the structure of quantum field vacuum is that the
entanglement induced in detectors can be nonzero even
for two inertial detectors coupled to a field in Minkowski
vacuum [6,7]. (A single such detector would not respond at
all.) Using two detectors as a probe of vacuum entangle-
ment is an idea first introduced by Reznik [8], and has since
been extensively studied in the literature. (It is also referred
to as “entanglement harvesting” in the literature [6,9–11].)
Many of these works have studied the nature of entangle-
ment induced in the detectors for various scenarios, such as
the effects of motion of the detectors [12–17], the effects of
presence of a thermal bath [18–20], the dependence on
spacetime dimensions [7], and the effect of a passing
gravitational wave [21–23]. In a related but different
context, radiative processes involving entangled detectors
have also been extensively studied [24–33].
However, the effect of background curvature in all its

generality, explicitly in terms of the Riemann tensor, has
not been studied so far. This is important since any
entanglement dynamics involving the detector-field system
will be affected by the background curvature, both explic-
itly, via additional terms in the vacuum two-point corre-
lators, and implicitly, through the geometrical quantities
appearing in the correlators pulled back onto the detector
trajectories. One might expect to gain some insight by
restricting to a special class of background spacetimes,
taken as some exact solution of Einstein equations which is
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simple enough for the analysis to be tractable and yield
analytical results [34–36]. Evidently, such attempts are
limited by the fact that the choice of a specific solution
hides the manner in which Riemann curvature explicitly
appears and affects the final results, thereby yielding only
limited insights. We will comment further on these works
vis-a-vis our results in the final section. In this work, we
will set-up the problem directly in terms of Riemann tensor
components, thereby highlighting explicitly their role in
various measures of entanglement, and uncovering inter-
esting universal features even from a perturbative analysis.
Wewill briefly describe here the key features of the setup

conventionally used to examine the possibility of two
uncorrelated detectors getting entangled over time and
then quantify the measure of this entanglement. The
simplest such probes of vacuum structure of a quantum
field are the Unruh-DeWitt detectors, originally (and still
widely) used to demonstrate and understand various
aspects of the Unruh effect [37]. A study of entanglement
involves two such detectors, 1 and 2, interacting with a
massless background scalar field ϕðxkÞ. We will assume
these detectors to be two-level systems with ground state
jgi, an excited state jei, with energy difference ω between
them. The interaction action of this detector-field system is
taken as

Aint ¼
Z

c0χðτÞm1ðτÞϕðx1ðτÞÞdτ

þ
Z

c0χðsÞm2ðsÞϕðx2ðsÞÞds: ð1Þ

Here, χ is the switching function, and m1;2 represent the
monopole operators of the detectors. Let jini be the product
state in the asymptotic past, jini ¼ j0ijgi1jgi2. Here, j0i is
the vacuum state of the field. In the asymptotic future, the
state will evolve into, jouti ¼ TfeiAint jinig, with T being
the time ordering operator. The reduced density matrix
corresponding to the detector system is obtained by tracing
over all the final field states, i.e., ρ12 ¼ Trϕjoutihoutj.
Introducing c0 as a bookkeeping variable for the interaction
strength, one can express the reduced density matrix in the
bases fjgi1jgi2; jei1jgi2; jgi1jei2; jei1jei2g (Ref. [6]) as

ρ12¼

2
666664

1−c20ðP1þP2Þ 0 0 c20E
�

0 c20P1 c20P12 0

0 c20P12 c20P2 0

c20E 0 0 0

3
777775
þOðc40Þ:

ð2Þ

For understanding entanglement, the quantities we will
need are P1, P2, and E [6], and these are given by

P1 ¼ jhejm1ð0Þjgi1j2I1 ðsimilarly for 2Þ ð3aÞ

E ¼ hejm2ð0Þjgi2hejm1ð0Þjgi1Iε ð3bÞ

where

I1 ¼
Z

∞

−∞
dτ0

Z
∞

−∞
dτχðτÞχðτ0Þeiωðτ−τ0ÞGWðx1ðτ0Þ; x1ðτÞÞ

ð4aÞ

iI ε ¼
Z

∞

−∞
ds

Z
∞

−∞
dτχðτÞχðsÞeiωðτþsÞGFðx2ðsÞ; x1ðτÞÞ:

ð4bÞ

Here, GWðx0; xÞ is the Wightmann function, and
GFðx2; x1Þ is the Feynman propagator. The quantities
P1;2 are local to each detector, and correspond to individual
detector responses, whereas E represents the nonlocal
correlation between the detectors.
Now according to [38], a state is entangled if the partial

transposition of the relevant density matrix has at least one
negative eigenvalue. With the reduced detector density
matrix from Eq. (2), this requirement leads to the condition:

P1P2 < jE j2 ð5Þ

which can be rewritten as

I1I2 < jIεj2 ð6Þ

where, I1 and I2 are the individual detector responses. The
above condition can be used to analyze the possibility of
two Unruh-DeWitt detectors coupled to a free scalar field
getting entangled. It is worth highlighting that the nonlocal
term (rhs) above depends on the Feynman propagator,
while the individual responses (lhs) depend on the
Wightman function.
Several measures quantify the entanglement induced

between the detectors by providing a bound on this
entanglement in the system. For example, entanglement
negativity N ðρ12Þ is defined as the sum of all negative
eigenvalues of the partial transpose of the density matrix
ρ12. One can also define the logarithmic negativity
log2 ðN ðρ12Þ þ 1Þ, see [6], which provides an upper bound
on the induced entanglement. Another very relevant mea-
sure of entanglement is concurrence Cðρ12Þ [6]. With the
reduced density matrix from Eq. (2), we have the expres-
sions for the negativity and the concurrence (to lowest order
in perturbation, up to c20 terms), respectively as

N ðρ12Þ ¼ c20
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðP1 − P2Þ2 þ 4jE j2
q

− P1 − P2

i
=2 ð7aÞ

Cðρ12Þ ¼ 2c20
�jE j − ffiffiffiffiffiffiffiffiffiffiffi

P1P2

p �
: ð7bÞ
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The expression of the monopole moment operator (for
each detector) is given by

mð0Þ ¼ jeihgj þ jgihej: ð8Þ

Then one can observe that the expectation values of these
operators as used in Eq. (3) is hejmð0Þjgi ¼ 1. Utilizing
this observation, in the special scenario of I1 ¼ I2 ¼ I ,
one can express the negativity and the concurrence as
N ðρ12Þ ¼ Cðρ12Þ=2 ¼ ½jI εj − I �c20, taking terms up to
Oðc20Þ. This is the case that we shall encounter in our
system. Therefore, it is convenient to define negativity
specifically as N ð2Þ ¼ jIεj − I to denote a measure of the
entanglement in our system.
The rest of the manuscript is organized as follows: In

Sec. II, we provide a description for some of the quantities
in curved spacetime, like Green’s functions in terms of the
geodesic distance, that are essential in realizing the phe-
nomenon of entanglement. In the subsequent Sec. III A, we
study the nature of negativity in a generalized curved
spacetime with a relatively small curvature compared to the
distance between the two detectors, i.e., the curvature
length scale is larger than the initial separation between
the detectors. Following in Sec. III B, we consider the
maximally symmetric de Sitter background and investigate
the characteristics of negativity. In Sec. IV, we describe
how our results quantifying the effect of curvature on
entanglement can be utilized as a tool to probe curvature of
arbitrary spacetime, in the spirit of the comment made at the
end of the first paragraph of this section. We discuss our
observed outcomes regarding negativity in a de Sitter
background and elucidate their physical interpretations in
Sec. V. Finally, we summarize with a concluding discussion
in Sec. VI.

II. GEOMETRIC ASPECTS OF QUANTUM
PROBES COUPLED TO A QUANTUM FIELD IN

CURVED SPACETIME

As elucidated in the previous section, the criteria for
entanglement from Eq. (6) and its quantification depends
on two specific kinds of terms in the expression for
negativity: the local terms involving I1;2 that denote
individual detector transition probabilities, and the nonlocal
term I ε that signifies the correlation between the two
detectors. To obtain explicit expressions of these quantities,
an understanding of different types of the Green’s functions
is necessary. These Green’s functions will again contain the
information about the detector trajectories and the back-
ground in them. In this section, we intend to provide
general expressions of the Green’s functions in curved
background. In particular, we shall start by providing a
general expression for the geodesic interval between two
geodesic detectors and delineate the necessary Green’s
functions in terms of this geodesic distance. In this section,

we shall also discuss the curved background’s causal
structure and compare it to the Minkowski spacetime.
As we will see, it has a close correspondence with the
nature of the Green’s functions.

A. Geodesic interval between two detectors
in curved spacetime

The geometric set-up and kinematical parameters asso-
ciated with two detectors (timelike curves) is described in
Fig. 1. To obtain the geodesic interval between the two
detectors, we construct Fermi normal coordinates (FNC)
along the curve C 1 and identify the point on curve C 2 by
sending out space-like geodesics orthogonal to curve C 1.
Let the first detector follows the curve C 1 with proper time
τ and be at A and the second detector follows the curve C 2

with proper time s be at B. Let τ02 be the time component of
the FNC on C 1 of the detector B at B0. Now, the geodesic
interval between A and B can be expressed as a series
expansion in terms of the spacelike geodesic interval
between B and B0, and the geodesic interval between A
and B0. The point O with τ ¼ 0 provides the Cauchy data.
Employing a generalized variant of an expansion scheme
proposed by Synge, we can obtain the geodesic interval
between arbitrary events A and B on the two probe
trajectories using coincidence limits of covariant deriva-
tives of Synge’s world function. This rather long calcu-
lation is described in Appendix A. We introduce the unit
vector ξα (representing direction cosines) defined by
Xαð0Þ ≔ d0ξα where, ξα (the directional cosines) satisfy
ηαβξ

αξβ ¼ 1, and the parallel and perpendicular

FIG. 1. Schematic diagrams for two pointlike detectors in
geodesic trajectories in general curved spacetime. In left we
depict the two detectors as denoted by ui1 and ui2. On the τ ¼ 0
hypersurface, the shortest distance between these detectors is d0.
Note the angle between this distance and the velocity vector of the
second detector is θ. On the right, we depict the same scenario,
which now corresponds to the construction of the Fermi coor-
dinates for the two detectors with respect to the trajectory of
detector A. Here, ΩAB ≡ ΩG, ΩAB0 ≡ ΩG0 , and ΩB0B ≡ ΩGs. Also
note that ΩGsðτ ¼ 0Þ ¼ d0 denotes the separation between the
two detectors at the τ1 ¼ 0 hypersurface.
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components of initial vα0 with respect to ξα by
vα0 ¼ vjjξα þ v⊥nα, with nα an arbitrary unit vector in
the 2-plane orthogonal to ξ (and, of course, u1). (Note
that vjj ¼ v0 cos θ and v⊥ ¼ v0 sin θ.)
The final expression in terms of these quantities can be

written in a compact form

−σ2G ¼ Δτ2G ¼ ðτ02 − τÞ2fðτ02Þ − gðτ02Þ þOð∇R;R2Þ ð9Þ

where the auxiliary functions fðτ02Þ and gðτ02Þ are
given by

fðτ02Þ ¼ 1þ 1

3

�
Rξ0ξ0d20 þ 2d0ðRξ0ξ0vjj þ Rξ0n0v⊥Þτ02 þ ðRξ0ξ0v2jj þ 2Rξ0n0vjjv⊥ þ Rn0n0v2⊥Þτ022

� ð10aÞ

gðτ02Þ ¼ ðd20 þ v20τ
02
2 þ 2d0vjjτ02Þ þ d20

�
2

3
Rnξ0ξv⊥ − Rξ0ξ0 þ

1

3
Rnξnξv2⊥

�
τ022

−
4

3
d0ðRξ0ξ0vjj þ Rξ0n0v⊥Þτ032 −

1

3
ðRξ0ξ0v2jj þ 2Rn0ξ0vjjv⊥ þ Rn0n0v2⊥Þτ042 : ð10bÞ

To improve readability, we have introduced the follow-
ing compact notation: Rξ0ξ0 ≔ Rαiβjξ

αξβuiuj; Rξ0n0 ≔
Rαiβjξ

αnβuiuj; Rnξ0ξ ≔ Rαμiνnαξμξνui and so on for the
other Riemann tensor components.
It is easy to recover the following results from the above

expression:
Flat spacetime:

Δτ2G ¼ ðτ02 − τÞ2 − �ðd0 þ vkτ02Þ2 þ v2⊥τ022
� ð11Þ

Initially static detectors; v0 ¼ 0:
When v0 ¼ 0, the above equation simplifies to

Δτ2G ¼ ðτ02 − τÞ2
�
1þ 1

3
Rξ0ξ0d20

�
− d20

�
1þ Rξ0ξ0τ

02
2

� ð12Þ

To compute the nonlocal term in entanglement measures,
we also need to map the proper time s of trajectory C 2 to
the Fermi time τ02 based on C 1’s trajectory. This is best
done using the Fermi metric, and the derivation is given in
Appendix A. The final result is

s ¼ τ02
γ0

þ γ0
2
τ02

�
h1ðv0; d0Þ þ τ02

	
d0h2ðv0; d0Þ

þ τ02
3
h3ðv0; d0Þ


�
þOðR2;∇RÞ: ð13Þ

where, γ0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v20

p
and h1, h2, h3 are given in

Appendix A. When the initial velocity of the second
observer measured with respect to the first one’s FNC
vanishes, we have v0 ¼ 0 and also vjj ¼ 0 ¼ v⊥. In that
scenario, the relation between s and τ02 boils down to
s ¼ τ02ð1þ Rξ0ξ0d20=2Þ. We also mention that to obtain the
expression of Eq. (13), we have resorted to expanding γ
from (A14) perturbatively, assuming small curvature terms.
Let us also consider s ¼ τ02=γ̄, where the expression of γ̄ is
evident from the previous equation.

B. Green’s function in Hadamard representation

The Hadamard representation of the Feynman propaga-
tor [39,40] for KG equation of massless scalar field in 4
dimensions is given by,

GFðx; x0Þ ¼
i

4π2

�
Δ1=2

σ2ðx; x0Þ þ iϵ
þ Vnðx; x0Þ ln ðσ2ðx; x0Þ þ iϵÞ þWnðx; x0Þ

�
: ð14Þ

Here, the functions, Vnðx; x0Þ and Wnðx; x0Þ are expressed as series, Vnðx; x0Þ ¼
P∞

n¼0 vnðx; x0Þσ2nðx; x0Þ,
Wnðx; x0Þ ¼

P∞
n¼0 wnðx; x0Þσ2nðx; x0Þ, and −ð1=2Þσ2ðx; x0Þ≡ Ωðx; x0Þ is half the square of geodesic distance also known

as Synge’s world function [41].
Similarly, for the Wightman function we use the form [42],

Gþðx; x0Þ ¼ 1

4π2

�
Δ1=2

σ2ϵðx; x0Þ
þ Vnðx; x0Þ ln ðσ2ϵðx; x0ÞÞ þWnðx; x0Þ

�
: ð15Þ

Here, σ2ϵ ≔ σ2ðx; x0Þ þ iϵ½TðxÞ − Tðx0Þ� þ ϵ2, with TðxÞ being any global time function that increases toward the future and
other parameters are similar to that defined for the Feynman propagator.
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The Hadamard coefficient, Vnðx; x0Þ obeys certain recur-
sion relation with specific boundary condition and can be
solved, whereas the boundary condition W0ðx; x0Þ for
Wnðx; x0Þ is not restrained by the recursion relations. But
theHadamard coefficients,Wnðx; x0Þ can be determined once
W0ðx; x0Þ is specified. For our evaluation of the integral, we
are interested in the leading 1=σ2 term since this term
determines the pole structure of the Feynman propagator,
and Δ1=2 will not contribute to the poles. We also approxi-
mate,Δ1=2 ≈ 1. Hence, the geodesic interval between the two
detectors is required to evaluate the Feynman propagator.
The van Vleck determinant:
For both single detector probability and nonlocal term in

the density matrix, the Hadamard form of the Wightmann
function and the Feynman propagator have van Vleck
determinant in the expression. The van Vleck determinant
can be expanded in terms of geodesic distance as in Ref. [43],

Δ1=2¼1þ 1

12
Rabσ

aσb−
1

24
∇cRabσ

aσbσcþOðσ4Þ ð16Þ

Note that σaðx; x0Þ ¼ −ðΔτgeodÞua, where Δτ is the
geodesic interval and ua is the tangent vector of the
geodesic. When this expansion is used in the Hadamard
form,

Δ1=2

4π2σ2ϵ
≈

1

4π2σ2ϵ
þ ð1=12ÞRabσ

aσb

4π2σ2ϵ
þOðσ3Þ

≈
1

4π2σ2ϵ
þ ð1=12ÞRuuσ

2

4π2σ2ϵ
þOðσ3Þ

Hence the contribution from the curvature through the
van Vleck determinant will be only an additive constant.

The additional corrections from derivatives of curvature
and higher-order terms in the curvature are ignored.

C. Causal structure and the nature of entanglement
induced between the probes

The nonlocal entangling term from Eq. (4b) will depend
on different parameters such as d0; v0; θ, and different
curvature components. To compare the contribution of
genuine entanglement and entanglement through field-
mediated communication channel, we express the nonlocal
term in the form

I ε ¼ −Iþ
ε − I−

ε ; ð17Þ
where Iþ

ε and I−
ε depend exclusively on the expectation

values of the field anticommutator and field commutators.
The part I−

ε depending on the field commutator, is
considered in the literature to signify the entanglement
due to the causal connection. Whereas Iþ

ε corresponds to
the contribution that signifies entanglement in the true
sense. In particular, these quantities can be explicitly
expressed in terms of the Wightman functions GWðū; v̄Þ as

Iþ
ε ¼ 1

2

Z
∞

−∞
dū

Z
∞

−∞
dv̄eiωvχAðū; v̄ÞχBðū; v̄ÞRe½GWðū; v̄Þ�;

ð18aÞ

I−
ε ¼ 1

2

Z
∞

−∞
dū

Z
∞

−∞
dv̄eiωvχAðū; v̄ÞχBðū; v̄Þ

×
�
1þ 2ΘðūÞ�Im�

GWðū; v̄Þ
�
: ð18bÞ

Here, ΘðūÞ denotes the Heaviside step function, which
arrives from the decomposition of the Feynman propagator

FIG. 2. The overlap of the causal diamond formed between the switch on and switch off time for each detector determines the
contribution from genuine entanglement and field-mediated communication. We will choose our parameter values for the detector setup
such that this overlap is minimal but the value of negativity is large enough to see the effects due to curvature.
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in terms of time-ordered Wightman functions, e.g.,
iGFðx; x0Þ ¼ Θðt − t0ÞGWðx; x0Þ þ Θðt0 − tÞGWðx0; xÞ. In
the special case, when under the transformation of v̄ →
−v̄ the quantities χAðū; v̄Þ, χBðū; v̄Þ, and GWðū; v̄Þ remain
unchanged, the above two quantities I�

ε are simply
given by

Iþ
ε ¼ Re½I ε�; and I−

ε ¼ Im½I ε�: ð19Þ

The Wightman function in Minkowski spacetime with the
Gaussian switching satisfies this condition. Furthermore,
we shall see that the Wightman function is de Sitter back-
ground also satisfies this condition.
On the other hand, in situations when at least one of the

quantities χAðū; v̄Þ, χBðū; v̄Þ, or GWðū; v̄Þ is not invariant
under the transformation of v̄ → −v̄, one cannot simply use
the expressions from Eq. (19) for the evaluation of I�

ε . In
this scenario, one should use the general expressions from
Eq. (18). We should mention that the Green’s functions in a
generalized curved background with the geodesic interval
from Eq. (9) do not remain invariant under the aforemen-
tioned transformation. Therefore, when investigating the
entanglement in a generalized curved spacetime, one has to
use the expressions from Eq. (18) to understand the natures
of I�

ε .
Furthermore, as discussed in [10,11] one can define suit-

able quantities denoting the spacelike and communication-
based entanglement as

N � ¼ jI�
ε j − I : ð20Þ

Here also, the superscript 0 þ 0 or 0 − 0 respectively corre-
spond to the spacelike and communication channel-medi-
ated entanglement. In the later part of our present analysis,
we shall observe how the light-cone diagrams from Figs. 2
and 3 are closely related and give a physical interpretation to
the quantitative values of these specific components N �.
The commutator and anti-commutator can be used to

characterize the entanglement through field-mediated com-
munication channels and the entanglement through non-
local correlations. The contribution from these correlators
will depend on the causal structure of the spacetime and the
given detector configuration. The overlap of the causal
diamonds D1;2 determined by the switching functions (see
Figs. 2, 3) can be used to estimate these contributions. Any
nonzero intersection of the causal diamonds would indicate
possible entanglement due to the communication channel
will be present. Hence, if the detectors are placed far apart
to ensure there is little to no overlap between causal
diamonds, the genuine entanglement can be obtained.

III. MATHEMATICAL DETAILS FOR
COMPUTING THE ENTANGLEMENT

A. General curved spacetime

As discussed previously, the formulation to understand
the effects of tidal curvature on entanglement constrains the
interaction time between the detectors and the background
field. Then it will be suitable to consider a specific
switching function χðτÞ, through which we can implement
this constraint. In particular, introducing a nontrivial

FIG. 3. The above figure represents schematic diagrams for the causal structure in a general curved background with two different
detector trajectories. We have used Fermi normal coordinates to represent the curves and light cones to compare it with Minkowski. As
the distance and time progresses, the curved spacetime light cones deviate from the Minkowski light cones. We also observe that the two
detector trajectories move away from each other due to curvature. With finite switching, the first detector A can access a lesser portion of
the light cone on the trajectory of detector B as it moves away.

K, BARMAN, and KOTHAWALA PHYS. REV. D 109, 065017 (2024)

065017-6



switching function will complicate the computations, but it
will provide physically more relevant and consistent results
with the mathematical formulations. In this regard, we
consider the Gaussian switching χðτÞ ¼ e−τ

2=T̄2

, and shall
evaluate the local I and nonlocal I ε terms in entanglement.
The local and nonlocal terms in negativity:
Evaluation of I :
Let us first evaluate the local terms I in the concurrence,

which corresponds to the individual detector transition
probabilities. We take the expression of this integral from
Eq. (4a), and shall be using the Gaussian switching
functions in its evaluation. One can notice that the integral
looks simplified with a change of variables to u ¼ τ0 − τ
and τ. In particular, with this change of variables, this
integral looks like

I ¼ −
1

4π2

Z
∞

−∞
dτ

Z
∞

−∞
du

e−iωu

ðu − iϵÞ2 e
−½τ2þðτþuÞ2�=T̄2

: ð21Þ

Here the τ integral is easily doable and results in

I ¼ −
1

4π2

ffiffiffi
π

2

r
T̄
Z

∞

−∞
du

e−½iωuþu2=ð2T̄2Þ�

ðu − iϵÞ2 : ð22Þ

To analytically perform this last integral, we specifically
Fourier transform the factor e−u

2=ð2T̄2Þ ¼ T̄=ð ffiffiffiffiffiffi
2π

p ÞR∞
−∞ dκeiκu−κ

2T̄2=2. Then we shall get a factor of eiðκ−ωÞu

in the numerator and ðu − iϵÞ2 in the denominator. The
integral will have a pole of order two at u ¼ iϵ. This
integral can be performed through contour integration, with
nonvanishing contributions when the contour is taken in
the upper half complex plane. When we take the contour in
the upper half complex plane, we must satisfy κ − ω > 0
for the damping of other integration. This leads to the
expression:

I ¼ −
T̄2

8π2

Z
∞

ω
dκe−κ

2T̄2=2ðiðκ − ωÞeωϵ−κϵÞ2πi

≃
T̄2

4π

Z
∞

ω
dκe−κ

2T̄2=2ðκ − ωÞ: ð23Þ

After carrying out this integration over κ, we get

I ¼ 1

4π

�
e−ω

2T̄2=2 −
ffiffiffi
π

2

r
ωT̄Erfc

�
ωT̄ffiffiffi
2

p
��

: ð24Þ

Here one can notice that with the use of the identity
ErfcðzÞ ¼ Γð1=2; z2Þ= ffiffiffi

π
p

, this expression matches exactly
with the one provided in [44]. Thus we have obtained that
the integrals I are nonvanishing with finite switching, and
they depend on the form of the window function. This
expression will be used in the expression Eq. (7a) along
with the nonlocal terms Iε to investigate the entanglement

measure negativity. It should be noted that in the infinite
interaction time limit, i.e., when T̄ → ∞, the entire I
from Eq. (24) vanishes (as T̄ErfcðωT̄= ffiffiffi

2
p Þ ∼ e−ω

2T̄2=2 when
T̄ → ∞), providing the usual eternal interaction result for
the inertial detectors.
Evaluation of the nonlocal term I ε:
Now let us focus on evaluating the nonlocal entangling

term Iε using the Gaussian switching function
χðτÞ ¼ e−τ

2=T̄2

. In this regard, the Hadamard form of the
Feynman propagator from Eq. (14) with the expression of
the geodesic distance (9), is used in the integral of Eq. (4b).
We should mention that here providing a final analytical
expression does not seem possible. However, we have tried
to obtain as much analytical results as possible and then
numerically evaluate the final form of the integral I ε. For
the simplicity of calculation, we consider two identical
detectors, i.e., ω1 ¼ ω2 ¼ ω, and then the concerned
integral can be represented as

Iε¼
1

4π2

Z
∞

−∞

dτ02
γ

Z
∞

−∞
dτ

eiωðτþτ0
2
=γ̄Þ

½σ2Gðτ02−τ;τ02Þþiϵ�e
−τ2=T̄2

e−τ
02
2
=ðγ̄2T̄2Þ:

ð25Þ

We take the geodesic distance between the detectors
σ2Gðτ02 − τ; τ02Þ from Eq. (9), which was expressed in a
form, σ2G ¼ −ðτ02 − τÞ2fðτ02Þ þ gðτ02Þ. We consider a change
of variables τ02 − τ ¼ ū and τ02 ¼ τ̄, similar to the one done
in the previous case for evaluating I j. To perform the

integration over ū we express the factor e−ðū−τ̄Þ2=T̄2

in the
integral in terms of Fourier transform, i.e., e−ðū−τ̄Þ2=T̄2 ¼
T̄=ð2 ffiffiffi

π
p Þ R∞

−∞ dκeiκðū−τ̄Þ−κ2T̄2=4. The resulting integral looks
like

I ε ¼
T̄

8π2
ffiffiffi
π

p
Z

∞

−∞

dτ̄e−τ̄
2=ðγ̄2T̄2Þ
γ

×
Z

∞

−∞
dκe−κ

2T̄2=4eifωð1þ1=γ̄Þ−κgτ̄

×
Z

∞

−∞
dū

eiðκ−ωÞū

fðτ̄Þū2 − gðτ̄Þ − iϵ
: ð26Þ

This integral has poles at ū ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðτ̄Þ þ iϵ

p
=

ffiffiffiffiffiffiffiffi
fðτ̄Þp

of order
one, which is respectively in the upper and lower half
complex plane depending on the “þ” or “−” sign.When the
κ > ω, one should consider a contour in the upper half
complex plane and the pole ū ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðτ̄Þ þ iϵ
p

=
ffiffiffiffiffiffiffiffi
fðτ̄Þp

would
contribute to the nonvanishing integral. Let us denote this
pole as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðτ̄Þ þ iϵ

p
=

ffiffiffiffiffiffiffiffi
fðτ̄Þp ¼ ū0ðτ̄Þ.Whereas, when κ < ω,

one should consider a contour in the lower half complex
plane and the pole ū ¼ −ū0ðτ̄Þ contributes to the nonzero
integral. Therefore we will have the expression of the
previous integral as
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I ε ¼
2πiT̄
8π2

ffiffiffi
π

p
Z

∞

−∞

dτ̄e−τ̄
2=ðγ̄2T̄2Þ
γ

eiωð1þ1=γ̄Þτ̄
�Z

∞

ω
dκ e−κ

2T̄2=4e−iκτ̄
eiðκ−ωÞū0ðτ̄Þ

2fðτ̄Þū0ðτ̄Þ
þ
Z

ω

−∞
dκ e−κ

2T̄2=4e−iκτ̄
e−iðκ−ωÞū0ðτ̄Þ

2fðτ̄Þū0ðτ̄Þ
�
: ð27Þ

After carrying out these integrations over κ, the entire nonlocal term I ε looks like

I ε ¼
iT̄

4π
ffiffiffi
π

p
Z

∞

−∞

dτ̄e−τ̄
2=ðγ̄2T̄2Þ
γ

eiωð1þ1=γ̄Þτ̄

T̄fðτ̄Þū0ðτ̄Þ
�
iπ3=2 exp

�
−
ū0ðτ̄Þð2τ̄ − iT̄2ωÞ þ τ̄2 þ ū20ðτ̄Þ

T̄2

�

×

	
Erf

�
2iū0ðτ̄Þ þ 2iτ̄ þ T̄2ω

2T̄

�
þ Erfc

�
−2iū0ðτ̄Þ þ 2iτ̄ þ T̄2ω

2T̄

�
exp

�
2ū0ðτ̄Þð2τ̄ − iT̄2ωÞ

T̄2

�
þ 1


�
: ð28Þ

We could not find an analytical result for this integral.
However, one can always do a numerical analysis, and here
also, we have numerically evaluated this integral.
Initially static detectors ðv0 ¼ 0Þ:
Let us first consider the case when the initial coordinate

velocity of the detector B in the frame of detector A is zero.
In flat spacetime, this corresponds to two static detectors
separated by a distance, d0. Since the detectors are static,
the separation distance will not change for a flat spacetime
configuration. But when these detectors are placed in
curved spacetime, the curvature of the spacetime will
produce deviation between the initially static detectors.
For v0 ¼ 0, the only curvature tensor component in the
expression for geodesic distance (9) will be Rξ0ξ0.
We define Rξ0ξ0 ≔ k1 and to make the approximations

valid, we are choosing the parameter range in the order,
T̄ ∼ d0; T̄ ≪ lR where lR is the curvature length scale
corresponding to the tidal curvature. Scaling all the length
scales associated with the problem by T̄ leads to the domain

of validity of our calculations for d0=T̄ ∼ 1;lR=T̄ ≫ 1.
Furthermore, for v0 ¼ 0 we have the expressions of the
auxiliary functions from Eq. (10) as f0ðτ02Þ ¼ 1þ k1d20=3,
and g0ðτ02Þ ¼ d20ð1 − k1τ022 Þ. Whereas we have from
Eqs. (A14) and (13) the expressions γ ¼ ð1þ k1d20Þ−1=2
and γ̄ ¼ ð1þ k1d20τ

0
2=2Þ−1.

For initially static detectors, Iε depends on the energy
gap of the detectors, initial separation, and curvature length
scale. In Fig. 4 we have plotted the local terms I and the
nonlocal entangling term jI εj as a function of the dimen-
sionless detector transition energy ðωT̄Þ in the case of
v0 ¼ 0. One should note that the local terms I from
Eq. (24) remain the same in both flat and curved spacetimes
and even in the scenario of v0 ≠ 0. The mentioned figure
asserts that both the local and the nonlocal terms decrease
with increasing detector transition energy. We also observe
that the nonlocal term is ∼102 times larger than the local
terms. Therefore, the characteristics of negativity, which is

FIG. 4. The local term I and the nonlocal term jI εj (in v0 ¼ 0 scenario) in the negativity are plotted as functions of the dimensionless
detector transition energy T̄ω for the Gaussian switching function χðτÞ ¼ e−τ

2=T̄2

. The local terms I signify individual detector transition
probabilities and are identical in the flat and the curved backgrounds, at least for the geodesic detectors. From the right figure, we
observe that the nonlocal term Iε is indistinguishable in the curved background compared to the flat spacetime. However, there is a
perceivable difference between them that will be clear in our subsequent analysis. The epilogue in the figure signifies the appropriate
value for the energy we have to choose, such that jIεj > I and hence leads to entanglement between detectors.
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expressed as N ð2Þ ¼ jI εj − I , will also be dictated by the
nonlocal entangling term.
On the other hand, in Fig. 5, we have plotted the

difference in negativity ΔN ð2Þ between the curved and
flat spacetimes as functions of the dimensionless detector
transition energy ðωT̄Þ, the initial separation d0=T̄, and the
curvature length scale lR=T̄. This difference decreases as
the curvature length scale increases, i.e., as the curvature
itself decreases. The difference ΔN ð2Þ also decreases with
increasing initial separation d0=T̄ between the detectors.

Whereas, in Fig. 6 we have plotted the differenceΔN ð2Þ for
opposite sign of curvature than Fig. 5.
General geodesic detectors ðv0 ≠ 0Þ:
Let us now talk about the scenario when the initial

coordinate velocity of the detectorB in the frame of detector
A is not zero, i.e., v0 ≠ 0. In that scenario, there are six
distinct curvature terms that affect the nonlocal entangling
termIε. For instance, let us considerRξ0ξ0 ¼ k1,Rξ0n0 ¼ k2,
Rn0n0 ¼ k3, Rξ0ξn ¼ k4, Rξnξn ¼ k5, and Rξnn0 ¼ k6. Then
the quantities fðτ02Þ and gðτ02Þ will be given by

fðτ02Þ ¼ 1þ 1

3

�
k1d20 þ 2d0ðk1vjj þ k2v⊥Þτ02 þ ðk1v2jj þ 2k2vjjv⊥ þ k3v2⊥Þτ022

�
; ð29aÞ

gðτ02Þ ¼ ðd20 þ v20τ
02
2 þ 2d0vjjτ02Þ þ d20

�
2

3
k4v⊥ − k1 þ

1

3
k5v2⊥

�
τ022 −

4

3
d0ðk1vjj þ k2v⊥Þτ032 −

1

3
ðk1v2jj þ 2k2vjjv⊥ þ k3v2⊥Þτ042 :

ð29bÞ

FIG. 5. The difference in the negativity ΔN ð2Þ ¼ ½N ð2Þ�Curv − ½N ð2Þ�Flat is plotted as functions of the dimensionless detector transition
energy ωT̄ in the two left figures. In the upper left figure, different curves correspond to different initial separations d0=T̄, and fixed
curvature length scale lR=T̄ ¼ 50. While in the lower left plot, different curves correspond to different curvature length scales lR=T̄, and
fixed initial separation d0=T̄ ¼ 2. In the upper right figure, we have plotted ΔN ð2Þ as a function of the initial separation d0=T̄. In this
plot, the curvature length scale is fixed at lR=T̄ ¼ 50. While in the lower right subfigure, we have plotted ΔN ð2Þ as a function of the
dimensionless curvature length scale, and the separation between the detectors is fixed at d0=T̄ ¼ 2. This plot signifies that the
correction due to the curvature becomes smaller as the curvature length scale increases, i.e., as the curvature decreases. In all of these
plots the initial velocity is v0 ¼ 0.
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While the auxiliary functions h1ðv0; d0Þ; h2ðv0; d0Þ and
h3ðv0; d0Þ necessary to define γ and γ̄ will be

h1ðv0; d0Þ ≔ k1d20 þ
2

3
k4d20v⊥ ð30aÞ

h2ðv0; d0Þ ≔ k1vjj þ k2v⊥ þ 2

3
v⊥ðk4vjj þ k6v⊥Þ ð30bÞ

h3ðv0; d0Þ ≔ k1v2jj þ 2k2vjjv⊥ þ k3v2⊥: ð30cÞ

We use these expressions to evaluate the entangling term
Iε. The behavior of this term for inertial probes in flat
spacetime with the Gaussian switching function is similar
to that reported in Ref. [6]. This is expected as we have
considered the curvature terms to be perturbatively small.
In Fig. 7, we have plotted the difference in negativity
ΔN ð2Þ between the curved and flat spacetime in this case
with respect to different system parameters. On the other
hand, in Figs. 8 and 9 we have presented the difference

FIG. 7. Top row: behavior ofN ð2Þ as functions of ωT̄, initial detector velocity v0=c and the angle θ between the initial separation and
the velocity vector. In the extreme left plot, we have considered different initial velocities of the second detector. The angle between the
initial velocity and the initial separation is taken as θ ¼ π=4, and the curvature length scale for all the components of the Riemann tensor
is lR=T̄ ¼ 50, and the initial separation is d0=T̄ ¼ 2. In the right of both the top and bottom rows, the initial velocity is taken as
v0 ¼ 0.01c for the second detector, and the energy gap as ωT̄ ¼ 2.5. Bottom row: Behavior of ΔN ð2Þ ¼ ½N ð2Þ�Curv − ½N ð2Þ�Flat as
functions of ωT̄, initial detector velocity v0=c and the angle θ between the initial separation and the velocity vector. We have chosen the
same parameter values as the top row.

FIG. 6. The difference in the negativity ΔN ð2Þ ¼ ½N ð2Þ�Curv − ½N ð2Þ�Flat is plotted as functions of the dimensionless detector transition
energy ωT̄ for negative curvature. One can observe that these plots are flipped upside down compared to the ones from Fig. 5, i.e., the
curved background now reports more entanglement compared to the flat background, unlike the previous case. However, certain
characteristics remain the same, like as the initial separation between the detectors increases and the absolute value of curvature
decreases, the difference in negativity ΔN ð2Þ from the flat background decreases.
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ΔN ð2Þ fixing different components of the Riemann tensor
and also varying some of these components.

B. de Sitter background

We continue our investigation on entanglement in a
background that is a maximally symmetric solution of
Einstein’s equations with a positive cosmological constant,
i.e., in the de Sitter spacetime. The motivation behind
considering the de Sitter spacetime is twofold. First, the
de Sitter era signifies an accelerated expansion of the
universe among the general homogeneous and isotropic
descriptions given by the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric. Our universe, as observed, is in
accelerated expansion in its current state, and the study of
the de Sitter background becomes relevant from this point
of view. Second, obtaining an exact expression of the
geodesic interval between two geodesic observers is

straightforward in de Sitter spacetime due to its maximal
symmetry.
In de Sitter spacetime, the line element [45] in standard

coordinates is expressed as

ds2 ¼ −dt2 þ R2 cosh2 ðt=RÞ
×
�
dχ2 þ sin2ðχÞfdθ2 þ sin2ðθÞdϕ2g�: ð31Þ

For static observers in this coordinates of de Sitter
spacetime, the coordinate time t acts as a proper time.
We utilize the embedding coordinates for the de Sitter
spacetime to perceive a geodesic distance between two
static detectors. We use these embedding coordinates along
with the considerations of constant θ and constant ϕ plane
to obtain the geodesic distance. In the de Sitter background,
with the identification of Δχ ¼ d0=R, this geodesic dis-
tance is obtained to be

FIG. 8. In both the above plots, we have considered the initial configuration such that the relative velocity of the detectors is
perpendicular to their relative separation; that is, θ ¼ π=2. This facilitates isolating a combination of Riemann tensor components. When
v0 ¼ 0, the only Riemann component that contributes isRξ0ξ0. For θ ¼ π=2, if we choose ξ and n along the eigen-directions of the electric
part of Riemann, the difference from the initially static ðv0 ¼ 0Þ case arises solely due to magnetic parts of the Riemann tensor. This is
depicted in the left plot. In the right plot, all the electric parts of the Riemann tensor are considered in the same order of magnitude.
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σ2DS ¼ Λ−1 cos−2
�
− sinh

�
τ

ffiffiffiffi
Λ

p 
sinh

�
s

ffiffiffiffi
Λ

p 
þ cosh

�
τ

ffiffiffiffi
Λ

p 
cosh

�
s

ffiffiffiffi
Λ

p 
cos

�
d0

ffiffiffiffi
Λ

p �
; ð32Þ

where Λ ¼ 1=R2 and the Ricci scalar in this background is
R ¼ 12Λ. In a de Sitter background, considering a mass-
less scalar field with conformal coupling, one can obtain
the Green’s function, see [46], as,

Gðx; x0Þ ¼ −
i

4π2
Λ

4 sin2 ð ffiffiffiffi
Λ

p
σDS=2Þ

: ð33Þ

For the coincidence limit, Green’s function reduces to
Hadamard form and with d0 → 0 in Eq. (32), theWightman
function that characterizes the single detector transition can
be obtained with appropriate iϵ prescription.
The local and nonlocal terms in negativity
We use the expression of σ2DS from Eq. (32) to get the

expression of the Wightman function (33). One can notice
that for a single detector tA ¼ tB and d0 ¼ 0. In that
scenario, with the assumption τ − τ0 ¼ u and τ þ τ0 ¼ v,

we can express the local individual detector transition
energy denoting terms I in the de Sitter background as

I ¼ −
Λ

32π2

Z
∞

−∞
dv

Z
∞

−∞
du

e−iωue−
u2þv2

2T̄2

sinh2 fð ffiffiffiffi
Λ

p
u=2Þ − iϵg : ð34Þ

Here one can perform the v integration analytically, which
results in

R∞
−∞ dve−v

2=ð2T̄2Þ ¼ ffiffiffiffiffiffi
2π

p
T̄. To perform the u

integration, we have used numerical methods. In Fig. 10,
we have plotted these local terms denoting the individual
detector transition probabilities. We elaborately discuss the
characteristics of these local terms in a later section of our
manuscript.
On theother hand,weuse the relation sin2fðcos−1 zÞ=2g ¼

ð1 − zÞ=2 to get a simplified expression of the Feynman
propagator from Eq. (33). Using the expression of the
Feynman propagator, and with a change of variables to
ū ¼ s − τ and v̄ ¼ sþ τ, we get the nonlocal entangling
term as,

FIG. 9. The difference in negativity between the curved and flat spacetimes ΔN ð2Þ is plotted as functions of different electric
components of the curvature tensor, i.e., with respect to Rξ0ξ0, Rn0n0, and Rnξnξ. The initial separation is chosen as d0=T̄ ¼ 2 and the
energy gap as ωT̄ ¼ 2.5. In the upper left plot, Rξ0ξ0 is kept fixed, while in the upper right plot, Rn0n0 is fixed. On the other hand, in the
lower plot, Rnξnξ is kept fixed. The upper two plots indicate no visible variation of ΔN ð2Þ with respect to the particular curvature term
Rnξnξ. While there is a finite visible change in ΔN ð2Þ when Rξ0ξ0 or Rn0n0 is varied. From the lower plot, it is clear that the change in
ΔN ð2Þ due to the change in Rξ0ξ0 is greater compared to Rn0n0.
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I ε ¼
Λ
8π2

Z
∞

−∞
dv̄

Z
∞

−∞
dū

eiωv̄e−
ū2þv̄2

2T̄2

2 − αþ cosh ð ffiffiffiffi
Λ

p
ūÞ − α− cosh ð

ffiffiffiffi
Λ

p
v̄Þ þ iϵΛ

; ð35Þ

where, we have the expressions of α� ¼ cos ðd0
ffiffiffiffi
Λ

p Þ � 1.
Here, we evaluate both the u and v integrals numerically.
In Fig. 11 we plot the negativity in a de Sitter back-

ground, which is the subtraction of the modulus of this
nonlocal entangling term and the local terms. In a later
section, we discuss elaborately the characteristics of these
plots. Subsequently, in Fig. 12 we have plotted the

difference in negativity between the de Sitter and the
Minkowski case for a very small curvature length scale.
The discussion on its characteristics and its similarity with
the general curved case is discussed in the same later
section. We also plot the different components of neg-
ativity and understand their characteristics through the
plots from Figs. 13 and 14.

FIG. 10. The local term I in entanglement, which denotes individual detector transition probability, is plotted as functions of the
detector transition energy and curvature for static detector in de Sitter background. The transition probability depends on the curvature
constant. As the curvature increases, the transition probability increases. However, this increment is prominent only in the ΛT̄2 > 1
regime, as observed from the right plot.

FIG. 11. In both the above plots we have plotted the negativityN ð2Þ as a function of the dimensionless detector energy gap ωT̄ in a de
Sitter background. In particular, on the left, we have depicted negativity N ð2Þ for different initial separations between the detectors. On
the right, we have plotted the negativity in the de Sitter background for different curvature length scales. We should mention that the
local terms I , along with the nonlocal terms Iε, are also affected by high curvature, which results in significant distortion in the
negativity profiles. The right plot suggests that one can observe entanglement due to curved backgrounds using detectors with a
sufficiently large energy gap.
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FIG. 12. The difference in the negativity between the de Sitter and flat spacetimes ΔN ð2Þ is plotted as a function of the dimensionless
detector transition energy ωT̄. In both plots, we have considered the curvature length scale to be very large, i.e., the curvature itself is
very small so that one can compare these results with the ones from our perturbative approach. Comparing these plots with the
perturbative approach of generic curved spacetime, we observe that the plots from the two cases are qualitatively and quantitatively
similar.

FIG. 13. The contribution in negativity due to spacelike separation Nþ (left plot), purely due to the causal communication N− (middle
plot), and the entire negativity Nð2Þ (right plot) are plotted for Λ ¼ 10−4 (top row) and Λ ¼ 0.1 (bottom row), see Eq. (20) for the
definitions of N�. These plots correspond to detectors in the de Sitter background with initial separation d0. As is evident from the plots,
entanglement without causal communication is possible only in the high detector transition energy ωT̄ regime. Whereas, entanglement
from the causal communication is prominent in the low separation d0=T̄ and low transition energy regime ωT̄.
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IV. ENTANGLEMENT AS A PROBE OF
CURVATURE

In this part, we shall discuss our observations on entan-
glement in a general curved spacetime, for which we have
used the perturbative technique as described in Sec. III A.
Initially static detectors, v0 ¼ 0:
In Fig. 4, we have plotted the local individual detector

transition probability denoting term I and the modulus of
the nonlocal entangling term jIεj. As we are dealing with a
nearly flat spacetime background, the individual detector
transition probabilities I from Eq. (24) are the same as

Minkowski. We will see that, in de Sitter background, this
quantity depends on the curvature, but for a very small
curvature, like the one considered here, it does not change
and remains the same as the one obtained in Fig. 4. From
the right plot of Fig. 4, it seems that jIεj from the curved
and Minkowski backgrounds overlap. However, there is a
subtle difference in these curves, which will be prominent
in the low transition energy regime, see Fig. 5.
In Fig. 5, we have plotted the difference in negativity

ΔN ð2Þ between the curved and flat backgrounds as a
function of the dimensionless detector energy gap for

FIG. 14. The contribution in the nonlocal entangling term Iε with and without causal communication, which are denoted as I−
ε and

Iþ
ε , are plotted in the top row of this figure as functions of the dimensionless distance d0=T̄ for different curvature scales of the

background. We observe that, as the distance decreases, the jI−
ε j part keeps increasing, while jIþ

ε j seems to reach saturated values. We
have also plotted the modulus of the entire entangling term Iε that mostly resembles jI−

ε j. In the below two rows of the figure, we have
plotted the difference ðN þ −N −Þ as functions of the dimensionless initial separation d0=T̄ between the detectors. Each of the plots
from these two rows corresponds to a different background curvature. From these plots, we observe that as the separation increases, there
is a certain value of d0=T̄ when N þ overtakes N −. We further observe that this crossing point in d0=T̄ decreases with increasing
curvature. In the plots from the lower two rows, the dashed lines correspond to the respective values of 1=ð ffiffiffiffi

Λ
p

T̄Þ, which indicate the
curvature length scales.
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initial static detectors. In the top row, we have depicted the
variation of ΔN ð2Þ with respect to different initial detector
separations. Whereas, in the lower plots, the variation of
ΔN ð2Þ is shown for different curvature. These lower plots
signify that as the curvature length scale increases, i.e., the
curvature decreases, the negativity profile from the curved
background tends to resemble the flat spacetime negativity,
which is expected and consistent in our analysis.
From the top row of Fig. 5, we observe that the

negativity becomes more Minkowski-like as the initial
separation d0 between the detectors increases. To elabo-
rate on this, for a smaller initial separation between the
detectors, the curvature effects in the entanglement
become prominent. At first glance, this outcome may
seem a bit counter-intuitive, as some of the curvature
corrections in our perturbative analysis, see Eqs. (10) and
(A15), arrive with multiplicative d0 terms. Thus curvature
corrections should increase with increasing d0, which is
not observed from our plots. However, with a deeper
investigation, one can perceive that this is not unphysical.
The reason can be found in the fact that the correlation
between the detectors degrades with increasing distance.
If this degradation is more than the increasing curvature
effects, then the negativity profile from the curved back-
ground tends to become Minkowski-like as the separation
increases. Further, for very small initial separations, the
entanglement due to field-mediated communication chan-
nels will dominate and if the detectors are placed
farther apart, the total negativity itself will decrease.
Even though the genuine entanglement starts to dominate
after, d0 ≥ 2cT̄, the net negativity is small.
With an increasing distance between inertial detectors, the

decay of correlation is reported in [6] for eternal switching,
i.e., χðτÞ ¼ 1. Moreover, when one considers a finite
switching like the Gaussian switching considered in our
present work, this decay of correlation with increasing
detector separation becomes rapid. To support this argu-
ment, one can look into the expressions of the nonlocal
terms IM

ε ðωÞ and IC
ε ðωÞ from Appendix B [Eqs. (B4)

and (B6)], which respectively have e−d
2
0
=T̄2

and e−d
2
0
=ð2T̄2Þ

terms multiplied in them. To further elucidate this, we refer
the reader to Fig. 3, where one can observe that as two
geodesic trajectories move away from each other, the
detectors moving on these curves interact less with each
otherwith finite switching. Therefore, with increasing initial
separation between the detectors, one should get diminished
negativity and negativity like near flat spacetime.
Furthermore, in Fig. 6, we have plotted the difference in

negativityΔN ð2Þ for two initial static detectors for opposite
sign of curvature than Fig. 5. This plot shows that the
entanglement from the curved spacetime is now greater
than the flat background. Therefore, if in the previous case
(Fig. 5) the curvature moved the geodesic trajectories apart,
in the present scenario (Fig. 6) it can be considered to get

closer. Moreover, we observed that the overall behavior of
negativity to the variation of initial separation and curvature
remains the same. As the initial separation between the
detectors increases and the absolute value of curvature
decreases, the difference in negativity ΔN ð2Þ between the
curved and flat backgrounds decreases.
General geodesic detectors, v0 ≠ 0:
In Fig. 7, in the left column, we have plotted N ð2Þ and

ΔN ð2Þ as functions of the dimensionless detector transition
energy for two detectors with different initial velocities
respectively. From Eqs. (10) and (A15), one can observe
that now, with velocity, many more different curvature
terms will contribute to the negativity profile. In the first
two figures on the top row of Fig. 7, negativity decreases
with an increase in velocity, and the same is true if one
varies the angle between initial separation and the initial
velocity of the two detectors. The change in negativity, as
given in the bottom row of Fig. 7 shows that ΔN ð2Þ
degrades as initial velocity increases. The change in
negativity decreases and then increases when the angle
changes from small angles to θ ¼ π=2. As the velocity
increases, the distance between detectors will increase
rapidly and hence the correlation degrades. If the angle
is chosen very small, the detectors can come close and
entanglement due to communication can be enhanced.
Hence choosing larger angles makes sure there is no causal
contact between the detectors.
In Figs. 5–7, 11, and 12 we have plotted either the

difference in negativity or the difference in the modulus of
the nonlocal entangling term. In these particular figures, we
observed that as the dimensionless detector energy exceeds
certain values, in most cases as ωT̄ > 1, there is a sudden
change in behavior in the entanglement profiles. For
instance, in Fig. 5, we observe that for ωT̄ < 1, the curved
space entanglement is lower than the flat space, but for
ωT̄ > 1 the curved space entanglement becomes higher
than the flat space entanglement. It is not unusual to believe
that there could be some interesting physics hidden behind
these phenomena.
Fig. 8 portrays the effects due to the magnetic part of the

Riemann tensor. The choice of orientation can be used to
isolate certain combinations of Riemann tensor components
in the expression for negativity. This can be employed as a
probe of curvature, especially those components which are
otherwise difficult to determine through other experiments.
In Fig. 9, the horizontal axes correspond to different

curvature terms. Interestingly in 9, we observed that the
dependence of the negativity profile on different curvature
terms is not the same. For instance, with respect to Rnξnξ the
negativity profiles do not alter at all. While with respect to
Rn0n0 and Rξ0ξ0 the negativity profiles change, but again the
change is larger when Rξ0ξ0 varies compared to Rn0n0. This
may provide a means to distinguish between different
curved backgrounds in terms of entanglement. We would
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also like to refer to Fig. 15 in Appendix C that depicts
qualitative behaviour of the negativity in a general curved
spacetime as the initial velocity v0 and the angle θ varies.

V. CHARACTERISTICS OF N ð2Þ
IN DE SITTER SPACETIME

In this section, we will describe several observations
about negativity in the de Sitter background, utilizing the
expression of Sec. III B. In Sec. III B, we have estimated
the necessary quantities to investigate the entanglement in a
de Sitter background. We will now use numerical plots to
extract key features from the resultant expressions.
Individual detector response:
In Fig. 10, we have plotted the local terms I that denote

individual detector transition probabilities. One can
observe that these probabilities decrease with increasing
energy gap and with increasing curvature length scale.
However, for any curvature scale ΛT̄ ≪ 1, it remains
almost the same and quantitatively similar to the ones
obtained in Minkowski background. In general curved
spacetimes, the characteristics of the local terms are
expected to be qualitatively similar to the de Sitter ones
for large curvature length scales (for geodesic detectors,
these will come entirely from the van Vleck determinant).
Entanglement between the detectors:
In Fig. 11 we have plotted the negativity in a de Sitter

background as functions of the dimensionless detector
transition energy ðωT̄Þ. The left plot here depicts curves
with different values of the initial separation, and the right
plot gives curves for a fixed initial separation, but in
different curved backgrounds. One can observe that, for
a fixed energy gap, as the separation increases, at first the
negativity decreases (from black → green → blue curve),
and then increases (blue → red curve). Therefore, the
behavior of negativity is not monotonouswith respect to the
initial separation. A similar feature also holds when one
looks at negativity as a function of curvature, with fixed
initial separation (the plot on the right). From the right plot,
we observe that in the low detector transition energy
regime, the negativity decreases monotonically as the
background curvature increases. However, there exists a
band of energy gap (roughly 1≲ ωT̄ ≲ 3 in the given plot),
over which negativity is no longer a monotonous function
of curvature. We should highlight that, our results are
consistent with those in [35], when restricted to the
parameter range used in that paper.
Imprints of curvature on negativity:
We can combine the plots and discussion from previous

subsections to explore the possibility of using entanglement
as a probe of background curvature, which we now discuss
in the context of de Sitter. One of the main objectives
behind this analysis is to provide qualitative, and to some
extent, quantitative, similarities between de Sitter and
general curved backgrounds with small curvature. Since

our de Sitter results do not assume small Λ, we can also use
them to validate our perturbative technique.
In Fig. 12 we have plotted the difference in negativity

between the de Sitter and Minkowski backgrounds. Unlike
in Fig. 11, here we have chosen small values for curvature
which will facilitate comparison with the perturbative
results for general curved backgrounds in the later section.
Figure 13 shows the contour plot for negativity compo-

nents that particularly result from spacelike separation
ðN þÞ, causal communication ðN −Þ, and the total nega-
tivity ðN ð2ÞÞ in a de Sitter background. These different
negativity components with their significance were men-
tioned in Sec. II C. These contour diagrams are plotted as
functions of the dimensionless initial separation and detec-
tor energy gap. The two different rows of the figure
correspond to two different curvature length scales. One
can observe that the negativity due to spacelike separation,
often associated with genuine entanglement effects
[10,11,14], is positive only in the regime of large energy
gaps and initial separations. At the same time, the neg-
ativity due to the communication channel is positive in the
entire region except for the very large initial. These
phenomena are true for both of the considered curvature
length scales.
The physical reason behind the above observations is

straightforward: for a finite switching timescale, as the
initial separation between the detectors increases, the
second detector moves away from the accessible causal
light cone patch of the first detector, see Fig. 3 for
illustration. Nevertheless, one observes that there exists a
range of parameters that will yield the so-called genuine
entanglement effects.
Finally, in Fig. 14, we have plotted the spacelike

negativity component ðN þÞ, the causal communication-
based negativity component ðN −Þ, and their difference as
functions of the initial detector separation. For these plots,
we have considered a suitable parameter space, taking
inspiration from Fig. 13, a parameter space where, for large
detector separation, the spacelike negativity can become
larger compared to the causal negativity. From these plots,
one can observe that for small initial separation d0, the
communication-based negativity ðN −Þ is always greater
compared to the spacelike negativity. However, for large
initial detector separation, N þ is becoming larger com-
pared to N −. From the difference between these two
quantities we observe that, for small background curvature,
the transition from N þ < N − to N þ > N − happens near
d0=T̄ ≃ 1, and this value keeps on decreasing as the
curvature increases. The physical reasoning could be as
the curvature increases, the past and the future-directed
light cones depart more from each other with increasing
separation, see Fig. 3. Therefore, as the curvature increases,
the scope of causal communication for a certain
detector separation is also diminished for finite detector
switching.
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VI. CONCLUDING REMARKS

Given the already exhaustive discussion and commen-
tary in preceding sections, we will keep the discussions in
this concluding section brief, focusing largely on some
general observations extracted from the results we have
established.
Let us first summarize the key steps of our analysis: We

have extracted the role of curvature in the entanglement
induced between two Unruh-DeWitt detectors, interacting
solely with a background scalar field in an arbitrary back-
ground spacetime. Assuming the field state to be Hadamard,
the key curvature contribution comes from the relative
kinematics of the trajectories. While the curvature will also
affect the dynamics of the field, this effect is suppressed
compared to that arising from the leading terms in the
Hadamard expansion, and this is nicely corroborated by the
de Sitter case, where the exact known expressions yield
results for entanglement measure that closely matches the
one obtained from our perturbative scheme. The key geo-
metric reason for why this works, in terms of the causal
structure of spacetime, was already identified in Sec. II.
We now list some general observations based on this

work. The list is only representative, to aid in navigating
through the bulk of the paper; we hope the reader will be
able to extract more insights from the various analytical and
graphical results presented here.
(1) Contribution to entanglement measure (negativity

here) from spacelike correlations, versus that due
to timelike correlations, can be identified by decom-
posing the Feynman propagator into its anticommu-
tator and commutator parts. For smaller distances,
contribution of commutator dominates, while at larger
separations, the anticommutator contribution domi-
nates, which is what one would want to attribute
genuine quantum entanglement with. Hence, choos-
ing a suitable d0=T̄ can lead to genuine entanglement
(in the suitable range of energy gap), and this ratio is
altered by presence of Riemann tensor.

(2) For lower energy gaps, the local term corresponding
to the individual detector transition due to vacuum
polarization will dominate over the nonlocal term for
initial separation, d0 ≥ T̄. As the energy gap be-
comes large enough, i.e., ω ≥ 2ℏ=T̄, the nonlocal
term starts to dominate over the individual detector
transition probabilities.

(3) For parameters chosen such that d0 ≈ 2T̄ and
ω ≈ 2ℏ=T̄, the genuine entanglement between de-
tectors is present. Presence of curvature enhances
the entanglement for the above parameter range.

(4) When the detectors have an initial relative velocity
v0, the entanglement depends on this relative veloc-
ity and its angle θ with respective to the initial
separation ξ. The genuine entanglement decreases

with an increase in speed. Overall, the entanglement
also increases with increase in θ.
The key upshot of the above dependences, and the

interplay between them, is that these may allow one
to measure spacetime curvature using quantum
probes with suitable initial conditions.

(5) Our investigation on the role of curvature in
entanglement between the probes indicates that the
entanglement is most sensitive to the eigenvalue
of tidal part of the Riemann tensor—Ra0c0 ¼
Rabcdubud—along the direction of separation of
the detectors ξ; that is, Ra0b0ξ

aξb. This contribution
is present even for initially static detectors. Entangle-
ment is also sensitive to Ra0b0nanb, the eigenvalue of
the tidal tensor in the direction na of the relative initial
velocity of the detectors. This dependence, however,
is weaker than the previous one. Interestingly, the
entanglement does not depend on the components
such as Rabcdnaξbncξd, which denotes the purely
spatial part of the curvature.
The initial relative configuration of the detectors

can be used as a probe to determine the curvature of
spacetime. An explicit example of one such setup is
demonstrated in Fig. 8, which can be used to extract
the contribution of the magnetic part of Riemann
tensor. It would be interesting to compare the viability
of probing such components of Riemann using
entanglement, with classical experiments.

(6) There exists in literature a couple of works [34,35]
which attempt to study entanglement between detec-
tors in specific backgrounds with nonzero curvature.
While helpful, a major drawback of working with
specific solutions of Einstein equations is that it hides
the explicit role of curvature and hence does not yield
physical insights which can be claimed to be generic.
Our motivation, setup, as well overall analysis in this
work are much more general and hence have a much
wider scope. We can, however, compare our results
with the ones in these works in cases when the choice
of initial conditions and parameters coincide. In
Ref. [35], the authors study entanglement in a de
Sitter background and conclude that entanglement at
the super horizon scale is possible only with multiple
quantum probes. Our present work finds that the
parameter values for entanglement extraction are in
the same range as those obtained in Ref. [35] for the de
Sitter background. On the other hand, in Ref. [34],
entanglement generation is studied outside of weakly
gravitating, spherically symmetric, bodies such as the
Earth and theSun.Their result indicating enhancement
of entanglement (compared to Minkowski) for large
energy gaps is also observed in our case.

(7) Our work should be relevant in observationally
viable scenarios such as for tests of the violation
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of Bell’s inequality. In this context, we would like
to specifically mention approaches to understand
entanglement between two nonintersecting spatial
regions in de Sitter spacetime, which do not suggest
the presence of entanglement [47]. It will be inter-
esting to relate our analysis with these and identify
the points of conflicts and similarities between the
same. It should not be difficult to construct a setup
similar to [47–49], using the tools introduced here,
to discern entanglement induced in a general curved
background. This investigation is currently under
progress.

(8) Finally, we would like to mention a broader context
in which this work will serve as the first step. This
concerns a known subtlety in application of the
equivalence principle to deduce the role of gravity in
quantum phenomenon by analyzing these phenome-
non in noninertial frames in Minkowski spacetime.
While doing so is usually easy since one is working
in Minkowski spacetime, it has its pitfalls, and can
serve as a hurdle to obtaining insights which a
perturbative analysis can never give. For instance, in
Ref. [50,51], it is shown that even a single accel-
erated probe can pick up nontrivial effects due to
tidal curvature which cannot be seen in a perturba-
tive expansion. Our analysis in this paper, though
still perturbative in curvature, develops the necessary
mathematical tools that, along with some of the
exact results we obtain in de Sitter, have the potential
to yield stronger results beyond a perturbative
expansion. This is under investigation.
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APPENDIX A: GEODESIC INTERVAL BETWEEN
EVENTS ON TWO TIMELIKE TRAJECTORIES

We start with the following expansion (cf., Fig. 1):

ΩG ¼ ½ΩG� þ ΩGs
½ti∇iΩG� þ

1

2
Ω2

B0B½ti∇iðtk∇kΩGÞ� þ � � �
ðA1Þ

Here, Ωxx0 ≔ Ωðx; x0Þ represents Synge’s world function
which is half the square of the geodesic distance between x
and x0 and ½� represents the limit,ΩGs → 0. The FNC at B0 is
defined by, xi

0 ¼ ðτ02; Xα0 ðτ ¼ τ02ÞÞ and Xα0 ðτ ¼ τ02Þ ≔
σGsðτ02Þti

0 ðτ02Þeα
0

i0 ðτ02Þ where, σGsðτ02Þti
0 ¼ −σi0Gsðτ02Þ ≔

−gi0k0∇k0ΩGsðτ02Þ. Using this definition, the expansion for
ΩG can be expressed in terms of the Fermi coordinates.

ΩG ¼ ΩG0 þ �∇α0ΩG

�
Xα0 ðτ02Þ

þ 1

2

�∇α0∇β0ΩG

�
Xα0 ðτ02ÞXβ0 ðτ02Þ þ � � � ðA2Þ

Here, for a reference geodesic curve, ΩG0 ¼ −σ2G0=2≡
−1=2ðτ02 − τÞ2. Now, the expansions of ½� quantities and
Xα0 ðτ02Þ should be expressed in terms of data given
at τ1 ¼ 0.
The ½� quantities need to be evaluated carefully. The

derivatives of ΩG are expanded in double Taylor series of
ΩG0 with τ and τ02 as variables.

∇α0ΩG¼∇α0ΩG0 þτui∇ið∇α0ΩG0 Þþτ02u
i0∇i0 ð∇α0ΩG0 Þþ���

ðA3aÞ

∇α0∇β0ΩG ¼ ∇α0∇β0ΩG0 þ τui∇ið∇α0∇β0ΩGÞ
þ τ02u

i0∇i0 ð∇α0∇β0ΩGÞ þ � � � ðA3bÞ

Similarly, all higher derivatives are expressed and then
the coincidence limit is correctly taken. The calculations
are cumbersome and hence we have used CADABRA [52,53]
for the calculations.
Note that, ∇α0ΩG0 ≡ ei

0
α0∇i0ΩG0 and note that ui∇iei

0
α0 ¼

0 since the tetrad is at x0 and derivative is taken at x.
Similarly, ui

0∇i0ei
0
α0 ¼ 0 since the tetrad is Fermi-Walker

transported along a geodesic and will not generally be zero
for other curves. Substituting these observations into
Eq. (A3b), the RHS is expressed in terms of covariant
derivatives of ΩG0 at x0 and x. Then the coincidence limit,
τ02, τ → 0 is taken. Some covariant derivatives are as
follows:
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½∇i0ΩG0 � ¼ 0

½∇j∇i0ΩG0 � ¼ −gij
½∇j0∇i0ΩG0 � ¼ gij

½∇k0∇j0∇i0ΩG0 � ¼ ½∇k∇j0∇i0ΩG0 � ¼ ½∇k0∇j∇i0ΩG0 � ¼ ½∇k∇j∇i0ΩG0 � ¼ 0

½∇l0∇k0∇j0∇i0ΩG0 � ¼ ½∇l∇k∇j∇iΩG0 � ¼ −½∇l∇k0∇j0∇i0ΩG0 � ¼ ½∇l∇k∇j0∇i0ΩG0 � ¼ −
1

3
ðRikjl þ RiljkÞ

½∇l∇k∇j∇i0ΩG0 � ¼ −
1

3
ðRijkl þ RikjlÞ

…::

Substituting the coincidence limits to the covariant expansion of ΩG in Eq. (A2) results in the following equation,

ΩG ¼ −
1

2
ðτ02 − τÞ2 þ 1

2

�
gαβ −

1

3
ðτ02 − τÞ2Rijkleiαekβujul

�
Xαðτ02ÞXβðτ02Þ þOðτ4; X5; R2Þ: ðA4Þ

Notice that, we have assumed that the derivatives of the
Riemann tensor are negligible compared to the Riemann
tensor itself for the above expression. The FNC needs to be
expanded in terms of τ02. For FNC, the expansions are
simple Taylor expansion in terms of τ02 given by,

Xα0 ðτ02Þ ¼ Xα0 ð0Þ þ dXα

dτ

����
O
τ02 þ

1

2

d2Xα

dτ2

����
O
t2B0 þ � � � ðA5Þ

The coefficients of the Taylor expansion can be evaluated
using the definition of deviation vector in terms of Synge’s
world function as given by Ref. [54]. Let the deviation
vector be, ξi ¼ Xαeiα

Xα ¼ −σiGsðτÞeαiðτÞ ðA6Þ

dXα

dτ
¼ −eαiðτÞuk∇kσ

i
GsðτÞ − eαiðτÞvk̃∇k̃σ

i
GsðsÞ:

… ðA7Þ

Here, vk̃ ≔ ðds=dτÞuk̃B, where uk̃B is the 4-velocity of the
detector B along its trajectory. Using the expansion for
derivatives of Synge world function gives [54],

∇kσ
i
GsðτÞ ¼ δik −

1

3
Ri

αkβXαXβ þOðR2;∇R;X3Þ ðA8Þ

∇k̃σ
i
GsðsÞ ¼ −gjk̃

�
δij þ

1

6
Ri

αjβXαXβ þOðR2;∇R; X3Þ
�
:

ðA9Þ

Here, gjk̃ is the parallel propagator. The coefficients for the
Taylor expansion of FNC can be evaluated using Eqs. (A8)
and (A9) and can be obtained as,

dXα

dτ
¼vα0þ

1

3
Rα

μ0νXμXνþ1

6
Rα

μkνXμXνvk0þOðR2;∇R;X3Þ
d2Xα

dτ2
¼−Rα

0β0XβþOðR2;∇R;X2Þ
d3Xα

dτ3
≈−Rα

0β0v
β
0þOðR2;∇R;X2Þ

XαðτÞ ¼
�
Xα þ vα0τ

0
2 þ

1

3
Rα

μ0νXμXντ02 þ
1

6
Rα

μkνXμXνvk0τ
0
2

−
1

2
Rα

0μ0Xμτ02
2 −

1

6
Rα

0β0v
β
0τ

0
2
3

�
þOðR2;∇RÞ:

ðA10Þ

Using the above simplifications in the Eq. (A4), the
geodesic distance to R2;∇R order will be,

−σ2G ¼ Δτ2G ¼ ðτ02 − τÞ2 −
�
ðXαð0Þ þ vα0τ

0
2Þ2 þ

2

3
Rαμ0νvα0X

μXντ022 − Rα0β0Xαð0ÞXβð0Þτ022 −
4

3
Rα0β0Xαð0Þvβ0τ032

þ 1

3
RαμβνXαXβvμ0v

ν
0τ

02
2 −

1

3
Rμ0ν0v

μ
0v

ν
0τ

04
2

�
þ 1

3
ðτ02 − τÞ2Rα0β0½Xαð0ÞXβð0Þ þ 2Xαð0Þvβ0τ02 þ vα0v

β
0τ

02
2 � þOð∇R; R2Þ:

ðA11Þ
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The initial separation is Xαð0Þ ≔ d0ξα where, ξα is the directional cosines and ηαβξ
αξβ ¼ 1. The initial velocity can be

decomposed into components along the initial separation and the component along the normal to the initial separation
denoted by unit vector nα that is in the plane orthogonal to Xαð0Þ, vα0 ¼ vjjξα þ v⊥nα. Note that vjj ¼ v0 cos θ and
v⊥ ¼ v0 sin θ. Using this decomposition in the above expression, we finally obtain Eq. (9).
The mapping between proper times of the detectors: Apart from geodesic interval, another quantity we will need to

characterize entanglement is the mapping between proper times of the two detectors. The relevant quantity here is
γ ¼ ðds=dτÞ, which can be easily found using the Fermi metric based on C1, assumed to be geodesic (see, for, e.g., [55]).

dS2 ¼ −dτ022 ð1þ R0α0βXαXβÞ − 2dXμdτ02

�
2

3
R0αμβXαXβ

�
þ dXμdXν

�
δμν −

1

3
RμανβXαXβ

�
þOðX3;∇R;R2Þ: ðA12Þ

Since, dS2 ¼ −ds2 the ratio is,

γðτ02Þ ≔
dτ02
ds

¼
�
1 −

�
dXα

dτ02

�
2

þ R0α0βXαXβ þ 4

3
R0αμβXαXβ dX

μ

dτ02
þ 1

3
RμανβXαXβ dX

μ

dτ02

dXν

dτ02

�
−1=2

: ðA13Þ

Using Eq. (A10) and resolving the components as done for the geodesic distance, in the equation for γ, to linear order in
curvature the equation becomes,

γðτ02Þ ¼
dτ02
ds

¼ �
1 − v20 þ h1ðv0; d0Þ þ 2d0h2ðv0; d0Þτ02 þ h3ðv0; d0Þτ022

�
−1=2 þOðR2;∇RÞ: ðA14Þ

Here, h1ðv0; d0Þ; h2ðv0; d0Þ and h3ðv0; d0Þ are auxiliary
functions defined by,

h1ðv0; d0Þ ≔ Rξ0ξ0d20 þ
2

3
Rξ0ξnd20v⊥ ðA15aÞ

h2ðv0;d0Þ≔Rξ0ξ0vjj þRξ0n0v⊥þ
2

3
v⊥ðRξ0ξnvjj þRnξ0nv⊥Þ

ðA15bÞ

h3ðv0; d0Þ ≔ Rξ0ξ0v2jj þ 2Rξ0n0vjjv⊥ þ Rn0n0v2⊥: ðA15cÞ

The proper time of B can be expressed as,
s ¼ R

dτ02=γðτ02Þ. (When the coordinate velocity of second

detector is zero, γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Rξ0ξ0d20

q
.)

APPENDIX B: EVALUATION OF I ε IN
GENERAL CURVED SPACETIME: COMPLETE

PERTURBATIVE ANALYSIS

We observed that the individual detector transition
probabilities I and nonlocal entangling terms I ε depend
on the geodesic distance that in a general curved spacetime
was estimated in a perturbative manner in (9). We have
already analytically estimated the individual local terms I
for small curvatures in III A. Now we shall evaluate the
nonlocal entangling term I ε by expressing it perturbatively
around the Minkowski scenario, i.e., by assuming the
corrections due to the curvature to be very small compared
to other system parameters specifically the initial separation

between the detectors. Let us proceed this way and express
Iε for two initially static and general geodesic detectors.

1. Evaluation of I ε for two initially static detectors

Let us first consider the case of two static detectors. In
this scenario, the only quantity that depends on curvature
terms and which is present in the geodesic distance between
the two detectors is Rα0β0Xαð0ÞXβð0Þ ≔ k1d20. Let us term
this quantity c1, i.e., c1 ¼ k1d20. We take the geodesic
distance between the detectors σ2Gðτ02 − τ; τ02Þ from Eq. (9).
We consider a change of variables τ02 − τ ¼ Δτ and τ02 ¼ v,
similar to the one done in the case for evaluating I j. First,
the Feynman propagator in the nonlocal entangling term
can be expanded considering c1 ≪ 1. Second, the nonlocal
term contains other factors involving the switching func-
tions and the exponential with the detector transition
energy. These factors will also contain the curvature term
c1 due to their representation in terms of Fermi-normal
coordinates with respect to a certain geodesic, see Eq. (13).
Finally, the nonlocal entangling term can be expressed as

Iε ¼ IM
ε þ IC

ε ; ðB1Þ

where with the Gaussian switching function we have

IM
ε ðωÞ ¼ −

1

4π2

Z
∞

−∞
dv

Z
∞

−∞
dΔτ

e−
ðv−ΔτÞ2þv2

T̄2
þiωð2v−ΔτÞ

ðΔτ2 − d20 − iϵÞ ;

ðB2aÞ
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IC
ε ðωÞ ¼ −

1

4π2

Z
∞

−∞
dv

Z
∞

−∞
dΔτ

e−
ðv−ΔτÞ2þv2

T̄2
þiωð2v−ΔτÞ

ðΔτ2 − d20 − iϵÞ

×

� ðΔτ2=3Þ − v2

ðΔτ2 − d20 − iϵÞ −
	
ivωþ 1

2
−
v2

T̄2


�
c1

þOðc21Þ: ðB2bÞ

Let us first evaluate the Minkowski part IM
ε ðωÞ. Here the

integration over τ can be readily carried out as the
denominators of GM;C

F ðΔτ; vÞ are independent of v.
Using the Gaussian integration formula

R∞
−∞ dve−αðv−βÞ2 ¼ffiffiffiffiffiffiffiffi

π=α
p

one can express

IM
ε ðωÞ ¼ −

T̄e−
ω2 T̄2

2

4
ffiffiffi
2

p
π3=2

Z
∞

−∞
dΔτ

e−
Δτ2

2T̄2

ðΔτ2 − d20 − iϵÞ : ðB3Þ

To evaluate this integral, we express the involved Gaussian

factor as e−
Δτ2

2T̄2 ¼ ðT̄= ffiffiffiffiffiffi
2π

p Þ R∞
−∞ dκe−ðζ2T̄2=2ÞþiΔτκ, i.e., in

terms of its Fourier transform. The integral of the previous

equation has poles at Δτ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d20 þ iϵ

p
, which are in the

upper and the lower half complex planes respectively,
depending on the “+ve” and the “-ve” signs. Therefore, we
must consider the contour in the upper or lower semicircle
to dampen the necessary parts of the contour integral. After
finding the residues, the integration limit of κ will also be
restricted. For example, for the upper pole, we have
κ∈ ½0;∞Þ, and for the lower pole, we have κ∈ ð−∞; 0�.
Then, carrying out the integration over κ, we have the final
expression

IM
ε ðωÞ ¼ −

iT̄
�
Erf

�
id0ffiffi
2

p
T̄

�
þ 1

�
4

ffiffiffiffiffiffi
2π

p
d0

e−
d2
0

2T̄2
−ω2 T̄2

2 : ðB4Þ

Let us now evaluate the integral IC
ε ðωÞ that corresponds

to the contribution entirely from the curved spacetime due
to the terms up to Oðc1Þ. It is to be noted that several
numerators in the term IC

ε ðωÞ also depend on τ. If we
integrate over this variable τ, we shall get

IC
ε ðωÞ ¼

c1e−
ω2 T̄2
2

48
ffiffiffi
2

p
π3=2T̄

Z
∞

−∞

dΔτe−
Δτ2

2T̄2

ðΔτ2 − d20 − iϵÞ2
h�

3Δτ2ðΔτ2 − iϵÞ − 3d20ðΔτ2 þ T̄2ð−1þ iωΔτÞÞ − 3ω2T̄6

þ T̄4ð3þ 6iωΔτÞ þ T̄2ðΔτ2ð4þ 3iωΔτÞ þ 3ϵðωΔτ þ iÞÞ�i: ðB5Þ

Here also the poles are at the same places Δτ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d20 þ iϵ

p
but with order two, and we proceed in a similar fashion to

integrate over the variable Δτ. The final expression for IC
ε ðωÞ will be given by

IC
ε ðωÞ ¼

c1
192πd30T̄

e−
ω2 T̄2

2
−

d2
0

2T̄2

� ffiffiffiffiffiffi
2π

p
Erfi

�
d0ffiffiffi
2

p
T̄

�
fd40 þ d20ð2T̄2 − 3ω2T̄4Þ − 3ω2T̄6 þ 3T̄4g − i

ffiffiffiffiffiffi
2π

p
d40

þ i
ffiffiffiffiffiffi
2π

p
d20T̄

2ð3ω2T̄2 − 2Þ þ 6d0T̄3e
d2
0

2T̄2ðω2T̄2 − 1Þ − 14d30T̄e
d2
0

2T̄2 þ 3i
ffiffiffiffiffiffi
2π

p
T̄4ðω2T̄2 − 1Þ

�
: ðB6Þ

Therefore, we have the analytical expression for both the IM
ε ðωÞ and IC

ε ðωÞ, which will lead one to the entire expression of
IεðωÞ from Eq. (B1). We have verified that the plots of this nonlocal entangling term are similar in nature compared to the
ones from Figs. 4–6. It further validates our previous procedure.

2. Evaluation of I ε for two geodesic detectors

For two detectors in curved spacetime with an initial separation and relative velocity between them, one can express the
nonlocal entangling term like the previous case as Iε ¼ IM

ε þ IC
ε . Here IM

ε corresponds to the contribution from the
Minkowski spacetime and is given by

IM
ε ¼ −

1

4π2γ0

Z
∞

−∞
dv

Z
∞

−∞
dΔτ

e
−ðv−ΔτÞ2

T̄2
− v2

T̄2γ2
0

þiωðvð1þ1=γ0Þ−ΔτÞ

fΔτ2 − ðd20 þ 2d0v0 cosðθÞvþ v20v
2Þ − iϵg : ðB7Þ

Whereas IC
ε corresponds to the term solely dependent on the presence of curvature. This quantity is given by
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IC
ε ¼ c1

4π2γ0

Z
∞

−∞
dv

Z
∞

−∞
dΔτ

e
−ðv−ΔτÞ2

T̄2
− v2

T̄2γ2
0

þiωðvð1þ1=γ0Þ−ΔτÞ

fΔτ2 − ðd20 þ 2d0v0 cosðθÞvþ v20v
2Þ − iϵg

×

�
−

f̄ðvÞΔτ2 þ ḡðvÞ
fΔτ2 − ðd20 þ 2d0v0 cosðθÞvþ v20v

2Þ − iϵg þ
	
H1ðvÞγ20 þ ivγ0ωH2ðvÞ

2
−
v2H2ðvÞ

T̄2


�
: ðB8Þ

Here f̄ðvÞ ¼ fðvÞ − 1, and ḡðvÞ ¼ gðvÞ − ðd20 þ v20v
2 þ 2d0vjjvÞ can be obtained from Eq. (10). Whereas, H1ðvÞ¼

fh1ðv0;d0Þþ2d0h2ðv0;d0Þþh3ðv0;d0Þv2g, and H2ðvÞ ¼ fh1ðv0; d0Þ þ d0h2ðv0; d0Þ þ h3ðv0; d0Þv2=3g are obtained uti-
lizing the expressions from Eq. (A15). Therefore, one can easily understand that the first part inside the brackets in Eq. (B8)
appears from the curvature corrections to the geodesic interval. On the other hand, the second part
inside the brackets in Eq. (B8) appears from the transformation from s to τ02. The above integrals can be easily performed

using the Fourier transform e−
ðΔτ−vÞ2

T̄2 ¼ ðT̄= ffiffiffiffiffiffi
2π

p Þ R∞
−∞ dκeiκðΔτ−vÞ−κ2T̄2=4. One can first perform the integral over Δτ through

the help of contour integration and then over κ. Both of these integrations can be performed analytically. Finally, one is left
with the integration over v, for which we could not find an analytical result. We have sought the help of numerical
integration to perform this final integration. We have compared the results obtained from here with the ones from our
previous calculation from Fig. 7, and confirmed similar outcomes.

APPENDIX C: 3D PLOTS—DEPENDENCE OF NEGATIVITY ON VELOCITY AND ANGLE
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