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We study TT̄-deformed OðNÞ scalar field theory in two-dimensional spacetime using the functional
renormalization group. We derive the β functions for the couplings in the system and explore the fixed
points. In addition to the Gaussian (trivial) fixed point, we find a nontrivial fixed point at which a new
universality class exists. The deformation parameter becomes relevant at the nontrivial fixed point.
Therefore, the TT̄-deformed scalar field theory in two-dimensional spacetime could be defined as a
nonperturbatively renormalizable theory.
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I. INTRODUCTION

Quantum field theory (QFT) is the critical mathematical
language for describing the dynamics of quantum particles.
In general, however, most QFT models are not solvable
even in small spacetime dimensions. Recently, the TT̄
deformation of two-dimensional QFT [1,2] has attracted
attention as an integrable deformation at the quantum level,
in the sense that the energy spectra of the deformed theory
are exactly obtained. See, e.g., Ref. [3] for a review. The
TT̄-deformed action of the massive OðNÞ vector model is
given at the lowest order of the deformation parameter by

S ¼
Z

d2x

�
1

2
ð∂μϕ⃗Þ2 −

m2

2
ϕ⃗2 þ α detðTμνÞ

�
; ð1Þ

with ϕ⃗ ¼ ðϕ1;…;ϕNÞ and the energy-momentum tensor

Tμν ¼ ∂μϕ⃗ · ∂νϕ⃗ −
ημν
2

�ð∂ρϕ⃗Þ2 −m2ϕ⃗2�: ð2Þ

Here, ημν ¼ diagð−1; 1Þ is the flat metric and α is called the
deformation parameter with mass dimension −2. Note that
detðTμνÞ is the determinant of the tensor Tμν defined as

detðTμνÞ ¼ 1=2ϵμρϵνσTμνTρσ;

where ϵμρ is the Levi-Civita tensor in two dimensions. The
deformation parameter is a canonically irrelevant coupling
in the infrared (IR) regime. Therefore, the theory (1) is
perturbatively nonrenormalizable. In this sense, the TT̄
deformation is also called the “irrelevant” deformation.
The TT̄-deformed theories have several attractive fea-

tures. One is a relation with the string action. It has been
shown in Ref. [4] that, with an appropriate change of
variables and large α, the deformed massless OðNÞ vector
model (1) can be written in the form of the Nambu-Goto
action in a N þ 2-dimensional target space in the static
gauge. The inverse of the deformation parameter α−1 is
identified with string tension.
Another noteworthy fact is that the deformed action can

be written as a scalar theory coupled to gravity in two-
dimensional spacetime. To see this, we first rewrite the
determinant term in Eq. (1) by introducing an auxiliary
symmetric tensor field Cμν such that, within the path
integral formalism,

α detðTμνÞ ¼ −
1

2
TμνCμν þ 1

8α
detðCμνÞ; ð3Þ

where detðCμνÞ is defined in the same way as detðTμνÞ.
Thus, the determinant term is decomposed into the inter-
actions between the scalar field ϕ⃗ and the auxiliary tensor
field Cμν. Here, the tensor field is decomposed as Cμν ¼
γμν þ Cδμν=2 with the trace mode C ¼ δμνCμν and the
traceless mode γμν (which satisfies δμνγμν ¼ 0). Defining a
new tensor field gμν ≡ ðδμν − γμνÞ=ð1þ CÞ, the action (1)
can be rewritten as
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S ¼
Z

d2x
ffiffiffiffiffiffi
−g

p �
1

2
gμν∂μϕ⃗ · ∂νϕ⃗ −

m2

2
ϕ⃗2 þ 1

8α
detðCμνÞ

�
;

ð4Þ

where
ffiffiffiffiffiffi−gp ¼ ½− detðgμνÞ�−1

2.
In the classical action (1) or (4), there is no kinetic term

of the tensor field, i.e., Cμν (or, equivalently, gμν) is the
nondynamical field. From the equations of motion for C
and γμν, these fields are regarded as composite operators,

C ∼ ϕ⃗2; γμν ∼ ∂μϕ⃗ · ∂νϕ⃗ −
δμν
2

∂ρϕ⃗ · ∂ρϕ⃗: ð5Þ

Thus, the scalar field dynamics becomes the leading effects
and induces an infinite number of effective interactions and
makes Cμν dynamical.
The deformation parameter plays a crucial role in these

aspects of the deformed action (1). In the limit of α → 0
(corresponding to infinite string tension), Eq. (1) becomes a
simple free scalar theory as a QFT model. When α is large,
the degrees of freedom of Cμν are expected to become
dynamical, as mentioned above, and the system tends to
describe a stringlike object. Therefore, the change of αmay
connect QFT and string theory. This picture is widely
inferred from the fact that α is canonically irrelevant and
shrinks to zero in the low-energy regime, while it grows in
the high-energy regime.
However, in deformed theories, there is an issue of

negative norm states for Cμν. The large-N analysis for the
action (1) has been carried out in Refs. [5,6] and has shown
that the quantum loop effects of the scalar field induce the
kinetic term of Cμν with a negative sign. This fact implies
that the TT̄-deformed theories are ill defined in the large-
N limit.
Understanding the features of TT̄-deformed theory is

expected to lead to deep inside both QFT and string theory.
TT̄ deformation has been initially proposed in the context
of studies on quantum integrable systems. In addition to the
methods for integrable systems, such as the Bethe ansatz
[1,2] and S-matrix bootstrap [7], earlier studies on TT̄
deformation have mainly relied on perturbation theory
[8–11], the methods of large-N expansion [5,6], and
holography [12–15]. Also, several attempts [16–19] have
been made to understand the renormalization group flow of
the TT̄-deformed theories. In this paper, we intend to
perform a nonperturbative analysis for the TT̄-deformed
OðNÞ scalar theory (1) using the functional renormalization
group [20]. Our aim is to investigate the impact of the
nonperturbative dynamics ofCμν, which cannot be captured
by the above-mentioned methods. We derive the renorm-
alization group (RG) equations for an effective theory of
Eq. (1) and then analyze their fixed-point structure.

II. EFFECTIVE ACTION FOR TT̄-DEFORMED
SCALAR THEORY

For the study of RG flows of the TT̄-deformed scalar
field theory in two dimensions, the central method is the
Wetterich equation [21], which is formulated as a func-
tional partial differential equation for the scale-dependent
(one-particle irreducible) effective action Γk,

∂tΓk ¼
1

2
Tr
��
Γð2Þ
k þRk

�−1 · ∂tRk

�
: ð6Þ

Here, k is the ultraviolet (UV) cutoff scale, and ∂t ¼ k∂k
is the dimensionless scale derivative. Γð2Þ

k is the full
two-point function obtained by the second-order functional

derivative with respect to superfields Φ, namely, Γð2Þ
k ðpÞ ¼

δ2Γk=δΦð−pÞδΦðpÞ. Tr acts on all spaces on which Φ is
defined, such as momentum andOðNÞ space, andRkðpÞ is
the regulator function realizing the Wilsonian coarse-
graining procedure. In this work, we use the Litim cutoff
function [22] for the regulator function. See Eq. (A4) for its
explicit form.
Now, we make an appropriate ansatz for effective action.

In this work, we are mainly interested in the “dynamical-
ization” of Cμν and the RG flow of the deformation
parameter. In this work, we focus on the infinitesimal, that
is, first order in the deformation parameter α, TT̄ defor-
mation of the massive OðNÞ scalar model as a first step.1

Hence, the effective action in two-dimensional Euclidean
spacetime is given by

Γk ¼
Z

d2x

�
1

2
ð∂μϕ⃗Þ2 þ

m2
k

2
ϕ⃗2 þ κk

2
TμνCμν þ Λk þ λkC

þ ZC;k

2
ð∂ρCμνÞ2 − 1

8αk
detðCμνÞ þ βkCμνCμν

�
: ð7Þ

Here, the energy-momentum tensor Tμν is the same form as
given in Eq. (2) with the mass parametermk. The parameters
Λk (corresponding to the cosmological constant) and λk are
induced by quantum effects, but do not contribute to the
dynamics. Note that the invariance of the vacuum jΩi under
the translations and the Lorentz transformations results in
hΩjγμνjΩi ¼ 0 and thus no linear term in γμν appears in the
effective action (7). The (dimensionless) field renormaliza-
tion factor ZC;k describes the dynamicalization of Cμν. For
ZC;k ¼ 0,Cμν has no propagating degrees of freedom, while
the use of the local potential approximation (LPA) [23,24],
ZC;k ¼ 1, implies that Cμν is a priori the dynamical field.

The rescaling of the field Cμν → Z−1=2
C;k Cμν defines the

anomalous dimension as ηC ¼ −∂tZC;k=ZC;k that

1We discuss the effect of higher-order terms of TT̄ deformation
in Sec. IV.
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contributes to the β functions for interactions involvingCμν,
such as αk and βk.
Note that the determinant formula allows us to write

2 detðCμνÞ ¼ 2ϵμρϵνσCμνCρσ ¼ ðδμνδρσ − δμρδσνÞCμνCρσ ¼
C2=2 − γμνγ

μν, while one has CμνCμν ¼ C2=2þ γμνγ
μν.

Therefore, the terms detðCμνÞ and CμνCμν in Eq. (7) can
be written in terms of the linear combination of C2 and
γμνγ

μν. Because of Eq. (5), higher power terms of Cμν such
as ð∂ρCμνÞ2 and CμνCμν correspond to higher derivative
operators.
Let us here briefly summarize the behavior of the flow

equation around a fixed point. Using Eq. (6) for the
effective action, we obtain the flow equations for the
couplings that we denote here symbolically by gi;k. To
analyze the structure of fixed points, we need to define
dimensionless couplings g̃i;k ¼ k−digi;k, with k as the RG
scale and di as the canonical mass dimension of gi;k. Then,
we obtain ∂tg̃i;k ¼ βiðfg̃kgÞ, where fg̃kg denotes a set of
dimensionless couplings and βi is the β function of g̃i;k. The
β function typically takes the following form:

∂tg̃i;k ¼ βk
�fg̃kg� ¼ −dig̃i;k þ Bi;k

�fg̃kg�; ð8Þ

where Bi;kðfg̃kgÞ denotes quantum loop corrections to the β
functions of the coupling g̃i;k. The fixed points g̃�i;k are
obtained by looking for zero points in the β functions:
βiðfg̃�kgÞ ¼ 0 for all i.
Once a fixed point is found, one can analyze the flows of

couplings around the fixed point. Performing the Taylor
expansion for the β function up to the linear order, i.e.,
βiðfg̃kgÞ ≈ ∂βi=∂g̃j;kjg̃k¼g̃�k

ðg̃j;k − g̃�j;kÞ ≡ −T ijðg̃j;k − g̃�j;kÞ,
the solution to the RG equations reads as

g̃i;k ¼ g̃�i;k þ
X
j

CjV
j
i

	
k
Λ



−θj

; ð9Þ

where Vj
i is the matrix diagonalizing the stability matrix

T ij, and Cj are constant coefficients given at a reference
scale Λ. The critical exponents θj are the eigenvalues of T ij

and play a crucial role in the energy scaling of the coupling
constants g̃i around the fixed point. The coupling constant
with a positive critical exponent grows for k → 0 and is
called relevant. On the other hand, the irrelevant coupling
constant with the negative critical exponent shrinks toward
the fixed point for k → 0. On the contrary, in the continuum
limit k → ∞, relevant couplings converge to the fixed
point, while irrelevant couplings diverge. To avoid such a
divergence, we need fine-tuning for irrelevant couplings so
that they do not deviate from the fixed point. This behavior
means that relevant couplings are free parameters in the
continuum limit; thus, a continuous and renormalizable
theory can be constructed at a fixed point with a finite
number of relevant couplings.

In particular, at the Gaussian fixed point g̃�i;k ¼ 0 that
characterizes the perturbation theory, we have Vj

i ¼ δji and
θi ¼ di for g̃i;k. Hence, from the dimensional analysis of
couplings, one can judge the renormalizability of a system
as usual. In the system (7) at the Gaussian fixed point
(g̃�i;k ¼ 0), one has

θΛ ¼ 2; θλ ¼ 2; θm2 ¼ 2;

θκ ¼ 0; θα ¼ −2; θβ ¼ 2: ð10Þ

Note that κ̃k has a zero critical exponent and is called a
marginal coupling. If we expand the β function of κ̃k around
the Gaussian fixed point, we find that ∂tκ̃k is given by
−κ̃2k=m̃2

k multiplied by some positive constant. Therefore,
κ̃k is marginally relevant/irrelevant depending on whether
m̃2

k is negative/positive. If we consider higher-order quan-
tum corrections, the relevance of κ̃k may further change.
Next, we study the possibility of the nontrivial fixed point
in the system (7) and the critical exponents.

III. RG FLOWS AND FIXED-POINT STRUCTURE

β functions of system (7) can be derived by using the
Wetterich equation (6). Their explicit forms are too long to
be shown here, so we display their explicit forms in
Eq. (A26) in the Appendix. Instead, we discuss the
structure of the β functions and a mechanism to obtain a
nontrivial fixed point.
The coupling κk becomes a crucial interaction that

transmits the dynamics of the scalar field to the tensor
field. Switching off κk decouples the scalar sector from the
tensor sector and makes the system a free theory. Therefore,
we start by looking at the β function of κ̃kð¼ Z−1=2

C;k κkÞ. The
canonical dimension of κ̃k is zero, so that quantum
corrections give a nonzero β function. Within the effective
action (7), all quantum corrections are proportional to κ̃3k.
Therefore, a nontrivial fixed-point value of κ̃k is not
obtained from its β function. However, since the operator
TμνCμν includes the kinetic term and the mass term of ϕ⃗, the
β function of κ̃k receives different powers of m2

k.
Consequently, a nontrivial fixed point m̃2�

k is found from
the β function of κ̃k.
For a fixed finite value of m̃2�

k found from zero of the β
function for κ̃k, we obtain its associated finite value κ̃�k due
to the competing effect between the canonical scaling and
the quantum effects in the β function for m̃2

k. More
specifically, the β function for m̃2

k takes the form of
βm2 ¼ −2m̃2

k þ κ̃2kIm2ðm̃2
k; α̃k; β̃kÞ, where Im2 denotes the

threshold function given in Eq. (A28) in the Appendix. For
a finite value ofm2�

k , there exists a nonvanishing value of κ̃k
such that βm2 ¼ 0 due to cancellation between −2m̃2�

k and
κ̃�2k Im2ðm̃�2

k ; α̃�k; β̃
�
kÞ. Once a finite value κ̃�k is found, a

nontrivial fixed point for αk and βk is obtained in a similar
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way. Note that threshold functions give finite values for
fixed values of couplings.
We first explore nontrivial fixed points in the case of an

LPA, that is, ZC;k ¼ 1 for which ηC ¼ 0. Table I shows the
fixed points for N ¼ 1, 2, 3.2 For N > 3, no reliable
nontrivial fixed point was found. The value of the couplings
at these fixed points is observed not to diverge as N is
increased. The reason is speculated as follows. The β
functions of the couplings receive contributions from
fluctuations of both scalar and tensor fields. As N is
increased, loop effects of the scalar field enhance, while
those of the tensor field do not. Because the fixed-point
value is determined as a point where the contributions from
scalar and tensor fields cancel each other out, there is no
fixed point within the real-valued couplings for N to be
large. This fact implies that such a fixed point is inacces-
sible in the large-N analysis. Including the finite anomalous
dimension ηC slightly modifies the fixed-point value from
the LPA. The value of ηC at the fixed point is sufficiently
smaller than 1, indicating that the validity of the derivative
expansion is guaranteed as an approximation for the
effective action (7).
The critical exponents at the fixed points in Table I are

summarized in Table II. Note here that the imaginary parts of
θ3 and θ4 imply the strong mixing between m̃2

k and κ̃k.
Indeed, such an imaginary part of critical exponents is often
observed in asymptotically safe gravity; see, e.g., Ref. [25].

Although, in general, critical exponents at a nontrivial fixed
point are eigenvalues of linear combinations of the original
basis, it is convenient to investigate the diagonal parts
of the stability matrix T ij on the coupling basis fg̃ig ¼
fΛ̃k; λ̃k; m̃2

k; κ̃k; α̃k; β̃kg in order to roughly identify the
critical exponents with the original basis. For example,
for N ¼ 1 and with finite ηC, we have diagðT Þ≈
ð2; 1.88;−6.83;−3.39; 1.75; 1.75Þ. From this fact, the criti-
cal exponents ðθ1; θ2; θ3; θ4; θ5; θ6Þ correspond to approx-
imately ðθΛ; θλ; θm2 ; θκ; θα; θβÞ, respectively.
It turns out that the couplings with the scalar field m̃2

k and
κ̃k become irrelevant, while those with the tensor field α̃k
and β̃k become relevant. Therefore, the tensor field
Cμν (or γμν and C) are effective degrees of freedom in
low energy.
The flow diagram in the N ¼ 1 case with finite ηC on the

ðβ̃k; α̃kÞ plane is displayed in Fig. 1, where the arrows
indicate flows from theUV to the IR direction and the purple
and red points are the nontrivial and Gaussian fixed points,
respectively. A separatrix is shown as the green line. To plot
it, we have used the fixed-point value for κ̃k andm2

k forwhich
theGaussian fixed point is shifted from β̃�k ¼ α̃�k ¼ 0 to β̃�k ¼
−0.239 and α̃�k ¼ 0. In other words, Fig. 1 displays the two-
dimensional subspace of α̃k and β̃k with the fixed value of κ̃k
and m̃2

k within four-dimensional theory space.
It can be seen from Fig. 1 that there are at least two

different phases in the β̃k − α̃k plane. If we start from a
value of couplings at a UV scale on the green line, its IR
physics is described by the Gaussian fixed point.
Otherwise, the theory does not flow into the Gaussian
fixed point and may converge to other IR fixed points.

TABLE I. Nontrivial fixed-point values for several values of N.

Λ̃�
k λ̃�k m̃2�

k κ̃�k α̃�k β̃�k ηC

N ¼ 1 (LPA) 0.243 ∓ 0.183 −1.25 �0.471 0.328 −0.236 0
(w=ηC) 0.246 ∓ 0.181 −1.26 �0.462 0.323 −0.239 0.249

N ¼ 2 (LPA) 0.324 ∓ 0.354 −1.15 �0.174 0.303 −0.266 0
(w=ηC) 0.336 ∓ 0.356 −1.15 �0.167 0.302 −0.267 0.101

N ¼ 3 (LPA) 0.405 ∓ 0.669 −1.07 �0.045 0.302 −0.281 0
(w=ηC) 0.421 ∓ 0.677 −1.06 �0.043 0.299 −0.282 0.036

TABLE II. Critical exponents at the nontrivial fixed points listed in Table I for several values of N.

θ1 θ2 θ3 θ4 θ5 θ6

N ¼ 1 (LPA) 2 2 −3.22þ 36.6i −3.22 − 36.6i 4.37 1.91
(w=ηC) 2 1.88 −6.20þ 37.3i −6.20 − 37.3i 4.02 1.68

N ¼ 2 (LPA) 2 2 −2.69þ 80.6i −2.69 − 80.6i 3.40 1.91
(w=ηC) 2 1.94 −4.51þ 83.2i −4.51 − 83.2i 3.34 1.82

N ¼ 3 (LPA) 2 2 −2.41þ 211i −2.41 − 211i 2.84 1.94
(w=ηC) 2 1.98 −3.73þ 218i −3.73 − 218i 2.88 1.91

2The appearance of the pair of λ̃�k and κ̃�k with ones that have the
sign reversed simultaneously results from the redundancy of
defining the fields Cμν and C; that is, even if we flip the sign of
these tensor fields (Cμν; C → −Cμν;−C) in Eq. (7), the RG flow
should not be changed.
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As for the nontrivial UV fixed point, depending on the
boundary condition for those couplings, the deformation
parameter grows toward the IR direction. This behavior
contracts to flow around the Gaussian fixed point.

IV. SUMMARY AND DISCUSSION

In this paper, we have performed the functional renorm-
alization group study on the two-dimensional TT̄-deformed
scalar field theory. As seen from Eq. (10) and the flow
diagram in Fig. 1, the TT̄-deformed term detTμν is
irrelevant around the Gaussian fixed point, so that we
cannot define the continuum quantum field theory with TT̄
interactions around the Gaussian fixed point. This result
means that the ordinary perturbative analysis is no longer
valid for TT̄-deformed theory.
The novel finding in this work is the existence of the

nontrivial UV fixed point. This finding may lead to
defining the TT̄-deformed theory in a nonperturbative
and renormalizable way as an asymptotically safe theory
around the nontrivial fixed point. In addition, it may
provide a new picture of the TT̄-deformed theory. In
particular, the fact that the deformation parameter αk
becomes relevant at the nontrivial fixed point may imply

the existence of different phases. In the strong coupling
phase αk > α�k, αk becomes large along the RG flow toward
the IR regime, while the flow of αk in the weak coupling
phase αk < α�k converges to the Gaussian fixed point in the
IR limit. In other words, depending on the value of the
deformation parameter, the theory could show different
behaviors in the IR regime. This result contrasts the naive
picture from the perturbation theory, where the flow of αk
around the Gaussian fixed point gives a connection
between a free scalar field theory (αk → 0 in the IR regime)
and the Nambu-Goto action (αk → ∞ in the UV regime).
Once the theory is scale invariant at the fixed point, it

involves conformal invariance thanks to the c theorem [26].
Simultaneously, this theory cannot describe the dynamics
of the Nambu-Goldstone bosons accompanied by sponta-
neous breaking of the global OðNÞ symmetry, which is
prohibited by the Coleman-Hohenberg-Mermin-Wagner
theorem [27–29]. Therefore, a conformal field theory
(CFT) with global OðNÞ symmetry should describe this
UV fixed point. Specifying this CFT in more detail is left
for future work.
Another future direction is to study the stability of our

results when increasing the truncation level, especially
considering higher-order terms of the TT̄ deformation. In
this study, we consider the lowest-order term of the TT̄-
deformed massive vector model with respect to the defor-
mation parameter α. Naively, since the higher-order terms
have negative and large canonical scaling, they are
expected to significantly affect the UV fixed point.
However, the finite TT̄ deformation of the free massless
OðNÞ vector model is the Nambu-Goto action. Thus, the
relation between this UV fixed point and string theory is
worth further investigating.
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APPENDIX: DERIVATION OF β FUNCTIONS

In this appendix, we show the detailed derivation of the β
functions using the Wetterich equation (6). Our starting
effective action for the TT̄-deformed scalar theory is given
by Eq. (7). First, we compute the Hessian, i.e., the full two-
point function obtained by taking the second-order func-
tional derivative.

1. Hessian

A central object in the functional renormalization group
equation is the full two-point correlation function, i.e., the
so-called Hessian. For Eq. (7), the Hessian reads

FIG. 1. Flow diagram on β̃k − α̃k plane in the N ¼ 1 case with
finite ηC. The arrows show flows from the UV to IR direction, and
the green line is a separatrix. For κ̃k and m̃2

k, we used the fixed-
point value κ̃�k ¼ 0.462 and m̃2�

k ¼ −1.26. The nontrivial fixed
point (purple point) is located at β̃�k ¼ −0.239 and α�k ¼ 0.323
(see Table I), while the Gaussian fixed point (red point) is shifted
to α�k ¼ 0 and β̃k ¼ −0.239 due to the use of the fixed values for
κ̃k and m̃k.
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Γð2Þ
k ðpÞ ¼

0
B@

δ2Γk
δϕiðpÞδϕjð−pÞ

δ2Γk
δϕiðpÞδCμνð−pÞ

δ2Γk
δCρσðpÞδϕjð−pÞ

δ2Γk
δCρσðpÞδCμνð−pÞ

1
CA
������
ϕi¼ϕ̄i;Cμν¼C̄μν

¼

0
B@
n
p2 þm2

k þ κkC̄μν
h
pμpν −

δμν
2
ðp2 þm2

kÞ
io

δij κkϕ̄i

n
pμpν −

δμν
2
ðp2 þm2

kÞ
o

κkϕ̄j

n
pρpσ −

δρσ
2
ðp2 þm2

kÞ
o

ZC;kp2δμρδνσ − 1
8αk

ϵμρϵνσ þ 2βkδμρδνσ

1
CA: ðA1Þ

Here, we introduce the cutoff function such that

Rkðp2Þ ¼
 
Rϕϕ

k ðp2Þδij 0

0 ðRCC
k ðp2ÞÞμνρσ

!

¼
 
Rkðp2Þδij 0

0 ZC;kRkðp2Þδμρδνσ

!
; ðA2Þ

for which the numerator of the flow equation (6) is
computed as

∂tRk¼
 
∂tRkðp2Þδij 0

0 ð∂tZCRkðp2ÞþZC∂tRkðp2ÞÞδμρδνσ

!
:

ðA3Þ

In this work, we employ the Litim-type cutoff function [22]

Rkðp2Þ ¼ ðk2 − p2Þθðp2 − k2Þ: ðA4Þ

The diagonal parts in the Hessian with the regulator
function are

Γ̃ð2Þ
ϕϕ ≡ �Γð2Þ

ϕϕ þRϕϕ
k

�
ij

¼
�
Pk þm2

k þ κkC̄μν

�
pμpν −

δμν
2

ðp2 þm2
kÞ
�

δij;

ðA5Þ

Γ̃ð2Þ
CC ≡ �Γð2Þ

CC þRCC
k

�
μνρσ

¼ ZC;kPkδμρδνσ −
1

8αk
ϵμρϵνσ þ 2βkδμρδνσ

¼
	
ZC;kPk þ 2βk þ

1

8αk



δμρδνσ −

1

8αk
δμνδρσ; ðA6Þ

where we have used ϵμρϵνσ ¼ δμνδρσ − δμσδρν and have
introduced Pkðp2Þ ¼ p2 þ Rkðp2Þ.

2. Regulated propagator

To obtain the β functions, we need to evaluate the inverse

form of the regulated Hessian ðΓð2Þ
k þRkÞ. To this end, we

first compute the inverse forms of Eqs. (A5) and (A6),

�
Γ̃ð2Þ
ϕϕ

�−1
ij

¼ 1

Pk þm2
k þ κkC̄μν½pμpν −

δμν
2
ðp2 þm2

kÞ�
δij;

ðA7Þ

�
Γ̃ð2Þ
CC

�−1
μνρσ ¼

1

ZC;kPk þ 2βk þ 1
8αk

δμρδνσ þ
1

8αkðZC;kPk þ 2βk − 1
8αk

ÞðZC;kPk þ 2βk þ 1
8αk

Þ δμνδρσ

≡ Pþδμρδνσ þ
1

8αk
PþP−δμνδρσ; ðA8Þ

where we have defined

P� ¼ 1

ZC;kPk þ 2βk � 1
8αk

: ðA9Þ

Then, the inverse form of the regulated Hessian reads
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�
Γð2Þ
k þRk

�−1 ¼
0
B@
�
Γ̃ð2Þ
ϕϕ − Γð2Þ

ϕC

�
Γ̃ð2Þ
CC

�−1Γð2Þ
Cϕ

�−1 −
− �

Γ̃ð2Þ
CC − Γð2Þ

Cϕ

�
Γ̃ð2Þ
ϕϕ

�−1Γð2Þ
ϕC

�−1
1
CA: ðA10Þ

Here, the off-diagonal parts are irrelevant for deriving the β functions in the case of the regulator (A3), so we do not specify
them. We have

Γ̃ð2Þ
ϕϕ − Γð2Þ

ϕC

�
Γ̃ð2Þ
CC

�−1Γð2Þ
Cϕ ¼

�
Pk þm2

k þ κkC̄μν

�
pμpν −

δμν
2

ðp2 þm2
kÞ
�

δij

− κkϕ̄i

�
pμpν −

δμν
2

ðp2 þm2
kÞ
	

Pþδμρδνσ þ
1

8αk
PþP−δμνδρσ



κkϕ̄j

�
pρpσ −

δρσ
2

ðp2 þm2
kÞ


¼
�
Pk þm2

k þ κkC̄μν

�
pμpν −

δμν
2

ðp2 þm2
kÞ
�

δij − κ2kϕ̄iϕ̄j

	
1

2
ðp4 þm4

kÞPþ þ m4
k

8αk
PþP−



;

ðA11Þ
from which the (1, 1) component of Eq. (A10) is computed as�

Γ̃ð2Þ
ϕϕ−Γð2Þ

ϕC

�
Γ̃ð2Þ
CC

�−1Γð2Þ
Cϕ

�−1¼ �Γ̃ð2Þ
ϕϕ

�−1þ�Γ̃ð2Þ
ϕϕ

�−1Γð2Þ
ϕC

�
Γ̃ð2Þ
CC

�−1Γð2Þ
Cϕ

�
Γ̃ð2Þ
ϕϕ

�−1þ���

¼ δij

Pkþm2
kþκkC̄μν½pμpν−

δμν
2
ðp2þm2

kÞ�

þ κ2kϕ̄iϕ̄j

½Pkþm2
kþκkC̄μν½pμpν−

δμν
2
ðp2þm2

kÞ��2
	
1

2
ðp4þm4

kÞPþþ
m4

k

8αk
PþP−



þ���; ðA12Þ

while we have

Γ̃ð2Þ
CC − Γð2Þ

CϕðΓ̃ð2Þ
ϕϕÞ−1Γð2Þ

ϕC ¼ ZC;kp2δμρδνσ −
1

8αk
ϵμρϵνσ þ 2βkδμρδνσ − κkϕ̄j

�
pρpσ −

δρσ
2

ðp2 þm2
kÞ


×
δij

Pk þm2
k þ κkC̄μν½pμpν −

δμν
2
ðp2 þm2

kÞ�
κkϕ̄i

�
pμpν −

δμν
2

ðp2 þm2
kÞ


¼
	
ZC;kPk þ 2βk þ

1

8αk



δμρδνσ −

1

8αk
δμνδρσ − κ2k

⃗ϕ̄
2
Pϕ

�
pμpν −

δμν
2

ðp2 þm2
kÞ


×

�
pρpσ −

δρσ
2

ðp2 þm2
kÞ

− κ2k

⃗ϕ̄
2ðPϕÞ2

�
pμpν −

δμν
2

ðp2 þm2
kÞ


×

�
pρpσ −

δρσ
2

ðp2 þm2
kÞ

κkC̄αβ

�
pαpβ −

δαβ
2

ðp2 þm2
kÞ
�
þ � � � ; ðA13Þ

whose inverse form is given by�
Γ̃ð2Þ
CC−Γð2Þ

Cϕ

�
Γ̃ð2Þ
ϕϕ

�−1Γð2Þ
ϕC

�−1¼ �Γ̃ð2Þ
CC

�−1þ�Γ̃ð2Þ
CC

�−1Γð2Þ
Cϕ

�
Γ̃ð2Þ
ϕϕ

�−1Γð2Þ
ϕC

�
Γ̃ð2Þ
CC

�−1
¼
	
Pþδμρδνσþ

1

8αk
PþP−δμνδρσ




þ
	
Pþδμρδλκþ

1

8αk
PþP−δμλδρκ


	
κ2k

⃗̄ϕ
2fpλpκ−

δλκ
2
ðp2þm2

kÞgfpαpβ−
δαβ
2
ðp2þm2

kÞg
Pkþm2

kþκkC̄γη½pγpη−
δγη
2
ðp2þm2

kÞ�




×

	
Pþδαβδνσþ

1

8α
PþP−δανδβσ



þ���: ðA14Þ
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3. Flow generator

Now, we are in the position to compute the flow generator, i.e., the right-hand side of the Wetterich equation (6). From
Eqs. (A3) and (A10), we have

1

2
Tr
�ðΓð2Þ

k þRkÞ−1 · ∂tRk

� ¼ 1

2
Tr

ð∂tRkÞϕϕ
Γ̃ð2Þ
ϕϕ − Γð2Þ

ϕCðΓ̃ð2Þ
CCÞ−1Γð2Þ

Cϕ

þ 1

2
Tr

ð∂tRkÞCC
Γ̃ð2Þ
CC − Γð2Þ

CϕðΓ̃ð2Þ
ϕϕÞ−1Γð2Þ

ϕC

≡ Aþ B: ðA15Þ

First, we evaluate the ϕ-loop contribution denoted by A,

A ¼ 1

2
Tr

ð∂tRkÞϕϕ
Γ̃ð2Þ
ϕϕ − Γð2Þ

ϕCðΓ̃ð2Þ
CCÞ−1Γð2Þ

Cϕ

≃
1

2
Tr
n
∂tRkδij

��
Γ̃ð2Þ
ϕϕ

�−1 þ �Γ̃ð2Þ
ϕϕ

�−1�Γð2Þ
ϕC

�
Γ̃ð2Þ
CC

�−1Γð2Þ
Cϕ

��
Γ̃ð2Þ
ϕϕ

�−1�o≡ A1 þ A2: ðA16Þ

Here, the first term is computed as

A1 ¼
1

2
Tr

ð∂tRkÞϕϕ
Γ̃ð2Þ
ϕϕ

¼ 1

2
Tr

∂tRkδij

Pk þm2
k þ κkC̄μν½pμpν −

δμν
2
ðp2 þm2

kÞ�

¼ N
2ð2πÞ

2k2

k2 þm2
k

k2

2
þ κk

N
2ð2πÞ

2k2

ðk2 þm2
kÞ2
	
k2m2

k

4



C̄

þ κ2k
N

2ð2πÞ
2k2

ðk2 þm2
kÞ3
�
k6

24
C̄μνC̄μν −

	
k6

48
−
k2m4

k

8



ðC̄μνC̄μν þ 2 detðC̄μνÞÞ

�
þ � � � ; ðA17Þ

while the second term is

A2¼
1

2
Tr
n
∂tRkδij

h�
Γ̃ð2Þ
ϕϕ

�−1�Γð2Þ
ϕC

�
Γ̃ð2Þ
CC

�−1Γð2Þ
Cϕ

��
Γ̃ð2Þ
ϕϕ

�−1io

¼1

2
Tr∂tRk

κ2kϕ̄iϕ̄j

½Pkþm2
kþκkC̄μν½pμpν−

δμν
2
ðp2þm2

kÞ��2
	
1

2
ðp4þm4

kÞPþþ
m4

k

8αk
PþP−




¼ κ2k
2ð2πÞ

2k2

ðk2þm2
kÞ2
	

k6

12ðZC;kk2þ2βkþ 1
8αk

Þþ
k2m4

k

4ðZC;kk2þ2βkþ 1
8αk

Þþ
k2m4

k

16αkðZC;kk2þ2βkþ 1
8αk

ÞðZC;kk2þ2βk− 1
8αk

Þ


⃗̄ϕ
2

þ κ3k
2ð2πÞ

2k2m2
k

ðk2þm2
kÞ3
	

k6

12ðZC;kk2þ2βkþ 1
8αk

Þþ
k2m4

k

4ðZC;kk2þ2βkþ 1
8αk

Þþ
k2m4

k

16αkðZC;kk2þ2βkþ 1
8αk

ÞðZC;kk2þ2βk− 1
8αk

Þ


⃗̄ϕ
2
C̄:

ðA18Þ

Let us next evaluate the C-loop contribution denoted by B,

B ¼ 1

2
Tr

ð∂tRkÞCC
Γ̃ð2Þ
CC − Γð2Þ

CϕðΓ̃ð2Þ
ϕϕÞ−1Γð2Þ

ϕC

≃
1

2
Trð∂tZC;kRkðp2Þ þ ZC;k∂tRkðp2ÞÞδμρδνσ

h�
Γ̃ð2Þ
CC

�−1 þ �Γ̃ð2Þ
CC

�−1Γð2Þ
Cϕ

�
Γ̃ð2Þ
ϕϕ

�−1Γð2Þ
ϕC

�
Γ̃ð2Þ
CC

�−1i≡ B1 þ B2: ðA19Þ

Here, we obtain the first term as
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B1 ¼
1

2
Tr

ð∂tRkÞCC
Γ̃ð2Þ
CC

¼ 1

2
Trð∂tZC;kRk þ ZC;k∂tRkÞδμρδmn

	
Pþδmnδνσ þ

1

8α
PþP−δmνδnσ




¼ 1

2π

	
1

4
k4∂tZC;k þ k4ZC;k


�
2

ZC;kk2 þ 2βk þ 1
8αk

þ 1

8αkðZC;kk2 þ 2βk − 1
8αk

ÞðZC;kk2 þ 2βk þ 1
8αk

Þ
�
: ðA20Þ

The second term is

B2 ¼
1

2
Trð∂tRkÞCC

��
Γ̃ð2Þ
CC

�−1Γð2Þ
Cϕ

�
Γ̃ð2Þ
ϕϕ

�−1Γð2Þ
ϕC

�
Γ̃ð2Þ
CC

�−1�
¼ 1

2
Trð∂tZC;kRk þ ZC;k∂tRkÞδμρδmn

	
Pþδmnδλκ þ

1

8α
PþP−δmλδnκ




×

	
κ2 ⃗ϕ̄

2 fpλpκ −
δλκ
2
ðp2 þm2Þgfpαpβ −

δαβ
2
ðp2 þm2Þg

Pk þm2 þ κC̄γη½pγpη −
δγη
2
ðp2 þm2Þ�


	
Pþδαβδνσ þ

1

8α
PþP−δανδβσ




¼
�
κ2k
π

1

k2 þm2
k

	
1

4
∂tZC;kk4 þ ZC;kk4



⃗ϕ̄
2 þ κ3k

2π

m2
k

ðk2 þm2
kÞ2
	
1

4
∂tZC;kk4 þ ZC;kk4



⃗ϕ̄
2
C̄

�

×

	
m4

k

ðZC;kk2 þ 2βk þ 1
8αk

Þ2 þ
m4

k

8αkðZC;kk2 þ 2βk þ 1
8αk

Þ2ðZC;kk2 þ 2βk − 1
8αk

Þ

þ m4
k

256α2kðZC;kk2 þ 2βk þ 1
8αk

Þ2ðZC;kk2 þ 2βk − 1
8αk

Þ2


: ðA21Þ

4. Flow equations

The left-hand side of the Wetterich equation (6) for the effective action (7) is given by

∂tΓk ¼
Z

d2x
�
1

2
ð∂μϕ⃗Þ2 þ

∂tm2
k

2
ϕ⃗2 þ ∂tκk

2
TμνCμν þ ∂tZC;k

2
ð∂ρCμνÞ2 þ ∂tλkC − ∂t

1

8αk
detðCμνÞ þ ∂tβkCμνCμν þ ∂tΛk

�
:

ðA22Þ

We obtain the flow equations by projecting onto each field operator from the flow generators (A17), (A18), (A20), and
(A21) obtained in the previous subsection such that

∂tΛk ¼
N

2ð2πÞ
k4

k2 þm2
k

þ 1

2π

	
1

4
k4∂tZC;k þ k4ZC;k


	
2

ZC;kk2 þ 2βk þ 1
8αk

þ 1

8αkðZC;kk2 þ 2βk − 1
8αk

ÞðZC;kk2 þ 2βk þ 1
8αk

Þ


;

ðA23aÞ

∂tλk ¼ κk
N

2ð2πÞ
2k2

ðk2 þm2
kÞ2
	
k2m2

k

4



; ðA23bÞ

∂tαk ¼ 8κ2kα
2
k

N
2ð2πÞ

2k2

ðk2 þm2
kÞ3
	
−
k6

24
þ k2m4

k

4



; ðA23cÞ

∂tβk ¼ κ2k
N

2ð2πÞ
2k2

ðk2 þm2
kÞ3
	
k6

48
þ k2m4

k

8



; ðA23dÞ
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∂tm2
k¼

2κ2k
2ð2πÞ

2k2

ðk2þm2
kÞ2
	

k6

12ðZC;kk2þ2βkþ 1
8αk

Þþ
k2m4

k

4ðZC;kk2þ2βkþ 1
8αk

Þþ
k2m4

k

16αkðZC;kk2þ2βkþ 1
8αk

ÞðZC;kk2þ2βk− 1
8αk

Þ



þ2κ2k
π

1

k2þm2
k

	
1

4
∂tZC;kk4þZC;kk4


	
m4

k

ðZC;kk2þ2βkþ 1
8αk

Þ2þ
m4

k

8αkðZC;kk2þ2βkþ 1
8αk

Þ2ðZC;kk2þ2βk− 1
8αk

Þ

þ m4
k

256α2kðZC;kk2þ2βkþ 1
8αk

Þ2ðZC;kk2þ2βk− 1
8αk

Þ2


; ðA23eÞ

∂tðκkm2
kÞ ¼ −

4κ3k
2ð2πÞ

2k2m2
k

ðk2 þm2
kÞ3
	

k6

12ðZC;kk2 þ 2βk þ 1
8αk

Þ þ
k2m4

k

4ðZC;kk2 þ 2βk þ 1
8αk

Þ

þ k2m4
k

16αkðZC;kk2 þ 2βk þ 1
8αk

ÞðZC;kk2 þ 2βk − 1
8αk

Þ


−
4κ3k
2π

m2
k

ðk2 þm2
kÞ2
	
1

4
∂tZC;kk4 þ ZC;kk4




×

	
m4

k

ðZC;kk2 þ 2βk þ 1
8αk

Þ2 þ
m4

k

8αkðZC;kk2 þ 2βk þ 1
8αk

Þ2ðZC;kk2 þ 2βk − 1
8αk

Þ

þ m4
k

256α2kðZC;kk2 þ 2βk þ 1
8αk

Þ2ðZC;kk2 þ 2βk − 1
8αk

Þ2


: ðA23fÞ

From Eqs. (A23e) and (A23f), we obtain the flow equation for κk as

∂tκk¼−
2κ3k
2π

k2ðk2þ3m2
kÞ

ðk2þm2
kÞ3m2

k

	
k6

12ðZC;kk2þ2βkþ 1
8αk

Þþ
k2m4

k

4ðZC;kk2þ2βkþ 1
8αk

Þþ
k2m4

k

16αkðZC;kk2þ2βkþ 1
8αk

ÞðZC;kk2þ2βk− 1
8αk

Þ



−
2κ3k
π

k2þ2m2
k

ðk2þm2
kÞ2m2

k

	
1

4
∂tZC;kk4þZC;kk4


	
m4

k

ðZC;kk2þ2βkþ 1
8αk

Þ2þ
m4

k

8αkðZC;kk2þ2βkþ 1
8αk

Þ2ðZC;kk2þ2βk− 1
8αk

Þ

þ m4
k

256α2kðZC;kk2þ2βkþ 1
8αk

Þ2ðZC;kk2þ2βk− 1
8αk

Þ2


: ðA24Þ

To study the fixed-point structure, we introduce the dimensionless couplings such that

Λ̃k ¼ k−2Λk; λ̃k ¼ Z−1=2
C;k k−2λk; α̃k ¼ ZC;kk2αk;

β̃k ¼ Z−1
C;kk

−2βk; m̃2
k ¼ k−2m2

k; κ̃k ¼ Z−1=2
C;k κk: ðA25Þ

Then, the flow equations for the dimensionless couplings are obtained as

∂tΛ̃k ¼ −2Λ̃k þ
N

2ð2πÞ
1

1þ m̃2
k

þ 1

2π

	
1 −

ηC
4


	
2

1þ 2β̃k þ 1
8α̃k

þ 1

8α̃kð1þ 2β̃k − 1
8α̃k

Þð1þ 2β̃k þ 1
8α̃k

Þ



; ðA26aÞ

∂tλ̃k ¼
	
−2þ ηC

2



λ̃k þ κ̃k

N
8π

m̃2
k

ð1þ m̃2
kÞ2

; ðA26bÞ

∂tα̃k ¼ ð2 − ηCÞα̃k þ 8κ̃2kα̃
2
k
N
2π

1

ð1þ m̃2
kÞ3
	
−

1

24
þ m̃4

k

4



; ðA26cÞ

∂tβ̃k ¼ ð−2þ ηCÞβ̃k þ κ̃2k
N
2π

1

ð1þ m̃2
kÞ3
	
1

48
þ m̃4

k

8



; ðA26dÞ
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∂tm̃2
k¼−2m̃2

kþ
2κ̃2k
2π

1

ð1þm̃2
kÞ2
	

1

12ð1þ2β̃kþ 1
8α̃k

Þþ
m̃4

k

4ð1þ2β̃kþ 1
8α̃k

Þþ
m̃4

k

16α̃kð1þ2β̃kþ 1
8α̃k

Þð1þ2β̃k− 1
8α̃k

Þ




þ2κ̃2k
π

1

1þm̃2
k

	
1−

ηC
4


	
m̃4

k

ð1þ2β̃kþ 1
8α̃k

Þ2þ
m̃4

k

8α̃kð1þ2β̃kþ 1
8α̃k

Þ2ð1þ2β̃k− 1
8α̃k

Þþ
m̃4

k

256α̃2kð1þ2β̃kþ 1
8α̃k

Þ2ð1þ2β̃k− 1
8α̃k

Þ2


;

ðA26eÞ

∂tκ̃k ¼
ηC
2
κ̃k −

2κ̃3k
2π

1þ 3m̃2
k

ð1þ m̃2
kÞ3m̃2

k

	
1

12ð1þ 2β̃k þ 1
8α̃k

Þ þ
m̃4

k

4ð1þ 2β̃k þ 1
8α̃k

Þ þ
m̃4

k

16α̃kð1þ 2β̃k þ 1
8α̃k

Þð1þ 2β̃k − 1
8α̃k

Þ




−
2κ̃3k
π

1þ 2m̃2
k

ð1þ m̃2
kÞ2m̃2

k

	
1 −

ηC
4


	
m̃4

k

ð1þ 2β̃k þ 1
8α̃k

Þ2 þ
m̃4

k

8α̃kð1þ 2β̃k þ 1
8α̃k

Þ2ð1þ 2β̃k − 1
8α̃k

Þ

þ m̃4
k

256α̃2kð1þ 2β̃k þ 1
8α̃k

Þ2ð1þ 2β̃k − 1
8α̃k

Þ2


: ðA26fÞ

Here, we have defined the anomalous dimension of Cμν as

ηC ≡ −
∂tZC;k

ZC;k
: ðA27Þ

This quantity is obtained in the next subsection. In Sec. III, we have defined the threshold function Im2 in the β function for
m̃2

k such that

Im2ðm̃2
k; α̃; β̃kÞ ¼

2

2π

1

ð1þ m̃2
kÞ2
	

1

12ð1þ 2β̃k þ 1
8α̃k

Þ þ
m̃4

k

4ð1þ 2β̃k þ 1
8α̃k

Þ þ
m̃4

k

16α̃kð1þ 2β̃k þ 1
8α̃k

Þð1þ 2β̃k − 1
8α̃k

Þ




þ 2

π

1

1þ m̃2
k

	
1 −

ηC
4


	
m̃4

k

ð1þ 2β̃k þ 1
8α̃k

Þ2 þ
m̃4

k

8α̃kð1þ 2β̃k þ 1
8α̃k

Þ2ð1þ 2β̃k − 1
8α̃k

Þ

þ m̃4
k

256α̃2kð1þ 2β̃k þ 1
8α̃k

Þ2ð1þ 2β̃k − 1
8α̃k

Þ2


: ðA28Þ

5. Field renormalization factor

For the Wetterich equation (6), we take the second-order functional derivative with respect to Cμν to obtain

∂t
δ2Γk

δCμνðpÞδCρσð−pÞ
¼ −

1

2
Tr

��
Γð2Þ
k þRk

�−1	 δ2Γð2Þ
k

δCμνðpÞδCρσð−pÞ

�

Γð2Þ
k þRk

�−1
∂tRk

�

þ Tr

��
Γð2Þ
k þRk

�−1	 δΓð2Þ
k

δCμνðpÞ

�

Γð2Þ
k þRk

�−1	 δΓð2Þ
k

δCρσð−pÞ

�

Γð2Þ
k þRk

�−1
∂tRk

�
: ðA29Þ

In our current setup, we have no four-point vertex, i.e.,
δ2Γð2Þ

k
δCμνðpÞδCρσð−pÞ, so that we consider

∂t
δ2Γk

δCμνðpÞδCρσð−pÞ
¼ Tr

��
Γð2Þ
k þRk

�−1	 δΓð2Þ
k

δCμνðpÞ

�

Γð2Þ
k þRk

�−1	 δΓð2Þ
k

δCρσð−pÞ

�

Γð2Þ
k þRk

�−1
∂tRk

�
: ðA30Þ
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Here, the left-hand side of Eq. (A30) is decomposed into two terms such that

Γkin
k ¼

Z
d2x

�
ZC;k

2
ð∂ρCμνÞ2

�
¼
Z

d2x

�
ZC;k

4
ð∂ρCÞ2 þ

ZC;k

2
ð∂ργμνÞ2

�
: ðA31Þ

Hence, there are two possibilities for obtaining the flow equation of ZC;k. Let us here read off ZC;k from γμν. To this end, we

focus on the interaction between ϕ⃗ and γμν,

Z
d2x

�
κk
2
∂μϕ⃗ · ∂νϕ⃗γμν

�
¼ κk

2

Z
d2x
Z

d2p
ð2πÞ2

Z
d2q
ð2πÞ2

Z
d2s
ð2πÞ2 e

ip·xeiq·xeis·x
�
−pμqνϕ⃗ · ϕ⃗γμν

�
¼ κk

2

Z
d2p
ð2πÞ2

Z
d2q
ð2πÞ2

Z
d2s
ð2πÞ2 ð2πÞ

2δ2ðpþ qþ sÞ�−pμqνϕ⃗ðpÞ · ϕ⃗ðqÞγμνðsÞ
�
; ðA32Þ

from which the three-point vertex reads

Γð2;1Þðs; q;pÞ ¼ δΓð2Þ
k ðs; qÞ
δγμνðpÞ

¼ δ3Γk

δϕiðpÞδϕjðqÞδγμνðsÞ
¼ κk½−sμqν�δijð2πÞ2δð2Þðsþ qþ pÞ

¼ κk½ðqþ pÞμqν�δijð2πÞ2δð2Þðsþ qþ pÞ: ðA33Þ

The flow equation for ZC;k is given by

ð∂tZC;kÞp2 ¼ 1

2
Tr

�
Γð2;1Þ
k ð−s; q;pÞ 1

Γð2Þ
k ðsÞ þ RkðsÞ

Γð2;1Þ
k ð−q; s;−pÞ 1

Γð2Þ
k ðqÞ þ RkðqÞ

∂tRkðqÞ
1

Γð2Þ
k ðqÞ þ RkðqÞ

�

þ 1

2
Tr

�
Γð2;1Þ
k ð−q; s0;pÞ 1

Γð2Þ
k ðqÞ þ RkðqÞ

∂tRkðqÞ
1

Γð2Þ
k ðqÞ þ RkðqÞ

Γð2;1Þ
k ðq;−s0;−pÞ 1

Γð2Þ
k ðs0Þ þ Rkðs0Þ

�

¼
Z

∞

0

d2q
ð2πÞ2

�
κ2½ð−q − pÞμqν�½ðqþ pÞμð−qνÞ�

∂tRkðqÞ
ðPkðqþ pÞ þm2ÞðPkðqÞ þm2Þ2

�
; ðA34Þ

where p is the external momentum. Here, we perform the Taylor expansion of ½Pkðqþ pÞ þm2�−1 up to order Oðp2Þ as
follows:

½Pkðqþ pÞ þm2�−1 ¼ �q2 þ ðk2 − q2Þθðq2 − k2Þ�−1 − �q2 þ ðk2 − q2Þθðq2 − k2Þ�−2
· 2q
�
1 − θðq2 − k2Þ þ ðk2 − q2Þδðq2 − k2Þ� · pþ �q2 þ ðk2 − q2Þθðq2 − k2Þ�−3

·
�
2q
�
1 − θðq2 − k2Þ þ ðk2 − q2Þδðq2 − k2Þ��2 · p2

−
�
q2 þ ðk2 − q2Þθðq2 − k2Þ�−2 · �1 − θðq2 − k2Þ þ ðk2 − q2Þδðq2 − k2Þ� · p2

−
�
q2 þ ðk2 − q2Þθðq2 − k2Þ�−2 · q ·

�
−δðq2 − k2Þ · 2q − 2q · δðq2 − k2Þ

þ
	
ðk2 − ðpþ qÞ2Þ · dδððpþ qÞ2 − k2Þ

dp


����
p¼0

�
· p2: ðA35Þ

Therefore, Eq. (A34) is computed as
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ð∂tZC;kÞp2 ¼ κ2k

Z
k

0

d2q
ð2πÞ2

�
ðqþ pÞ2q2 · 2k2

ðk2 þm2
kÞ2

·

	
1

k2
−

1

k4
· ðk2 − q2Þ · δðq2 − k2Þ · 2qp

þ 1

k6
· 4q2 · ðk2 − q2Þ2 · δ2ðq2 − k2Þ · p2 −

1

k4
· ðk2 − q2Þδðq2 − k2Þ · p2

−
1

k4
· q ·

�
−4q · δðq2 − k2Þ þ 2q · δðq2 − k2Þ� · p2


�

¼ κ2k

Z
k

0

d2q
ð2πÞ2

�
ðqþ pÞ2q2 · 2k2

ðk2 þm2
kÞ2

·

	
1

k2
þ 1

k4
· 2q2 · δðq2 − k2Þ · p2


�
: ðA36Þ

Using δðq2 − k2Þ ¼ 1
2jkj ½δðqþ kÞ þ δðq − kÞ�, we obtain

∂tZC;k ¼
κ2k
2π

·
2k2

ðk2 þm2
kÞ2
Z

k

0

dq

	
q3

k2
þ 2q7

k4
· δðq2 − k2Þ



¼ κ2k

4π
·

k4

ðk2 þm2
kÞ2

: ðA37Þ

With the dimensionless quantities (A25), the anomalous dimension (A27) is given as

ηC ≡ −
∂tZC;k

ZC;k
¼ κ̃2k

4π
·

k4

ðk2 þm2
kÞ2

¼ κ̃2k
4π

·
1

ð1þ m̃2
kÞ2

: ðA38Þ
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