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We discuss the structure of the mixing among dimension-eight operators in the Standard Model effective
field theory relying on the positivity of two-to-two forward scattering amplitudes. We uncover tens of new
nontrivial zeros as well as hundreds of terms with definite sign in (a particular basis of) the corresponding

anomalous dimension matrix. We highlight that our results are not immediately apparent from the Feynman
diagrammatic perspective, nor from on-shell amplitude methods. As a by-product of this work, we provide
positivity bounds not previously derived in the literature, as well as explicit values of certain elements of the

anomalous dimension matrix that serve as a cross-check of our results.
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I. INTRODUCTION

The SMEFT is the extension of the Standard Model
(SM) with operators of dimension higher than four, sup-
pressed by powers of the cutoff A; see Refs. [1,2] for recent
reviews. During the last decades, it has increasingly
become one of the most popular descriptions of physics
beyond the SM, with different theoretical aspects of this
framework being better and better understood. Among the
most important ones, we could highlight the follow-
ing three.

(1) The number of independent physical operators up to
dimension 15 has been computed using different
techniques, including Hilbert series methods [3,4],
standard group theory techniques [5,6] or on-shell
amplitudes [7-9]. The explicit form of these oper-
ators have been also computed in several instances,
and different software tools (partially) automatizing
this construction are already available [5,6,10,11].
Similar considerations have been also investigated
for operators independent off-shell [9,12-14].

(i) The physical parameter space of the SMEFT, par-
ticularly at dimension eight, has been considerably
constrained in light of positivity bounds. These are
restrictions on the sign of Wilson coefficients ensuing
from very robust principles, including the analyticity,
unitarity and the large-energy behavior of the
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S-matrix [15]. Many of these constraints are strongly
competitive with experimental limits [16-30].

(iii) The full renormalization group equations (RGEs)
of the SMEFT are known up to dimension six
[15,31-34], including finite terms (or matching
corrections) induced by evanescent operators [35];
as well as to dimension seven [14,36-38]. And the
matching of different models onto the SMEFT to
this order has been also investigated [12,39-47].

Despite the significant progress made also toward
renormalizing the SMEFT to dimension eight [7,48-54],
this endeavor is still far from complete, due mostly to the
enormous amount of operators [55,56]. However, there
is a reasonable understanding of the structure of mixings
based on generalized unitarity and on-shell amplitude
techniques, which highlight certain nonrenormalization
results otherwise obscure within the realm of Feynman
diagrams [57—-62]. More recently, it has been proposed [63]
that the sign of some mixing terms, as well as certain zeros
that are not even apparent from the on-shell amplitude
perspective, can be unveiled upon studying the positivity of
two-to-two scattering amplitudes in the forward limit at
very large distances. The basic idea is that, as indicated
before, certain Wilson coefficients c; are constrained to be
¢; 2 0. For this to hold irrespective of the running induced
by any other Wilson coefficient ¢; at a scale u, c;(u) ~
vijc; log u/A, where y is the so-called anomalous dimen-
sion, the condition y;; < 0 must be satisfied if c; is also
bounded by positivity, ¢; > 0; otherwise y;; = 0.

In Ref. [63], a precise formulation of this idea was
applied to the electroweak and leptonic sectors of the
SMEFT. In this paper, we extend the methods of that
reference to the full SMEFT including quarks and color.
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We organize the article as follows. In Sec. II, we describe
the structure of the SMEFT and provide an example
of vanishing mixing that is neither apparent from the
Feynman-diagrammatic approach nor from the point of
view of on-shell amplitude methods. In Sec. III, we discuss
briefly the constraints on anomalous dimensions implied
by the positivity of the S-matrix, making special emphasis
on the derivation of complete positivity bounds. We apply
these methods to uncover the structure of the anomalous
dimension matrix (ADM) of the SMEFT in Sec. IV. Finally,
we conclude in Sec. V. Appendices A, B, C, and D
complement the previous discussions.

II. THEORETICAL BACKGROUND

Our convention for the SM Lagrangian is the following:

1 1 1
Ly = —ZG;‘UGA” —ZWIIWWI” _ZB’“’BM
+ giDq + liDI + aibu + dibd + éibDe
+ (D) (D) + pg|p* = Al
~(GPYu+qpYed +1pY,e +He). (1)

As usual, G, W, and B denote the SU(3),, SU(2), and
U(1), gauge fields with gauge couplings g, g, and g,
respectively; ¢ and [ stand for the left-handed quarks and
leptons, respectively, and u, d, and e for the right-handed
counterparts; ¢ represents the Higgs doublet and Y, Y,
and Y, are the Yukawa couplings. We work in the limit of
one family of fermions.

The SMEFT Lagrangian to dimension eight, ignoring
lepton-number violation, reads:

1 1
Loverr = Lsw +739_¢” 0 + 5y fof. ()
i J

where A represents the cutoff of the effective-field theory
(EFT). The first and second sums above run over bases of
dimension-six [64] and dimension-eight [55,56] operators,
respectively. We are only interested on the dimension-eight
ones, for which we use the self-explanatory notation of
Ref. [55]. The mixing of these operators under renormal-
ization group running is governed by the corresponding
RGEs:

.(®) def® _ ®
du =7ij¢;

6 6
e (3)

The anomalous dimension y characterizes the mixing
between dimension-eight operators due to SM terms, while
y' describes the renormalization of dimension-eight oper-
ators by pairs of dimension-six ones. Our goal in this paper
is constraining the shape of y from the positivity of the

S-matrix [63]. Previous restrictions on y, and in particular
the occurrence of certain nonobvious zeros, can be found in
Refs. [57,60,65-68]. See also Ref. [50] for complementary
results based on a geometric description of the SMEFT.

As a simple motivation for this work, let us consider the
example of the mixing of e?>¢?D? into ¢>B?D. There are
two operators in the first class, and only one in the second;
see Ref. [55]. For convenience, we write them here
explicitly:

O,ppp = i(éy”D”e)BW)Bﬁ + H.c. (4)

O(l)

E242D?

=i(ey*D"e)(D,D,¢'¢) +Hee., (5)

ngpzpa =i(ey*D%e)(¢"D,D,¢) + He..  (6)

It is obvious that there exists some linear combination of

(1) )
O pyops and O 0,
if any of the two anomalous dimensions, say y ,

¢ @
2B2D°C 242 p3

; that does not mix into O,z . Indeed,

is nonzero, then we can simply define:

7. ()
C2B2p°€ 223

O (7)

2
C2B2p°€ 223

which by construction does not renormalize O,252),.
The exact form of (7);;2 oy can be obtained by explicit

computation of ¢,z ,. From the Feynman-diagrammatic
perspective, we must compute the diagrams in Fig. 1.
Using dimensional regularization with space-time dimen-
sion d =4 — 2¢, and with the help of FeynArts [69] and
FormCalc [70], we find that most of them vanish; the rest,
despite the many different terms involving a variety of
products of momenta, polarizations and gamma matrices,
shrink to give the compact result:

1
Copp = _gg% (Cgij,zDs + Cg;zm)- (8)

(1)
eEP*D
of OSLZ e and (’)gzﬁz e with different signs. In other
words, let us make, for example, the basis transformation
defined by:

From here, it is clear that O 5 1s the linear combination

(1)

Ce2</)2D3

e @ |
eZ¢2D3 €2¢2D3

p (10 ()
€2¢2D3 — _1 1 .

~(1)
Cez(/)zD3
— Pezd)ZDS B

C
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FIG. 1.
vanish in dimensional-regularization, are not shown.

Then, we have that:

. 1 ¢
CeZBZD:_gg%(l I)Pe2(/)2D3

¢
(1)

(@t (e

39 )\ .o )
€2¢2D3

What is not obvious at all is how one can anticipate a matrix
like P, ps without computing explicitly the anomalous
dimensions involved.

This result is not immediate from the on-shell amplitude
approach either. To see why, let us express the aforemen-
tioned operators in the amplitude basis:

(10)

Aii;2D3(lz,2e,3¢n4¢) = (12)(13)[12][23],  (11)
A (1620340, 44) = (13)(23)[23, (12)
AeszD(lévzes3B,’4B+) - <13>2[14][24]- (13)

We can compute the mixing of the first two amplitudes
into the second performing the usual unitarity double cuts
[7,71-73]; see Fig. 2. The SM amplitude in the cut reads:

1, (13)(23)

1y 2,035 4p ) =@l (14
-ASM( ¢> <7 P B_ B+) 291 <14><24> ( )
7 N
(]
\
N
27w T

FIG. 2. Double cut for the mixing of ¢>¢*>D? into ¢*?B?D. The
cross indicates the EFT (minimal) amplitude, while the bubble
stands for the SM (non-necessarily minimal) amplitude.
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Feynman diagrams relevant for the one-loop renormalization of e?B>D by e?¢*D?. Diagrams with massless bubbles, which

Thus, we have:

4
ycz 2 P AeszD(lé’2€’3BJ4B+) = __Il’ (15)
2B2D°" 2423 T
with
~ (1
7, = / dUPSAL), 3 (15,2,,341,4,)
X ASM(_:%/;’ —4;5+, 35, 4B+)
1, (3'3)(4'3)
== dLIPS(12)(13')[12][23/] =~
597 [ aups(2) (31213
1 /2 (2% .
— i / / dpd0sycye® (12)[12] (c(13)
0 0
— el?s5y(14)) (€'9¢y[23] — 54[24]) =0, (16)
which implies
7/662321)~Z‘i12)¢2n3 =0 (17)

Note that, contrary to those zeros highlighted by non-
renormalization theorems [57,61], in this case the SM
amplitude does not vanish. The zero arises because all
terms in the product of tree-level on-shell amplitudes are
proportional to ¢ with n = 1,2, ..., for which 3" dpe"?
vanishes. (As we show in Appendix A, this result can be
reproduced through using angular-momentum selection
rules [62].)

The negative value of y,

e seems also accidental

252:C
B2D° 223

from this perspective. In fact:

4 @)

C2B2pC 20 p3

4
AeszD(1§72€’3B,74B+) = —;IQ (18)

with
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_ 72
IZ —/dIJIPSAez(pzDg(lé,zgs 3¢794(/))

x Aswm (3, 4. 3p..45,)

= % 7 / dLIPS(13') <23’>[23’]2%
_ —%ﬂg% /0 7 d0cis3 (13)(23) [24]2

= — 5 A1) (23) 24P, (19)
where in this case we have omitted the details about the
integration over .

The final amplitude does not look exactly like
Appp(1z,2.,35 .45, ), however:

<13><23>[24}2 = <13><32) [24] [42]
= —(13)(31)[14][42]
= _AeZBZD (1@ 2,,35., 4B+)v (20)

where in the first equality we have used the antisymmetry
of angles and squares, while in the second we have used
momentum conservation:

22 = =[1)(1] = [3)(3] = |4)(4]. (21)

From here, we obtain that:

2
Y o == (22)

e
C2820¢ 2423 6

In the next section, we show that both the zero in Eq. (17)
and the negative value of y in Eq. (22) are apparent when
looking at these loops from the perspective of the positivity
of two-to-two forward scattering amplitudes.

III. CONSTRAINTS FROM POSITIVITY

Let us consider the tree-level amplitude A for the elastic
process e¢ — e¢p within some well-defined (local and
unitary) quantum-field theory (QFT). In the forward limit,
this amplitude is an analytic function of the Mandesltan
invariant s only, with at most single poles corresponding to
particle thresholds. This permits relating the IR and UV
behavior of A through dispersion relations [15] which,
together with robust bounds on the growing of the ampli-
tude at s — oo [74] and the optical theorem, implies that
A”|_y > 0. This latter quantity can be computed within the
EFT, implying:

~(2
_CiziﬁzDz >0, (23)

while ES;Z p» remains completely unconstrained. (In the
amplitude basis this result is very intuitive because the

forward limit amounts to the relations 2 — 1 and 3 — 4,
which implies that (12)(13)[12][23] vanishes.)

Within this same QFT, we could compute the one-loop
amplitude for eB — eB, and apply an analogous reasoning
[24,63,75,76], obtaining that:

CeZBZD(ﬂ) ~ CeszD(A) + ¢2p2p log% <0 = ¢popp20.

(24)

In the last step we have taken into account that e’B>D
operators do not arise at tree level in weakly-coupled UV
completions of the SMEFT [61 ].l Now, dimension-six tree-
level interactions that might be also present in the IR do not
renormalize O,2p2), so we simply have:

. (1 (2

Copp = alciziﬁzm + aZCizzpzD“ (25)
with a; and a, some real numbers. (They are directly
related to the anomalous dimensions; in fact a; =
14 0

Ce2320'582¢203 )
In order for this expression to be positive in any physical
UV completion of the SMEFT, or equivalently for all values

Of &1/, and 2, . compatible with the bound in Eq. (23),

the only possibility is that @; = 0, ay, = —a, with @ > 0:

éeZBZD — <@ - a) (&ELLZDS&E’ELZDS) . (26)

This is essentially Egs. (10), (17), and (22), though the
explicit values of the anomalous dimensions have not been
obtained. (And, of course, there has been no need for
computing any loop.)

This same reasoning cannot be applied to constraining
the mixing of, for example, e’>¢*>D? into ¢*D*. The reason
is that, in this case, one expects also the presence of
dimension-six e?¢?D terms which, in pairs, renormalize
also ¢p*D*; see Fig. 3. Hence, the positivity of ¢*D* cannot
be directly attributed to the positivity of y but rather to
Y’ [24,63]. In general, this problem arises whenever all
fields in the renormalized operator are already present in
the renormalizing interaction.

One further comment is in order. The crucial step from

and a, = Ve,, &
22D 2,23

Egs. (25) and (26) relies on the conviction that 522/)2 D3 is not

constrained at all by positivity (it can have either sign). This
can be only guaranteed if the set of independent positivity
restrictions is fully exhausted. For this matter, studying the
elastic positivity bounds with nonsuperposed asymptotic

'If this is not the case, one can always restrict to a family of UV
completions that do not generate the corresponding operator at
tree level. As explained in Ref. [63], the arguments below still
apply in such case.
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FIG. 3. Example diagrams for the mixing of e2¢>D” operators
into ¢*D*. Vertices like E represent dimension-six terms
(n = 1), while crosses x are dimension-eight ones (n = 3).

states does not suffice. We must instead supplement the
analysis with the scattering of states with certain degree
of superposition, that we quantify as x; see Appendix B.”
In the case of e¢p — e, the bounds obtained either way
are the same. In other classes of operators, however, the
differences are apparent.

On the other hand, for constraining the running functions
themselves, the bounds to be considered are only those that
survive in the limit x — 0. (Again, in the case at work,
namely eB — eB, the bounds are equivalent.)

To explain this issue, let us imagine that we rather
focus on the mixing e’>¢?>D? — e*u?>D?. In this case, if
we take into account all independent bounds on e’u”D3,

vxze)can conclude that ci_zlz D= 3622342 o < 0 and —CSLZ D=
2

: (1)
Caope < 0, meaning that C,a,pe Can never be the only
renormalized coupling. However, an explicit computation

2 1
y1e1ds CezuzDz = %g%(c;zﬁzDz - CizzﬁzDz

the limit of vanishing Yukawas, in contradiction with the
previous statement. The reason is that, in the derivation of
the most general positivity bounds for e’>u*>D? operators
[see Eq. (B37)], we find processes of the sort ee — ee,
which at one loop receive contributions from pairs of
dimension-six terms e?¢?D. The way out for ignoring the
contamination from dimension-six terms is considering
only those bounds on anomalous dimensions that arise in
the limit x = 0.’

) and églz 2 =0in

2Nonetheless, we have certain evidence, based on some
explicit computations as well as on generalized unitarity methods,
rather than on an analysis of the positivity of amplitudes in all
possible UV completions of the SMEFT, that restricting to
bounds valid only when x — O is still a valid approach. This
would allow us to establish more stringent constraints on the
ADM of the SMEFT than those that we present in Appendix C.
We have no indisputable proof of this observation, though.

3To see that this applies in general, take into account that the
most generic positivity constraints on O,/, w2 operators, where
v,y are arbitrary fields, ensue from processes involving super-
posmon states; see Appendix B. This implies the appearance of

wOyp) - t//(’) () processes on top of the standard yy' — yy'.
Even restricting to UV completions that do not generate (’) 2,2 at
tree level, the first two processes receive contributions from palrs
of dimension-six O,:,» with two y (or y') in a loop.

IV. STRUCTURE OF THE ANOMALOUS
DIMENSION MATRIX

In light of the previous discussion, we aim to constrain
anomalous dimensions y;; of four-field interactions, where
i represents a Wilson coefficient that is bounded in the limit
x = 0, and j is any other coefficient of a tree-level operator.

To this aim, we choose a basis in which all x-independent
positivity bounds are decoupled. This amounts to picking
one (in general there might be many) rotation matrix R such
that PR =1Ip, where P is the matrix of x-independent
positivity bounds, namely that satisfying P¢ > 0; and I is
the matrix consisting in as many rows of the identity matrix
as number of positivity bounds.

For example, we can have:

R —(2 3) @)
2§D = 3 3 s

(29 e

In this new basis, in which we denote the Wilson coef-
ficients with a tilde, ¢, the x-independent bound for u?¢>D?

> 0. The bound for /242 D? valid in the

Pepp = (=1 -1),

PlzuzDz = (O -1 ), RlzuzDz =

reads simply CI(AZ>¢2 5

limit x - 0 is ¢ &) > 0. From here, it follows that

12 ZDZ
0> ¢l = —atlh), .+ (29)

with @ > 0 and where the ellipses represent operators of
other classes which are completely independent. Hence,
;0 <0 while y, =0.

C12u202’6512(/)20? CRy2p2: 5 z/}sz

The process of obtaining a full collection of rotation
matrices can be easily automatized. We provide one in the
ancillary file matrices.txt [77]. Some of them are
completely determined by the requirement PR = [p; for the
rest we have simply fixed one of the many possibilities that
fulfill Det(R) = 1. [In particular, the matrix P, pp is
different from that shown in Eq. (9).]

The reader will notice that in certain classes of operators,
for instance in G?>¢>D?, the matrices are smaller then the
number of operators. This is simply because we ignore all
those Wilson coefficients beyond the last one intervening in

the positivity bounds in Appendix B, such as for exam-
6) e

In the basis defined by these rotations, the different
blocks of the SMEFT ADM (see Fig. 4) are described by
Tables 1, 3, 2, and 4 in Appendix C. It should be noticed
that operators not constrained by positivity are not shown in
the left rows, while operators that only appear at one-loop
in UV completions of the SMEFT are absent from the top
columns. Besides, we provide cross-checks of some of
these entries in Appendix D.

ple ¢
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bosonic 2-fermion I-fermion

bosonic
(=}

Table 1

Table 3

2-fermion

0 Table 2 Table 4

I-fermion

FIG. 4. Schematic structure of the SMEFT ADM. The different
blocks are given in Tables 1, 2, 3, and 4.

V. DISCUSSION AND OUTLOOK

Even if two different classes of dimension-8 SMEFT
operators mix under renormalization group running at one-
loop, there are always certain interactions in one class that
do not mix into certain other interactions in the second
class, or that they do it in such a way that the running has
always definite sign, irrespective of the SM couplings. In
the appropriate basis of operators, these effects manifest as
zeros or definite-sign entries in the ADM.

We have shown that such a basis, or equivalently the
corresponding rotation matrix ‘R that must be applied to the
commonly used basis of Ref. [55], cannot be easily found
without computing explicitly the one-loop RGEs, either
using Feynman diagrams or on-shell amplitude methods.
However, following the results of Ref. [63], we have
derived R basing solely on positivity bounds obtained
from tree-level computations in the forward limit. These
bounds, which extend those previously computed in the
literature [18,19,21,23,78-81], particularly in the G*¢*D?
and X*y’D sectors, are of major importance for con-
straining the SMEFT parameter space. Hence, our work
adds also to this aspect of the SMEFT phenomenology.

In the new basis defined by R, we highlight 84 nontrivial
zeros and much more negative entries in the ADM. We
emphasize that, following our same methods, different
bases involving different number of zeros and negative
entries can be obtained; in this paper we have simply
singled out one for the sake of example. It would be
actually interesting to know which is such basis in which
the number of zeros is maximized. The main point is that
we can do so without performing any involved one-loop
calculation. It would be also important to cross-check these
results by explicit computations, some of which we provide
in Appendix D, and eventually complete the renormaliza-
tion of the dimension-8 SMEFT.
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APPENDIX A: COMPARISON WITH REF. [62]

It has been proven [62] that angular-momentum con-
servation forbids the mixing between any two operators
with n common legs Z if they differ on the value of
J(j+ 1), defined up to a factor as the eigenvalue of the
operator W that acts on an amplitude A as:

W3(A) = ¢ PHTr(M3A) + Te(313.4)]

1 .. -
- ZP%“P?’ (MIabMIaI5A)’ (Al)
where

d d
MZab i ( ia + /111) > (A2)

0
Mz, = 12( ia 7h Aib 0/1“) (A3)

iel

while M2, A = M Mz, A and Pz =" c7 Aidi.

This explains our finding in Eq. (17). Indeed, let us first
consider the amplitude A5, = (13)?[14][24] in the chan-
nel Z = {1,2}. With the help of SpinorHelicity4D
[82], we obtain:

MZad(AeszD) = 21<13>2<14> [24} (/IldABa + /11a/13d)v <A4)
Mz, )(Appep) = —i(13)2[([24]4,4 + [14]43) Aaa
+ ([24];11(1 + [14];1%);1421]’ (AS)
from where
W2 (Appp) = 25((13)(23)[24]* = 2A 25
= —6s(13)(23)[24]?, (A6)

which indicates that j = 2.
On the contrary, for .Zl(ei;zD} = (12)(13)[12][23], we find:

W3 (AL

) =254 (A7)

24)2D3

and so it has j = 1. Because both values of j differ, the first
operator cannot mix into the other.

065015-6
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Meanwhile,

w2 (A% — 6547

2¢2D3) — 254 (A8)

2¢2D3 2¢2D3’
which is a linear combination of j =1 and j =2, and
hence the mixing of this amplitude into A2, is, as we
found, allowed.

Several comments are in order though. (i) Despite being
possible to automatize, this calculation is long. In contrast,
in this same amplitude basis, the positivity constraint is
apparent: (12)(13)[12][23] — (11)(13)[11][13] in the for-
ward limit, and so it vanishes, while (13)%[14][24] —
(13)2[13]? does not, so the first cannot mix into the second.
(i) While more widely applicable, it is far from evident
whether all the results we obtain here can be reproduced
using the approach of Ref. [62]. (iii) Most importantly, to
the best of our knowledge, the angular-momentum method
does not provide information about the signs of anomalous
dimensions.

In light of all this, the most we can say is that the
methods of Ref. [62], based on angular momentum con-
servation, and those applied here, relying on positivity,
complement each other; each one being preferred depend-
ing on the context.

APPENDIX B: POSITIVITY BOUNDS

The most stringent positivity bounds can be derived from
the elastic scattering of two superposition states |u) =

Yiugli) and [v) =3 v]j):
A(ju)|v) - = uwjugu; A(|i) ) = 1D)11)).
ijkl
(B1)

Assuming u; and v; to be real, and adopting the self-

conjugate particle basis, this amplitude in the forward limit
fulfills [83-85]

2
L A(lu) o) = o

Auuw — d 5

= E ;v jupv AR > 0.

ijkl
(B2)

In practice, we parameterise the superposition via a
quantity x. For example, for constraining operators of the
type B2¢>D?> we consider |u) = |¢p) + x|B) as well as
[v) = |} + |B).

Below, for each class of operators, we quote the set of
independent positivity bounds valid in general (namely for
any superposition), as well as those valid only for x = 0,
which we show in gray. (When both coincide, we show
only one.)

—C

(1)

_CGZ¢2D2

(1)
W2¢2D2

M

_CBZ¢2D2

_ e

_eD

(1)

—C g

(1)

—C PPPD?
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Pg>D? -

12¢2D3 -

1. ¢*D*

1(154D4 >0, ((]54)1)4 + C((154)D4 >0,
(2)

(1)
¢4D4

#*D* +C( ) > 0.

+c #'D*

2. G2p*D?

2e2 20, el 20

3. W2p*D?

2C$/V)¢2Dz >0, Ci‘z/g(ﬁzDz

1 4
i,Vl(/)zDz + Ci,vl{/)ZDZ >0,

1 4
_C$Vg¢2D2 - Ci,vg¢2D2

07

\%

—C

\%

0’

- Cg;/zqszDz > 0.

4. B2¢*D>

2o 20, el 20,

5. Pp*D?

2 3 4
ng(;)zDs - 652;2D3 —c
2)
12¢2D3

c124)2D3 >0,

+ CES;ZDz + CE?;2D3 > 0.

6. 2p*D?

(1) (2)
_Cez¢2D3 - Ce21/12D3 > 0.

7. q2¢2D3

) 3)

—c
AN ¢

2 3 4
C<7)¢2D3 - C(2;2D3 C512>¢203 > 0.

)

2D3+C 2D3+C FPD >0,
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(B5)

(B6)

(B7)

(B10)

(B11)

(B12)
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8. u?p*D?

DGR

W > D3 2 0.

Cu2¢2D3 2

9. d*¢>D?

(N )

d2¢2D3 > O'

—C Cd2¢2D3 2

10. ¢*G*D

(1) G) (1) ®)
_3C _3cq2G2D+Cq2G2D Z

FG*D Csz >0,

11. ¢*W*D

C(Z)W2D > 0.

12. ¢*B*D

> 0.

_C(qz;z

13. u>G*D

30D ©)

_30(1) ( ) 262D+C 2G2p

u*G*D ~ e 0
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(1)
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300 0 W
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27. Pg2D?
0521;2]_)2 - CEZZ;ZDZ + C;S;zDz - CE;‘;zDz >0,
CEZI;ZDZ - ngzlizDz - C;Z?’;ZDQ + CE;;zDz >0,
_nglizDz - 3C§22;2D2 - 0523;2D2 - 3C§j;2Dz >0,
_6521;21)2 - 3C§22;2D2 + (7;23;2[)2 + 305;221)2 >0,
_C§22;2D2 + 0523;2D2 + 2C§jq>2Dz >0,
_C§22;2D2 - cgizzDz >0,
_0522(;21)2 - C;?;ZDZ >0, _C§22;2Dz + Cg?;ZDz >0.
28. e*D?
—Ce4D2 Z O
29. u*D?
_cfli)Dz - 365?1)[)2 >0, _CE?DZ > 0.
30. d*D?
_Cg)Dz - 3C;%)Dz >0, _cfi%‘)DZ > 0.
31. e*u?D?
_CSLZDZ - 3C§3¢2D2 > Oa Cii)uzDz CglzDz > 0,
— c( >0
22p? =Y
32. e2d*D?
_CilzzizDz - 3523212,_)2 >0, Cilzpl)z - CE%LZDZ >0,

@ >o.

—Coppr 2

33. u2d*D?
- 3C,<Alz)dzD2 - 961(422)dzD2 - 1(432)¢FD2 -3 1(;)(12D2 >0,
301(412)‘12]_)2 - 3Cf;>dzDz + C,(;)dzDz - Cl(;)dZDz >0,
_126',(422)[12[)2 + 3C,(432)dzDz + SC,(;)dzDz >0,
2) ®3) )
_12Cu2dzD2 - 3Cu2d2D2 - CuzdzD2 2 0
_3C§422)¢12D2 _CE;)dZDZ >0, _651(;)(121_)2 +C$)JzDz >0.
(B32)
34. 2e2D?
B33
( ) _ngle)zDz 653 22 >0, ngle),zDz - 3C§226)2D2 >0,
_ngzzzDz > 0.
2,212
nglizDz - 305223202 >0, _cgzlb)t:Dz - 05223202 >0,
- 0522;21_)2 >0,
(B35)
36. I2d’D?
CEZIL)FDZ - 305220)12D2 >0, _nglgzDz - Cizza)lzDz >0,
(2)
—-c >0.
(B36) IZdZDZ
37. ¢?e’D?
(1) 2 (1) 2)
quezD2_3Cq2e2D2 >0, _quezDz quezDz >0,
B37
( ) - Cilzz)ezDz > 0.
(B38)
38. g2u2D?
3célz)uzl)2 - 965122)u2D2 + C;)uzDz - 365;242[)2 >0,
_3C5112)142D2 - 3C((122)142D2 - C((;z)uzDz - CE;)uZDZ >0,
(B39) 6¢? . 1. 50
¢ u*D? ¢ u*D* =
(B40) —305122),421)2 - CE;LZDZ >0, _6022224202 + Cf;?uzDz >0.
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39. ¢*d*D?

3cglz)dzDz - 9(7;22)[121)2 + sz)dzDz - 3C$)dzDz >0,

_3C;1z)dzDZ - 305122)dzD2 - CE;Z)dzDZ - Cz(;)dzDz >0,
2) (4)
_6Cq2d2D2 + qud'zDz >0, (B53)
_305122)dzD2 - C((;)dzDz >0, —6C[(]22)(12D2 + C((;i{ZDZ >0. (B54)

APPENDIX C: BLOCKS OF THE ANOMALOUS
DIMENSION MATRIX

In the following tables, we represent with a minus sign
(—) ADM entries that are neccessarily negative in the basis
|

provided in the ancillary file matrices. txt [77]. Trivial
zeros, arising for example in cases in which the renorm-
alizing and the renormalized operators have no fields in
common, are specified with a simple zero (0). On the
contrary, nontrivial zeros are represented with a boxed

Zero (@).
ADM elements that we cannot constrain from our
positivity arguments are shown with a cross (x).

APPENDIX D: SOME CROSS-CHECKS

To further cross-check the validity of our approach
toward restricting the ADM of the dimension-eight
SMEFT, we have computed explicitly a number of ele-
ments of this matrix based on the approach of Ref. [86].
Some examples are

— — — — 2
dr.y 0 =ra o e =20 Lo =re o =-—16]Y,[% (D1)
20203 2 203 p? 2203 42 20203 42
— — _ — 2
2.y o =v0 0 0 =470 =V e = —16[Y,|*, (D2)
20203 2 2203 42 2?03 A2 20203 #4n?
8 5
dr.0 0 =20 o =Y. e =Y. 0 =—5247 (D3)
22l @42 282pl g2 22l 42 282l gp? 27
— — 2
7.0 0 =210 o =-4Y% (D4)
24203 Ap2 24203 pp2
4
Yan o a0 =2rm0 o == (D5)
2g2pl’ Ap2 2g2pl’ Ap2 3
— — 2
4)/5(1) .é(l) = }/E(]) 5(2) = —16|Yu s (D6)
w223 W42 W2p2D3 " 4p2
128
by, ) =y, 9 =—— D7
ycu232u’cu402 ycuszD‘CL(4D2 27 Ir ( )
ot (03)
Ya A =Yy o = —aog
CppCrep CRpp R 24 I’
Te) 20 =V o= @ (D9)
2820 2g2D3 282 2423
e (D10)
7z =739
C2B2p€ 223 370
yi‘ 202 Z'(Z) = @ (Dll)
282D € 24213

They all agree with the results in Tables 1-4.
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TABLE 1.

Mixing between operators containing at most two fermions.
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TABLE II. Mixing of two fermion operators into four-fermion ones.

Cippe Copps Coppe Crpps Copps Ty Compps Coaops Covpps Copaps S Compaps Sy oy
55412)2 X X X X 0 0 0 0 0 0 0 0 0 0
55422)2 X X X X 0 0 0 0 0 0 0 0 0 0
&0 0 0 0 0 0 0 x x x x 0 0 0 0
¢*D?
@ 0 0 0 0 0 0 X X X X 0 0 0 0
q4D2
0 0 0 0 0 0 0 x x x x 0 0 0 0
q4D2
& 0 0 0 0 0 0 x x x x 0 0 0 0
q4D2
~(1) _ — _ —
o [ o o o @ o o o o
~(2) _ _ _
By o]  [o] 0 0 o] [o] 0 0 0 0
Zopr 0 0 0 0 x x 0 0 0 0 0 0 0 0
.0 0 0 0 0 0 0 0 0 0 x x 0 0
u
@, 0 0 0 0 0 0 0 0 0 0 x x 0 0
.0 0 0 0 0 0 0 0 0 0 0 0 x x
D
@, 0 0 0 0 0 0 0 0 0 0 0 0 x x
D
(o0 0 0 0 - o] 0 0 0 0 - o] 0 0
(o0 0 0 0 - o] 0 0 0 0 0 0 - o]
.0 0 0 0 0 0 0 0 0 0 - o] - o
w?d?D
@, 0 0 0 0 0 0 0 0 0 0 - o] - o
u-d”D
&, - - [0 [0 - [0] 0 0 0 0 0 0 0 0
~(1) _ _ _
&, o] [o] © 0 0 0 0 0 0] 0 0
- - o] [0 O 0 0 0 0 0 0 0 - o]
W, 0 0 0 0 - [0 - - o] [o] 0 0 0 0
~(1 — — —
) O 0 0 0 0 0 o] [o] [0] 0 0
2., 0 0 0 0 0 0 — - o] o] - [0 0 0
W O 0 0 0 0 0 - - o] o] 0 0 - o]
~(2) _ _ _
¥, O 0 0 0 0 0 o] [o] 0 0 0]
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