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Dipole charge conservation forces isolated charges to be immobile fractons. These couple naturally to
spatial two-index symmetric tensor gauge fields that resemble a spatial metric. We propose a spacetime
Lorentz-covariant version of dipole symmetry and study the theory of the associated gauge fields. In the
presence of a suitable background field, these contain a massive antisymmetric and a massless symmetric
two-index tensors. The latter transforms only under longitudinal diffeomorphisms, making the massless
sector similar to linearized gravity, but with additional modes of lower spin. We show that the theory can be
consistently coupled to a curved background metric and study its possible interaction terms with itself and
with matter. In addition, we construct a map between solutions of linearized gravity in Kerr-Schild form
and solutions of fracton gravity coupled to matter.

DOI: 10.1103/PhysRevD.109.065013

I. INTRODUCTION

Theoretically possible new types of quantum phases of
matter have been recognized in solvable lattice models such
as the X-cube model and Haah’s code [1–8]. They display
exotic properties such as excitations with restricted mobil-
ity, dubbed fractons, and a vacuum degeneracy which is
sensitive to the lattice size (see e.g. Refs. [9–12] for
reviews). Among the possible realizations of fractonic
dynamics, one of the simplest and most studied classes
is provided by systems conserving an Abelian charge and
also its dipole moment [13–15]. An individual charge in
isolation cannot move without changing the dipole
moment; therefore, the conservation of the latter forces
the immobility of the former, leading to fractonic behavior.
Dipole charge conservation may be implemented through

a continuity equation involving a two-index symmetric
current

∂tρ − ∂i∂jJij ¼ 0; ð1:1Þ

which in turn may be coupled to a symmetric tensor gauge
field with two spatial indices Aij. The tensor gauge field

resembles the spatial components of a metric, suggesting
thereby a connection between dipole conservation and spin-2
fields, and possibly gravity. For instance, in two-dimensional
elasticity, disclinations are a type of lattice defect that can be
interpreted as immobile conical singularities in the effective
lattice geometry [16–21]. In the particle-vortex dual of such
elasticity theory, the elastic degrees of freedom are described
by a dynamical tensor gauge field and disclinations become
(fractonic) charged particles [21–27]. Thus fractons source
the tensor gauge field producing a nonzero curvature in a
similar way as matter sources the curvature of the metric in
gravity. Another interesting connection among fractons and
gravity was illustrated in [28], where it was proposed that
fracton (im)mobility could be understood as a realization of
Mach’s principle. Besides, many emergent theories of
gravity [29–32] are fractonic, even when this was not recog-
nized at first. Further studies of lattice models also suggest a
deeper connection of fracton order and geometry [33].
Although it could be maybe exaggerated to expect that a

dipole-conserving theory captures all the features of gravity
precisely, it might not be unreasonable to think of these
type of theories as lying somewhere in between theories of
ordinary matter, which are quite well understood, and
gravity, which at the quantum level is still problematic.
A systematic study of dipole or higher-multipole conserv-
ing theories could then give us a fresh perspective on
gravity and higher-spin theories as well.
A clear difference between the tensor gauge theories

mentioned so far and gravity is that the first are not Lorentz
invariant; often they are not even formulated in a Lorentz-
covariant fashion. A possible way to bridge this difference
is to promote the spatial tensor gauge field to a full tensor
with two spacetime indices Aμν and try to formulate the
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theory covariantly. This was the path followed recently
in [34–36], where a quadratic action was constructed
including the linearized Einstein tensor and additional
terms allowed by the smaller gauge symmetry of the tensor
field δAμν ¼ ∂μ∂να as compared to the linearized diffeo-
morphism symmetry of the metric δhμν ¼ ∂ðμξνÞ.
Despite the direct approach being fine in flat spacetime,

one might be interested in coupling the theory to a
nontrivial background metric, and in this case the two-
derivative gauge transformation of the tensor field would
clash with covariance under background diffeomorphisms,
an obstruction already observed in the non-Lorentz-
covariant context [37–40]. Another puzzling aspect of
the tensor gauge theory is that the gauge fixing seems to
require a single scalar gauge condition but a vector gauge
fixing is also possible and according to [36] even preferred.
We will address these issues by generalizing the approach
described in [41]. There we proposed an improvement
in the formulation of dual elasticity by realizing dipole
and higher-moment transformations through internal sym-
metries. This approach allowed us to replace tensor gauge
fields by ordinary vector fields, which circumvents the
issues in the coupling to a background geometry. The
tensor gauge theory is recovered from the vector field
formulation by a partial gauge fixing, yielding equivalent
results for elasticity in flat space.
The present paper is structured as follows. In Sec. II, we

generalize the monopole dipole moment algebra (MDMA)
to the Lorentz-covariant case and introduce the correspond-
ing gauge fields and associated curvatures. In Sec. III, we
present the most general quadratic action both in the fields
and in the derivatives for the spacetime dipole gauge theory.
We show that the theory of the covariant tensor gauge field
of [35,36] is recovered as a special case. We reexamine the
questions of the number of degrees of freedom and gauge
fixing, as well as the connection with linearized gravity, and
show how the theory can be naturally coupled to a back-
ground metric. In Sec. IV, after providing details on dipole
conservation in the covariant case, we explore the possible
interactions allowed by gauge invariance—self-couplings
of the tensor field and couplings to matter—and find a map
between solutions of linearized gravity and solutions of the
tensor gauge theory coupled to matter. We conclude with an
outlook and with appendixes containing technical details of
the computations presented in the main text.

II. SYMMETRIES AND GAUGE FIELDS

Let us describe the Lorentz-covariant generalization of
the gauge theory proposed in [41] (see also Ref. [25] for a
similar realization). We use Greek letters for spacetime
indices and capital Latin ones for internal indices.
Most of our considerations will be valid when both the
spacetime and the internal space have arbitrary dimension
D ¼ dþ 1, although we will focus on D ¼ 4 when
considering explicit solutions as in Secs. III A and IV B.

Consider the generators of internal translations PA, Abelian
Uð1Þ symmetry Q, and a vector generator QA, with non-
trivial commutator

i½PA;QB� ¼ δBAQ: ð2:1Þ

When A and B are constrained to internal spatial indices
this constitutes the usual monopole-dipole-momentum
algebra discussed in [42,43] in the context of dipole charge
conservation and fractons. The algebra above is an exten-
sion of the spatial MDMA including internal time compo-
nents of the vector currents.
Following [41], we introduce a gauge connection for the

extended MDMA

Aμ ¼ eμAPA þ aμQþ bμAQA: ð2:2Þ

An infinitesimal gauge transformation has the usual form

δΛAμ ¼ DμΛ ¼ ∂μΛþ i½Aμ;Λ�; ð2:3Þ

where the gauge parameter, expanded in the algebra
generators, is parametrized as

Λ ¼ ξAPA þ λ0Qþ λ1AQA: ð2:4Þ

The components of the connection thus transform as

δeμA ¼ ∂μξ
A; ð2:5aÞ

δaμ ¼ ∂μλ0 þ eμAλ1A − bμAξA; ð2:5bÞ

δbμA ¼ ∂μλ1A: ð2:5cÞ

Defining the field strength of aμ as fμν ¼ ∂μaν − ∂νaμ,
there are two curvature invariants

TA
μν ¼ ∂μeνA − ∂νeμA; ð2:6aÞ

HμνA ¼ ∂μbνA − ∂νbμA ð2:6bÞ

and a covariant curvature

Bμν ¼ bμAeνA − bνAeμA − fμν; ð2:7Þ

transforming as

δBμν ¼ −TA
μνλ1A þHμνAξ

A: ð2:8Þ

Introducing the spacetime and internal metrics ημν and ηAB,
it is possible in principle to construct a fully gauge-
invariant and Lorentz-covariant theory for these fields.
In the following, we treat the gauge field associated to

the internal translations eμA as a background field and
consider only aμ and bμA as dynamical fields. In order to
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have nontrivial gauge transformations and preserve Lorentz
covariance, we fix1

eμA ¼ δμ
A: ð2:9Þ

The background field fixed in this way breaks the product
of spacetime and internal Lorentz transformations to the
diagonal subgroup. The background field is akin to a vielbein
that we can use to convert all the internal indices to space-
time indices, although this in general breaks the internal
transformations generated by ξA, unless one considers
Lagrangians constructed out of the invariant combinations
such as (2.6) only.
In the following, we allow the breaking of the internal

translations generated by ξA. Upon taking the choice (2.9),
the dynamical fields transform as

δaμ ¼ ∂μλ0 þ λ1μ; ð2:10aÞ

δbμA ¼ ∂μλ1A: ð2:10bÞ

Under this restricted symmetry, with TA
μν ¼ 0, Bμν becomes

an additional curvature invariant. In addition, we can
construct a new curvature invariant with one derivative
acting on the bμA field2:

Γμνλ ¼ ∂μðbνλ − fνλÞ þ ∂νðbμλ − fμλÞ − ∂λðbμν þ bνμÞ

¼ 2

�
∂ðμBνÞλ −

1

2
ðHλμAeνA þHλνAeμAÞ

�
: ð2:11Þ

Since the last index of HμνA is contracted with eμA, the
curvature Γμνλ is not invariant under internal transforma-
tions generated by ξA. From now on, excepting Sec. III C,
we will allow such symmetry to be explicitly broken by the
background (2.9) and accordingly we use only spacetime
indices in all quantities.
Finally, it is also interesting to note that all the curvature

invariants depend on the same combination of the gauge
fields bμν − ∂μaν:

Hμνλ ¼ ∂μðbνλ − ∂νaλÞ − ∂νðbμλ − ∂μaλÞ; ð2:12aÞ

Bμν ¼ bμν − ∂μaν − ðbνμ − ∂νaμÞ; ð2:12bÞ

Γμνλ ¼ ∂μðbνλ − ∂νaλÞ þ ∂νðbμλ − ∂μaλÞ
− ∂λðbμν − ∂μaν þ bνμ − ∂νaμÞ: ð2:12cÞ

This fact will be of relevance for the derivation of the
equations of motion and discussion thereof.

III. QUADRATIC ACTION
AND MASSLESS SOLUTIONS

The most general action exhibiting invariance under
spacetime Poincaré, parity and time-reversal symmetry,
and being quadratic with at most two derivatives acting on
bμA is3

L ¼ −
α1
4
HμνλHμνλ −

α2
4
BμνBμν −

α3
4
ΓμνλΓμνλ

−
α4
4
Γμ

μλΓν
νλ −

α5
4
HμνλΓμλν −

α6
4
Γλμ

μHλν
ν

−
α7
4
Hλμ

μHλν
ν þ bμνJμν þ aμJμ; ð3:1Þ

with α1;…;α7 coefficients weighting the quadratic curva-
ture terms. We also included the coupling to the sources Jμν

and Jμ.
In order for the action to be gauge invariant, the sources

must satisfy the (non)conservation equations

∂μJμ ¼ 0; ∂μJμν ¼ Jν: ð3:2Þ

The combination of the two implies that

∂μ∂νJμν ¼ 0: ð3:3Þ

The second equation in (3.2) allows us to rewrite the
coupling to the currents in the actions as a single coupling
to the tensor current:

bμνJμν þ aμJμ → ðbμν − ∂μaνÞJμν: ð3:4Þ

Together with (2.12), this shows that the action only
depends on the combination bμν − ∂μaν. As a consequence,
the equations of motion for aμ are not independent, but they
are equal to the divergence of the equations of motion for
bμν. Thanks to this fact we can perform a field redefinition

bμν ¼ ∂μaν þ
1

2
ðBμν þ hμνÞ; ð3:5Þ

where Bμν is an antisymmetric tensor (which coincides with
the curvature B) and hμν is symmetric. The equations of
motion for B and h are, respectively, equal to the anti-
symmetric and symmetric parts of the equations of motion

1In principle all the gauge fields have mass dimension one,
whereas the gauge transformation parameters are dimensionless.
When selecting the background there is an overall physical scale
M entering through eμA ¼ Mδμ

A that we have fixed to one.
2For fμν ¼ 0 and bμν ¼ bνμ, the tensor Γμνρ reduces to the field

strength introduced in [34,44].

3One could also consider the terms HμνρHμρν and ΓμνρΓμρν.
However, it can be shown using integration by parts that they can
be written as linear combinations of the terms considered in (3.1).
We thank the anonymous referee for pointing out this and the
possibility of adding α6 and α7 terms.
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for bμν. The full set of equations of motion for each field
can be found in Appendix A.
Consistency with the gauge transformations (2.10)

demands that the symmetric field transforms in the follow-
ing way:

δhμν ¼ −2∂μ∂νλ0: ð3:6Þ

This coincides with the transformation of the fracton gauge
field proposed by [35] and determines largely the structure
of the action for the symmetric field, as they discuss in
detail.
In our case, the action can be split in three pieces:

L ¼ LB2 þ LhB þ Lh2 : ð3:7Þ

The first piece is the action for the antisymmetric field

LB2 ¼ −z1∂ρBμν∂
ρBμν − z2∂νBνρ∂μBμρ −

α2
4
BμνBμν;

where

z1 ¼
1

16
ð2α1 þ 2α3 − α5Þ;

z2 ¼
1

16
ð−2α1 þ 2α3 þ 4α4 − α5−α6 þ α7Þ: ð3:8Þ

This is similar to a massive two-form. Next, there is a piece
coupling the symmetric and antisymmetric fields

LhB ¼ z3∂μhνρ∂νBμρ þ z4∂μh∂νBμν; ð3:9Þ

where

z3 ¼
1

4

�
α1 − 3α3 − 2α4 þ

1

2
α7

�
; z4 ¼ −

4α4 − α7
8

:

ð3:10Þ

The remaining piece is the action for the symmetric field.
It will be convenient to introduce the gauge-invariant
tensors

Hμ ¼ ∂σhσμ− ∂
μh;

Gμν ¼ ∂
2hμν − ∂

μ
∂
νh− ð∂μHνþ ∂

νHμÞþ ημν∂σHσ: ð3:11Þ

The tensor G satisfies the relations

∂μGμν ¼ 0; ημνGμν ¼ ðd − 2Þ∂σHσ; ð3:12Þ

and it is the analog to the Einstein tensor in linearized
gravity. In fact, it is invariant under the larger set of
transformations corresponding to linearized diffeomor-
phisms δhμν ¼ ∂μξν þ ∂νξμ.

Expressed in terms of these tensors, the action takes the
simple form

Lh2 ¼ ðg1 − g2ÞhμνGμν þ g2HμHμ; ð3:13Þ

where we have used the conventions introduced in [36] to
define the couplings

4α4 þ α6 þ α7
16

¼ −g1; ð3:14Þ

1

16
ð2α1 þ 6α3 þ 3α5Þ≡ β

8
¼ g1 − g2: ð3:15Þ

Up to this point, the theory is defined by seven para-
meters, that after the redefinition (3.5) we rewrote as
fg1; g2; α2; z1; z2; z3; z4g. However, the parameter z4 is
redundant, as it multiplies a Lagrangian term that vanishes
identically after integration by parts, so the theory is in fact
characterized by six independent parameters. A consistent
choice would be to just set α7 ¼ 0 for instance.
In the following, it will be useful to fix one parameter to

decouple hμν from Bμν, imposing z3 ¼ 0, namely

α1 − 3α3 − 2α4 þ
1

2
α7 ¼ 0: ð3:16Þ

Moreover, we can fix another parameter to obtain that the
kinetic term of the antisymmetric field becomes that of a
massive two-form. Let us define

Hμνλ ¼ 3∂½μBνλ� ¼ ∂μBνλ þ ∂νBλμ þ ∂λBμν: ð3:17Þ

Imposing

z1 ¼ −
z2
2
≡ g3

2
; ð3:18Þ

the Lagrangian LB2 reads

LB2 ¼ −
g3
6
HμνλHμνλ −

α2
4
BμνBμν: ð3:19Þ

As a result, after imposing these two conditions, the theory
is defined by four independent parameters: g1, g2, g3,
and α2.
After decoupling the antisymmetric field, the equations

of motion for the symmetric field are

2ðg1 − g2ÞGμν − g2ð∂μHν þ ∂
νHμ − 2ημν∂σHσÞ

þ 1

2
JðμνÞ ¼ 0; ð3:20Þ

where we used the standard fact that hμνGμν maps toGμνhμν

upon double integration by parts.
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A. Solutions for the symmetric field

Let us determine what the massless degrees of freedom
of our theory are. From now on, we will work in D ¼ 4
dimensions and we consider the case in which the sym-
metric field is decoupled from the antisymmetric field,
corresponding to the condition

α1 ¼ 3α3 þ 2α4 −
1

2
α7: ð3:21Þ

The solutions for the decoupled massive antisymmetric field
are straightforward to obtain. Here we focus on the more
subtle analysis of the symmetric field hμν solutions to
Eq. (3.20). First we expand in planewaves of momentum kμ:

hμνðxÞ ¼
Z

d4k
ð2πÞ4 εμνðkÞe

ik·x; ð3:22Þ

where εμν is a polarization tensor. The invariance of the action
under the gauge transformations (2.10) implies that the pure-
gauge polarization εμν ¼ kμkν is a solution for any momen-
tum. The polarization tensor for solutions that are not pure
gauge can then be constrained to be transverse:

kμkνεμνðkÞ ¼ 0: ð3:23Þ

The equations of motion admit nontrivial solutions for
masslessmomenta.We can construct the polarization tensors
using a basis of polarization vectors eσμ, σ ¼ �1 (e−σ ¼ ēσ),
qμ satisfying (the bar denotes complex conjugation)

eσ · eσ ¼ k · eσ ¼ q · eσ ¼ 0; ik · q ¼ 1; ēσ · eσ
0 ¼ δσσ

0
:

ð3:24Þ

For instance, ifwe take the direction of the spatialmomentum
as the z axis,

kμ ¼ ð−ω 0 0 kzÞ;

qμ ¼ −
i

ω2 þ k2z
ðω 0 0 kzÞ;

e�1
μ ¼ 1ffiffiffi

2
p ð0 1 ∓i 0Þ: ð3:25Þ

Any other choice of momentum and polarization vectors
can be obtained by applying spatial rotations to the vectors
above. Restricting to positive frequency solutions, the on-
shell momentum corresponds to ω ¼ jkzj, in which case
k2 ¼ q2 ¼ 0.
We decompose the Fourier transform of hμν with null

momentum kμ as follows:

εμν ¼ εt⊥μν þ ε⊥μν þ εtμν; ð3:26Þ

where “t” means traceless and “⊥” means transverse. In
terms of our basis,

εt⊥μν ¼
X
σ

Aσeσμeσν þ
X
σ

A3σ

ikðμeσνÞ
ω

þ A4

kμkν
ω2

;

ε⊥μν ¼ Bðημν − 2ikðμqνÞÞ;
εtμν ¼ C1ω

2qμqν þ
X
σ

C2σωqðμeσνÞ þ C3ðημν − 4ikðμqνÞÞ:

ð3:27Þ

The A4 term automatically cancels in the equations of
motion for any momenta; thus, it corresponds to a pure
gauge component. Otherwise, nontrivial solutions only
exist for null momenta k2 ¼ 0.
A straightforward calculation (see Appendix A) for the

case without mixing with the antisymmetric field fixes
C1 ¼ C2σ ¼ 0 and

B ¼ −
2g1 − g2
2g1

C3: ð3:28Þ

Then, the independent modes have the polarizations

HelicityA εAμν Pure gauge

2σ eσμeσν g1¼g2
σ ikðμeσνÞ g2¼0

0 g2ημν−2ð2g1þg2ÞikðμqνÞ g2¼0;g2¼−2g1

ð3:29Þ

Note that ημνε0μν ¼ −2ð2g1 − g2Þ vanishes for g2 ¼ 2g1 and
that for this choice the kinetic term of the antisymmetric
field in (3.19) vanishes as well, so Bμν becomes
nondynamical.
The helicity zero tensor does not satisfy the trans-

versality condition (3.23) off shell; in principle, one could
add a term proportional to kμkν=k2 to ensure this condition,
but it does not have a good massless limit k2 → 0.
If the condition (3.21) is not satisfied, one has to take into

account the coupling to the antisymmetric field. However,
one can check that this does not change the massless
solutions for generic values of the couplings g1 and g2. If
the antisymmetric field is decoupled, the solutions do
change for some special values of the couplings g1 and
g2, as also discussed in [36] from a different perspective.
For g2 ¼ 0 the action of the symmetric field becomes that
of linearized gravity and there is a larger diffeomorphism
invariance. In this case, the modes of helicity A ¼ �1 and
A ¼ 0 become pure gauge.4 For g2 ¼ −2g1 the action

4By this we mean that they automatically satisfy the equations
of motion without imposing any condition on the momenta, as it
was also the case for the A4 term in (3.29).
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becomes independent of the trace, and the helicity A ¼ 0
mode becomes pure gauge. Finally, for g1 ¼ g2, the part of
the action proportional to that of linearized gravity is
removed and the helicity A ¼ �2 modes become pure
gauge; see (3.13).
In the following we will only study the theory for values

of the couplings that do not alter the degrees of freedom of
the theory, i.e. g2 ≠ f0; g1;�2g1g.

B. Gauge fixing and propagator

In order to obtain a propagator for the symmetric field
hμν, one needs to introduce a gauge fixing that removes
unphysical degrees of freedom. In principle, since the
transformation (2.10) involves a single function, there
should be a single (scalar) gauge-fixing condition; how-
ever, the authors of [36] found that an alternative vector
gauge-fixing condition also seems to work consistently.
Our realization in terms of the spacetime dipole symmetry

is useful to understand this matter. Following the procedure
of Becchi-Rouet-Stora-Tyutin (BRST) quantization, we can
introduce a set of ghosts, antighosts and auxiliary fields for
the monopole (c, c̄, b) and dipole (cA, c̄A, bA) trans-
formations. The nilpotent BRST transformations s are

saμ ¼ ∂μcþ δAμcA; sbμA ¼ ∂μcA;

sc ¼ 0; scA ¼ 0;

sc̄ ¼ b; sc̄A ¼ bA;

sb ¼ 0; sbA ¼ 0: ð3:30Þ

As gauge fixing we introduce a BRST-exact term in the
action

Lg:f: ¼ −sW; ð3:31Þ

where among the possible choices there could be scalar
gauge fixings, such as

Ws ¼ c̄

�
∂
μ
∂
νðbμAδAν − ∂μaνÞ−

ξ

2
b

�
þ c̄A

�
aμδ

μ
A −

κ

2
ηABbB

�
;

ð3:32Þ
or vector gauge fixings like

Wv ¼ c̄

�
∂
μaμ −

ξ

2
b

�
þ c̄A

�
∂
μbμA −

κ

2
ηABbB

�
: ð3:33Þ

Themost convenient choice inour case is (3.32), since itwill fix
aμ and remove the pure gauge modes of the symmetric field
without affecting other modes. The gauge-fixing action is

Lg:f: ¼ −b∂μ∂νðbμν − ∂μaνÞ þ
ξ

2
b2 − bμaμ þ

κ

2
bμbμ

þ ghosts: ð3:34Þ

Integrating out the auxiliary fields leads to the terms

L0
g:f: ¼−

1

2ξ
½∂μ∂νðbμν − ∂μaνÞ�2−

1

2κ
aμaμþ ghosts: ð3:35Þ

The equation of motion for aμ equals the divergence of the
equation of motion for bμν, except for the contribution
originating in the gauge-fixing term depending on κ, the only
place where aμ does not enter the Lagrangian through the
combination bμν − ∂μaν. Such a term forces the condition
aμ ¼ 0 for any κ. On the other hand, the gauge-fixing term
depending on ξ removes the pure-gauge polarization of the
symmetric field, namely the one whose polarization tensor εμν
is kμkν, except for k2 ¼ 0. The other modes of the field bμν are
not affected by its presence.
The Fourier transform of the equations of motion for the

symmetric field is

Δμν;αβεαβ ¼
1

2
J̃μν; ð3:36Þ

where J̃μν is the Fourier transform of the current. The tensor
Δ is

Δμν;αβ ¼ ðg1 − g2Þk2Iμν;αβ þ
1

2
ðg2 − 2g1ÞKμν;αβ

1

− 2g1K
μν;αβ
2 þ 1

4ξ
kμkνkαkβ: ð3:37Þ

Here, we have defined the tensors

Iμν;αβ ¼ ημαηνβ þ ημβηνα;

Kμν;αβ
1 ¼ kμkαηνβ þ kμkβηνα þ kνkαημβ þ kνkβημα;

Kμν;αβ
2 ¼ k2ημνηαβ − kαkβημν − kμkνηαβ: ð3:38Þ

The propagator G is the inverse of Δ over symmetric
tensors

Δμν;αβGαβ;σρ ¼
1

4
ðδμσδνρ þ δμρδνσÞ: ð3:39Þ

We find

Gαβ;σρ ¼
1

8ðg1− g2Þ
1

k2

�
Iαβ;σρþ

g2− 2g1
g2

1

k2
K1αβ;σρ

−
2g1

2g1þ g2

1

k2
K2αβ;σρ

�

þ 1

k2

�
1

g2
þ g1þ g2
4ðg1− g2Þð2g1þ g2Þ

þ 2ξ

k2

�
kαkβkσkρ
ðk2Þ2 :

ð3:40Þ

Let us point out that, for any of the special values of the
coupling where some modes become pure gauge (3.29), the

AFXONIDIS, CADDEO, HOYOS, and MUSSO PHYS. REV. D 109, 065013 (2024)

065013-6



propagator has a divergent coefficient, so there is no smooth
limit from the general theory to those special cases. Since the
gauge parameter ξ is present only in the completely longi-
tudinal term of the propagator, the projection over the
polarizations of the physical modes is independent of ξ.
More generally, the unphysical double pole in the propagator
with coefficient ξ, which might be worrisome in other
theories with higher derivative terms in the action, would
not contribute to any gauge-invariant observable.

C. Coupling to curved geometry

As mentioned in the introduction, the rank-two tensor
realization of fracton gauge theories exhibits some issues
when attempting to couple these theories to a curved
background geometry. Indeed, in that case, the dipole
gauge transformation involves the second derivative of a
parameter and, as such, does not admit a natural covariant
counterpart. In this section, we elaborate on how our
realization permits such a coupling. Since the present
paper focuses on the relativistic case, we describe the
coupling to a pseudo-Riemannian geometry, but extending
it to nonrelativistic contexts is in principle straightforward.
Let us call γμν the metric of the background geometry,

which is independent of our dynamical gauge field hμν, and
∇μ the covariant derivative defined with the Christoffel
symbols computed from γμν. With these ingredients, we
can make the theory invariant under background diffeo-
morphisms

δγμν ¼ ∇μζν þ∇νζμ: ð3:41Þ
When doing this, we need to remember that some of the
spacetime indices originate from internal indices after
choosing the background eμA; hence, it is better to work
with the formulas that still involve internal indices explicitly.
The gauge fields of our theory are one-form connections and,
therefore, transform under background diffeomorphisms as
the Lie derivative:

δζeμA ¼ LζeμA ¼ ζρ∂ρeμA þ eρA∂μζρ; ð3:42aÞ

δζaμ ¼ Lζaμ ¼ ζρ∂ρaμ þ aρ∂μζρ; ð3:42bÞ

δζbμA ¼ LζbμA ¼ ζρ∂ρbμA þ bρA∂μζρ: ð3:42cÞ

Since internal indices are not involved in diffeomor-
phism transformations, the derivatives appearing in the
gauge transformations (2.5) act on scalar quantities and are
thus already covariant. The curvatures HμνA and Bμν, being
two-forms, are independent of the metric, so that (2.6) and
(2.7) are already covariant as well. The same is not true for
Γμνρ, whose covariant definition reads

Γμνλ ¼ 2

�
∇ðμBνÞλ −

1

2
ðHλμAeνA þHλνAeμAÞ

�
: ð3:43Þ

It is easy to check that Bμν, HμνA and Γμνλ are gauge
invariant also when the theory is coupled to a curved
geometry.
It is worth emphasizing the role played by the internal

spacetime, crucial in our realization of the monopole-
dipole-momentum algebra, by seeing what would happen
if all the indices were external. In that case, we would need
to introduce covariant derivatives into the dipole gauge
transformation in (2.5) and in the definition of Hμνλ.
Consequently, Hμνλ and Γμνλ, although diffeomorphism
covariant, would not be gauge invariant.
To conclude this section, thanks to the internal space

realization of the dipole symmetry, we are able to write a
gauge-invariant and diffeomorphism-covariant fracton
theory. The action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−γ

p
L; ð3:44Þ

where γ ¼ detðγμνÞ and L is given by (3.1), external indices
are contracted with the background metric γμν and the
curvatures are treated as we have just described in the
present section: namely, we keep track of the internal index
of HμνA and adopt (3.43) as the definition for Γμνλ.

IV. INTERACTIONS

In the case of linearized gravity, the interaction of the
massless spin-2 field with itself or other fields must be
through a conserved symmetric tensor, which in a generic
theory has to be the energy-momentum tensor. However,
the energy-momentum tensor itself depends on additional
interaction terms, so that doing this self-consistently gives
as a result the full nonlinear theory of gravity coupled to
matter [45–48] (see also Ref. [49] for a nice account of
these facts). This argument and Weinberg’s soft graviton
theorem [50] are seen as proof that two-derivative inter-
actions of a massless spin-2 field are universal.
In principle the theory obtained from spacetime

dipole symmetry enjoys a wider freedom since the con-
ditions (3.2) are less constraining than energy-momentum
conservation. For instance, a two-derivative symmetric
tensor which is not conserved but satisfies the continuity
equation is

Jμν ¼ cVð∂μVν þ ∂
νVμ − 2ημν∂σVσÞ; ð4:1Þ

with Vμ being an arbitrary vector operator containing at
most one derivative and cV an arbitrary constant. As a
simple example, one could take Vμ ¼ Jμ, the Uð1Þ global
current of a complex scalar field

Jμ ¼ i
2
ðϕ�

∂
μϕ − ∂

μϕ�ϕÞ: ð4:2Þ

In this case
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Jμν ¼ iðϕ�
∂
μ
∂
νϕ − ∂

μ
∂
νϕ�ϕÞ − 2ημν∂σJσ: ð4:3Þ

Integrating by parts, one can rewrite the coupling to Vμ

also as

1

2
hμνJμν ¼ −cVHμVμ þ total derivative: ð4:4Þ

However, in this form it is apparent that the spin-2
component of the symmetric field does not enter in the
interaction. We encounter a similar situation when consid-
ering the self-coupling of the spacetime dipole fields.
Gauge-invariant interaction terms can be assembled using
the invariant curvatures (2.12), but if we restrict to two-
derivative terms, we are forced to use Bμν as one of the
factors. Thus there is no gauge-invariant two-derivative
cubic self-coupling for the symmetric field.
A possible caveat to the last statement is that the cubic

term needs to be invariant only up to a total derivative, so
one may wonder if a cubic term for the symmetric field is
still possible. This would require adding to the action a term
of the form hμνJμν, with Jμν quadratic in the symmetric field
and containing two derivatives. Gauge invariance requires
∂μ∂νJμν ¼ 0 off shell. As we detail in Appendix C, there is
no term of this kind. This is similar to the nonlinear
generalization of the standard spin-2 theory. Full consis-
tency of the interaction terms requires extending the
linearized gauge transformations to the full diffeomorphism
transformations. The lowest order correction corresponds
to a spacetime translation and makes the transformation
field dependent:

δhμν ¼ ∂μξν þ χξα∂αhμν; ð4:5Þ

where χ is the expansion parameter proportional to
Newton’s constant. In principle, a similar approach could
be considered for our theory. However, since this involves
incorporating field-dependent terms in the gauge trans-
formations, it exceeds the scope of the present paper.
An alternative way to produce self-interactions is through

spontaneous symmetry breaking of the dipole symmetry. For
this, we can generalize the matter fields introduced in [51] to
the Lorentz-covariant theory. In particular, we can take a set
of complex scalar fields ϕa, a ¼ 0, 1, 2, 3, with dipole
chargesdAa ¼ dδAa (recall that eachdipole charge is a vector in
the internal space). Under a gauge transformation each of the
fields transforms by a phase

ϕa → eiλ1Ad
A
aϕa; ð4:6Þ

where there is no sum over a. The covariant derivatives of
these fields are simply

Dμϕa ¼ ∂μϕa − ibμAdAaϕa: ð4:7Þ

This allows one to add new invariant interaction terms to the
action, like for instance

Γμν
σΓμνρ

X
a

ηBCeBσ dCa ðiϕ�
aDρϕa − iDρϕ

�
aϕaÞ: ð4:8Þ

If the scalar fields acquire an expectation value ϕa ¼ v, this
term introduces a cubic interaction for the dipole gauge field

∼2dv2Γμν
σΓμνρbσρ: ð4:9Þ

In terms of the symmetric and antisymmetric fields, this
would introduce new interactions, including in principle
cubic self-interactions for the symmetric field. It would be
interesting to explore if those reproduce or not the low-
energy scattering amplitudes of the graviton in the usual
theory, although this might require introducing exotic kinetic
terms for the dipole fields, in order to avoid giving a mass to
the spin-2 component of the symmetric field.

A. Dipole conservation and fractons

The covariant version of the fractonic conservation equa-
tions (3.2) and (3.3) does not result in an actual conservation
of the dipole moment of the charge density, since

∂tQi ≡ ∂t

Z
d3xxiJt ¼ ∂t

Z
d3xJti: ð4:10Þ

However, if we identify Jti as an intrinsic dipole moment,
then the following combination is conserved:

Qi
tot ¼

Z
d3xðxiJt − JtiÞ: ð4:11Þ

In addition, the time component of the dipole charge is also
conserved:

Qt
tot ¼

Z
d3xðtJt − JttÞ: ð4:12Þ

This actually generalizes to a covariant version of the
conservation of dipole charge. Given a codimension-one
hyperplane Σ, which could be space- or timelike, we pick an
orthonormal basis of constant vectors fn̂; eag, with n̂ the unit
normal and ea, a ¼ 1, 2, 3, vectors spanning the directions
along the hyperplane. Then, the “Σ-dipole” charge can be
defined as

Qa
Σ ¼

Z
Σ
d3xeaμn̂νðxμJν − JνμÞ: ð4:13Þ

This is “conserved” in the sense that it has the same value on
hyperplanes parallel to Σ:

n̂μ∂μQa
Σ ¼ 0: ð4:14Þ
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When Σ is just a spatial slice then this becomes the spatial
dipole conservation we wrote above. One can easily check
that the component of the charge transverse to the hyperplane
is also conserved in the sense above:

Qn
Σ ¼

Z
Σ
d3xn̂μn̂νðxμJν − JνμÞ; n̂μ∂μQn

Σ ¼ 0: ð4:15Þ

Onemightwonderwhat kind of configuration is sourced by a
“fracton,” a pointlike charge

Jt ¼ qδð3ÞðxÞ: ð4:16Þ

This can be obtained from a current with only nonzero
component Jit ¼ Jti, such that Jt ¼ ∂iJit. The form of this
current is

Jti ¼ Jit ¼ −
q
4π

∂
i 1

r
¼ q

4π

xi

r3
: ð4:17Þ

Then, introducing this current in (3.20), a configuration
sourced by a fracton (in the absence of other matter fields) is

hit ¼
q

16πg2
∂ir ¼

q
16πg2

xi
r
: ð4:18Þ

Thus it is a hedgehog configuration that in linearized gravity
would be produced by a large diffeomorphism ξt ¼ q

16πg2
r.

Although the fracton carries zero spatial dipole charge, it
has a nonzero spacetime dipole charge. Take the hyper-
plane Σi located at xi ¼ xi0 ≠ 0 for a fixed value of i. Then,

Qt
Σi
¼
Z

dt
Z
k
d2xðtJi − JitÞ ¼−

q
4π

xi0

Z
dt
Z
k
d2x

1

r3

����
xi¼xi

0

:

ð4:19Þ

Here the symbol k refers to the two spatial directions along
the hyperplane. The result is

Qt
Σi
¼ −

q
2
sgnðxi0Þ

Z
dt: ð4:20Þ

Therefore, from the point of view of the full set of
“conserved” quantities, the fracton is actually a spacetime
dipole in the sense defined above. An intuitive explanation
is that the fracton has a worldline extended in time, which is
along a direction contained in the hyperplanes Σi. This
suggests that in order for all dipole charges to vanish, the
“true” fracton should be some type of instanton localized at
a single spacetime point.

B. Map to linearized gravity solutions

Examining the equation for the symmetric field (3.20),
one immediately sees that it is possible to map linearized
gravity solutions to solutions of the spacetime dipole theory

coupled to matter through a current of the form (4.1). The
map corresponds to finding solutions to the equations

Gμν ¼ 0; Vμ ¼ 2g2
cV

Hμ: ð4:21Þ

Let us study a class of solutions of linearized gravity that
are also solutions to the full Einstein equations in the Kerr-
Schild form of the metric. In the absence of matter, this
includes plane wave solutions as well as Schwarzschild and
Kerr solutions.
The full metric in the Kerr-Schild form is gμν ¼ ημνþhμν,

with

hμν ¼ Φlμlν; ð4:22Þ

and the null vector lμ satisfies

lμlμ ¼ 0; lμ
∂μlν ¼ Slν; ð4:23Þ

where S is a scalar function and indices are raised with the
Minkowskimetric ημν. The vectorHμ is thereby proportional
to the null vector:

Hμ ¼ ∂
σhσμ − ∂μh ¼ ∂σðVlσlμÞ ¼ ½∂σðVlσÞ þ SV�lμ:

ð4:24Þ

Thus HμHμ ¼ 0. In addition, since vacuum Einstein’s
equations are satisfied, the divergence vanishes:

∂μHμ ∝ ημνGμν ¼ 0: ð4:25Þ

In order to construct the map between linearized gravity
solutions and solutions of the spacetime dipole theory, we
add to the latter a matter sector constituted by a complex
scalar field coupled to an Abelian gauge field:

Lmatter ¼ −
1

4
FμνFμν −Dμϕ

�Dμϕ −
λ

2
ðjϕj2 − v2Þ2; ð4:26Þ

where the covariant derivative is

Dμϕ ¼ ð∂μ − iqAμÞϕ: ð4:27Þ

We have introduced a potential triggering symmetry break-
ing; the map also works if there is no potential, i.e. for
λ ¼ 0. We now couple the fields in the matter sector to the
spacetime dipole fields through the interaction terms

Lint ¼ −cVHμJμ − cBFBμνFμν; ð4:28Þ

where Jμ is the current:

Jμ ¼ i
2
ðϕ�Dμϕ −Dμϕ�ϕÞ: ð4:29Þ

FRACTON GRAVITY FROM SPACETIME DIPOLE SYMMETRY PHYS. REV. D 109, 065013 (2024)

065013-9



Assuming the action for Bμν is (3.19), the equations of
motion for Bμν, the gauge field Aμ and the scalar ϕ are,
respectively,

g1 − 2g2
3

∂σHσμν −
α2
2
Bμν − cBFFμν ¼ 0; ð4:30aÞ

∂σFσμ þ 2cBF∂σBσμ − 2qJμ − qcV jϕj2Hμ ¼ 0; ð4:30bÞ

DμDμϕ − icVHμDμϕ −
i
2
cV∂μHμϕ − λðjϕj2 − v2Þϕ ¼ 0;

ð4:30cÞ

where Hσμν has been defined in (3.17). Imposing the
condition

α2 ¼ 4c2BF; ð4:31Þ

we find the solutions

ϕ ¼ v; Aμ ¼ −
cV
2q

Hμ; Bμν ¼ −
1

2cBF
Fμν; ð4:32Þ

so that Aμ is null and divergenceless according to (4.24) and
(4.25). The equations in (4.32) map the most general Kerr-
Schild metric which solves the vacuum Einstein’s equations
to solutions of the particular spacetime dipole theory with
matter content specified in (4.26).
In particular cases, it is possible to map specific Kerr-

Schild solutions to solutions of a spacetime dipole theory
with a reduced matter content compared to (4.26). Let us
examine in more detail two such cases: the plane-wave
solutions, where no matter is needed, and Schwarzschild
solutions, where the map can be made adding just a
massless scalar field.

1. Plane waves

For plane-wave solutions one may select z as the
direction of propagation of the wave

Φ ¼ φðt − z; x; yÞ; lμdxμ ¼ −dtþ dz: ð4:33Þ

Note that

lμ
∂μΦ ¼ 0; ∂μlμ ¼ 0; ð4:34Þ

and hence lμ is a Killing vector. Solutions for the amplitude
must be harmonic functions in the ðx; yÞ plane:

ð∂2x þ ∂
2
yÞφ ¼ 0: ð4:35Þ

A straightforward calculation of (3.11) shows that for
plane-wave solutions Hμ ¼ 0, so that these are also
solutions of the spacetime dipole theory without matter.

Particular cases are shock waves:

φðt − z; x; yÞ ¼ A0δðt − zÞ log
�
x2 þ y2

R2

�
; ð4:36Þ

which are actually produced by a highly energetic particle
moving at the speed of light, but are vacuum solutions
outside the particle’s trajectory. Truly vacuum solutions are
exact waves:

φðt − z; x; yÞ ¼ Aþðt − zÞðx2 − y2 þ 2ixyÞ
þ A−ðt − zÞðx2 − y2 − 2ixyÞ: ð4:37Þ

More generally, the solutions are a sum of a holomorphic
function on the ðx; yÞ plane and its conjugate

φðt− z;x;yÞ ¼ Aðt− z;xþ iyÞþ Āðt− z;x− iyÞ: ð4:38Þ

2. Schwarzschild solution

The Schwarzschild solution in Kerr-Schild form is

Φ¼ 2m
r
; lμdxμ ¼−dt−

xidxi

r
; r2 ¼

X3
i¼1

ðxiÞ2: ð4:39Þ

The null vector lμ satisfies the identities

∂μlμ ¼ −
2

r
; lμ

∂μr ¼ −1: ð4:40Þ

Then, from the definition in (3.11),

Hμ ¼ −
�
Φ0 þ 2

r
Φ
�
lμ ¼ −

2m
r2

lμ: ð4:41Þ

When Vμ ¼ Jμ, the current in (4.2), there is a solution
which is a spherical wave of a massless field:

ϕðxÞ ¼ A
e∓iωðtþrÞ

r
; ∂

2ϕ ¼ 0: ð4:42Þ

The condition on the energy of the wave is

E ¼ ωjAj2 ¼ � 4mg2
cV

: ð4:43Þ

The sign will be chosen according to the sign of g2. Note
that if we add to the action of a massless scalar the coupling
(4.4), the conserved Uð1Þ current would not be just given
by (4.2), but there will be an additional term

Jμtot ¼ Jμ þ cV
2
Hμϕ

�ϕ: ð4:44Þ

Similarly, the equations of motion will be modified:
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∂
2ϕ − icVHμ

∂μϕ −
i
2
cV∂μHμϕ ¼ 0: ð4:45Þ

The spherical wave is not a solution to the modified
equations, but one could in principle use a perturbative
expansion in cV to systematically find corrections.
Alternatively, one could add a term to the scalar action:

ΔL ¼ c2V
4g2

JμJμ: ð4:46Þ

Adding this term actually corresponds to completing the
square:

LH2 ¼ g2

�
Hμ −

cV
2g2

Jμ

�
2

: ð4:47Þ

This cancels the contributions proportional to Hμ in the
equations of motion of the scalar field and in Jμtot, in such a
way that the scalar spherical wave and Schwarzschild
metric are exact solutions of the coupled scalar field and
spacetime dipole theory.

V. CONCLUSIONS

We studied the Lorentz-covariant generalization of
gauge theories where both an Abelian charge and its
spacetime “dipole moment” are conserved. In general,
the resulting theory contains a massive gauge-invariant
antisymmetric field and a massless symmetric field. This
latter transforms under gauge transformations as a “fracton”
generalization of gravity. Given the reduced amount of
symmetry, the action allows extra terms with respect to
standard linearized gravity. For the action of the symmetric
field there are two possible terms with independent
coefficients g1, corresponding to the action of linearized
gravity, and g2, corresponding to a new term forbidden by
diffeomorphism invariance but allowed by the reduced
symmetry. Such a point was already discussed in [35] but
the realization proposed in the present paper allows for an
additional mixing term with the antisymmetric field.
If g2 ¼ 0, the action becomes that of linearized gravity,

but even for g2 ≠ 0 we have constructed a map between
solutions of linearized gravity and the Lorentz-covariant
dipole theory coupled to matter. The solutions are in Kerr-
Schild form and in some cases they are also solutions of the
full Einstein equations. In this map, the components of the
symmetric current equal the linearized Einstein tensor

JðμνÞ ¼ −4ðg1 − g2ÞGμν: ð5:1Þ

For instance, in the case of a Schwarzschild black hole, the
only nonzero component is Jtt ¼ 64πmðg1 − g2Þδð3ÞðxÞ.
This translates into having a pointlike dipole (plus addi-
tional gauge and/or scalar fields). It should be noted that in
this case the spacetime dipole charge corresponds to a

vector pointing in the time direction, so it is not a spatial
dipole in the usual sense.
We have also revisited the question concerning the gauge

fixing, which in our formalism can be treated with standard
tools. In particular we used the BRST approach and show
why scalar and vector gauge fixings in the classification of
[35,36] are both possible. This corresponds to having both
a scalar and a vectorlike gauge symmetry stemming from
the charge and the dipole transformations, respectively.
The fractonic gauge transformation δhμν ¼ −∂μ∂νλ0

encountered in (3.6) corresponds to a standard linearized
diffeomorphism δhμν ¼ 2∂ðμξνÞ where the vector parameter
ξμ is longitudinal ξμ ¼ −∂μλ0. We are therefore concerned
with a complementary case to the “transverse diffeomor-
phisms,” ∂μξμ ¼ 0, corresponding to linearized unimodular
gravity [52–55], where the determinant of the full metric—
the trace of hμν at the linearized level—is invariant by
construction. It is intriguing to observe that asking the trace
of the symmetric field to be invariant also in our case
implies□λ0 ¼ 0 that corresponds to the scalar gauge fixing
(3.35) for ξ → 0. This condition is compatible with global
dipole transformations λ1μ ¼ bμ, λ0 ¼ −bμxμ þ c, which
are by definition those which leave the gauge potentials
invariant [41]. A related connection was made in [37],
where invariance under area-preserving spatial diffeomor-
phisms was imposed to construct a theory dual to topo-
logical elasticity and avoid the issues of coupling the tensor
theory to a background geometry.
Another advantage of realizing the dipole symmetry with

ordinary one-form gauge fields is that it allows one to
couple the theory to a curved background geometry without
spoiling the dipole gauge symmetry. This thus avoids the
issues previously discussed in the literature concerning the
coupling of a rank-two gauge field to a generic curved
background [37–40].
In addition, we have explored the physical spectrum of

the free theory. For generic values of the couplings, the
symmetric field has physical massless modes with helicities
�2, �1 and 0. We have considered cubic self-interactions
and interactions with matter. The two-derivative inter-
actions we were able to construct involve only the spin-
0 and spin-1 components of the symmetric field. This is
somewhat counterintuitive on the basis that a smaller gauge
symmetry should in principle allow more freedom.
However, the massless spin-2 part remains decoupled as
it occurs for an ordinary spin-2 field.
In order to have nontrivial two-derivative interactions, it

is necessary in the usual gravity theory to modify the gauge
transformation of the spin-2 field as in (4.5). Possibly a
similar modification may be also necessary in the present
case. Along these same lines, it would be interesting to
investigate whether Deser’s all-order approach [48] could
be generalized to our case.
A different avenue of future research would be to

introduce additional matter fields inducing self-interactions
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of the spin-2 component of the symmetric field; in
particular, this could be done through spontaneous breaking
of the dipole symmetry as commented in Sec. IV. It is
interesting to explore whether this possibility can be
pursued without the spin-2 component becoming massive.
Another natural extension of the present analysis con-

sists in considering higher-multipole gauge symmetries. It
is reasonable to expect that this could yield nonstandard
interactions for a spin-2 massless component, in a similar
way as the dipole symmetry does for the spin-1 and spin-0
components. On top of this, it would be quite interesting
per se to study higher-multipole symmetries as candidates
for alternative formulations of higher-spin theories.
A pertinent question in modified theories of gravity is

stability in the absence of the full diffeomorphism invari-
ance. Relying on the mode decomposition of the fields and
the equations of motion, we expect the model studied in this
paper to be stable for some suitable region in the space of
couplings g1 and g2. The contributions of the individual
modes to the energy density is semipositive definite; see
Appendix A. The semipositive character is particularly
interesting because it arises from a null contribution to the
energy density from the vector sector, an aspect which calls
for further investigation. An exhaustive discussion of
classical stability requires a systematic study of the canonical
structure and constraints. It constitutes a necessary step in
view of quantization, and we postpone it to the future.
As a final comment, the background eμA enters the action

of our model in a way that explicitly breaks the internal
transformations generated by ξA (2.5). Yet, one could

generalize the model by considering additional Nambu-
Goldstone fields that shift under ξA, thereby investigating
possible spacetime generalizations of the dual elastic theory
of [41]. In this context, it would be interesting to relate the
physical scale M to a dynamical symmetry-breaking scale.
Such a breaking would bridge internal and external space-
times by locking internal and external transformations, in a
similar spirit to the framework for low-energy effective
field theories discussed in [56]. In particular, the temporal
part of such a breaking could entail a preferred time
foliation similar to the khronon scenario and Lifshitz
gravity [57–59].
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APPENDIX A: EQUATIONS OF MOTION

The symmetric equation of motion descending from
(3.1) is

0 ¼
�
α1 þ 3α3 þ

3α5
2

�
∂
2hνλ −

1

2

�
α1 þ 3α3 − 2α4 þ

3α5 − α6 − α7
2

�
∂μð∂νhμλ þ ∂

λhμνÞ

−
�
2α4 þ

1

2
ðα6 þ α7Þ

�
ð∂ν∂λh − ηνλ∂2hþ ηνλ∂σ∂ρhσρÞ þ

1

2

�
−α1 þ 3α3 þ 2α4 −

1

2
α7

�
∂μð∂νBμλ þ ∂

λBμνÞ: ðA1Þ

Adopting the definitions introduced in (3.11) and

Bμ ≡ ∂σBσμ; ðA2Þ
which automatically satisfies ∂μBμ ¼ 0, Eq. (A1) can be conveniently rewritten as

0¼ βGνλþ 1

2

�
βþ 2α4þ

1

2
ðα6þα7Þ

�
ð∂νHλþ ∂

λHν− 2ηνλ∂σHσÞþ 1

2

�
−α1þ 3α3þ 2α4−

1

2
α7

�
ð∂νBλþ ∂

λBνÞ; ðA3Þ

where β is defined in (3.15). Assuming the decoupling condition (3.21), the trace and the divergence of (A3) yield,
respectively,

½2β þ ðd − 1Þð4α4 þ α6 þ α7Þ�∂σHσ ¼ 0; ðA4Þ
ð2β þ 4α4 þ α6 þ α7Þð∂2Hλ − ∂

λ
∂σHσÞ ¼ 0: ðA5Þ

For β ≠ −2α4 − 1
2
ðα6 þ α7Þ and β ≠ − 1

2
ðd − 1Þð4α4 þ α6 þ α7Þ, combining (A4) and (A5), we get

∂
2Hμ ¼ 0; ∂μHμ ¼ 0: ðA6Þ
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The antisymmetric equation of motion descending from (3.1) is

0 ¼
�
α1 þ α3 −

α5
2

�
∂
2Bνλ −

1

2

�
α1 − α3 − 2α4 þ

α5 þ α6 − α7
2

�
∂μð∂νBμλ − ∂

λBμνÞ

− 2α2Bνλ þ 1

2

�
−α1 þ 3α3 þ 2α4 −

1

2
α7

�
∂μð∂νhμλ − ∂

λhμνÞ: ðA7Þ

Again considering the decoupling condition (3.21), the
divergence of the antisymmetric equation (A7) yields

0 ¼
�
α1 þ 3α3 þ 2α4 −

3α5 þ α6 − α7
2

�
∂
2Bλ − 4α2Bλ;

ðA8Þ

where we have recalled the definition of the longitudinal
field Bμ given in (A2). For the transverse part ∂μB

μν
⊥ ¼ 0,

we have instead

0 ¼
�
α1 þ α3 −

α5
2

�
∂
2Bνλ⊥ − 2α2Bνλ⊥ : ðA9Þ

1. Constraints on the mode expansion from the
equations of motion

Consider the Fourier transform of the gauge-invariant
vector introduced in (3.11) expressed in terms of the modes
(3.27):

H̃μ ¼ ikσεσμ − ikμεμμ ¼ −2C1iqμ þ ωC2σϵ
μ
σ

þ
�
1 −

d
2

�
ðC3 þ 2BÞikμ: ðA10Þ

Then, from the equation ∂μHμ ¼ 0 ¼ ikμH̃μ obtained in
(A6), we fix

C1 ¼ 0: ðA11Þ

Next, let us compute

∂
μHν þ ∂

νHμ → ikμH̃ν þ ikνH̃μ

¼ 2ωC2σikðμϵ
νÞ
σ þ ðd − 2ÞðC3 þ 2BÞkμkν: ðA12Þ

From this we obtain for the Fourier transform of the
linearized Einstein tensor

G̃μν ¼ kμkνελλ − ðikμH̃ν þ ikνH̃μÞ
¼ −2ωC2σikðμϵ

νÞ
σ − ðd − 2ÞðC3 þ BÞkμkν: ðA13Þ

Then, from the equation of motion (A3), we get

0 ¼ ωC2σikðμϵ
νÞ
σ

�
2α4 − β þ 1

2
ðα6 þ α7Þ

�

þ 1

2
ðd − 2Þkμkν

��
2α4 − β þ 1

2
ðα6 þ α7Þ

�
C3

þ ð4α4 þ α6 þ α7ÞB
�
: ðA14Þ

Assuming β ≠ 2α4 þ 1
2
ðα6 þ α7Þ, we get the conditions

C2σ ¼ 0; σ ¼ 1; 2; ðA15Þ
and

C3 ¼
4α4 þ α6 þ α7

β − 2α4 þ 1
2
ðα6 þ α7Þ

B: ðA16Þ

2. Comments on stability

In Sec. A 1 we study how the equations of motion restrict
the mode expansion. Enforcing such restrictions in (3.26)
and (3.27), we are left with

εμν ¼ Aσϵ
μ
σϵνσ þ A3a

ikðμϵνÞa
ω

þ A4

kμkν

ω2

þ B

�
β þ 2α4 þ 3

2
ðα6 þ α7Þ

β − 2α4 þ 1
2
ðα6 þ α7Þ

ημν

þ β þ 6α4 þ 5
2
ðα6 þ α7Þ

β − 2α4 þ 1
2
ðα6 þ α7Þ

ikðμqνÞ

ω2

�
; ðA17Þ

where A4 corresponds to the pure-gauge, unphysical part
and both σ and a run over f1; 2g. Computing the energy
density, one finds that the contribution from the modes of
spatial momentum k is given by

c2ðÃ−1ðkÞÃ�
−1ðkÞ þ Ã1ðkÞÃ�

1ðkÞÞ þ c0B̃ðkÞB̃�ðkÞ; ðA18Þ

where

c0 ¼ ω
2g2ð2g21 − g1g2 − g22Þ

πðg2 − 2g1Þ2
; c2 ¼ ω

g1 − g2
π

; ðA19Þ

with k≡ jkj. One can get a positive definite contribution
for suitable choices for the coefficients g1 and g2. For
instance, assuming g1 > 0 and small g2, namely jg2j < g1,
one has a positive definite contribution (A18) for g2 > 0.
The other possibility is g2 < 0 and jg2j > 2g1. Note that the
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vector modes associated to the coefficients A3a do not enter
in (A18); thus, they do not contribute to the energy density.

APPENDIX B: COMPUTATIONAL DETAILS

In this appendix we collect some useful formulas or
intermediate passages for the computations described in
Sec. III B of the main text.
In order to express the equations of motion for the

symmetric field (3.20) in the Fourier form (3.37), we adopt
the definitions given in (3.38) and we have the following
intermediate results:

Gμν →

�
−
1

2
k2Iμν;αβ þ 1

2
Kμν;αβ

1 þ Kμν;αβ
2

�
εαβ; ðB1Þ

∂
μHν þ ∂

νHμ − 2ημν∂σHσ → −
�
1

2
Kμν;αβ

1 þ 2Kμν;αβ
2

�
εαβ:

ðB2Þ

In what follows, we collect some technical details useful
to the purpose of getting the propagator (3.40) or also to
just check (3.39). Let us define

Kμν;αβ
3 ≡ kμkνkαkβ ðB3Þ

and consider it alongside the definitions given in (3.38).
Besides, it is convenient to introduce the compact notation

A · B≡ Aμν;ρσBρσ;αβ; ðB4Þ

and, since we focus only on tensors possessing the
symmetry Aμν;αβ ¼ Aαβ;μν, we have A · B ¼ B · A, up to
straightforward lowering and raising of indexes that we

leave implicit. The set of tensors B≡ fI; K1; K2; K3g is
closed under the product · and in particular we have

I ·I¼2I; I ·K1¼2K1; I ·K2¼2K2; I ·K3¼2K3;

K1 ·K1¼2k2K1þ8K3; K1 ·K2¼−4K3; K1 ·K3¼4k2K3;

K2 ·K2¼3k2K2þ4K3; K2 ·K3¼−k2K3;

K3 ·K3¼ðk2Þ2K3: ðB5Þ
In the first line of (B5) we just have specific cases of the
general relation

I · A ¼ 2A; ðB6Þ
valid for all A∈ spanðBÞ, which amounts to recalling that I
is proportional to the identity with respect to the prod-
uct (B4).

APPENDIX C: CUBIC COUPLINGS

In this appendix we detail the search for graviton cubic
self-couplings that are gauge invariant up to total deriva-
tives. We look for terms of the form

LhJh ¼ hμνJ
μν
h ; ðC1Þ

where Jμνh is a symmetric rank-two tensor quadratic in hμν
that features two derivatives. In order for the cubic term to
be invariant under the gauge transformation (3.6), the
current Jμνh should be gauge invariant and doubly conserved
off shell, namely

δJμνh ¼ 0; ∂μ∂νJ
μν
h ¼ 0 off shell: ðC2Þ

Before imposing gauge invariance and conservation, the
most general Jμνh reads (see e.g. Ref. [49])

Jμνh ¼ c1∂μhλρ∂νhλρ þ c2∂μhλρ∂λhρν þ c3∂λhρμ∂λhρν þ c4∂λhλμ∂ρhρν þ c5∂λhρμ∂ρhλν þ c6∂μhνλ∂ρhλρ þ c7∂λhμν∂ρhλρ

þ c8∂μhνλ∂λhþ c9∂λhμν∂λhþ c10∂λhλμ∂νhþ c11∂μh∂νhþ ημνðc12∂τhρλ∂τhρλ þ c13∂τhρλ∂ρhτλ þ c14∂λhλρ∂τhτρ

þ c15∂τhτρ∂ρhþ c16∂ρh∂ρhÞ þ b1hλρ∂μ∂νhλρ þ b2h∂μ∂νhþ b3hμν∂ρ∂ρhþ b4h∂ρ∂ρhμν þ b5hμλ∂ρ∂ρhνλ

þ b6hρν∂μ∂ρhþ b7h∂μ∂ρhρν þ ðμ ↔ νÞ; ðC3Þ

where h denotes the trace ημνhμν. Gauge invariance imposes
19 conditions:

b1 ¼ b2 ¼ b3 ¼ b4 ¼ b5 ¼ b6 ¼ b7 ¼ 0; ðC4Þ

c12 ¼ c13 ¼ c14 ¼ c15 ¼ c16 ¼ 0; ðC5Þ

c7 ¼ c8 ¼ −c9 ¼ −c6; ðC6Þ

c10 ¼ −2c11 ¼ −2c4; ðC7Þ
c2 ¼ −2c1; ðC8Þ

c5 ¼ c1 − c3; ðC9Þ
which leaves c1, c3, c4 and c6 as possible nonzero indepen-
dent coefficients. However, imposing ∂μ∂νJ

μν
h ¼ 0 sets

c1 ¼ c3 ¼ c4 ¼ c6 ¼ 0: ðC10Þ
As a result, there are no gauge-invariant self-couplings of the
form (C1). We have also made an independent check by
writing all possible two-derivative cubic terms in the action
and imposing gauge invariance up to total derivatives, with
the same outcome.
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