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Fracton gravity from spacetime dipole symmetry
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Dipole charge conservation forces isolated charges to be immobile fractons. These couple naturally to
spatial two-index symmetric tensor gauge fields that resemble a spatial metric. We propose a spacetime
Lorentz-covariant version of dipole symmetry and study the theory of the associated gauge fields. In the
presence of a suitable background field, these contain a massive antisymmetric and a massless symmetric
two-index tensors. The latter transforms only under longitudinal diffeomorphisms, making the massless
sector similar to linearized gravity, but with additional modes of lower spin. We show that the theory can be
consistently coupled to a curved background metric and study its possible interaction terms with itself and
with matter. In addition, we construct a map between solutions of linearized gravity in Kerr-Schild form

and solutions of fracton gravity coupled to matter.

DOI: 10.1103/PhysRevD.109.065013

I. INTRODUCTION

Theoretically possible new types of quantum phases of
matter have been recognized in solvable lattice models such
as the X-cube model and Haah’s code [1-8]. They display
exotic properties such as excitations with restricted mobil-
ity, dubbed fractons, and a vacuum degeneracy which is
sensitive to the lattice size (see e.g. Refs. [9-12] for
reviews). Among the possible realizations of fractonic
dynamics, one of the simplest and most studied classes
is provided by systems conserving an Abelian charge and
also its dipole moment [13—15]. An individual charge in
isolation cannot move without changing the dipole
moment; therefore, the conservation of the latter forces
the immobility of the former, leading to fractonic behavior.

Dipole charge conservation may be implemented through
a continuity equation involving a two-index symmetric
current

0”0 - alaj.]tj = 0,

(1.1)

which in turn may be coupled to a symmetric tensor gauge
field with two spatial indices A;;. The tensor gauge field
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resembles the spatial components of a metric, suggesting
thereby a connection between dipole conservation and spin-2
fields, and possibly gravity. For instance, in two-dimensional
elasticity, disclinations are a type of lattice defect that can be
interpreted as immobile conical singularities in the effective
lattice geometry [16-21]. In the particle-vortex dual of such
elasticity theory, the elastic degrees of freedom are described
by a dynamical tensor gauge field and disclinations become
(fractonic) charged particles [21-27]. Thus fractons source
the tensor gauge field producing a nonzero curvature in a
similar way as matter sources the curvature of the metric in
gravity. Another interesting connection among fractons and
gravity was illustrated in [28], where it was proposed that
fracton (im)mobility could be understood as a realization of
Mach’s principle. Besides, many emergent theories of
gravity [29-32] are fractonic, even when this was not recog-
nized at first. Further studies of lattice models also suggest a
deeper connection of fracton order and geometry [33].

Although it could be maybe exaggerated to expect that a
dipole-conserving theory captures all the features of gravity
precisely, it might not be unreasonable to think of these
type of theories as lying somewhere in between theories of
ordinary matter, which are quite well understood, and
gravity, which at the quantum level is still problematic.
A systematic study of dipole or higher-multipole conserv-
ing theories could then give us a fresh perspective on
gravity and higher-spin theories as well.

A clear difference between the tensor gauge theories
mentioned so far and gravity is that the first are not Lorentz
invariant; often they are not even formulated in a Lorentz-
covariant fashion. A possible way to bridge this difference
is to promote the spatial tensor gauge field to a full tensor
with two spacetime indices A, and try to formulate the
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theory covariantly. This was the path followed recently
in [34-36], where a quadratic action was constructed
including the linearized Einstein tensor and additional
terms allowed by the smaller gauge symmetry of the tensor
field 6A,, = 9,0, as compared to the linearized diffeo-
morphism symmetry of the metric 6k, = 9,&,).

Despite the direct approach being fine in flat spacetime,
one might be interested in coupling the theory to a
nontrivial background metric, and in this case the two-
derivative gauge transformation of the tensor field would
clash with covariance under background diffeomorphisms,
an obstruction already observed in the non-Lorentz-
covariant context [37-40]. Another puzzling aspect of
the tensor gauge theory is that the gauge fixing seems to
require a single scalar gauge condition but a vector gauge
fixing is also possible and according to [36] even preferred.
We will address these issues by generalizing the approach
described in [41]. There we proposed an improvement
in the formulation of dual elasticity by realizing dipole
and higher-moment transformations through internal sym-
metries. This approach allowed us to replace tensor gauge
fields by ordinary vector fields, which circumvents the
issues in the coupling to a background geometry. The
tensor gauge theory is recovered from the vector field
formulation by a partial gauge fixing, yielding equivalent
results for elasticity in flat space.

The present paper is structured as follows. In Sec. II, we
generalize the monopole dipole moment algebra (MDMA)
to the Lorentz-covariant case and introduce the correspond-
ing gauge fields and associated curvatures. In Sec. III, we
present the most general quadratic action both in the fields
and in the derivatives for the spacetime dipole gauge theory.
We show that the theory of the covariant tensor gauge field
of [35,36] is recovered as a special case. We reexamine the
questions of the number of degrees of freedom and gauge
fixing, as well as the connection with linearized gravity, and
show how the theory can be naturally coupled to a back-
ground metric. In Sec. IV, after providing details on dipole
conservation in the covariant case, we explore the possible
interactions allowed by gauge invariance—self-couplings
of the tensor field and couplings to matter—and find a map
between solutions of linearized gravity and solutions of the
tensor gauge theory coupled to matter. We conclude with an
outlook and with appendixes containing technical details of
the computations presented in the main text.

II. SYMMETRIES AND GAUGE FIELDS

Let us describe the Lorentz-covariant generalization of
the gauge theory proposed in [41] (see also Ref. [25] for a
similar realization). We use Greek letters for spacetime
indices and capital Latin ones for internal indices.
Most of our considerations will be valid when both the
spacetime and the internal space have arbitrary dimension
D =d+1, although we will focus on D =4 when
considering explicit solutions as in Secs. IIl A and IV B.

Consider the generators of internal translations P,, Abelian
U(1) symmetry Q, and a vector generator Q*, with non-
trivial commutator
i[Ps. Q%] = 840. (2.1)

When A and B are constrained to internal spatial indices
this constitutes the usual monopole-dipole-momentum
algebra discussed in [42,43] in the context of dipole charge
conservation and fractons. The algebra above is an exten-
sion of the spatial MDMA including internal time compo-
nents of the vector currents.

Following [41], we introduce a gauge connection for the
extended MDMA

A, = e, Py +a,0+b,,0" (2.2)

An infinitesimal gauge transformation has the usual form
OpA, = DA = 0,A+i[A,, Al (2.3)

where the gauge parameter, expanded in the algebra
generators, is parametrized as
A=EPy+ 20+ 420" (2.4)

The components of the connection thus transform as

Se, A = 0,8, (2.50)
5Clﬂ = 0,4/10 + €ﬂAﬂ.|A - bﬂAfA, (25b)
5b;4A = aﬂﬂm. (ZSC)

Defining the field strength of a, as f,, =d,a, —9,q,,
there are two curvature invariants

T4, = 0,e,* —0,e,, (2.6a)
H,p = 0,byy —0,b,4 (2.6Db)
and a covariant curvature
B/w = bﬂAeyA - bI/AeﬂA - f,m (2-7)
transforming as
6B,, = —Thia + H,a&. (2.8)

Introducing the spacetime and internal metrics 77, and 74,
it is possible in principle to construct a fully gauge-
invariant and Lorentz-covariant theory for these fields.

In the following, we treat the gauge field associated to
the internal translations eﬂA as a background field and
consider only a, and b,, as dynamical fields. In order to
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have nontrivial gauge transformations and preserve Lorentz
- 1
covariance, we fix

A:5A

e, e

(2.9)
The background field fixed in this way breaks the product
of spacetime and internal Lorentz transformations to the
diagonal subgroup. The background field is akin to a vielbein
that we can use to convert all the internal indices to space-
time indices, although this in general breaks the internal
transformations generated by &4, unless one considers
Lagrangians constructed out of the invariant combinations
such as (2.6) only.

In the following, we allow the breaking of the internal
translations generated by &. Upon taking the choice (2.9),
the dynamical fields transform as

5Clﬂ = 6ﬂ/10 + /1114, (210&)

5b;4A - 0,,/11A. (210b)
Under this restricted symmetry, with Tf}y =0, B, becomes
an additional curvature invariant. In addition, we can
construct a new curvature invariant with one derivative
acting on the b4 field™:

F;w/l = aﬂ(bwl _full) + au(b/ul _fﬂ/l) - a/l(b/w + buu)
1

=2 a(ﬂBu)i - 5 (HﬂuAeuA + HﬂuAe;tA) .

(2.11)
Since the last index of H,, is contracted with eﬂA, the
curvature I, is not invariant under internal transforma-
tions generated by &4. From now on, excepting Sec. III C,
we will allow such symmetry to be explicitly broken by the
background (2.9) and accordingly we use only spacetime
indices in all quantities.

Finally, it is also interesting to note that all the curvature
invariants depend on the same combination of the gauge
fields b,, — d,a,:

H;u/ﬁ = aﬂ(bvi - aya/1> - aIJ(b/M - aﬂaﬂ)’ (2123)
B,, = b,, —d,a,— (b, —0d,a,), (2.12b)

F;wl = aﬂ(bvﬂ - auai) + al/(b/d - ayaﬂ)
- 0,(by, — 9,a, + by, —0,a,). (2.12¢)

'In principle all the gauge fields have mass dimension one,
whereas the gauge transformation parameters are dimensionless.
When selecting the background there is an overall physical scale
M entering through eﬂA = M35,” that we have fixed to one.

"
*For fw =0andb,, = b,,, the tensor I, reduces to the field
strength introduced in [34,44].

This fact will be of relevance for the derivation of the
equations of motion and discussion thereof.

III. QUADRATIC ACTION
AND MASSLESS SOLUTIONS

The most general action exhibiting invariance under
spacetime Poincaré, parity and time-reversal symmetry,
and being quadratic with at most two derivatives acting on
b is’

a2

=—-lg
£ 4

45} a3
;w/lH”M - Z B;wBlw - Z F”MFMM

ay 2 a5
— ZFMM l—‘l’w1 — Z

a
—fHMH%+@MW+%ﬂ

a
A 6 A
P et 1 U, HY,

(3.1)

with ay, ..., a; coefficients weighting the quadratic curva-
ture terms. We also included the coupling to the sources J*
and J¥.

In order for the action to be gauge invariant, the sources
must satisfy the (non)conservation equations

9, J" =0, o = J". (3.2)
The combination of the two implies that
d,0,J* = 0. (3.3)

The second equation in (3.2) allows us to rewrite the
coupling to the currents in the actions as a single coupling
to the tensor current:

b, J" +a,J* — (b

—d,a,)Jm. (3.4)

1122
Together with (2.12), this shows that the action only
depends on the combination b,, — d,a,. As a consequence,
the equations of motion for a,, are not independent, but they
are equal to the divergence of the equations of motion for
b, Thanks to this fact we can perform a field redefinition

1
b/w = auau +§ (B/w + hm/)?

(3.3)
where B, is an antisymmetric tensor (which coincides with
the curvature B) and h,, is symmetric. The equations of
motion for B and & are, respectively, equal to the anti-
symmetric and symmetric parts of the equations of motion

3One could also consider the terms H o and T, THY,
However, it can be shown using integration by parts that they can
be written as linear combinations of the terms considered in (3.1).
We thank the anonymous referee for pointing out this and the

possibility of adding ag and @, terms.
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for b,,. The full set of equations of motion for each field
can be found in Appendix A.

Consistency with the gauge transformations (2.10)
demands that the symmetric field transforms in the follow-
ing way:

oh,, = —=20,0,4. (3.6)
This coincides with the transformation of the fracton gauge
field proposed by [35] and determines largely the structure
of the action for the symmetric field, as they discuss in
detail.

In our case, the action can be split in three pieces:

ﬁ - £32 —|— ‘ChB + [:hz. (37)

The first piece is the action for the antisymmetric field
ﬁBZ ==

(25)
—210,B,,0’B" — 7,0"B,,0,B"" — ZBWBW*

where
1
7 = 1—6(201 + 203 — as),
1
2 =1¢ (=2a; + 2a3 + 4oy —as—ag +a7).  (3.8)

This is similar to a massive two-form. Next, there is a piece
coupling the symmetric and antisymmetric fields

L = z3aﬂhw,0”B"/’ + z4aﬂh0,,B””, (3.9)
where
1 1 da, — o
Z3—Z<a1—3a3—2a4+§a7>, 24:_%
(3.10)

The remaining piece is the action for the symmetric field.
It will be convenient to introduce the gauge-invariant
tensors

HH = 0,h™" — 0" h,

G””:dzh’”’—W@”h—(@”H”—i—&”H”)—H]””@,,H”. (3.11)
The tensor G satisfies the relations
9,G" =0, N,G" = (d—-2)o,H°, (3.12)

and it is the analog to the Einstein tensor in linearized
gravity. In fact, it is invariant under the larger set of
transformations corresponding to linearized diffeomor-
phisms 6h,, = 9,&, + 9,&,.

Expressed in terms of these tensors, the action takes the
simple form
Ly = (g1 — 92)h,G" + g, H,H", (3.13)

where we have used the conventions introduced in [36] to
define the couplings

4a4+a6+a—,
—_— =g, 3.14
16 91 ( )
1 p
E(Zal —|—6a3 —|—3a5) Eg =431 — G- (315)

Up to this point, the theory is defined by seven para-
meters, that after the redefinition (3.5) we rewrote as
{91, 92, ®, 21,22, 23, 24 }. However, the parameter z; is
redundant, as it multiplies a Lagrangian term that vanishes
identically after integration by parts, so the theory is in fact
characterized by six independent parameters. A consistent
choice would be to just set a; = 0 for instance.

In the following, it will be useful to fix one parameter to

decouple h,, from B,,, imposing z3 = 0, namely

1
(041 —3(13 —2(14+§(Z7 =0. (316)

Moreover, we can fix another parameter to obtain that the
kinetic term of the antisymmetric field becomes that of a
massive two-form. Let us define

Hﬂl’ﬂ - 3()[}431,1] = 6MBM + 6,,B,1M + 6,13,”,. (317)
Imposing
2 _ 03
=—-==== 3.18
<1 ) ) ( )
the Lagrangian Lz reads
g . a v
Lgp=— gﬁ,wmﬂ A _ fB,wBﬂ . (3.19)

As a result, after imposing these two conditions, the theory
is defined by four independent parameters: ¢, ¢», g3,
and aj,.

After decoupling the antisymmetric field, the equations
of motion for the symmetric field are

2(g1 — 92)G" — go(0"H" + 0" H" — 21V 0,H°)

+l](ﬂ”) — ()’

5 (3.20)

where we used the standard fact that 4, G maps to G, h*”
upon double integration by parts.
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A. Solutions for the symmetric field

Let us determine what the massless degrees of freedom
of our theory are. From now on, we will work in D =4
dimensions and we consider the case in which the sym-
metric field is decoupled from the antisymmetric field,
corresponding to the condition

1
[e4] :3a3+2a4—§a7. (321)

The solutions for the decoupled massive antisymmetric field
are straightforward to obtain. Here we focus on the more
subtle analysis of the symmetric field 4, solutions to
Eq. (3.20). First we expand in plane waves of momentum k*:

h = d'k k)elkx 3.22
yy(x) - Wg/w( )e ’ ( . )
where ¢, is a polarization tensor. The invariance of the action
under the gauge transformations (2.10) implies that the pure-
gauge polarization €,, = k,k, is a solution for any momen-
tum. The polarization tensor for solutions that are not pure
gauge can then be constrained to be transverse:
Ktk e, (k) = 0. (3.23)
The equations of motion admit nontrivial solutions for
massless momenta. We can construct the polarization tensors
using a basis of polarization vectors e, o = +1 (e™° = &),
q, satisfying (the bar denotes complex conjugation)

- / /
€% -e” =97

(3.24)

e’-e’=k-e°=q-e°=0, ik-q=1,

For instance, if we take the direction of the spatial momentum
as the z axis,

k,=(-» 0 0 k),
i

qu =

1 :
efl=—(0 1 Fi 0). (3.25)

V2

Any other choice of momentum and polarization vectors
can be obtained by applying spatial rotations to the vectors
above. Restricting to positive frequency solutions, the on-
shell momentum corresponds to @ = |k,|, in which case
k> =q*=0.

We decompose the Fourier transform of 4, with null
momentum k* as follows:
(3.26)

_ atl 1 ¢
Ew = € T & T €

where “r” means traceless and “1” means transverse. In
terms of our basis,

ik e’ k k
(A v
8;% = ZAJeZel‘f + ZA36 P ) + A4 2)2 s

g/tlu = B('I/w - Zik(ﬂqu))7
E/tw = Clwzq,uQU + ZCZqu(ﬂeg) + C3(’7/41/ - 4lk(yQD)>

(3.27)

The A, term automatically cancels in the equations of
motion for any momenta; thus, it corresponds to a pure
gauge component. Otherwise, nontrivial solutions only
exist for null momenta k* = 0.

A straightforward calculation (see Appendix A) for the
case without mixing with the antisymmetric field fixes
C,=0C,, =0 and

2919
291

B= C;. (3.28)

Then, the independent modes have the polarizations

Helicity A n) | Pure gauge
20 euer 91=92
ik(uef) g,=0
0 9w —2(291 +92)ik,q,) | 92=0,9, =29,
(3.29)

Note that 7€), = —2(2g; — g,) vanishes for g, = 2¢; and
that for this choice the kinetic term of the antisymmetric
field in (3.19) vanishes as well, so B, becomes
nondynamical.

The helicity zero tensor does not satisfy the trans-
versality condition (3.23) off shell; in principle, one could
add a term proportional to k#k” /k* to ensure this condition,
but it does not have a good massless limit k> — 0.

If the condition (3.21) is not satisfied, one has to take into
account the coupling to the antisymmetric field. However,
one can check that this does not change the massless
solutions for generic values of the couplings g; and g,. If
the antisymmetric field is decoupled, the solutions do
change for some special values of the couplings g; and
>, as also discussed in [36] from a different perspective.
For g, = 0 the action of the symmetric field becomes that
of linearized gravity and there is a larger diffeomorphism
invariance. In this case, the modes of helicity A = £1 and
A =0 become pure gauge.4 For g, = —2g; the action

4By this we mean that they automatically satisfy the equations
of motion without imposing any condition on the momenta, as it
was also the case for the A, term in (3.29).
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becomes independent of the trace, and the helicity A = 0
mode becomes pure gauge. Finally, for g; = g,, the part of
the action proportional to that of linearized gravity is
removed and the helicity A = £2 modes become pure
gauge; see (3.13).

In the following we will only study the theory for values
of the couplings that do not alter the degrees of freedom of

the theory, i.e. g, # {0, g1, £2¢;}.

B. Gauge fixing and propagator

In order to obtain a propagator for the symmetric field
h,,, one needs to introduce a gauge fixing that removes
unphysical degrees of freedom. In principle, since the
transformation (2.10) involves a single function, there
should be a single (scalar) gauge-fixing condition; how-
ever, the authors of [36] found that an alternative vector
gauge-fixing condition also seems to work consistently.

Our realization in terms of the spacetime dipole symmetry
is useful to understand this matter. Following the procedure
of Becchi-Rouet-Stora-Tyutin (BRST) quantization, we can
introduce a set of ghosts, antighosts and auxiliary fields for
the monopole (c, ¢, b) and dipole (c,, ¢, b*) trans-
formations. The nilpotent BRST transformations $ are

8a, = 0,c+ 84ca,  8bys = 0,cq4,
8c =0, 8cy =0,
8¢ = b, 8¢t = b,
3bh =0, 3bt = 0. (3.30)

As gauge fixing we introduce a BRST-exact term in the
action

Ly = —8W, (3.31)

where among the possible choices there could be scalar
gauge fixings, such as

WS =c {&‘dp(b}m(‘)‘f - 6”61,,) —gb] + EA |:a145l12 —gi’]ABbB:| s

(3.32)

or vector gauge fixings like

W,L, =c [0"(1” - gb] + E‘A {ybm - g’YABbB] . (333)

The most convenient choice in our case is (3.32), since it will fix
a, and remove the pure gauge modes of the symmetric field
without affecting other modes. The gauge-fixing action is

K
Ly = —bd* (b, —d,a,) + §b2 = bla, +3bb"

o.f.

+ ghosts. (3.34)

Integrating out the auxiliary fields leads to the terms

1
g f. __2_5

/

1
[0#¢”(b,, —0,a,)]? —ﬂaﬂa" + ghosts.  (3.35)

The equation of motion for a, equals the divergence of the
equation of motion for b,,, except for the contribution
originating in the gauge-fixing term depending on «, the only
place where a, does not enter the Lagrangian through the
combination b,, — d,a,. Such a term forces the condition
a, = 0 for any «. On the other hand, the gauge-fixing term
depending on £ removes the pure-gauge polarization of the
symmetric field, namely the one whose polarization tensor €,
is k,k,, except for k* = 0. The other modes of the field b L Are
not affected by its presence.

The Fourier transform of the equations of motion for the
symmetric field is

-
Ny =T, (3.36)

where J# is the Fourier transform of the current. The tensor
A is

1
Allv.(l/} — (gl _ gz)kZI;w,(z/} + E (92 _ 291 )K;lw,a/i

1
— 29, K% Y Kk kkP (3.37)
Here, we have defined the tensors
I;w.aﬂ — l’]ﬂal’lbﬁ + nﬂﬂl,[wz7
K = jkent? + kP + Rkt + ke ke,
K#ZWJI/} — an;w”aﬂ _ k(lk/}’,,;w _ kﬂkyi’]aﬂ. (338)

The propagator G is the inverse of A over symmetric
tensors

1
A/‘”*”ﬂGap,gp =1 (6’;5,”, + 8,8). (3.39)
We find
11 9 —2g; 1
Gupop=c—— lapop + 5 Kiapo
por 8(91—92)k2[ P g KR
2gl 1
-—— =K aff,op
291+ g k* 2’3"}
1 /1 g+ 28\ kokgkk,
T\ Ha— e R0
92 91— R)“91 TG (k%)
(3.40)

Let us point out that, for any of the special values of the
coupling where some modes become pure gauge (3.29), the
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propagator has a divergent coefficient, so there is no smooth
limit from the general theory to those special cases. Since the
gauge parameter ¢ is present only in the completely longi-
tudinal term of the propagator, the projection over the
polarizations of the physical modes is independent of &.
More generally, the unphysical double pole in the propagator
with coefficient £, which might be worrisome in other
theories with higher derivative terms in the action, would
not contribute to any gauge-invariant observable.

C. Coupling to curved geometry

As mentioned in the introduction, the rank-two tensor
realization of fracton gauge theories exhibits some issues
when attempting to couple these theories to a curved
background geometry. Indeed, in that case, the dipole
gauge transformation involves the second derivative of a
parameter and, as such, does not admit a natural covariant
counterpart. In this section, we elaborate on how our
realization permits such a coupling. Since the present
paper focuses on the relativistic case, we describe the
coupling to a pseudo-Riemannian geometry, but extending
it to nonrelativistic contexts is in principle straightforward.

Let us call y,, the metric of the background geometry,
which is independent of our dynamical gauge field ,,, and
V,, the covariant derivative defined with the Christoffel
symbols computed from y,,. With these ingredients, we
can make the theory invariant under background diffeo-
morphisms

7w = V&, + V. .4, (3.41)

When doing this, we need to remember that some of the
spacetime indices originate from internal indices after
choosing the background eﬂA; hence, it is better to work
with the formulas that still involve internal indices explicitly.
The gauge fields of our theory are one-form connections and,
therefore, transform under background diffeomorphisms as
the Lie derivative:

Sce,t = Lee, = (P0,e,h + e,10,07, (3.42a)
Sca, = Lea, = (P0,a, + a,0,C", (3.42b)
8cbun = Lebyy = (P0,byp + by, 7. (3.42¢)

Since internal indices are not involved in diffeomor-
phism transformations, the derivatives appearing in the
gauge transformations (2.5) act on scalar quantities and are
thus already covariant. The curvatures H,,, and B,,, being
two-forms, are independent of the metric, so that (2.6) and
(2.7) are already covariant as well. The same is not true for

[',,,» whose covariant definition reads

1
Fﬂl/ﬂ =2 v(ﬂBl’M _E(H},ﬂAeUA + HﬂyAeﬂA) . (343)

It is easy to check that B,,, H,, and I',, are gauge
invariant also when the theory is coupled to a curved
geometry.

It is worth emphasizing the role played by the internal
spacetime, crucial in our realization of the monopole-
dipole-momentum algebra, by seeing what would happen
if all the indices were external. In that case, we would need
to introduce covariant derivatives into the dipole gauge
transformation in (2.5) and in the definition of H,,,.
Consequently, H,,, and I',,,, although diffeomorphism
covariant, would not be gauge invariant.

To conclude this section, thanks to the internal space
realization of the dipole symmetry, we are able to write a
gauge-invariant and diffeomorphism-covariant fracton
theory. The action is given by

S = /d4x\/—_y£, (3.44)
where y = det(y,,) and L is given by (3.1), external indices
are contracted with the background metric y,, and the
curvatures are treated as we have just described in the
present section: namely, we keep track of the internal index
of H,,, and adopt (3.43) as the definition for I, .

IV. INTERACTIONS

In the case of linearized gravity, the interaction of the
massless spin-2 field with itself or other fields must be
through a conserved symmetric tensor, which in a generic
theory has to be the energy-momentum tensor. However,
the energy-momentum tensor itself depends on additional
interaction terms, so that doing this self-consistently gives
as a result the full nonlinear theory of gravity coupled to
matter [45-48] (see also Ref. [49] for a nice account of
these facts). This argument and Weinberg’s soft graviton
theorem [50] are seen as proof that two-derivative inter-
actions of a massless spin-2 field are universal.

In principle the theory obtained from spacetime
dipole symmetry enjoys a wider freedom since the con-
ditions (3.2) are less constraining than energy-momentum
conservation. For instance, a two-derivative symmetric
tensor which is not conserved but satisfies the continuity
equation is

JH = cy (0" VY 4 0" VH = 290, V7)), (4.1)
with V¥ being an arbitrary vector operator containing at
most one derivative and ¢y an arbitrary constant. As a
simple example, one could take V# = J¥, the U(1) global
current of a complex scalar field

=

(@' — ") (4.2)

N

In this case
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JW =i(p* PP — P p) — 2nvo,J°.  (4.3)
Integrating by parts, one can rewrite the coupling to V¥
also as

1
EhWJ/“’ = —cyH,V* + total derivative.

(4.4)
However, in this form it is apparent that the spin-2
component of the symmetric field does not enter in the
interaction. We encounter a similar situation when consid-
ering the self-coupling of the spacetime dipole fields.
Gauge-invariant interaction terms can be assembled using
the invariant curvatures (2.12), but if we restrict to two-
derivative terms, we are forced to use B, as one of the
factors. Thus there is no gauge-invariant two-derivative
cubic self-coupling for the symmetric field.

A possible caveat to the last statement is that the cubic
term needs to be invariant only up to a total derivative, so
one may wonder if a cubic term for the symmetric field is
still possible. This would require adding to the action a term
of the form £, J*, with J# quadratic in the symmetric field
and containing two derivatives. Gauge invariance requires
0,0,J** = 0 off shell. As we detail in Appendix C, there is
no term of this kind. This is similar to the nonlinear
generalization of the standard spin-2 theory. Full consis-
tency of the interaction terms requires extending the
linearized gauge transformations to the full diffeomorphism
transformations. The lowest order correction corresponds
to a spacetime translation and makes the transformation
field dependent:

5h/41/ = aﬂ&y +X§aaah/¢w (45)
where y is the expansion parameter proportional to
Newton’s constant. In principle, a similar approach could
be considered for our theory. However, since this involves
incorporating field-dependent terms in the gauge trans-
formations, it exceeds the scope of the present paper.

An alternative way to produce self-interactions is through
spontaneous symmetry breaking of the dipole symmetry. For
this, we can generalize the matter fields introduced in [51] to
the Lorentz-covariant theory. In particular, we can take a set
of complex scalar fields ¢,, a =0, 1, 2, 3, with dipole
charges d4 = d&4 (recall that each dipole charge is a vectorin
the internal space). Under a gauge transformation each of the
fields transforms by a phase

Pa = €M%igp,, (4.6)
where there is no sum over a. The covariant derivatives of
these fields are simply

Du¢a = aﬂ¢a - ibuAd‘zAt¢a~ (47)

This allows one to add new invariant interaction terms to the
action, like for instance

D, T “npceBdS (igiD gy — iDpbiadpa).  (4.8)

If the scalar fields acquire an expectation value ¢, = v, this
term introduces a cubic interaction for the dipole gauge field

~2dv*T,, TH’b,,. (4.9)
In terms of the symmetric and antisymmetric fields, this
would introduce new interactions, including in principle
cubic self-interactions for the symmetric field. It would be
interesting to explore if those reproduce or not the low-
energy scattering amplitudes of the graviton in the usual
theory, although this might require introducing exotic kinetic
terms for the dipole fields, in order to avoid giving a mass to
the spin-2 component of the symmetric field.

A. Dipole conservation and fractons

The covariant version of the fractonic conservation equa-
tions (3.2) and (3.3) does not result in an actual conservation
of the dipole moment of the charge density, since

9,0 =9, / dxx'Jt =0, / dPxJ". (4.10)

However, if we identify J* as an intrinsic dipole moment,
then the following combination is conserved:
Ol = /d3x(xiJ’ —Jm). (4.11)

In addition, the time component of the dipole charge is also
conserved:

Ol = / Bx(t] - J"). (4.12)

This actually generalizes to a covariant version of the
conservation of dipole charge. Given a codimension-one
hyperplane X, which could be space- or timelike, we pick an
orthonormal basis of constant vectors {7, e }, with 7i the unit
normal and e%, a = 1, 2, 3, vectors spanning the directions
along the hyperplane. Then, the “Z-dipole” charge can be
defined as

04 = L dBxelh, (MY — T, (4.13)

This is “conserved” in the sense that it has the same value on
hyperplanes parallel to X:

0,04 = 0. (4.14)
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When X is just a spatial slice then this becomes the spatial
dipole conservation we wrote above. One can easily check
that the component of the charge transverse to the hyperplane
is also conserved in the sense above:

oL = L Bxip, (HJY = JH), 0,08 =0.  (4.15)

One might wonder what kind of configuration is sourced by a

“fracton,” a pointlike charge
JE=q8%) (x). (4.16)

This can be obtained from a current with only nonzero

component J# = J' such that J' = 9;J%. The form of this
current is

Jhi = Jit — _iall—ix_l

4 r Axr (4.17)

Then, introducing this current in (3.20), a configuration
sourced by a fracton (in the absence of other matter fields) is

a 5 _ 9 X

h;, = o;r = .
" 16ng, i’ 167g, r

(4.18)

Thus it is a hedgehog configuration that in linearized gravity
would be produced by a large diffeomorphism &, = ﬁ r.

Although the fracton carries zero spatial dipole charge, it
has a nonzero spacetime dipole charge. Take the hyper-

plane X, located at x' = x}, # 0 for a fixed value of i. Then,
t d d2 Ji Jit _ q d JZ 1
0y = [ dt H x(tJ' - )__Exo t H x5
(

Here the symbol || refers to the two spatial directions along
the hyperplane. The result is

iyl
X=X,

4.19)

oL = —%sgn(xg) / dt. (4.20)

Therefore, from the point of view of the full set of
“conserved” quantities, the fracton is actually a spacetime
dipole in the sense defined above. An intuitive explanation
is that the fracton has a worldline extended in time, which is
along a direction contained in the hyperplanes X;. This
suggests that in order for all dipole charges to vanish, the
“true” fracton should be some type of instanton localized at
a single spacetime point.

B. Map to linearized gravity solutions

Examining the equation for the symmetric field (3.20),
one immediately sees that it is possible to map linearized
gravity solutions to solutions of the spacetime dipole theory

coupled to matter through a current of the form (4.1). The
map corresponds to finding solutions to the equations

2%

Cy

Gw =0, V¥ (4.21)

Let us study a class of solutions of linearized gravity that
are also solutions to the full Einstein equations in the Kerr-
Schild form of the metric. In the absence of matter, this
includes plane wave solutions as well as Schwarzschild and
Kerr solutions.

The full metric in the Kerr-Schild form is g, = n,, + h,,,
with

h,, = ®¢,7,, (4.22)
and the null vector 7, satisfies
e, =0, o, = St,, (4.23)

where S is a scalar function and indices are raised with the
Minkowski metric #**. The vector H , is thereby proportional
to the null vector:

H, = 0°hy, — 0,h = 0,(VE°L,) = [0,(VE°) + SV]Z,.
(4.24)

Thus H JHY = 0. In addition, since vacuum Einstein’s
equations are satisfied, the divergence vanishes:
d,H" & 1,,G" = 0. (4.25)

In order to construct the map between linearized gravity
solutions and solutions of the spacetime dipole theory, we

add to the latter a matter sector constituted by a complex
scalar field coupled to an Abelian gauge field:

1%

1 A
ﬁmatter = _ZF F — DM¢*DM¢ - E (|¢|2 - ,U2)2’ (426)
where the covariant derivative is

Dy = (9, — igA,)¢. (4.27)
We have introduced a potential triggering symmetry break-
ing; the map also works if there is no potential, i.e. for
A = 0. We now couple the fields in the matter sector to the
spacetime dipole fields through the interaction terms

‘Cint = _CVH;,{J” - CBFBIWF”D, (428)
where J* is the current:
J* =L (p*Drp — DA ). (4.29)

N |
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Assuming the action for B, is (3.19), the equations of

motion for B, the gauge field A, and the scalar ¢ are,

respectively,

-2
%aﬂ{‘”‘” - %Bﬂ” — P =0, (4.30a)
0,F°" + 2cpr0,B* —2qJ* — qey|p|?H* =0,  (4.30b)

} i
DD = ieyH' Dy = 5 ey, H'p = 2|9 = 7) = 0.
(4.30c)

where H°" has been defined in (3.17). Imposing the
condition

o = dckp, (4.31)
we find the solutions
b A =-H B Lr, 43
fr— U’ = —— s v = — U .
H 2q H H 2CBF H

so that A, is null and divergenceless according to (4.24) and
(4.25). The equations in (4.32) map the most general Kerr-
Schild metric which solves the vacuum Einstein’s equations
to solutions of the particular spacetime dipole theory with
matter content specified in (4.26).

In particular cases, it is possible to map specific Kerr-
Schild solutions to solutions of a spacetime dipole theory
with a reduced matter content compared to (4.26). Let us
examine in more detail two such cases: the plane-wave
solutions, where no matter is needed, and Schwarzschild
solutions, where the map can be made adding just a
massless scalar field.

1. Plane waves

For plane-wave solutions one may select z as the
direction of propagation of the wave
(4.33)

D =¢p(t—2zx,y), £, dx' = —dt + dz.

Note that

49, ® =0, 9," =0, (4.34)
and hence 7, is a Killing vector. Solutions for the amplitude
must be harmonic functions in the (x,y) plane:
(02 +02)p =0. (4.35)
A straightforward calculation of (3.11) shows that for
plane-wave solutions H, =0, so that these are also
solutions of the spacetime dipole theory without matter.

Particular cases are shock waves:

2 2
+
p(t—z,x,y) = Apd(t — z) log <x Rzy ), (4.36)

which are actually produced by a highly energetic particle
moving at the speed of light, but are vacuum solutions
outside the particle’s trajectory. Truly vacuum solutions are
exact waves:

o(t—2z,x,5) = A, (t = 2)(x* = y* + 2ixy)

+A_(t—z7)(x* = y* = 2ixy). (4.37)

More generally, the solutions are a sum of a holomorphic
function on the (x,y) plane and its conjugate

p(t—z,x,y) =A(t—z,x+iy)+A(t—z,x—1iy).  (4.38)
2. Schwarzschild solution
The Schwarzschild solution in Kerr-Schild form is

2m xidx! S
O="". fdyt =—di-—— r2:Z(x)2. (4.39)

r i=1

The null vector 7, satisfies the identities

2
9, = - o, r = —1. (4.40)
Then, from the definition in (3.11),
2 2m
HM:—(d)’—l—;CI))fM :—71,””. (4.41)

When V# = JH#, the current in (4.2), there is a solution
which is a spherical wave of a massless field:

e:Fiw(H»r)
P(x)=A , ¢ = 0. (4.42)
r
The condition on the energy of the wave is
5 4mg,
E=w|A*=+—=. (4.43)

Cy

The sign will be chosen according to the sign of g,. Note
that if we add to the action of a massless scalar the coupling
(4.4), the conserved U(1) current would not be just given
by (4.2), but there will be an additional term
Jo=a+ Y H (4.44)

tot 5w . .

Similarly, the equations of motion will be modified:
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. i
P —icyH"d,¢p — > cyd, H'¢p = 0. (4.45)
The spherical wave is not a solution to the modified
equations, but one could in principle use a perturbative
expansion in ¢y to systematically find corrections.
Alternatively, one could add a term to the scalar action:

2
_ v

AL = ", 4.4
L= gardud (4.46)

Adding this term actually corresponds to completing the
square:

2
JR <Hﬂ _ZC_szJ”> . (4.47)

This cancels the contributions proportional to H* in the
equations of motion of the scalar field and in J%,,, in such a
way that the scalar spherical wave and Schwarzschild
metric are exact solutions of the coupled scalar field and
spacetime dipole theory.

V. CONCLUSIONS

We studied the Lorentz-covariant generalization of
gauge theories where both an Abelian charge and its
spacetime ‘“‘dipole moment” are conserved. In general,
the resulting theory contains a massive gauge-invariant
antisymmetric field and a massless symmetric field. This
latter transforms under gauge transformations as a “fracton”
generalization of gravity. Given the reduced amount of
symmetry, the action allows extra terms with respect to
standard linearized gravity. For the action of the symmetric
field there are two possible terms with independent
coefficients g, corresponding to the action of linearized
gravity, and ¢,, corresponding to a new term forbidden by
diffeomorphism invariance but allowed by the reduced
symmetry. Such a point was already discussed in [35] but
the realization proposed in the present paper allows for an
additional mixing term with the antisymmetric field.

If g, = 0, the action becomes that of linearized gravity,
but even for g, # 0 we have constructed a map between
solutions of linearized gravity and the Lorentz-covariant
dipole theory coupled to matter. The solutions are in Kerr-
Schild form and in some cases they are also solutions of the
full Einstein equations. In this map, the components of the
symmetric current equal the linearized Einstein tensor

(5.1)

For instance, in the case of a Schwarzschild black hole, the
only nonzero component is J" = 64zm(g, — g,)6%) (x).
This translates into having a pointlike dipole (plus addi-
tional gauge and/or scalar fields). It should be noted that in
this case the spacetime dipole charge corresponds to a

JU) = ~4(g1 - g2)G.

vector pointing in the time direction, so it is not a spatial
dipole in the usual sense.

We have also revisited the question concerning the gauge
fixing, which in our formalism can be treated with standard
tools. In particular we used the BRST approach and show
why scalar and vector gauge fixings in the classification of
[35,36] are both possible. This corresponds to having both
a scalar and a vectorlike gauge symmetry stemming from
the charge and the dipole transformations, respectively.

The fractonic gauge transformation oh,, = —0,0,4¢
encountered in (3.6) corresponds to a standard linearized
diffeomorphism 6h,, = 20,£,) where the vector parameter
&, is longitudinal £, = —d,4,. We are therefore concerned
with a complementary case to the “transverse diffeomor-
phisms,” d,&* = 0, corresponding to linearized unimodular
gravity [52-55], where the determinant of the full metric—
the trace of h,, at the linearized level—is invariant by
construction. It is intriguing to observe that asking the trace
of the symmetric field to be invariant also in our case
implies [11, = O that corresponds to the scalar gauge fixing
(3.35) for £ — 0. This condition is compatible with global
dipole transformations 4,, = b,, 49 = —b,x" + ¢, which
are by definition those which leave the gauge potentials
invariant [41]. A related connection was made in [37],
where invariance under area-preserving spatial diffeomor-
phisms was imposed to construct a theory dual to topo-
logical elasticity and avoid the issues of coupling the tensor
theory to a background geometry.

Another advantage of realizing the dipole symmetry with
ordinary one-form gauge fields is that it allows one to
couple the theory to a curved background geometry without
spoiling the dipole gauge symmetry. This thus avoids the
issues previously discussed in the literature concerning the
coupling of a rank-two gauge field to a generic curved
background [37-40].

In addition, we have explored the physical spectrum of
the free theory. For generic values of the couplings, the
symmetric field has physical massless modes with helicities
+2, +1 and 0. We have considered cubic self-interactions
and interactions with matter. The two-derivative inter-
actions we were able to construct involve only the spin-
0 and spin-1 components of the symmetric field. This is
somewhat counterintuitive on the basis that a smaller gauge
symmetry should in principle allow more freedom.
However, the massless spin-2 part remains decoupled as
it occurs for an ordinary spin-2 field.

In order to have nontrivial two-derivative interactions, it
is necessary in the usual gravity theory to modify the gauge
transformation of the spin-2 field as in (4.5). Possibly a
similar modification may be also necessary in the present
case. Along these same lines, it would be interesting to
investigate whether Deser’s all-order approach [48] could
be generalized to our case.

A different avenue of future research would be to
introduce additional matter fields inducing self-interactions
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of the spin-2 component of the symmetric field; in
particular, this could be done through spontaneous breaking
of the dipole symmetry as commented in Sec. IV. It is
interesting to explore whether this possibility can be
pursued without the spin-2 component becoming massive.

Another natural extension of the present analysis con-
sists in considering higher-multipole gauge symmetries. It
is reasonable to expect that this could yield nonstandard
interactions for a spin-2 massless component, in a similar
way as the dipole symmetry does for the spin-1 and spin-0
components. On top of this, it would be quite interesting
per se to study higher-multipole symmetries as candidates
for alternative formulations of higher-spin theories.

A pertinent question in modified theories of gravity is
stability in the absence of the full diffeomorphism invari-
ance. Relying on the mode decomposition of the fields and
the equations of motion, we expect the model studied in this
paper to be stable for some suitable region in the space of
couplings ¢g; and g,. The contributions of the individual
modes to the energy density is semipositive definite; see
Appendix A. The semipositive character is particularly
interesting because it arises from a null contribution to the
energy density from the vector sector, an aspect which calls
for further investigation. An exhaustive discussion of
classical stability requires a systematic study of the canonical
structure and constraints. It constitutes a necessary step in
view of quantization, and we postpone it to the future.

As a final comment, the background eﬂA enters the action
of our model in a way that explicitly breaks the internal
transformations generated by &' (2.5). Yet, one could

|

3 1
0= <a1 + 3(,13 ‘i‘%)()zl’lwL —5 <a] + 30(3 —2(14 +

3(15 —O0g — Q7

generalize the model by considering additional Nambu-
Goldstone fields that shift under &4, thereby investigating
possible spacetime generalizations of the dual elastic theory
of [41]. In this context, it would be interesting to relate the
physical scale M to a dynamical symmetry-breaking scale.
Such a breaking would bridge internal and external space-
times by locking internal and external transformations, in a
similar spirit to the framework for low-energy effective
field theories discussed in [56]. In particular, the temporal
part of such a breaking could entail a preferred time
foliation similar to the khronon scenario and Lifshitz
gravity [57-59].
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APPENDIX A: EQUATIONS OF MOTION

The symmetric equation of motion descending from
3.1)is

5 )a,l(avw + o)

1 1 1
- <2a4 + 5 (ag + a7)> (0#0*h — n**0*h + 1*0,0,h") + > <—a1 + 3a3 + 2a4 — 5057) 0,(*B* + o*'B™).  (Al)

Adopting the definitions introduced in (3.11) and

B = 0,B",

(A2)

which automatically satisfies d,B* = 0, Eq. (A1) can be conveniently rewritten as

1 1 1 1
0 :,B(;W1 +§ <ﬁ+ 2(14 +§((16 + a7)> (d”Hi +6}LHV - 27’]1%00.1'10) +§ <—a1 +3a3 —|-2a4 —§a7> (O”Bi + yBy), (A3)

where £ is defined in (3.15). Assuming the decoupling condition (3.21), the trace and the divergence of (A3) yield,

respectively,

For f # —2a, — 1 (ag + a;) and f # —1(d — 1)(4a, + ag + a7), combining (A4) and (A5), we get

[Zﬂ + (d - 1)(4“4 + g + a7)}65H" =0, (A4)
(2ﬂ + 46(4 + Qg + 0{7)(62H’1 - 6’106H”) = O (AS)
PH' =0,  0,H" =0. (A6)
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The antisymmetric equation of motion descending from (3.1) is

2

1
0= ((ll +a3—%>02BM—§<a] —03—2a4+

1 1
— 20, B + 2 (—al +3a3 + 2a4 — 50(7) 0, (" h* — o' ).

Again considering the decoupling condition (3.21), the
divergence of the antisymmetric equation (A7) yields

3(15 + (16 - (17

O:<a1—|—3a3—|—2a4— >

)aZBﬂ — 4a, B,
(A8)

where we have recalled the definition of the longitudinal
field B* given in (A2). For the transverse part dﬂB’f =0,
we have instead

0 = (a1 + az — %) 0ZB’f - 2&23?. (A9)

1. Constraints on the mode expansion from the
equations of motion

Consider the Fourier transform of the gauge-invariant
vector introduced in (3.11) expressed in terms of the modes
(3.27):

HY = ik e — ik'e", = =2C\iq" + 0Cy,es

+ (1 - g) (Cs + 2B)ik*. (A10)

Then, from the equation d,H" =0 = ik”I:I” obtained in
(A6), we fix

C, =0. (A11)
Next, let us compute
HY + o*H' — ik"HY + ik’ H¥
= 20Cs, ik + (d —2)(Cs + 2B)k"k*.  (A12)

From this we obtain for the Fourier transform of the
linearized Einstein tensor

G" = k'kvel — (ik"HY + ik"H")
= 2wC,, ikl — (d = 2)(Cy + B)kk*.  (Al3)

Then, from the equation of motion (A3), we get

a5-|—a6—a7

. )aﬂ(avzw — 9'B™)

(A7)
|
Y 1
0 = wCy,ikie; <2a4 -p+ ) (as + 057)>
1 1
+§(d— 2)kk [(20!4 —ﬁ—&—i(% + 057)>C3
+ (40!4 + a6 + O{7)B:| . (A14)

Assuming f # 2ay + 5 (as + a7), we get the conditions

Cy, =0, =12, (A15)

and

- 4(Z4+(16+(X7
B—2as+3(as + a7)

: B. (A16)

2. Comments on stability

In Sec. A 1 we study how the equations of motion restrict
the mode expansion. Enforcing such restrictions in (3.26)
and (3.27), we are left with

ikl Kk

4602
3
+B<ﬂ+2(14+]§<a(,+(17)
B =204 +5(a + a;)
P+ 6ay +3 (ag + ay) ik(”‘]”>)
f=2a4+5(a+a7) o )

e = A ehel + Ay,

iy

(A17)

where A, corresponds to the pure-gauge, unphysical part
and both ¢ and a run over {1,2}. Computing the energy
density, one finds that the contribution from the modes of
spatial momentum k is given by

co(A (K)AZ, (k) + Ay (K)AT (k) + coB(k)B* (k),  (A18)
where
2,201~ =5) . _ 91=9
ﬂ(92—291)2 ’ i r (A19)

with k = |k|. One can get a positive definite contribution
for suitable choices for the coefficients g; and g,. For
instance, assuming g; > 0 and small g,, namely |g,| < g1,
one has a positive definite contribution (A18) for g, > 0.
The other possibility is g, < 0 and |g,| > 2g,. Note that the
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vector modes associated to the coefficients A;, do not enter
in (A18); thus, they do not contribute to the energy density.

APPENDIX B: COMPUTATIONAL DETAILS

In this appendix we collect some useful formulas or
intermediate passages for the computations described in
Sec. I B of the main text.

In order to express the equations of motion for the
symmetric field (3.20) in the Fourier form (3.37), we adopt
the definitions given in (3.38) and we have the following
intermediate results:

1 1
G* = (_ 5 kZI;w.a/} + 5 K/lw,aﬁ + ng,aﬁ) Eap (Bl)

1
HHY + HY — 29, H — — (E Ky 2Kg”-“ﬁ> Eap-
(B2)

In what follows, we collect some technical details useful
to the purpose of getting the propagator (3.40) or also to
just check (3.39). Let us define

K4 = jr ke ke kP (B3)
and consider it alongside the definitions given in (3.38).
Besides, it is convenient to introduce the compact notation

A-B=AmrpB (B4)

po.afis
and, since we focus only on tensors possessing the
symmetry A#% = A%H we have A-B = B-A, up to
straightforward lowering and raising of indexes that we
|

leave implicit. The set of tensors B = {I,K,K,, K3} is
closed under the product - and in particular we have

I1-1=2I, I-K,=2K,, I-K,=2K,, I-K;=2Kj,
K, K, =2k’K,+8K5, K,-K,=—4K;, K, -Ky=4k>K;,
Kz'K2:3k2K2+4K3, Kz'K3:—k2K3,

K; Ky =(K*)2K;. (B5)

In the first line of (B5) we just have specific cases of the
general relation

1-A=2A, (B6)

valid for all A € span(B), which amounts to recalling that /
is proportional to the identity with respect to the prod-
uct (B4).

APPENDIX C: CUBIC COUPLINGS

In this appendix we detail the search for graviton cubic
self-couplings that are gauge invariant up to total deriva-
tives. We look for terms of the form

Ly, = hy Ty (C1)

where J/* is a symmetric rank-two tensor quadratic in hy,
that features two derivatives. In order for the cubic term to
be invariant under the gauge transformation (3.6), the
current J%" should be gauge invariant and doubly conserved
off shell, namely
81, =0,

0,0,J% =0 off shell.  (C2)

Before imposing gauge invariance and conservation, the
most general J;" reads (see e.g. Ref. [49])

T = 100 W + 0y, W + 30,k PO + 40,0, + c50, 0, h + cgd WP hy, + 20 h P,
+ 086“}1”’16,1}1 + 69(3/1h””6,1h + cloa,lh’lﬂa”h + cllaﬂhél’h + 7’]””(C126,[1’1/)&()‘[}1/”/1 + 61361h/,,16”h"1 + 0140,1h’1”07h,,,
+ CISGThT/’()ph + C160ph5”h) + blh’lf’al‘d”h,lp + bzhdﬂa”h + b3hm/0p6ph + b4h0p0/’h”” + bsl’l"’t&apaﬂ,’ll/]L

+ bgh?*0"0,h + b7ho*0,h"" + (u <> v),

where h denotes the trace 7 h,, . Gauge invariance imposes
19 conditions:

by =by,=by=by=bs=bs=0b;=0, (C4)
cp=ci3=Ccly=c5=7C16=0, (Cs)

C7 = C3 = —Cy = —Cg, (Co)

clp = —2¢11 = —2¢y, (C7)

¢y = —2cy, (C8)

(C3)

C5 = C] — Ca, (C9)
which leaves ¢, ¢3, ¢4 and cg as possible nonzero indepen-
dent coefficients. However, imposing 0,0,J%" = 0 sets

cp=c3=c4=c=0. (C10)
As aresult, there are no gauge-invariant self-couplings of the
form (C1). We have also made an independent check by
writing all possible two-derivative cubic terms in the action
and imposing gauge invariance up to total derivatives, with
the same outcome.
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