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This paper explores quantum field theories with pseudo-Hermitian Hamiltonians, where PT-symmetric
Hamiltonians serve as a special case. In specific regimes, these pseudo-Hermitian Hamiltonians have real
eigenspectra, orthogonal eigenstates, and unitary time evolution. So far, most pseudo-Hermitian quantum
field theories have been constructed using analytic continuation or by adding non-Hermitian terms to
otherwise Hermitian Hamiltonians. However, in this paper, we take a different approach. We construct
pseudo-Hermitian scalar and fermionic quantum field theories from first principles by extending the
Poincaré algebra to include non-Hermitian generators. This allows us to develop consistent pseudo-
Hermitian quantum field theories, with Lagrangian densities that transform appropriately under the proper
Poincaré group. By doing so, we establish a more solid theoretical foundation for the emerging field of non-
Hermitian quantum field theory.
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I. INTRODUCTION

In “standard” quantum mechanics, the description of a
physical system relies on twocrucial elements: aHilbert space
H of states and a Hamiltonian operator Ĥ∶H ↦ H that
determines the time evolution. The Hamiltonian and real-
valued physical observables correspond to Hermitian oper-
ators.This guarantees that their expectationvalues are real and
that their eigenstates are orthogonal. Moreover, the time
evolution operator generated by a Hermitian Hamiltonian is
unitary, ensuring that probability is conserved.
However, it is now well established that operators

do not need to be Hermitian to produce real expectation
values [1–4]. Instead, an operator, say Â, must satisfy a
condition known as pseudo-Hermiticity: Â† ¼ η̂ Â η̂−1 [5]
(where † is the usual composition of complex conjugation
and matrix transposition) for some Hermitian operator
η̂† ¼ η̂. We define a new inner product h·j·iη̂ ≔ h·jη̂·i,
which yields real expectation values of Â. Unlike Hermitian
operators, whose eigenvalues are always real, pseudo-
Hermitian operators exhibit eigenvalues that are either real,
come in complex-conjugate pairs, or so-called exceptional
points, where eigenvalues merge and the operator becomes

defective [6]. When the eigenvalues of the Hamiltonian are
real, there exists an additional discrete symmetry of the
Hamiltonian that ensures unitary time evolution [7], and
the pseudo-Hermitian theory can be made Hermitian via a
similarity transformation [8]. However, the similarity trans-
formation becomes singular at the exceptional points, and
there is no Hermitian counterpart when the eigenenergies
are complex [9,10].
While non-Hermitian quantum mechanics has been

studied extensively and applied to various physical
systems (for a review, see Ref. [11]) across optics [12–14],
photonics [15,16], and condensed matter physics [17,18],
the subject of non-Hermitian quantum field theory has only
recently gained traction and is still a developing field.
To date, much of the development in non-Hermitian quan-
tum field theory has focused on simplified models of
PT-symmetric quantum field theories.PT-symmetric quan-
tum field theories [10] are a subset of pseudo-Hermitian
quantum field theories, in which the Hamiltonian is
symmetric under the combined action of parity P and
time-reversal T. Examples include the following: iϕ3

scalar quantum field theory [19–22], the “wrong-sign” −ϕ4

theory [23–25], and generalizations [26]; non-Hermitian
extensions of the Dirac Lagrangian [27–30] and Yukawa
theories [29,31], with potential applications to flavor oscil-
lations, e.g., in the quark or neutrino sector of the Standard
Model [32–34]; and non-Hermitian supersymmetric quan-
tum field theories [35,36]. Non-Hermitian quantum field
theories that exhibit spontaneous symmetry breaking, the
Goldstone theorem, and the Higgs mechanism have also
attracted attention [37–43], as well as those permitting
topological defects [44–48].
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Many of these theories are constructed by appending non-
Hermitian operators to an otherwise Hermitian Lagrangian,
or by analytic continuation of Hermitian theories, for
instance, by rotating coupling constants into the complex
plane. Often times, these theories are analyzed in their
PT-unbroken regimes (when the energy eigenvalues are
real) by transforming to a Hermitian theory. However, if we
instead consider the non-Hermitian theory directly, we run
into issues with physical consistency, as detailed below.
In quantum field theory, the physical system is described

by a Fock space F consisting of multiparticle states, rather
than a single-particle Hilbert space. The system dynamics
is governed by a Hamiltonian operator Ĥ∶F ↦ F acting
on this Fock space. Similar to non-Hermitian quantum
mechanics, if the Hamiltonian operator is pseudo-Hermitian
Ĥ† ¼ η̂ Ĥ η̂−1 with respect to some Hermitian operator
η̂∶F ↦ F , it will exhibit real eigenspectra, complex-
conjugate pairs of eigenvalues, or exceptional points. As
in pseudo-Hermitian quantum mechanics, we choose a new
inner product h·j·iη̂ ≔ h·jη̂·i, instead of the Dirac inner
product h·j·i, as the former yields real expectation values
of the Hamiltonian.
In “standard” quantum field theory, the Hamiltonian is a

functional of field operators and their canonical momenta
ðψ̂ ; ψ̂†; π̂; π̂†Þ, instead of position and momentum operators
ðx̂; p̂Þ, as it is in quantum mechanics. The time evolution of
the field operators is governed by Hamilton’s equations:

½ψ̂ðx⃗;tÞ;Ĥ�¼ i∂0ψ̂ðx⃗;tÞ and ½ψ̂†ðx⃗;tÞ;Ĥ†�¼ i∂0ψ̂†ðx⃗;tÞ:
ð1:1Þ

Most notably, the field operator ψ̂ and its Hermitian
conjugate ψ̂† do not evolve with the same Hamiltonian,
since it is non-Hermitian Ĥ† ≠ Ĥ. This leads to mutual
inconsistency in the Euler-Lagrange equations for ψ̂ and
ψ̂†, a common feature observed in various non-Hermitian
quantum field theory models, first pointed out in Ref. [49].
One option is to fix the dynamics with respect to only one
of the Euler-Lagrange equations [49]. For noninter-
acting theories, it can be argued that physical observables
remain unchanged regardless of the chosen equation [49].
However, in the context of interacting theories, this
method leads to distinct physical results [37,39,40] com-
pared with approaches based on transforming the non-
Hermitian theory to the Hermitian, i.e., standard quantum
field theory [38,41–43]. It is also an open question as to
how to consistently introduce gauge symmetries in non-
Hermitian quantum field theory [50]. Moreover, it has been
observed that the conserved currents in a non-Hermitian
Yukawa theory are not invariant under proper Lorentz
transformations [31]. In this paper, we show that these
inconsistencies naturally arise and are to be expected due to
the quantum fields ψ̂ and ψ̂† not transforming in the same

representation of spacetime symmetry transformations (the
proper Poincaré group).
Attempts have been made [51,52] to resolve these issues

in some PT-symmetric models by redefining the conjugate
field in terms of the parity transformation. In these models,
the field and its parity conjugate evolve with the same
Hamiltonian. In this work, we confirm that the conjugate
field must be determined with care in order to build
self-consistent pseudo-Hermitian quantum field theories.
As was noted in Ref. [53], this requires us to consider non-
Hermitian generators of the proper Poincaré group, which
is clearly the case for the generator of time translations: the
Hamiltonian P̂0 ¼ Ĥ. This marks a significant difference
between pseudo-Hermitian quantum mechanics and
pseudo-Hermitian quantum field theory, where, for the
latter, spacetime symmetries play a pivotal role. Moreover,
we will see that the non-Hermiticity of the generator of time
translations implies that other generators are, in general,
non-Hermitian. Using group transformation properties, we
construct conjugate field operators transforming consis-
tently under the full proper Poincaré group.
The paper is organized as follows. In Sec. II, we

reexamine time evolution in the case of pseudo-Hermitian
quantum mechanics in terms of representations of time
translations. In Sec. III, we turn our attention to pseudo-
Hermitian quantum field theory and, by demanding
Poincaré invariance, we show that pseudo-Hermiticity of
the Hamiltonian implies pseudo-Hermiticity of the remain-
ing group generators. In Sec. III A, we identify the relevant
representations that act on the quantum field operators by
considering their matrix elements with respect to the inner
product h·jη̂·i. In Sec. IV, we examine how quantum fields
behave under spacetime translations and proper Lorentz
transformations when Fock-space representations are non-
Hermitian.
In Sec. IV B, we present the key result of this paper.

Therein, we define the “dual” quantum field operator ˆ̃ψ†,
which transforms in the dual representation of the proper
Poincaré group of the field operator ψ̂. Hence, the
Lagrangian composed of the field operator ψ̂ and its “dual”
ˆ̃ψ† transforms as one object in a single representation of
the proper Poincaré group. This also leaves any bilinear
combinations ˆ̃ψ†ψ̂ Poincaré invariant. Additionally, as
the “dual” field operator evolves with the Hamiltonian
Ĥ instead of Ĥ†, the Euler-Lagrange equations are auto-
matically consistent, unlike those formulated in terms of the
Hermitian conjugate field operator ψ̂†.
In Sec. V, we show how to construct pseudo-Hermitian

finite-dimensional representations of the proper Lorentz
group, which are necessary to define a “dual” field for
fields higher than spin-0. We consider the specific cases of
spin-0 scalars, for which the finite-dimensional represen-
tations are trivial; spin-half Weyl spinors, which are the
smallest nontrivial representation of the Lorentz Lie alge-
bra; and spin-half Dirac fermions. Finally, in Sec. VI, we

ESRA SABLEVICE and PETER MILLINGTON PHYS. REV. D 109, 065012 (2024)

065012-2



apply our discussion to a specific example of a
PT-symmetric 2-component complex scalar field theory,
correctly determining the dual field and identifying the
relevant discrete symmetries.

II. TIME-TRANSLATION INVARIANCE IN
NON-HERMITIAN QUANTUM MECHANICS

Before we turn to the case of non-Hermitian quantum
field theory, it is helpful to first reexamine the concept
of unitary time evolution in non-Hermitian quantum
mechanics and its connection to representations of time
translations. This will prove useful when considering
representations in non-Hermitian quantum field theory.
As mentioned in the Introduction, the properties of real

expectation values and unitary time evolution are not
unique to Hermitian operators. In fact, a more general
condition for an observable Â to yield real expectation
values is for it to be pseudo-Hermitian [5]:
Definition 2.1 (Pseudo-Hermitian). An operator Â∶

H ↦ H is η̂-pseudo-Hermitian if and only if Â† ¼ η̂ Â η̂−1

with respect to some operator η̂∶H ↦ H that is Hermitian
η̂† ¼ η̂.
In contrast to a Hermitian Hamiltonian, an η̂-pseudo-

Hermitian Hamiltonian allows for both real and complex
energy eigenvalues [3]. In each case, the expectation value
of an η̂-pseudo-Hermitian Hamiltonian is always real with
respect to the inner product h·j·iη̂. If the energy eigenvalues
are real, then it is possible to find a similarity trans-
formation that maps this non-Hermitian Hamiltonian to
a Hermitian operator [8]. However, the non-Hermitian
Hamiltonian has no Hermitian counterpart at the excep-
tional points or when the eigenenergies are complex.
Hence, a pseudo-Hermitian Hamiltonian may describe a
unique physical system.
When we say that an η̂-pseudo-Hermitian Hamiltonian

has unitary time evolution, it is not exactly the same as the
unitary time evolution in “standard” quantum mechanics.
Instead, the time evolution is “pseudounitary,” which
means it is unitary with respect to the operator η̂:
Definition 2.2 (Pseudo-unitary). An operator Û∶H ↦ H

is η̂-pseudo-unitary if and only if Û†η̂ Û ¼ η̂.
Indeed, in pseudo-Hermitian quantum mechanics, we

can check that, given an η̂-pseudo-Hermitian Hamiltonian
Ĥ, the time-evolution operator ÛðtÞ ¼ e−iĤt is η̂-pseudo-
unitary. As a result, the time evolution of the “ket” states
jψi∈H in our Hilbert space is governed by the η̂-pseudo-
unitary operator ÛðtÞ:

jψðtÞi ¼ ÛðtÞjψð0Þi ¼ e−iĤtjψð0Þi: ð2:1Þ

In the context of representations, the operator ÛðtÞ ¼ e−iĤt

is the representation of time translations on the Hilbert

space H, and the Hamiltonian Ĥ is the generator of this
representation.
The “bra” states hψ j∈H�, however, are governed by

ÛðtÞ†:

hψðtÞj ¼ hψð0ÞjÛðtÞ† ¼ hψð0ÞjeiĤ†t: ð2:2Þ

Hence, the dynamics of “bra” and “ket” states is not
governed by the same Hamiltonian as it is non-
Hermitian. They evolve under different representations
of time translations.
Similarly, the wave function ψðx⃗; tÞ ≔ hx⃗jψðtÞi∈ FðHÞ

evolves with the Hamiltonian function H∶FðHÞ ↦ FðHÞ
acting on the vector space of wave functions FðHÞ of the
Hilbert space H:

ψðx⃗; tÞ ¼ e−iHtψðx⃗; 0Þ: ð2:3Þ

However, the complex-conjugate wave function ψ�ðx⃗; tÞ∈
FðH�Þ evolves with the Hermitian conjugate H†∶
F ðH�Þ ↦ F ðH�Þ, where FðH�Þ is the vector space of
wave functions of the dual Hilbert space H�:

ψ�ðx⃗; tÞ ¼ ψ�ðx⃗; 0ÞeiH†t: ð2:4Þ

As the Hamiltonian H† ≠ H is non-Hermitian, the
complex-conjugate wave function transforms in a different
representation of time translations, generated byH† instead
of H.
This has significant implications for the probability

density, which is composed of two components:

Pðx⃗; tÞ ≔ jψðx⃗; tÞj2 ¼ ψ�ðx⃗; tÞψðx⃗; tÞ; ð2:5Þ

viz. the wave function ψ , evolving with the HamiltonianH,
and its complex conjugate ψ�, evolving with H†.
Consequently, the overall object, i.e., the probability
density, undergoes transformations in two distinct repre-
sentations of time translations and is not conserved.
In pseudo-Hermitian quantummechanics, this is fixed by

defining the probability density with respect to the new
inner product h·jη̂·i:

hψðtÞjη̂ψðtÞi ¼
Z

d3x P̃ðx⃗; tÞ ¼ hψð0Þjη̂ψð0Þi: ð2:6Þ

This inner product remains invariant under time translations
generated by a η̂-pseudo-Hermitian Hamiltonian. Thus, the
probability density is conserved.
However, another interpretation of this result, which will

be relevant in the next section, is to introduce a new object
called the “dual” wave function ψ̃�, which evolves with the
same Hamiltonian as ψ . This enables us to redefine the
probability density in terms of the wave function ψ and its
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“dual” ψ̃�, so that the probability density transforms in a
single representation of time translations.
To find the dual wave function, we consider ðU;HÞ to be

a representation of time translations on the Hilbert spaceH.
We define a “dual” representation ðU�;H�Þ on the dual
Hilbert space H� as
Definition 2.3 (Dual representation).

Û�ðtÞ∶ H� ↦ H�

hϕ̃j ↦ Û�ðtÞ½hϕ̃j� ≔ hϕ̃jÛ−1ðtÞ ð2:7Þ

Here, hϕ̃j∈H� are the “dual” states, i.e., the states that
transform in the dual representation:
Definition 2.4 (Dual states).

hϕ̃j∶H ↦ C

jψi ↦ hϕ̃jψi ð2:8Þ

For an η̂-pseudo-unitary representation ðÛ;HÞ, the dual
states are related to the bra states by hϕ̃j ¼ hϕjη̂.
The conjugate representation ðÛ†;H�Þ ≅ ðÛ�;H�Þ is iso-
morphic to the dual representation, as they are related by
the similarity transformation Û† ¼ η̂Û−1η̂−1, since Û is
η̂-pseudo-Hermitian.
We can now define the dual wave functions

ψ̃�∶ FðH�Þ ↦ FðH�Þ, as the wave function transforming
in the dual representation of ψ∶FðHÞ ↦ FðHÞ:
Definition 2.5 (Dual wave function).

ψ̃�ðx⃗; tÞ≔ hψ̃ðtÞjx⃗i ¼ hψðtÞjη̂jx⃗i ¼ hψð0Þj eiĤ†tη̂|fflffl{zfflffl}
η̂-pseudo-Hermitian

jx⃗i

¼ hψð0Þjη̂eiĤtjx⃗i ¼ hψð0Þjη̂jx⃗ieiHt: ð2:9Þ

Hence, we see that its time evolution is governed by H and
not H†.
For the special case where η̂ is itself a coordinate

transformation (e.g., parity), its action on the position
eigenstates can be described as follows:

η̂jx⃗i ¼ ηjx⃗ηi; where η∈C is the phase: ð2:10Þ

The dual wave function simplifies to

ψ̃�ðx⃗; tÞ ¼ ψ̃�ðx⃗; 0ÞeiHt where ψ̃�ðx⃗; 0Þ ¼ ψ�ðx⃗η; 0Þη:
ð2:11Þ

Finally, we define the probability density in terms of the
wave function ψ and its dual ψ̃�:

P̃ðx⃗; tÞ ≔ ψ̃�ðx⃗; tÞψðx⃗; tÞ ¼ ψ̃�ðx⃗; 0Þψðx⃗; 0Þ; ð2:12Þ

which transforms in a single representation generated by H
and is now conserved.

The above procedure is equivalent to defining a new
inner product h·jη̂·i on the Hilbert space H:

hψðtÞjη̂ψðtÞi ¼
Z

d3x hψðtÞjη̂jx⃗ihx⃗jψðtÞi ¼
Z

d3x P̃ðx⃗; tÞ;

ð2:13Þ

which is invariant under time translations.
The above considerations are nonrelativistic. In the

relativistic case of quantum field theory, we are not
only concerned with time translation invariance, but also
with Lorentz invariance. Specifically, the symmetry group
of Minkowskian quantum field theory is the proper
Poincaré group ISOð1; 3Þ↑ ¼ SOð1; 3Þ↑⋊R1;3. It is
composed of the proper Lorentz transformations SOð1; 3Þ↑
and spacetime translations R1;3. Instead of position and
momentum operators, we have quantum field and canonical
momentum field operators, and, as we will show in the next
section, we face similar issues when trying to find con-
jugate field operators that transform correctly in the dual
representation of proper Poincaré transformations.

III. POINCARÉ INVARIANCE IN
NON-HERMITIAN QUANTUM FIELD THEORY

We now turn our attention to quantum field theory.
In the canonical operator formulation, the Hamiltonian
operator Ĥ∶F ↦ F acts on the Fock space F . It is a
function of field operators and their canonical momenta,
i.e., Ĥ ¼ Ĥðψ̂ ; ψ̂†; π̂; π̂†Þ. Through the rest of the paper,
we assume that the Hamiltonian Ĥ† ¼ η̂ Ĥ η̂−1 is η̂-pseudo-
Hermitian with respect to some Hermitian operator
η̂∶F ↦ F .
The “ket” states in Fock space jαðtÞi∈F evolve subject

to the Schrödinger equation

i∂tjαðtÞi ¼ ĤjαðtÞi: ð3:1Þ

Just as in pseudo-Hermitian quantum mechanics, their
time evolution is η̂-pseudo-unitary. We define our Fock
space F ¼ ð⊗H; h·j·iη̂Þ, with respect to the inner product
h·j·iη̂ ¼ h·jη̂·i, which is invariant under time translations
and yields real energy expectation values.
The time evolution of the field operators ψ̂ and ψ̂† is

governed by Hamilton’s equations of motion. However, by
considering the Hermitian conjugate of the Hamilton’s
equation for ψ̂, namely,

½ψ̂ðx⃗; tÞ; Ĥ� ¼ i∂0ψ̂ðx⃗; tÞ ⇒ ½ψ̂†ðx⃗; tÞ; Ĥ†� ¼ i∂0ψ̂†ðx⃗; tÞ;
ð3:2Þ

we observe that while ψ̂ evolves with the Hamiltonian Ĥ,
its Hermitian conjugate ψ̂† evolves with Ĥ†. As the
Hamiltonian is non-Hermitian, this implies that the two
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fields are subject to different Hamiltonians. We also see this
in the Heisenberg picture:

ψ̂ðx⃗; tÞ¼ eiĤtψ̂ðx⃗Þe−iĤt and ψ̂†ðx⃗; tÞ¼ eiĤ
†tψ̂†ðx⃗Þe−iĤ†t:

ð3:3Þ

In the language of representations, the conjugate field ψ̂†

does not transform in the dual representation of ψ̂ . This
implies that the kinetic and mass terms are not invariant
under time translations, namely,

ψ̂†ðx⃗; tÞψ̂ðx⃗; tÞ ¼ eiĤ
†tψ̂†ðx⃗Þe−iĤ†teiĤtψ̂ðx⃗Þe−iĤt

≠ eiĤtψ̂†ðx⃗Þψ̂ðx⃗Þe−iĤt: ð3:4Þ

Our aim is to find the “dual” field operator that trans-
forms in the dual representation. However, quantum field
theory in Minkowski spacetime has to be invariant under
proper Poincaré transformations ISOð1; 3Þ↑, where time
and space transformations are intermixed. The Hamiltonian
Ĥ is the generator of time translations, but the non-
Hermiticity of Ĥ will turn out to translate into the non-
Hermiticity of other generators of the proper Poincaré
group. This observation is the primary focus of this section.
Let ðÛ;F Þ be a η̂-pseudo-unitary representation of

ISOð1; 3Þ↑ on the Fock space F . Any element of the
proper Poincaré group can be expanded in terms of
generators of the Poincaré Lie algebra isoð1; 3Þ, i.e.,

Ûðε;ΛÞ ¼ e
i
2
ωμνĴ

μν
eiεμP̂

μ ¼ 1̂þ i
2
ωμνĴ

μν þ iεμP̂
μ � � � : ð3:5Þ

Herein, Ĵ0i are the generators of boosts, Ĵij are the
generators of rotations, the Hamiltonian P̂0 ¼ Ĥ is the
generator of time translations, and the 3-momentum oper-
ator P̂i is the generator of space translations.
Now, if the inner product h·jη̂·i is invariant under proper

Poincaré transformations then the representations of
ISOð1; 3Þ↑ are η̂-pseudo-unitary: Û†η̂ Û ¼ η̂ for all group
elements ðε;ΛÞ∈ ISOð1; 3Þ↑. Expanding Û implies that
the generators are η̂-pseudo-Hermitian, i.e.,

Ĵμν† ¼ η̂Ĵμνη̂−1; P̂μ† ¼ η̂P̂μη̂−1: ð3:6Þ

This can be seen directly by considering the Poincaré Lie
algebra

½Ĵμν; Ĵρσ� ¼ iðgμσ Ĵνρ þ gνρĴμσ − gμρĴνσ − gνσ ĴμρÞ;
½P̂μ; Ĵρσ� ¼ iðgμρP̂σ − gμσP̂ρÞ;
½P̂μ; P̂ν� ¼ 0; ð3:7Þ

where gμν ¼ diagð1;−1;−1;−1Þ is the Minkowski metric.
Taking μ ¼ 0 in the second bracket, we have

½Ĥ; Ĵ0i� ¼ iP̂i ⇒ ½η̂ Ĥ η̂−1; Ĵ0i†� ¼ iP̂i†

⇒ ½Ĥ; η̂−1Ĵ0i†η̂� ¼ iη̂−1P̂i†η̂; ð3:8Þ
which also implies that the generators cannot be Hermitian,
unless they commute with η̂.

A. Connection to classical fields

It is important to consider the connection between
quantum and classical fields, at the very least to identify
the relevant representations for our subsequent discussions.
Let us consider an n-component quantum field ψ̂aðxÞ;

a∈ f1;…; ng. In Hermitian quantum field theory, the
matrix elements of this field would be defined as an
n-component function using the Dirac inner product h·j·i:

Ma
αβðxÞ ¼ hαjψ̂aðxÞjβi ð3:9Þ

for given Fock-space states jαi; jβi∈F .
However, in the case of a non-Hermitian Hamiltonian,

the energy eigenstates are not orthogonal with respect to the
Dirac inner product h·j·i. Instead, if the Hamiltonian is
η̂-pseudo-Hermitian, the eigenstates with real eigenvalues
become orthogonal with respect to the inner product h·jη̂·i.
As a result, the matrix elements are defined in terms of this
inner product as follows:

M̃a
αβðxÞ ≔ hαjψ̂aðxÞβiη̂ ¼ hαjη̂ψ̂aðxÞjβi: ð3:10Þ

In this way, we define the expectation value of the quantum
field operator as

ΨðxÞ ≔ hαjψ̂ðxÞjαiη̂: ð3:11Þ

Note that the operator η̂ and the field operator ψ̂aðxÞ do not,
in general, commute.
By postulating that the expectation values of quantum

fields possess the same transformation properties as
classical field functions under the Poincaré group, we
establish a connection between the transformation proper-
ties of quantum fields and their classical counterparts. In
the quantum field theory literature, this is known as the
“correspondence principle” [54,55].
A typical element ðε;ΛÞ∈ ISOð1; 3Þ↑ of the proper

Poincaré group is composed of a translation by a constant
4-vector ε∈R1;3 and a proper Lorentz transformation
Λ∈SOð1; 3Þ↑. Under these transformations, the expect-
ation value of the quantum field operator undergoes
changes in three distinct representations of the proper
Poincaré group:
(1) The infinite-dimensional “coordinate representa-

tion” acting on the spacetime coordinates:

ðε;ΛÞ∶ R1;3 ↦ R1;3

x ↦ ðε;ΛÞ½x� ¼ Λ · xþ ε: ð3:12Þ
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(2) The infinite-dimensional “Fock-space representa-
tion” ðÛ;F Þ, acting on states in Fock space:

Ûðε;ΛÞ∶F ↦ F

jαi ↦ Ûðε;ΛÞjαi: ð3:13Þ

(3) The “finite-dimensional representation” ðD;CnÞ of
the proper Lorentz group SOð1; 3Þ↑, mixing com-
ponents of an n-component field:

DðΛÞ∶ Cn ↦ Cn

ψ̂a ↦ Da
bðΛÞψ̂b; ð3:14Þ

where a; b∈ 1;…; n.

IV. FOCK-SPACE REPRESENTATIONS
OF THE PROPER POINCARÉ GROUP

In the previous section, we showed that the conjugate
field ψ̂† evolves with a different Hamiltonian to ψ̂ . As a
result, the bilinear combination ψ̂†ψ̂ in the Lagrangian is
not invariant under time translations (3.4). Moreover, if we
look at the full proper Poincaré group ISOð1; 3Þ↑, we see
that the non-Hermiticity of the Hamiltonian implies non-
Hermiticity of other generators (3.6), unless they commute
with the Hermitian operator η̂. Thus, if we wish to construct
a quantum field theory that is invariant under ISOð1; 3Þ↑,
we cannot construct it from ψ̂ and ψ̂†. Instead, we need to
find a new quantum field operator ˆ̃ψ† that transforms in the
“dual” representation of ψ̂ , just as we did with the “dual”
wave function in Sec. II.
To find the “dual” field operator, we consider ðÛ;F Þ to

be a representation of the proper Poincaré group ISOð1; 3Þ↑
on the Fock space F . We define a “dual” representation
ðÛ�;F �Þ on the “dual” Fock space F � as
Definition 4.1 (Dual Fock-space representation).

Û�ðε;ΛÞ∶F � ↦ F �

hα̃j ↦ Û�ðε;ΛÞ½hα̃j� ≔ hα̃jÛ−1ðε;ΛÞ: ð4:1Þ

Here, hα̃j∈F � are the “dual” states, i.e., the states that
transform in the “dual” Fock-space representation. For an

η̂-pseudo-unitary representation ðÛ;F Þ, the “dual” states
are related to the “bra” states by hα̃j ¼ hαjη̂.
However, as noted in the previous section, if the quantum

field ψ̂a is multicomponent, its components will mix under
finite-dimensional representations ðD;CnÞ of the proper
Lorentz group SOð1; 3Þ↑. We define a “dual” representation
ðD�;Cn�Þ on the “dual” vector space Cn� as
Definition 4.2 (Dual finite-dimensional representation).

D�ðΛÞ∶ Cn� ↦ Cn�

ˆ̃ψ†a ↦ D�ðΛÞ½ ˆ̃ψ†a� ≔ ˆ̃ψ†bD−1
b
aðΛÞ: ð4:2Þ

Given that the quantum field operator ψ̂ transforms in a
Fock-space representation ðÛ;F Þ and a finite-dimensional
representation ðD;CnÞ, we define the “dual” field operator
ˆ̃ψ† as the field operator that transforms in a “dual” Fock-
space representation ðÛ�;F �Þ and a “dual” finite-dimen-
sional representation ðD�;Cn�Þ. We then say that the
quantum field ˆ̃ψ† transforms in the “dual” representation
of ψ̂ .
We postulate that, under the proper Poincaré group

ISOð1; 3Þ↑, the expectation value of an n-component
quantum field (3.11) transforms as an n-component
classical function:

ISOð1; 3Þ↑∶ x ↦ x0 ¼ Λ · xþ ε;

ΨaðxÞ ↦ Ψa0 ðx0Þ ¼ Da
bðΛÞΨbðxÞ;

Ψ̃†aðxÞ ↦ Ψ̃†a0 ðx0Þ ¼ Ψ̃†bðxÞD−1
b
aðΛÞ: ð4:3Þ

Here, ΨaðxÞ ≔ hα̃jψ̂aðxÞjαi is the expectation value of the
quantum field ψ̂ transforming in the finite-dimensional
representation ðD;CnÞ, while Ψ̃†aðxÞ ≔ hα̃j ˆ̃ψ†aðxÞjαi is the
expectation value of the “dual” quantum field ˆ̃ψ† trans-
forming in the “dual” finite-dimensional representation
ðD�;CnÞ.
Considering that the states jαi∈F transform under the

Fock-space representation ðÛ;F Þ and their “dual” states
hα̃j∈F � under the “dual” Fock-space representation
ðÛ�;F �Þ:

ISOð1; 3Þ↑∶ hα̃jψ̂aðxÞjαi ↦ hα̃jÛ−1ψ̂aðx0ÞÛjαi ¼ Da
bhα̃jψ̂bðxÞjαi;

hα̃j ˆ̃ψ†aðxÞjαi ↦ hα̃jÛ−1 ˆ̃ψ†aðx0ÞÛjαi ¼ hα̃j ˆ̃ψ†bðxÞjαiD−1
b
a; ð4:4Þ

we derive the transformation laws for the quantum field ψ̂ and its “dual” ˆ̃ψ†:

Û−1ðε;ΛÞψ̂aðxÞÛðε;ΛÞ ¼ Da
bðΛÞψ̂bðΛ−1ðx − εÞÞ; ð4:5Þ

Û−1ðε;ΛÞ ˆ̃ψ†aðxÞÛðε;ΛÞ ¼ ˆ̃ψ†bðΛ−1ðx − εÞÞD−1
b
aðΛÞ: ð4:6Þ
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Taking the Hermitian conjugate of Eq. (4.5), we obtain
the transformation law for the conjugate field ψ̂†:

Û†ðε;ΛÞψ̂†aðxÞÛ−1†ðε;ΛÞ ¼ ψ̂†bðΛ−1ðx − εÞÞD†
b
aðΛÞ;

ð4:7Þ

which clearly shows that the Hermitian-conjugate field ψ̂†

does not transform in the “dual” representation of ψ̂ ,
unless Û and D are both unitary representations, i.e., the
Hamiltonian Ĥ is Hermitian. In fact, in Sec. IV B, we
demonstrate that nonunitary Fock-space representations
ðÛ;F Þ of the proper Lorentz group SOð1; 3Þ↑ imply
nonunitarity of the finite-dimensional representations
ðD;CnÞ and vice versa. For now, let us assume that the
Fock-space representation is η̂-pseudo-unitary Û†η̂ Û ¼ η̂,
which is the case for an η̂-pseudo-Hermitian Hamiltonian
Ĥ. We also assume that the finite-dimensional representa-
tion is π-pseudo-unitary D†πD ¼ π with respect to some
n × n Hermitian matrix π∶ Cn ↦ Cn. Using this, we
rearrange Eq. (4.7):

Û−1ðε;ΛÞ½η̂−1ψ̂†aðxÞη̂π�Ûðε;ΛÞ
¼ ½η̂−1ψ̂†bðΛ−1ðx − εÞÞη̂π�D−1

b
aðΛÞ: ð4:8Þ

This is exactly the transformation law of the “dual” field
(4.6). Hence, in general, the “dual” field operator will be of
the form

ˆ̃ψ†ðxÞ ≔ η̂−1ψ̂†ðxηÞη̂π: ð4:9Þ

Since η̂∶F ↦ F can in general be a coordinate trans-
formation (e.g., parity), we need to include its action on
the coordinates xη (e.g., xP) in the definition of the “dual”
field. The field (4.9) transforms in the “dual” representa-
tion of the proper Poincaré group. As we did not assume
anything about the spin of the quantum field ψ̂ , the
definition in (4.9) holds for fields of any spin. Thus,
we will use it to define the “dual” fields for non-Hermitian
scalar and fermionic quantum field theories in Secs. V
and VI.
In the following subsections, we examine how

quantum fields behave under the generators of spacetime
translations and proper Lorentz transformations. In par-
ticular, in Sec. VI A, we derive Hamilton’s equations,
confirming that they are inconsistent for the quantum field
ψ̂ and its Hermitian conjugate ψ̂†, but are in agreement
with the “dual” field ˆ̃ψ† defined above. In Sec. VI A, we
show that non-Hermiticity of the Fock-space generators,
originating from the non-Hermitian Hamiltonian Ĥ,
directly leads to non-Hermitian generators of finite-
dimensional representations of the proper Lorentz group
SOð1; 3Þ↑.

A. Spacetime translations

Consider a translation by a constant 4-vector
x ↦ x0 ¼ xþ ε. The corresponding transformation of a
quantum field ψ̂a, according to Eq. (4.5), is

Û−1ðεÞψ̂aðxÞÛðεÞ ¼ ψ̂aðx − εÞ: ð4:10Þ

Here, ÛðεÞ ¼ Ûðε; 1Þ for some constant 4-vector ε∈R1;3.
Since the components of a multicomponent field do not

mix under spacetime translations, the only representations
acting on the quantum field are the Fock-space and
coordinate representations. Both of these can be expanded
in terms of their generators:

ÛðεÞ ¼ eiεμP̂
μ

and ψ̂aðx − εÞ ¼ e−ε
μ
∂μ ψ̂aðxÞ; ð4:11Þ

where P̂μ are the four generators of spacetime translations
in the Fock-space representation and ∂μ are the generators
of spacetime translations in the coordinate representation.
Expanding each side in Eq. (4.10) gives us the relation-

ship between the generators of spacetime translations for
Fock-space and coordinate representations:

½ψ̂ðxÞ; P̂μ� ¼ i∂μψ̂ðxÞ: ð4:12Þ

Notably, for μ ¼ 0, we recover Hamilton’s equation of
motion:

½ψ̂ðxÞ; Ĥ� ¼ i∂0ψ̂ðxÞ: ð4:13Þ

Taking a Hermitian conjugate of the above, we find that
the conjugate field ψ̂† evolves with Hermitian conjugates of
these generators:

½ψ̂†ðxÞ; P̂†
μ� ¼ i∂μψ̂†ðxÞ; ð4:14Þ

In particular, for μ ¼ 0, the conjugate field ψ̂† evolves with
Ĥ† instead of Ĥ:

½ψ̂†ðxÞ; Ĥ†� ¼ i∂0ψ̂†ðxÞ: ð4:15Þ

In Sec. III, we showed that if the Hamiltonian is
η̂-pseudo-Hermitian, then the 3-momentum operator P̂i is
also η̂-pseudo-Hermitian, i.e., P̂i† ¼ η̂P̂iη̂−1 for i ¼ 1, 2, 3.
Hence, it is Hermitian if and only if it commutes with η̂.
Using this, we rearrange the commutator:

½η̂−1ψ̂†ðxÞη̂; P̂μ� ¼ i∂μðη̂−1ψ̂†ðxÞη̂Þ: ð4:16Þ

We see that the “dual” field defined by Eq. (4.9) will evolve
with the same set of generators of spacetime translations as
the quantum field ψ̂ :

½ ˆ̃ψ†ðxÞ; P̂μ� ¼ i∂μ ˆ̃ψ
†ðxÞ: ð4:17Þ
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In particular, the “dual” field ˆ̃ψ† evolves with the same
Hamiltonian Ĥ:

½ ˆ̃ψ†ðxÞ; Ĥ� ¼ i∂0 ˆ̃ψ
†ðxÞ; ð4:18Þ

Thus, a Lagrangian composed of the “dual” field ˆ̃ψ† and the
quantum field ψ̂ will yield consistent equations of motion,
and the bilinear terms ˆ̃ψ†ψ̂ will be invariant under spacetime
translations.

B. Proper Lorentz transformations

Consider a proper Lorentz transformation x ↦ x0 ¼ Λ · x.
Unlike spacetime translations, proper Lorentz transforma-
tions mix the components of multicomponent fields (both
classical and quantum). Hence, the corresponding trans-
formation of an n-component quantum field ψ̂a according
to Eq. (4.5) is

Û−1ðΛÞψ̂aðxÞÛðxÞ ¼ Da
bðΛÞψ̂bðΛ−1xÞ: ð4:19Þ

Here, ÛðΛÞ ¼ Ûð0;ΛÞ, for some proper Lorentz trans-
formation Λ∈SOð1; 3Þ↑. The mixing of field components
is described by an n × n matrix DðΛÞ, given by an
n-dimensional matrix representation of the proper Lorentz
group SOð1; 3Þ↑.
The representations acting on a quantum field are the

Fock-space, finite-dimensional, and coordinate representa-
tions. All of these can be expanded in terms of their
generators:

ÛðΛÞ ¼ e
i
2
ωμνĴ

μν
; Da

bðΛÞ ¼ e
i
2
ωμνðMμνÞab ; and

ψ̂aðΛ−1xÞ ¼ e−
1
2
ωμνmμν

ψ̂aðxÞ; ð4:20Þ

where Ĵμν are the six generators of rotations and boosts in the
Fock-space representation, Mμν are the n × n matrix gen-
erators of rotations and boosts in the n-dimensional matrix
representation, andmμν ¼ xμ∂ν − xν∂μ are the generators of
rotations and boosts in the coordinate representation.
Expanding each side in Eq. (4.20) gives us the relation-

ship between the generators of proper Lorentz transforma-
tions SOð1; 3Þ↑ for the Fock-space, finite-dimensional, and
coordinate representations:

½ψ̂aðxÞ; Ĵμν� ¼ �ðMμνÞab þ imμνδab
�
ψ̂bðxÞ: ð4:21Þ

Taking a Hermitian conjugate of the above equation, we
find that the conjugate field ψ̂† evolves with Hermitian
conjugates of these generators:

½ψ̂†aðxÞ; Ĵ†μν� ¼ ψ̂†bðxÞð−ðM†μνÞba þ imμνδb
aÞ: ð4:22Þ

For a unitary finite-dimensional representation ðD;CnÞ,
the generators Mμν† ¼ Mμν are Hermitian. This would

imply that the Fock-space generators Ĵμν† ¼ Ĵμν are also
Hermitian,meaning the Fock-space representation ðÛ;F Þ is
unitary. However, according to Sec. III, if the Hamiltonian
operator Ĥ is η̂-pseudo-Hermitian, i.e., Ĥ† ¼ η̂ Ĥ η̂−1, then
other generators of the proper Lorentz transformations are
also η̂-pseudo-Hermitian: Ĵμν† ¼ η̂Ĵμνη̂−1. Hence, the Fock-
space generators Ĵμν are Hermitian if and only if they
commute with η̂. Thus, if the Fock-space generators are
not Hermitian, neither are the generators of finite-dimen-
sional representations and vice versa.
Using the pseudo-Hermiticity of the Fock-space gener-

ators, we can rewrite Eq. (4.22) as

½η̂−1ψ̂†ðxÞη̂; Ĵμν� ¼ η̂−1ψ̂†ðxÞη̂ð−M†μν þ imμνÞ: ð4:23Þ

We can use a biorthonormal basis [3,5] to construct a
Hermitian n × n matrix π∶ Cn ↦ Cn such that the gener-
atorsMμν† ¼ πMμνπ−1 are π-pseudo-Hermitian. Thismeans
that the finite-dimensional representation D†πD ¼ π is
π-pseudo-unitary. In the next section, we will show how
to construct pseudo-Hermitian finite-dimensional represen-
tations from the representation theory of SOð1; 3Þ↑.
Further, applying the pseudo-Hermiticity of matrix

generators, we find the field which evolves with the same
set of generators as the field operator ψ̂ :

½η̂−1ψ̂†ðxÞη̂π; Ĵμν� ¼ η̂−1ψ̂†ðxÞη̂πð−Mμν þ imμνÞ: ð4:24Þ

This is exactly the “dual” field defined in Eq. (4.9). Thus,
the “dual” field ˆ̃ψ† evolves with the same generators of
proper Lorentz transformations as ψ̂ in Eq. (4.21):

½ ˆ̃ψ†aðxÞ; Ĵμν� ¼ ˆ̃ψ†bðxÞð−ðMμνÞba þ imμνδb
aÞ: ð4:25Þ

Hence, bilinear operators of the form ˆ̃ψ†ψ̂ will be invariant
under the proper Lorentz transformations.

V. PSEUDO-HERMITIAN FINITE DIMENSIONAL
REPRESENTATIONS

If we consider a multicomponent quantum field ψ̂a (e.g.,
a fermion field), its components will mix under proper
Lorentz transformations SOð1; 3Þ↑. The action of the
proper Lorentz group on an n-component field is given
by an n-dimensional matrix representation ðD;CnÞ:

DðΛÞ∶ Cn ↦ Cn

ψ̂a ↦ Da
bðΛÞψ̂b: ð5:1Þ

Here, DðΛÞ is an n × n matrix determined by a proper
Lorentz transformation Λ∈SOð1; 3Þ↑.
In Eq. (4.22), we noted that if the generators of the Fock-

space representation are non-Hermitian Ĵ†μν ≠ Ĵμν, then the
generators of finite-dimensional representations are not, in
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general, Hermitian either Mμν† ≠ Mμν. Nonetheless, if we
can find a Hermitian n × n matrix π∶ Cn ↦ Cn, such that
these generators are π-pseudo-HermitianMμν† ¼ πMμνπ−1,
then we can derive the dual quantum field ˆ̃ψ†, which
transforms in the dual representation of the quantum
field ψ̂ .
In this section, we explore how the pseudo-Hermitian

finite-dimensional representations naturally emerge in
the representation theory of the proper Lorentz group
SOð1; 3Þ↑. The (complexified) Lorentz Lie algebra
soð1; 3ÞC ≅ slð2;CÞ ⊕ slð2;CÞ is a direct sum of two
Lie algebras of the complex special linear group SLð2;CÞ
[56]. This allows us to obtain all finite-dimensional
representations, both Hermitian and non-Hermitian, of
the Lorentz Lie algebra soð1; 3Þ from the finite-dimen-
sional representations of slð2;CÞ [57]. We then exponen-
tiate these to obtain all finite-dimensional representations of
the proper Lorentz group SOð1; 3Þ↑.
We use these pseudo-Hermitian representations to con-

struct the dual quantum field operator for the simplest
trivial representation (0,0) of the spin-0 scalar field and a
more complicated case of the smallest nontrivial represen-
tations ð1

2
; 0Þ and ð0; 1

2
Þ, which represent spin-1

2
left- and

right-handed spinors, respectively. Finally, we show how to
construct pseudo-Hermitian representations and the dual
quantum field for Dirac fermions, which are the direct sum
ð0; 1

2
Þ ⊕ ð1

2
; 0Þ of right- and left-handed spinors.

A. Irreducible representations of slð2;CÞ
The complex special linear group SLð2;CÞ is the group

of complex 2 × 2 matrices with a unit determinant:

SLð2;CÞ ¼ fA∈GLð2;CÞj detðAÞ ¼ 1g: ð5:2Þ

It has the Lie algebra slð2;CÞ, which is a complex vector
space of traceless complex 2 × 2 matrices:

slð2;CÞ ¼ fX∈ glð2;CÞjTrðXÞ ¼ 0g

¼ spanC

�
Ja ≔

σa
2
; a ¼ 1; 2; 3

�
: ð5:3Þ

The Lie algebra slð2;CÞ ≅ suð2ÞC is isomorphic to the
complexified Lie algebra suð2ÞC of the special unitary
group SU(2). In simpler terms, slð2;CÞ is the vector space
suð2Þ spanned over complex numbers instead of real
numbers. Thus, in the literature, it is common to write
the Lorentz Lie algebra as a direct sum suð2Þ ⊕ suð2Þ.
The generators of slð2;CÞ are Ja ¼ σa

2
, where σa are the

Pauli matrices. The Lie brackets for this basis are

½Ja; Jb� ¼ iεabcJc: ð5:4Þ

The Lie algebra of slð2;CÞ possesses the structure of
“ladder operators,” which we obtain by defining a new
basis:

slð2;CÞ¼ spanCfJ3;Jþ;J−g with J�≔ J1� iJ2: ð5:5Þ

Here, J� are the raising and lowering operators with the Lie
brackets:

½J3; J�� ¼ �J�; ½Jþ; J−� ¼ 2J3: ð5:6Þ

Now, let ðρ;VÞ be a representation of slð2;CÞ on some
finite-dimensional vector space V:

ρ∶slð2;CÞ ↦ glð2;CÞ; ρðXÞ∶V ↦ V

X ↦ ρðXÞ v ↦ ρðXÞ½v�: ð5:7Þ

The dimension of a representation is defined as the
dimension of the vector space dimðρÞ ¼ dimðVÞ. It is also
common to refer to the vector space V as the representation
space of a representation ρ. In the context of “standard”
quantum field theory, we assume representations of slð2;CÞ
to be Hermitian:

ρðJaÞ† ¼ ρðJaÞ; ∀ a∈ 1; 2; 3: ð5:8Þ

Note that the representation ρðXÞ† ≠ ρðXÞ on a general
element X∈ slð2;CÞ is not, in general, Hermitian, as
slð2;CÞ is a complex vector space. Hence, the definition
of a Hermitian representation is basis dependent.
However, in general, the representations of slð2;CÞ

need not be Hermitian. Given that ρðJ3Þ is finite
dimensional and diagonalizable, we use the ladder oper-
ators (5.5) to obtain all irreducible representations of
slð2;CÞ [57]. An irreducible representation is a repre-
sentation that cannot be broken down into smaller subset
representations while preserving properties of the Lie
algebra.
All of the irreducible representations ðρj;VjÞ of slð2;CÞ

can be classified by an integer or half-integer number
j∈ f0; 1

2
; 1;…g ¼ N=2. The dimension of each represen-

tation is dimðρjÞ ¼ dimðVjÞ ¼ 2jþ 1 and the representa-
tion space Vj ⊆ C2jþ1.
Let us consider a representation ðρj;VjÞ and let ρjðJ3Þ

be non-Hermitian. As we assumed ρðJ3Þ to be diagonaliz-
able, we can use its eigenvectors to construct a biortho-
normal basis [3,5], from which we obtain a Hermitian
matrix π∶ Vj ↦ Vj such that ρjðJ3Þ† ¼ πρjðJ3Þπ−1 is π-
pseudo-Hermitian. As representations preserve the Lie
bracket:

½ρjðJaÞ; ρjðJbÞ� ¼ ρjð½Ja; Jb�Þ ¼ iεabcρjðJcÞ; ð5:9Þ
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we have that the other generators are also π-pseudo-
Hermitian:

ρjðJaÞ† ¼ πρjðJaÞπ−1: ð5:10Þ
We call this representation a π-pseudo-Hermitian repre-
sentation of slð2;CÞ. Note that, for a general element
X∈ slð2;CÞ the representation ρjðXÞ† ≠ πρjðXÞπ−1 is not
π-pseudo-Hermitian. Thus, the definition of a pseudo-
Hermitian representation is basis dependent.
The smallest irreducible representations of slð2;CÞ are
(1) j ¼ 0, ρ0ðJaÞ ¼ 0; ∀ a∈ f1; 2; 3g, and V0 ⊆ C is

the trivial representation of slð2;CÞ. It vanishes
whether ðρ0;V0Þ is Hermitian or non-Hermitian.

(2) j ¼ 1
2
,ρH

1
2

ðJaÞ ¼ Ja; ∀ a∈ f1; 2; 3g, and V1
2
⊆ C2.

Here, ðρH
1
2

;V1
2
Þ is the smallest nontrivial Hermitian

representation of slð2;CÞ.
Any non-Hermitian representation ðρ1

2
;V1

2
Þ will be

related to the Hermitian representation via a sim-
ilarity transformation:

ρ1
2
ðJaÞ ¼ VJaV−1: ð5:11Þ

We use a biorthonormal basis to construct a 2 × 2
matrix π∶ V1

2
↦ V1

2
such that ðρ1

2
;V1

2
Þ is π-pseudo-

Hermitian:

ρ1
2
ðJaÞ† ¼ πρ1

2
ðJaÞπ−1: ð5:12Þ

B. Irreducible representations
of the proper Lorentz group

Having classified all irreducible representations of
slð2;CÞ, we can obtain all irreducible representations of
the proper Lorentz group SOð1; 3Þ↑. This follows from the
fact that the complexified Lorentz Lie algebra soð1; 3ÞC ≅
slð2;CÞ ⊕ slð2;CÞ is a direct sum of two Lie algebras
slð2;CÞ [or suð2ÞC depending on the literature].
The proper Lorentz group SOð1; 3Þ↑ is a Lie group of

4 × 4 matrices:

SOð1;3Þ↑
¼fΛ∈GLð4;RÞjΛ⊤gΛ¼g;detðΛÞ¼1 and Λ0

0≥1g:
ð5:13Þ

Here, gμν ¼ diagð1;−1;−1;−1Þ is the Minkowski metric.
The Lorentz Lie algebra soð1; 3Þ is a real vector space of

traceless 4 × 4 matrices:

soð1; 3Þ ¼ fM∈ glð4;RÞjM ¼ −gM⊤g;TrðMÞ ¼ 0g
¼ spanRfRa; Ba; a ¼ 1; 2; 3g: ð5:14Þ

It has six generators: three rotation generators Ra and three
boost generators Ba, which form a basis of soð1; 3Þ. The

complexified Lorentz algebra is just the complex vector
space:

soð1; 3ÞC ¼ spanCfRa; Ba; a ¼ 1; 2; 3g: ð5:15Þ

Most literature on the representation theory does not
distinguish between the Lie algebra and its complexifica-
tion. This is because the majority of the results from the
complexified Lie algebra can be directly applied to the
original Lie algebra by taking the vector space to span over
the real numbers instead of the complex numbers.
Let us define a new basis for the Lorentz Lie algebra

soð1; 3ÞC:

Ta ≔
1

2
ðiRa − BaÞ; Ka ≔

1

2
ðiRa þ BaÞ: ð5:16Þ

The Lie bracket for this basis is exactly that of
slð2;CÞ ⊕ slð2;CÞ:
½Ta;Tb�¼ iεabcTc; ½Ka;Kb�¼ iεabcKc; ½Ta;Kb�¼0:

ð5:17Þ
Hence, the Lorentz Lie algebra soð1; 3ÞC is isomorphic to
the direct sum slð2;CÞ ⊕ slð2;CÞ.
Now consider two irreducible representations ðρj;VjÞ

and ðρk;VkÞ of slð2;CÞ. We can construct a corresponding
irreducible representation of slð2;CÞ ⊕ slð2;CÞ:

κjkðX; YÞ ≔ ρjðXÞ ⊗ 12kþ1 þ 12jþ1 ⊗ ρkðYÞ
for any two elements X; Y ∈ slð2;CÞ:

ð5:18Þ

All irreducible representations of slð2;CÞ ⊕ slð2;CÞ are
obtained from ðκjk;VjkÞ, where the representation space of
κjk is a tensor product Vjk ≔ Vj ⊗ Vk ⊆ Cð2jþ1Þð2kþ1Þ. The
dimension of this representation is dimðκjkÞ ¼ dimðVjkÞ ¼
ð2jþ 1Þð2kþ 1Þ. All irreducible representations of
slð2;CÞ ⊕ slð2;CÞ are classified by two integer or half-
integer numbers ðj; kÞ, where j; k∈ f0; 1

2
; 1;…g ¼ N=2.

The relationship between the elements of the complexi-
fied Lorentz Lie algebra soð1; 3ÞC and slð2;CÞ ⊕ slð2;CÞ
is given explicitly through an isomorphism:

κjkðTaÞ ≅ κjkðJa; 0Þ ¼ ρjðJaÞ ⊗ 12kþ1 and

κjkðKaÞ ≅ κjkð0; JaÞ ¼ 12jþ1 ⊗ ρkðJaÞ: ð5:19Þ
This allows us to obtain all irreducible representations
ðκjk;VjkÞ of the Lorentz Lie algebra soð1; 3Þ by going back
to the basis of rotation and boost generators:

κjkðRaÞ ¼ −i½ρjðJaÞ ⊗ 12kþ1 þ 12jþ1 ⊗ ρkðJaÞ�;
κjkðBaÞ ¼ −ρjðJaÞ ⊗ 12kþ1 þ 12jþ1 ⊗ ρkðJaÞ: ð5:20Þ
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Thus, the ðj; kÞ representation for any element M ¼
αaRa þ βaBa ∈ soð1; 3Þ with αa; βa ∈R of the Lorentz
Lie algebra soð1; 3Þ is given by

κjkðMÞ ¼ ρjð−X†Þ ⊗ 12kþ1 þ 12jþ1 ⊗ ρkðXÞ; ð5:21Þ

where we defined the coefficient Xa ≔ βa − iαa ∈C so that
X ¼ XaJa ∈ slð2;CÞ is an element of the Lie algebra
slð2;CÞ. Hence, the Eq. (5.21) explicitly maps an element
of slð2;CÞ to an element of the Lorentz Lie algebra
soð1; 3Þ.
Let us consider two pseudo-Hermitian representations

ðρj;VjÞ and ðρk;VkÞ of the Lie algebra slð2;CÞ:

ρjðJaÞ† ¼ πjρjðJaÞπ−1j and ρkðJaÞ† ¼ πkρkðJaÞπ−1k ;

ð5:22Þ

where Vj ⊆ C2jþ1 and Vk ⊆ C2kþ1. Here, πj is some ð2jþ
1Þ × ð2jþ 1Þ Hermitian matrix and πk is a ð2kþ 1Þ ×
ð2kþ 1Þ Hermitian matrix, which can be found by con-
structing a biorthonormal basis and diagonalizing ρjðJ3Þ
and ρkðJ3Þ, respectively.
Now taking a Hermitian conjugate of this representation:

κjkðMÞ†¼−ðπj⊗πkÞ½ρjðXÞ⊗12kþ1þ12jþ1⊗ρkð−X†Þ�
×ðπj⊗πkÞ−1; ð5:23Þ

we find that it is related to the parity transformation of M:

κjkðΛPMΛPÞ ¼ ρjðXÞ ⊗ 12kþ1 þ 12jþ1 ⊗ ρkð−X†Þ:
ð5:24Þ

Here, ΛP ¼ diagð1;−1;−1;−1Þ∈SOð1; 3Þ is the parity
matrix, which is an improper discrete Lorentz trans-
formation. We used its action on the rotation and boost
generators:

ΛPRaΛP ¼ Ra and ΛPBaΛP ¼ −Ba: ð5:25Þ

However, the action of parity interchanges representation
ðj; kÞ with ðk; jÞ and swaps the order of the tensor product,
up to some similarity transformation:

κjkðΛPMΛPÞ ¼ SκkjðMÞS−1; ð5:26Þ

where S is some ð2jþ 1Þð2kþ 1Þ × ð2jþ 1Þð2kþ 1Þ
similarity matrix.
Thus, the ðj; kÞ representation of the Lorentz Lie algebra

soð1; 3Þ will be anti-pseudo-Hermitian with respect to the
interchange of ðj; kÞ and ðk; jÞ:

κjkðMÞ† ¼ −π̃κkjðMÞπ̃−1; where π̃ ≔ ðπj ⊗ πkÞS:
ð5:27Þ

Let ðD;VÞ be a representation of the proper Lorentz group
SOð1; 3Þ↑ on some finite-dimensional vector space V:

D∶SOð1;3Þ↑↦GLðVÞ; DðΛÞ∶V↦V

Λ↦DðΛÞ v↦DðΛÞ½v�: ð5:28Þ

All finite-dimensional representations ðDjk;VjkÞ of the
proper Lorentz group SOð1; 3Þ↑ can be obtained from the
representations ðκjk;VjkÞ of the Lorentz Lie algebra soð1; 3Þ
via the exponential map:

DjkðΛÞ ¼ eκjkðMÞ ¼ eα
aκjkðRaÞþβaκjkðBaÞ: ð5:29Þ

We call this the ðj; kÞ representation of the proper Lorentz
group SOð1; 3Þ↑ for some integer or half-integer numbers
j; k∈ f0; 1

2
; 1;…g ¼ N

2
.

Given two pseudo-Hermitian representations of slð2;CÞ,
the corresponding ðj; kÞ representation of the proper Lorentz
group SOð1; 3Þ↑ will be pseudounitary with respect to the
interchange of ðj; kÞ and ðk; jÞ:

DjkðΛÞ†¼eκjkðMÞ† ¼ π̃e−κkjðMÞπ̃¼ π̃DkjðΛÞ−1π̃−1: ð5:30Þ

Hence, all finite-dimensional pseudounitary representations
of the proper Lorentz group SOð1; 3Þ↑ can be obtained from
finite-dimensional pseudo-Hermitian representations of the
Lie algebra slð2;CÞ.
In the following subsections we look for pseudounitary

representations of SOð1; 3Þ↑ for the trivial representation
(0, 0) of scalar fields and the smallest nontrivial represen-
tations ð0; 1

2
Þ and ð1

2
; 0Þ of right- and left-handed spinors, as

well as ð0; 1
2
Þ ⊕ ð1

2
; 0Þ representation of fermions.

C. Scalar fields

Scalar fields transform in the trivial (0,0) representation
of the proper Lorentz group SOð1; 3Þ↑. The representation
space V00 ¼ V0 ⊗ V0 ⊆ C is just a subset of the complex
numbers. The j ¼ 0 representation of the Lie algebra
slð2;CÞ vanishes ρ0ðJaÞ ¼ 0 for all generators of
slð2;CÞ [56], regardless of whether it is Hermitian or
non-Hermitian. Thus, from Eq. (5.20), we see that the
trivial representation of rotation and boost generators
κ00ðRaÞ ¼ κ00ðBaÞ ¼ 0 also vanishes. Thus, the corre-
sponding (0,0) representation of the proper Lorentz group
SOð1; 3Þ↑ is found via the exponential map in Eq. (5.29) to
be unity:

D00ðΛÞ ¼ eα
aκ00ðRaÞþβaκ00ðBaÞ ¼ e0 ¼ 1; ∀ Λ∈SOð1;3Þ↑:

ð5:31Þ
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Hence, D00ðΛÞ†¼πD00ðΛÞ−1π−1¼ππ−1¼1 is π-pseudo-
unitary for any real number π ∈R (as π needs to be
Hermitian).
We use Eq. (4.9) to define the dual scalar field operator:

ˆ̃ϕ
†ðxÞ ¼ η̂−1ϕ̂†ðxηÞη̂π; with π∈R: ð5:32Þ

For a single-component scalar field, π ∈R can be any
real number. However, this is not true if we consider
multicomponent scalar/pseudoscalar fields. In the case of
an n-component scalar field ϕ̂aðxÞ, a∈ f1; 2;…; ng, the
dual n-component field is defined via

ˆ̃ϕ
†
1ðxÞ¼ η̂−1ϕ̂†

1ðxηÞη̂π1
ˆ̃ϕ
†
2ðxÞ¼ η̂−1ϕ̂†

2ðxηÞη̂π2
..
.

ˆ̃ϕ
†
nðxÞ¼ η̂−1ϕ̂†

nðxηÞη̂πn

9>>>>>>>=
>>>>>>>;

⇒ ˆ̃ϕ
†ðxÞ¼ η̂−1ϕ̂ðxηÞη̂Π: ð5:33Þ

Here,

ϕ̂ðxÞ ¼

0
B@ ϕ̂1ðxÞ

..

.

ϕ̂nðxÞ

1
CA

is an n-component scalar/pseudoscalar field and

Π ¼

0
BBB@

π1 0 � � � 0

0 π2
..
. . .

.

0 πn

1
CCCA

is a diagonal matrix of real numbers π1; π2;…; πn ∈R.
Returning to the construction of pseudo-Hermitian

quantum field theories, we require the Lagrangian operator
L̂ðxÞ to be
(1) Invariant under proper Poincaré transformations:

ISOð1; 3Þ↑∶L̂ðxÞ
↦ Û−1ðε;ΛÞL̂ðxÞÛðε;ΛÞ ¼ L̂ðΛ−1ðx − εÞÞ;

(2) η̂-pseudo-Hermitian: L̂ðxηÞ† ¼ η̂ L̂ðxÞη̂−1.
In the case of noninteracting theories, the kinetic and

diagonal mass terms are of the form ˆ̃ϕ
†ðxÞϕ̂ðxÞ, which are

both Poincaré invariant and η̂-pseudo-Hermitian. More
generally, however, we can include a mass mixing. In this
case, there will be a nondiagonal mass term of the from
ˆ̃ϕ
†ðxÞBϕ̂ðxÞ, where B is some n × n nondiagonal matrix.

Under the action of the proper Poincaré group, we have

ISOð1;3Þ↑∶ ˆ̃ϕ
†ðxÞBϕ̂ðxÞ

↦ ˆ̃ϕ
†ðΛ−1ðx−εÞÞ½D−1ðΛÞBDðΛÞ�ϕ̂ðΛ−1ðx−εÞÞ: ð5:34Þ

For n-component scalars/pseudoscalars, the n-dimensional
proper Lorentz transformation is just the n × n identity
matrix, i.e.,

DðΛÞ¼

0
BBBBB@
D00ðΛÞ 0 … 0

0 D00ðΛÞ
..
. . .

.

0 D00ðΛÞ

1
CCCCCA¼ 1n: ð5:35Þ

Hence, the mass mixing terms are Poincaré invariant.
However, the mixing term is η̂-pseudo-Hermitian:

ð ˆ̃ϕ†ðxηÞBϕ̂ðxηÞÞ† ¼ η̂½ ˆ̃ϕ†ðxÞΠ−1B†Πϕ̂ðxÞ�η̂−1

¼ η̂½ ˆ̃ϕ†ðxÞBϕ̂ðxÞ�η̂−1; ð5:36Þ

if and only if B† ¼ ΠBΠ−1 is Π-pseudo-Hermitian. This
places restrictions on the matrices B and Π.
In Sec. VI, we study an example of this type of Lagrangian.

We consider a 2-component scalar field with mass mixing

term of the form L̂ðxÞ ¼ ˆ̃ϕ
†1ðxÞϕ̂2ðxÞ − ˆ̃ϕ

†2ðxÞϕ̂1ðxÞ. In
matrix form this term is

B ¼
�

0 1

−1 0

�
: ð5:37Þ

However, the matrix B is Π-pseudo-Hermitian if and only if
π2 ¼ −π1, which restricts Π to the form:

Π ∝
�
1 0

0 −1
�
: ð5:38Þ

In the example, this is a parity matrix that reflects the intrinsic
parities of a scalar component ϕ̂1 and a pseudoscalar

component ϕ̂2 in the 2-component scalar field ϕ̂ ¼ ðϕ̂1

ϕ̂2Þ.

D. Two-component spinors

Unlike for the case of scalar fields, the representations
ð1
2
; 0Þ and ð0; 1

2
Þ, which correspond to left- and right-handed

spinors, are nontrivial. The dual left- and right-handed field
operators are obtained via Eq. (4.9). However, introduction
of the dual field alone is insufficient to formulate a Lorentz-
invariant spinor Lagrangian. This is due to the dependence
of the kinetic terms on the Pauli matrices, which do not
transform in the same representation of SOð1; 3Þ↑ as the
quantum field operators. Our goal is to write down the
spinor Lagrangian which transforms in the same represen-
tation of the proper Poincaré group ISOð1; 3Þ↑. Having the
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spinor Lagrangian in hand, we obtain a pseudo-Hermitian
representation for Dirac fermions ð0; 1

2
Þ ⊕ ð1

2
; 0Þ. However,

a comprehensive study of a specific example of a non-
Hermitian fermionic quantum field theory is beyond the
scope of this work.
The smallest nontrivial irreducible representations

of the Lorentz Lie algebra soð1; 3Þ are ð1
2
; 0Þ, acting on

the left-handed spinor ψ̂L, and ð0; 1
2
Þ, acting the right-

handed spinor ψ̂R:

Û−1ðΛÞψ̂LðxÞÛðΛÞ ¼ D1
2
0ðΛÞψ̂LðΛ−1xÞ;

Û−1ðΛÞψ̂RðxÞÛðΛÞ ¼ D01
2
ðΛÞψ̂RðΛ−1xÞ: ð5:39Þ

We obtain the 2 × 2 matrix representations ðD1
2
0;C

2Þ and

ðD01
2
;C2Þ of the proper Lorentz group SOð1; 3Þ↑ via the

exponential map in Eq. (5.29):

D1
2
0ðΛÞ ¼ e

κ1
2
0
ðMÞ

and D01
2
ðΛÞ ¼ e

κ
01
2
ðMÞ

; ð5:40Þ

where M ¼ αaRa þ βaBa ∈ soð1; 3Þ; αa; βa ∈R is a gen-
eral element in the Lorentz Lie algebra soð1; 3Þ. The 2 × 2

matrix representations ðκ1
2
0;C

2Þ and ðκ01
2
;C2Þ of the Lorentz

Lie algebra soð1; 3Þ are related to the 2 × 2 matrix
representation ðρ1

2
;C2Þ of slð2;CÞ via Eq. (5.21):

κ01
2
ðMÞ ¼ ρ1

2
ðXÞ and κ1

2
0ðMÞ ¼ ρ1

2
ð−X†Þ: ð5:41Þ

We can map any element in the Lorentz Lie algebra
M∈ soð1; 3Þ to an element X∈ slð2;CÞ.
If the representation ðρ1

2
;C2Þ is non-Hermitian, we have

seen that we can use a biorthonormal basis [3,5] to
construct a 2 × 2 Hermitian matrix π∶ C2 ↦ C2 such that
the representation is π-pseudo-Hermitian:

ρ1
2
ðJaÞ† ¼ πρ1

2
ðJaÞπ−1: ð5:42Þ

This leads to Lorentz Lie algebra representations being
anti-π-pseudo-Hermitian under an interchange of left-
handed ð1

2
; 0Þ and right-handed ð0; 1

2
Þ representations:

κ1
2
0ðMÞ† ¼ −πκ01

2
ðMÞπ−1 and κ01

2
ðMÞ† ¼ −πκ1

2
0ðMÞπ−1:
ð5:43Þ

Hence, the representations of the proper Lorentz group are
π-pseudo-unitary under the interchange of left-handed and
right-handed representations:

D1
2
0ðΛÞ† ¼ πD01

2
ðΛÞ−1π−1; D01

2
ðΛÞ† ¼ πD1

2
0ðΛÞ−1π−1:

ð5:44Þ

As shown in Sec. IV we can write down the dual field
operator, provided the finite-dimensional representations

are pseudounitary. Thus, we define the dual left- and right
handed quantum field operators using Eq. (4.9):

ˆ̃ψ†
LðxÞ ¼ η̂−1ψ̂†

LðxηÞη̂π and ˆ̃ψ†
RðxÞ ¼ η̂−1ψ̂†

RðxηÞη̂π;
ð5:45Þ

where η̂∶x ↦ xη is the coordinate transformation of
x∈R1;3 under η̂.
Indeed, we can check that, under the proper

Lorentz group SOð1; 3Þ↑, the left-handed dual field ˆ̃ψL
transforms under the dual representation of the right-
handed spinor ψ̂R and the right-handed dual field ˆ̃ψR
transforms under the dual representation of the left-
handed spinor ψ̂L:

Û−1ðΛÞ ˆ̃ψ†
LðxÞÛðΛÞ ¼ ˆ̃ψ†

LðΛ−1xÞD01
2
ðΛÞ−1;

Û−1ðΛÞ ˆ̃ψ†
RðxÞÛðΛÞ ¼ ˆ̃ψ†

RðΛ−1xÞD1
2
0ðΛÞ−1: ð5:46Þ

Hence, the typical mass terms in the non-Hermitian spinor
Lagrangian

ˆ̃ψ†
LðxÞψ̂RðxÞ and ˆ̃ψ†

RðxÞψ̂LðxÞ ð5:47Þ

are both η̂-pseudo-Hermitian and invariant under proper
Poincaré transformations. Moreover, in the Hermitian
limit, where η̂ ¼ 1̂ and π ¼ 12, we recover the mass terms
of the Hermitian spinor Lagrangian:

ψ̂†
LðxÞψ̂RðxÞ and ψ̂†

RðxÞψ̂LðxÞ: ð5:48Þ

However, even with the dual spinor fields, the kinetic
terms will not be Lorentz invariant. This is because the
kinetic terms involve Minkowski 4-vectors in the Hermitian
representation of slð2;CÞ. Consider the kinetic terms in the
Hermitian spinor Lagrangian [56]

ψ̂†
LðxÞ½∂�ψ̂LðxÞ and ψ̂†

RðxÞ½∂�Pψ̂RðxÞ: ð5:49Þ

Here, ½∂� is a map from Minkowski 4-vectors to 2 × 2
matrices defined as (for more details see Sec. VII in
Ref. [56]):

½�∶ R1;3 ↦ Mat2ðR1;3Þ;
∂ ↦ ½∂� ≔ σμ∂

μ;

∂P ↦ ½∂�P ≔ σ̄μ∂
μ: ð5:50Þ

We have defined ∂
μ
P ¼ ð∂0;−∂iÞ to be the parity trans-

formation of the 4-vector ∂μ, and the four-Pauli matrices are
σμ ¼ ð12; σiÞ and σ̄μ ¼ ð12;−σiÞ.
The map ½� gives an explicit relationship between the

proper Lorentz group SOð1; 3Þ↑ and the complex special
linear group SLð2;CÞ:
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SOð1; 3Þ↑∶ Mat2ðR1;3Þ ↦ Mat2ðR1;3Þ;
½∂� ↦ ½Λ · ∂� ¼ A½∂�A†;

½∂�P ↦ ½Λ · ∂�P ¼ A−1†½∂�PA−1: ð5:51Þ

Here, A∈SLð2;CÞ is a 2 × 2matrix in the complex special
linear group, see Eq. (5.2). Indeed, we can write any
element of SLð2;CÞ in terms of its Lie algebra generators
X∈ slð2;CÞ:

A ¼ eX ¼ e
ρH
1
2

ðXÞ ¼ e
κH
01
2

ðMÞ ¼ DH
01
2

ðΛÞ; ð5:52Þ
where we have used Eq. (5.41), which relates the j ¼ 1

2

representation of slð2;CÞ to the ð0; 1
2
Þ representation

of soð1; 3Þ. We also note that ðρH
1
2

;C2Þ is the Hermitian

j ¼ 1
2

representation of slð2;CÞ, meaning that
ρH
1
2

ðJaÞ† ¼ ρH
1
2

ðJaÞ ¼ Ja. Thus, we also denote ðDH
01
2

;CnÞ
to be the unitary representation of SOð1; 3Þ↑ with respect to
the interchange of ð0; 1

2
Þ and ð1

2
; 0Þ, such that DH

01
2

ðΛÞ† ¼
DH

1
2
0
ðΛÞ−1 [note that A∈SLð2;CÞ is not unitary]. Hence, the

derivative matrices ½∂� and ½∂�P transform in the unitary
representation of the proper Lorentz group, while the spinor
fields transform in the pseudounitary representation. Due to
this discrepancy, the kinetic terms will not be Lorentz
invariant:

SOð1; 3Þ↑∶ ˆ̃ψ†
L½∂�ψ̂L

↦ ˆ̃ψ†
LD01

2
ðΛÞ−1DH

01
2

ðΛÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
≠12

½∂�DH
1
2
0
ðΛÞ−1D1

2
0ðΛÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

≠12

ψ̂L; ð5:53Þ

ˆ̃ψ†
R½∂�Pψ̂R ↦ ˆ̃ψ†

RD1
2
0ðΛÞ−1DH

1
2
0
ðΛÞ½∂�PDH

01
2

ðΛÞ−1D01
2
ðΛÞψ̂R:

ð5:54Þ

However, the π-pseudo-Hermitian representation ðρ1
2
;C2Þ

is related to the Hermitian representation ðρH
1
2

;C2Þ by a

similarity transformation (5.11):

ρ1
2
ðXÞ ¼ VρH

1
2

ðXÞV−1 ¼ VXV−1: ð5:55Þ

Thus, the π-pseudo-unitary representation of the proper
Lorentz group SOð1; 3Þ↑ is related to the unitary one via
a similarity transformation:

D01
2
ðΛÞ¼VDH

01
2

ðΛÞV−1 and D1
2
0ðΛÞ¼ðV†πÞ−1DH

1
2
0
ðΛÞðV†πÞ:

ð5:56Þ

Using this property, we define a new map from
Minkowski 4-vectors to 2 × 2 matrices:

fg∶ R1;3 ↦ Mat2ðR1;3Þ; ð5:57Þ

∂ ↦ f∂g ≔ V½∂�V†π ¼ VσμV†π∂μ; ð5:58Þ

∂P↦f∂gP≔π−1V†−1½∂�PV−1¼π−1V†−1σ̄μV−1
∂
μ: ð5:59Þ

We can check that this map indeed transforms in the
π-pseudo-unitary representation of the proper Lorentz group:

SOð1;3Þ↑∶Mat2ðR1;3Þ↦Mat2ðR1;3Þ;
f∂g↦fΛ ·∂g¼D01

2
ðΛÞf∂gD1

2
0ðΛÞ−1;

f∂gP↦fΛ ·∂gP¼D1
2
0ðΛÞf∂gPD01

2
ðΛÞ−1:
ð5:60Þ

Hence, the kinetic terms in a non-Hermitian spinor
Lagrangian, which are both η̂-pseudo-Hermitian and Lorentz
invariant, will be of the form

ˆ̃ψ†
LðxÞf∂gψ̂LðxÞ and ˆ̃ψ†

RðxÞf∂gPψ̂RðxÞ: ð5:61Þ

Thus, combining the mass terms in Eq. (5.47) with the
kinetic terms in Eq. (5.61) we can write down the non-
interacting part of the non-Hermitian spinor Lagrangian as

L̂ðxÞ ¼ ˆ̃ψ†
LðxÞf∂gψ̂LðxÞ þ ˆ̃ψ†

RðxÞf∂gPψ̂RðxÞ
−m ˆ̃ψ†

LðxÞψ̂RðxÞ −m ˆ̃ψ†
RðxÞψ̂LðxÞ: ð5:62Þ

This Lagrangian is both η̂-pseudo-Hermitian and invariant
under proper Poincaré transformations ISOð1; 3Þ↑, as
required. Moreover, in the Hermitian limit, it reduces to
the free Hermitian spinor Lagrangian.

E. Four-component fermions

Having found the pseudo-Hermitian representations of
right- and left-handed spinors, we are able to obtain the
corresponding pseudo-Hermitian representation of Dirac
fermions. The Dirac fermion is a 4-component field,
which transforms under the direct sum ð0; 1

2
Þ ⊕ ð1

2
; 0Þ of

right-handed and left-handed spinor representations of the
proper Lorentz group [56].
We begin by defining a new representation on the

Lorentz Lie algebra soð1; 3Þ by taking a direct sum
of the left- and the right-handed spinor representations
s ≔ κ01

2
⊕ κ1

2
0 over the direct sum of their representation

spaces C2 ⊕ C2 ≅ C4:

sðMÞ∶ C2 ⊕ C2 ↦ C4;

ψ̂R ⊕ ψ̂L ↦ sðMÞ½ψ̂R ⊕ ψ̂L�
¼ ðκ01

2
⊕ κ1

2
0ÞðMÞ½ψ̂R ⊕ ψ̂L�: ð5:63Þ

As sðMÞ is a direct sum, it can be written as 4 × 4 block-
diagonal matrix acting on a 4-component quantum field
composed of 2-component spinors:
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sðMÞ½ψ̂R ⊕ ψ̂L� ≅
� κ01

2
ðMÞ 0

0 κ1
2
0ðMÞ

��
ψ̂R

ψ̂L

�

¼
� ρ1

2
ðXÞ 0

0 ρ1
2
ð−X†Þ

��
ψ̂R

ψ̂L

�
: ð5:64Þ

Here, we used Eq. (5.41), which relates the j ¼ 1
2
repre-

sentation of slð2;CÞ to the ð1
2
; 0Þ and ð0; 1

2
Þ representations

of the Lorentz algebra soð1; 3Þ.
A more familiar basis is defined by acting on the rotation

and boost generators:

Sab ≔ iεabcsðRcÞ and S0a ≔ −isðBaÞ: ð5:65Þ

It obeys the Lorentz Lie bracket in Eq. (3.7) and can be
written as the commutator of the gamma matrices:

Sμν ¼
i
4
½γ̃μ; γ̃ν�: ð5:66Þ

However, here, the gamma matrices γ̃a (a ¼ 1, 2, 3) are not
in the Hermitian representation of slð2;CÞ. Instead, they
are in the ðρ1

2
;C2Þ π-pseudo-Hermitian representation of

slð2;CÞ. This is due to the pseudo-Hermitian nature of the
representation ðs;C4Þ defined in Eq. (5.64). Hence, in the
Weyl (chiral) basis, the gamma matrices are given by

γ̃μ ¼
 

0 ρ1
2
ðσμÞ

ρ1
2
ðσ̄μÞ 0

!
: ð5:67Þ

Note that ρ1
2
ðσ0Þ ¼ ρ1

2
ð12Þ ∉ slð2;CÞ is not an element of

the Lie algebra slð2;CÞ. Instead, we have a Lie bracket

½ρ1
2
ðσμÞ; ρ1

2
ðσνÞ� ¼ 2iδμaδνbεabcρ1

2
ðσcÞ: ð5:68Þ

The π-pseudo-Hermitian representation will be related to the
Hermitian representation via a similarity transformation:

ρ1
2
ðσμÞ ¼ VσμV−1 ⇒ ρ1

2
ðσ0Þ ¼ σ0 ¼ 12: ð5:69Þ

Thus, the gamma matrix γ̃0 is the same for Hermitian and
π-pseudo-Hermitian representation. We can also check that
the gamma matrices γ̃μ obey the Clifford algebra

fγ̃μ; γ̃νg ¼ 2gμν14; ð5:70Þ

where gμν ¼ diagð1;−1;−1;−1Þ is the Minkowski metric.
The Poincaré invariant, pseudo-Hermitian spinor

Lagrangian in Eq. (5.62) can be written in the 4-component
Weyl (chiral) basis as

L̂ ¼ ð ˆ̃ψ†
R

ˆ̃ψ†
L Þ
� f∂gP 0

0 f∂g

��
ψ̂R

ψ̂L

�

−mð ˆ̃ψ†
R

ˆ̃ψ†
L Þ
�

0 12
12 0

��
ψ̂R

ψ̂L

�
: ð5:71Þ

We define the 4-component Dirac fermion and its dual as

ψ̂ðxÞ≔
�
ψ̂RðxÞ
ψ̂LðxÞ

�
; ˆ̃ψ†ðxÞ≔ ð ˆ̃ψ†

RðxÞ ˆ̃ψ†
LðxÞ Þ and

ˆ̃̄ψðxÞ≔ ˆ̃ψ†ðxÞγ̃0: ð5:72Þ

If we expand the partial derivative matrices in terms of their
definition in Eq. (5.57), then we can write the Lagrangian in
terms of gamma matrices:

L̂ðxÞ ¼ ˆ̃̄ψðxÞ
� ðVV†πÞ−1 0

0 VV†π

�
γ̃μ∂

μψ̂ðxÞ−m ˆ̃̄ψðxÞψ̂ðxÞ:

ð5:73Þ

As we see, while the mass term is of the usual form of the
Dirac Lagrangian, the kinetic term has picked up a matrix
VV†π. Here, π is the 2 × 2 matrix constructed using a
biorthonormal basis for slð2;CÞ and V is the matrix
diagonalizing the representation of ρ1

2
ðJ3Þ. Hence, if the

eigenstates of ρ1
2
ðJ3Þ have a positive norm with respect to

the inner product h·jπ·i, then VV†π ¼ 12 is just the identity.
On the other hand, if the eigenstates have indefinite norm
with respect to h·jπ·i, then VV†π ¼ C is the C matrix, i.e.,
the discrete symmetry of ρ1

2
ðJ3Þ, meaning ½ρ1

2
ðJ3Þ; C� ¼ 0,

which we find from the biorthonormal basis for our system
[3,5]. We call this matrix C due to convention across
the literature of non-Hermitian quantum mechanics [7];
however, it has nothing to do with charge conjugation.

VI. EXAMPLE: PT-SYMMETRIC
SCALAR FIELD THEORY

Before concluding this work, we consider a concrete
example of a PT-symmetric scalar field theory. The theory
is composed of two complex scalar fields with a non-
Hermitian mass mixing matrix. This archetypal model,
introduced in Ref. [49], has been considered in a number of
existing works (see, e.g., Refs. [37,51]). In this section, we
show how it can be formulated consistently based on our
preceding discussions.

A. Naive Lagrangian

Following the strategy of appending non-Hermitian
terms to an otherwise Hermitian Lagrangian, it is tempting
to write the Lagrangian density, as was done in Ref. [49]:

LðxÞ ¼ ∂
μΦ†ðxÞ∂μΦðxÞ −Φ†ðxÞM2ΦðxÞ: ð6:1Þ
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Here, Φ ¼ ðΦ1

Φ2
Þ is a 2-component complex scalar field composed of a scalar component Φ1 and a pseudoscalar component

Φ2. The Lagrangian’s non-Hermiticity arises from the presence of a non-Hermitian mass matrix:

M2 ¼
�

m2
1 μ2

−μ2 m2
2

�
≠ M2† : ð6:2Þ

Naively, we might assume the standard parity P and time-reversal T transformation properties of scalar and pseudoscalar
fields as follows:

P∶ Φ1ðxÞ ↦ Φ1PðxPÞ ¼ þΦ1ðxÞ
Φ2ðxÞ ↦ Φ2PðxPÞ ¼ −Φ2ðxÞ

)
⇒ ΦðxÞ ↦ ΦPðxPÞ ¼ PΦðxÞ; ð6:3Þ

T∶ Φ1ðxÞ ↦ Φ1T ðxTÞ ¼ þΦ1�ðxÞ
Φ2ðxÞ ↦ Φ2T ðxTÞ ¼ þΦ2� ðxÞ

)
⇒ ΦðxÞ ↦ ΦTðxTÞ ¼ Φ�ðxÞ: ð6:4Þ

Here, P is the “parity” matrix:

P ¼
�
1 0

0 −1
�
; ð6:5Þ

reflecting the intrinsic parity þ1 of the scalar and −1 of the
pseudoscalar field. Furthermore, we observe that the mass
matrix is P-pseudo-Hermitian, i.e., M2† ¼ PM2P−1, with
respect to the parity matrix P. Indeed, the classical
Lagrangian is PT symmetric under the standard parity
and time-reversal transformations in Eq. (6.3):

PT∶LðxÞ ↦ LPTðxPTÞ ¼ LðxÞ: ð6:6Þ

Let us now consider the corresponding quantum
Lagrangian operator L̂∶F ↦ F , acting on the Fock
space F :

L̂ðxÞ ¼ ∂
μϕ̂†ðxÞ∂μϕ̂ðxÞ − ϕ̂†ðxÞM2ϕ̂ðxÞ: ð6:7Þ

Here, ϕ̂ ¼ ðϕ̂1

ϕ̂2
Þ is the 2-component quantum field operator

composed of a scalar field operator ϕ̂1 and a pseudoscalar
field operator ϕ̂2. The corresponding standard scalar and
pseudoscalar transformations under parity and time-rever-
sal are

P∶ P̂ϕ̂1ðxÞP̂−1 ¼ þϕ̂1ðxPÞ
P̂ϕ̂2ðxÞP̂−1 ¼ −ϕ̂2ðxPÞ

)
⇒ P̂ ϕ̂ðxÞP̂−1 ¼ Pϕ̂ðxPÞ;

ð6:8Þ

T∶ T̂ ϕ̂1ðxÞT̂ −1 ¼ þϕ̂1ðxTÞ
T̂ ϕ̂2ðxÞT̂ −1 ¼ þϕ̂2ðxTÞ

)
⇒ T̂ ϕ̂ðxÞT̂ −1 ¼ ϕ̂ðxTÞ;

ð6:9Þ

where P̂∶ F ↦ F is the parity operator and T̂ ∶ F ↦ F is
the time-reversal operator, both acting on Fock space F .
Indeed, the quantum Lagrangian is P̂-pseudo-Hermitian
under the standard parity transformation in Eq. (6.8):

L̂ðxPÞ† ¼ P̂ L̂ðxÞP̂−1: ð6:10Þ

We can check that the corresponding Hamiltonian operator:

Ĥ ¼
Z

d3x
	
∂
0ϕ̂†ðxÞ∂0ϕ̂ðxÞ − ∂

iϕ̂†ðxÞ∂iϕ̂ðxÞ

þ ϕ̂†ðxÞM2ϕ̂ðxÞ
 ð6:11Þ

is also P̂-pseudo-Hermitian, i.e., Ĥ† ¼ P̂ Ĥ P̂−1.
However, for a non-Hermitian Hamiltonian, the standard

scalar/pseudoscalar parity transformation is incorrect. This
can be seen implicitly by parity-transforming Hamilton’s
equation:

P∶½ϕ̂ðxÞ; Ĥ� ¼ i∂0ϕ̂ðxÞ ↦ ½P̂ ϕ̂ðxÞP̂−1; P̂ Ĥ P̂−1�
¼ iP̂∂0ϕ̂ðxÞP̂−1

⇒ ½Pϕ̂ðxPÞ; Ĥ†� ¼ iP∂0ϕ̂ðxPÞ: ð6:12Þ

Multiplying the left-hand side by P−1, and since the
Hamiltonian Ĥ is independent of x, we can relabel xP to
x, giving

P∶ ½ϕ̂ðxÞ; Ĥ� ¼ i∂0ϕ̂ðxÞ ↦ ½ϕ̂ðxÞ; Ĥ†� ¼ i∂0ϕ̂ðxÞ: ð6:13Þ

By virtue of the non-Hermiticity of the Hamiltonian,
Ĥ† ≠ Ĥ, we see that the field operator cannot transform
under parity in the usual way.
We can also see this explicitly by acting with parity on

the momentum decomposition of the field ϕ̂. Varying the
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Lagrangian with respect to ϕ̂†, gives the Euler-Lagrange
equation for ϕ̂:

∂
μ
∂μϕ̂ðxÞ þM2ϕ̂ðxÞ ¼ 0: ð6:14Þ

The general solution to this equation can be written in
momentum space as

ϕ̂ðxÞ ¼
Z

d3p⃗
ð2πÞ3 ð2Ep⃗Þ−1

2½e−ip·xâð0; p⃗Þ þ eip·xĉ†ð0; p⃗Þ�;

ð6:15Þ

where Ep⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗212 þM2

p
is the 2 × 2 energy-momentum

matrix, which is nondiagonal and non-Hermitian due to the
non-Hermiticity ofM2. Here, â and ĉ† are the 2-component
annihilation and creation operators.
As the non-Hermiticity comes purely from the mass

matrix, it affects the μ ¼ 0 component of the 4-momentum,
i.e., the energy p0 ¼ Ep⃗, but not the 3-momentum p⃗. At
t ¼ 0, the annihilation âð0; p⃗Þ and creation ĉ†ð0; p⃗Þ
operators do not depend on the energy and only on the
3-momentum. Thus, at t ¼ 0, they are not affected by the
non-Hermiticity of the Lagrangian and should transform
under parity and time reversal in the standard way:

P̂âið0; p⃗ÞP̂−1 ¼ Pijâjð0;−p⃗Þ; P̂ĉ†ið0; p⃗ÞP̂−1 ¼ Pijĉ†jð0;−p⃗Þ;
P̂â†ið0; p⃗ÞP̂−1 ¼ â†jð0;−p⃗ÞPji; P̂ĉið0; p⃗ÞP̂−1 ¼ ĉjð0;−p⃗ÞPji: ð6:16Þ

T̂ âið0; p⃗ÞT̂ −1 ¼ âið0;−p⃗Þ; T̂ ĉ†ið0; p⃗ÞT̂ −1 ¼ ĉ†ið0;−p⃗Þ;
T̂ â†ið0; p⃗ÞT̂ −1 ¼ â†ið0;−p⃗Þ; T̂ ĉið0; p⃗ÞT̂ −1 ¼ ĉið0;−p⃗Þ: ð6:17Þ

Here, â1 and ĉ†1 transform as scalars with positive intrinsic parity þ1, whereas â2 and ĉ†2 transform as pseudoscalars with
negative intrinsic parity −1. Moreover, at t ¼ 0, they should have the usual commutation relations:

½âið0; p⃗Þ; â†jð0; q⃗Þ� ¼ ½ĉið0; p⃗Þ; ĉ†jð0; q⃗Þ� ¼ δijð2πÞ2δð3Þðp⃗ − q⃗Þ;
½âið0; p⃗Þ; ĉjð0; q⃗Þ� ¼ ½âið0; p⃗Þ; ĉ†jð0; q⃗Þ� ¼ 0: ð6:18Þ

Hence, if we act with parity on the momentum decomposition of the field ϕ̂ in Eq. (6.15), we find that its parity
transformation is indeed nontrivial:

P̂ ϕ̂ðxÞP̂−1 ¼ P
Z

d3p⃗
ð2πÞ3 ð2E

†
p⃗Þ−

1
2½e−ip†·xP âð0; p⃗Þ þ eip

†·xP ĉ†ð0; p⃗Þ� ≠ Pϕ̂ðxPÞ: ð6:19Þ

Now consider the Euler-Lagrange equations of motion.
If we vary the Lagrangian with ϕ̂, then we get the Euler-
Lagrange equation for ϕ̂†:

∂
μ
∂μϕ̂

†ðxÞ þ ϕ̂†ðxÞM2 ¼ 0: ð6:20Þ

However, it is not the Hermitian conjugate of the Euler-
Lagrange equation for ϕ̂ given in Eq. (6.14) by virtue of the
non-Hermiticity of the mass mixing matrix, M2† ≠ M2:

ð∂μ∂μϕ̂†ðxÞþ ϕ̂†ðxÞM2Þ†¼0⇒∂
μ
∂μϕ̂ðxÞþM2† ϕ̂ðxÞ¼0:

ð6:21Þ

These issues are a direct consequence of the fields ϕ̂ and
ϕ̂† being governed by two different Hamiltonians, Ĥ and
Ĥ†, respectively. As described in the preceding section, we

fix this by determining the dual field ˆ̃ϕ
†
and using it to

construct a consistent Lagrangian operator.

B. Poincaré-invariant Lagrangian

Our prescription for a self-consistent non-Hermitian
quantum field theory suggests that we should begin with

a Lagrangian built from the field operator ϕ̂ and its dual ˆ̃ϕ
†
:

L̂ðxÞ ¼ ∂μ
ˆ̃ϕ
†ðxÞ∂μϕ̂ðxÞ − ˆ̃ϕ

†ðxÞM2ϕ̂ðxÞ: ð6:22Þ
Here, we have the same non-Hermitian mass mixing matrix
as in Eq. (6.2). The dual field for an n-component scalar
field is given by Eq. (5.33). In this example, n ¼ 2, and the
dual field is

ˆ̃ϕ
†ðxÞ ¼ η̂−1ϕ̂†ðxηÞη̂Π; with Π ¼

�
π1 0

0 π2

�
: ð6:23Þ
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At this point, the operator η̂ and the matrix Π are yet to be
determined.
By construction, this Lagrangian is η̂-pseudo-Hermitian

and the mass matrix is Π-pseudo-Hermitian:

L̂†ðxηÞ ¼ η̂ L̂ðxÞη̂−1 and M2† ¼ ΠM2Π−1: ð6:24Þ

In the previous subsection, we found that the “naive”
Lagrangian and the Hamiltonian operator are P̂-pseudo-
Hermitian with respect to the parity operator P̂ and the
mass matrix is P-pseudo-Hermitian with respect to the
parity matrix P given in Eq. (6.5). Hence, this suggests
natural choices for the operator η̂ to be the parity operator P̂
and Π to be the parity matrix P.
Indeed, if we vary the Lagrangian in Eq. (6.22) with ϕ̂,

we get the Euler-Lagrange equation for the dual field ˆ̃ϕ
†
:

∂
μ
∂μ

ˆ̃ϕ
†ðxÞ þ ˆ̃ϕ

†ðxÞM2 ¼ 0: ð6:25Þ

In momentum space, it has a solution

ˆ̃ϕ
†ðxÞ ¼

Z
d3p⃗
ð2πÞ3 ½â

†ð0; p⃗Þeip·x þ ĉð0; p⃗Þe−ip·x�ð2Ep⃗Þ−1
2:

ð6:26Þ

This is exactly the parity transformation of ϕ̂ found in
Eq. (6.19), which can be rewritten as

ˆ̃ϕ
†ðxÞ ¼ P̂−1ϕ̂†ðxPÞP̂P: ð6:27Þ

We note that this matches the construction proposed in
Ref. [51]. Given the dual field above, the Lagrangian in
Eq. (6.22) operator is indeed P̂-pseudo-Hermitian:

L̂†ðxPÞ ¼ P̂ L̂ðxÞP̂−1: ð6:28Þ

Having chosen η̂ to be the parity operator P̂, a natural
choice for the inner product yielding real eigenspectra
would be h·jP̂·i. However, if we wish for the Fock-space

3-momentum operator to remain Hermitian ˆP⃗
† ¼ ˆP⃗, we

must recognize that the inner product h·jP̂·i will not be
invariant under space translations:

hαjP̂jβi ↦ hαje−iεaP̂†a
P̂eiεaP̂

a jβi ¼ hαjP̂e2iεaP̂a jβi: ð6:29Þ

This is because the parity operator flips the sign of the
3-momentum, i.e.,

P̂ ˆP⃗ P̂ jp⃗; ki ¼ P̂ ˆP⃗ Pjkj−p⃗; ji ¼ ð−p⃗ÞPjkP̂j−p⃗; ji
¼ ð−p⃗ÞPjkPijjp⃗; ii ¼ −p⃗jp⃗; ki; ð6:30Þ

so that

P̂ ˆP⃗ P̂ ¼ − ˆP⃗: ð6:31Þ

As we established in Eq. (3.6), to preserve Poincaré
invariance, all of the generators must be η̂-pseudo-
Hermitian. Hence, they are Hermitian if and only if
they commute with η̂. However, if we wish to keep the
3-momentum operator Hermitian, it will not commute with
the parity operator, and the theory with η̂ ¼ P̂ will then not
be Poincaré invariant.

C. C operator

In PT-symmetric quantum mechanics, where the
Hamiltonian is non-Hermitian, but PT-symmetric, i.e.,
½H;PT� ¼ 0, we discover an additional discrete symmetry,
denoted as C such that ½H;C� ¼ 0 and C2 ¼ 1 [7]. Despite
its name, this symmetry is unrelated to charge conjugation.
In the PT-unbroken phase, where the Hamiltonian has real
eigenvalues, we use this symmetry to construct a positive-
definite metric PC. This metric ensures that the eigenstates
of the Hamiltonian are orthogonal with respect to the
positive-definite inner product h·jPC·i.
It turns out that such a symmetry exists in any discrete

pseudo-Hermitian system, provided it is diagonalizable. In
our example, this system is the P-pseudo-Hermitian mass
mixing matrix. It is diagonalizable with an eigenspectrum
M2jψ1;2i ¼ m̄2

1;2jψ1;2i, where m̄1 is the “−” and m̄2 is the
“þ” root, respectively [49]:

m̄2
1;2¼

m2
2þm2

1

2
∓m2

1−m2
2

2

ffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p
with ν≔

2μ2

m2
1−m2

2

:

ð6:32Þ

We have chosen m2
1 > m2

2 so that ν > 0. The mass
eigenvalues m̄1;2 ∈R are real for ν ≤ 1 and the mass
eigenstates will be “pseudo” orthonormal with respect to
the indefinite inner product h·j·iP ¼ h·jP·i:

hψmjψniP ¼ ð−1Þmδmn for m; n∈ f1; 2g: ð6:33Þ

Here, the normalized mass eigenstates are [49]

jψ1i¼N

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p

ν

�
and jψ2i¼N

�
ν

−1þ
ffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p
�
;

ð6:34Þ

with normalization constant N¼½2ð
ffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p
−ð1−ν2ÞÞ�−1

2.
As mentioned, this system will have an additional

discrete symmetry ½M2; C� ¼ 0 with C2 ¼ 12. While this
symmetry exists for both real and complex mass eigen-
values, in the case of real eigenspectrum, it will be related
to the parity matrix via [51]
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C ¼
X2
n¼1

jψni ⊗ hψnjP ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
�

1 ν

−ν −1
�

and

PC ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ν2

p
�
1 ν

ν 1

�
: ð6:35Þ

Hence, the mass eigenstates will be orthogonal with respect
to a positive-definite inner product h·j·iPC ¼ h·jPC·i:

hψmjψniPC ¼ δmn for m; n∈ f1; 2g; ð6:36Þ

As the pseudo-Hermiticity of our Lagrangian arises
entirely from the P-pseudo-Hermitian mass mixing matrix,
the P̂-pseudo-Hermitian Hamiltonian operator Ĥ is also
diagonalizable. Thus, it also contains a discrete symmetry
½Ĥ; Ĉ� ¼ 0 with Ĉ2 ¼ 1̂. A difficult, but possible, way to
find this symmetry is to take an infinite sum of multiparticle
eigenstates of Ĥ similar to Eq. (6.35). However, a more
straightforward approach would be to notice that C matrix
is just the parity matrix P in the basis where M2 is
nondiagonal [37]:

M2¼RD2R−1 with R¼N

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p
ν

ν −1þ
ffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p
�
:

ð6:37Þ

In the eigenbasis ofM2, theC is just the paritymatrixP [37]:

C ¼ RPR−1: ð6:38Þ

Hence, the Ĉ operator is just the parity operator P̂ in the
eigenbasis of the Hamiltonian operator Ĥ:

Ĥ ¼ R̂ D̂ R̂−1 → Ĉ ¼ R̂ P̂ R̂−1; ð6:39Þ

where D̂∶F ↦ F is the diagonalizedHamiltonian operator.
Since, the diagonalized mass mixing matrix commutes

with parity, i.e., ½D;P� ¼ 0, so does the diagonalized
Hamiltonian operator ½D̂; P̂� ¼ 0. It follows that Ĉ acts
on the annihilation/creation operators just as the parity
operator P̂, but with C instead of P as given in Eq. (6.16):

Ĉâð0; p⃗ÞĈ−1¼Câð0;−p⃗Þ; Ĉĉ†ð0; p⃗ÞĈ−1 ¼Cĉ†ð0;−p⃗Þ;
Ĉâ†ð0; p⃗ÞĈ−1¼ â†ð0;−p⃗ÞC; Ĉ ĉð0; p⃗ÞĈ−1¼ ĉð0;−p⃗ÞC:

ð6:40Þ

Indeed, if we expand the Hamiltonian in terms of creation
and annihilation operators, then we find that it commutes
with Ĉ:

Ĥ ¼
Z

d3p
ð2πÞ3 ½â

†ið0; p⃗ÞEij
p⃗ â

jð0; p⃗Þ þ ĉ†ið0; p⃗ÞEij
p⃗ ĉ

jð0; p⃗Þ� ⇒ Ĉ Ĥ Ĉ−1 ¼ Ĥ: ð6:41Þ

This is due to the matrix C commuting with Ep⃗ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗212 þM2

p
. Also, the operator Ĉ will square to unity:

Ĉ2âð0; p⃗ÞĈ−2 ¼ âð0; p⃗Þ ⇒ Ĉ2 ¼ 1̂: ð6:42Þ

The easiest way to find the operators P̂ and Ĉ is to use the Baker-Campbell-Hausdorf formula:

P̂ ¼ exp

�
−i

π

2

Z
d3p
ð2πÞ3 ðâ

†i
p⃗ P

ijâjp⃗ − â†ip⃗ â
i
−p⃗ þ ĉip⃗P

ijĉ†jp⃗ − ĉip⃗ĉ
†i
−p⃗Þ


; ð6:43Þ

Ĉ ¼ exp

�
−i

π

2

Z
d3p
ð2πÞ3 ðâ

†i
p⃗ C

ijâjp⃗ − â†ip⃗ â
i
−p⃗ þ ĉip⃗C

ijĉ†jp⃗ − ĉip⃗ĉ
†i
−p⃗Þ


; ð6:44Þ

where âp⃗ ≔ âð0; p⃗Þ and ĉp⃗ ≔ ĉð0; p⃗Þ are creation/annihilation operators at t ¼ 0.
The important property of the Ĉ operator is that it flips the sign of the 3-momentum operator:

Ĉ ˆP⃗ Ĉ jp⃗; ki ¼ Ĉ ˆP⃗ Cjkj−p⃗; ji ¼ ð−p⃗ÞCjkĈj−p⃗; ji ¼ ð−p⃗ÞCjkCijjp⃗; ii ¼ −p⃗jp⃗; ki; ð6:45Þ

so that

Ĉ ˆP⃗ Ĉ ¼ − ˆP⃗: ð6:46Þ
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As noted in the previous subsection, the parity operator also
flips the sign of the 3-momentum operator. Thus, if we wish
to keep the 3-momentum operator Hermitian, the theory
with η̂ ¼ P̂ will not be Poincaré invariant. However, the
existence of the discrete symmetry Ĉ, allows us to construct
a new positive-definite metric operator P̂ Ĉ, such that the
eigenstates of the Hamiltonian operator are orthogonal
with respect to the positive-definite inner product
h·j·iP̂ Ĉ ¼ h·jP̂ Ĉ ·i and have positive norms. But more

importantly, if we choose η̂ ¼ P̂ Ĉ it commutes with the
3-momentum operator:

ðP̂ ĈÞP̂iðP̂ ĈÞ−1 ¼ P̂i: ð6:47Þ

Hence, the 3-momentum can simultaneously be Hermitian
and P̂ Ĉ-pseudo-Hermitian, leaving the theory Poincaré
invariant.
Therefore, in Eq. (5.33), we take η̂ ¼ P̂ Ĉ;Π ¼ PC and

the coordinates remain unchanged under this transforma-
tion, i.e., xPC ¼ x, so that the dual field is

ˆ̃ϕ
†ðxÞ ¼ ðP̂ ĈÞ−1ϕ̂†ðxÞðP̂ ĈÞPC: ð6:48Þ

Both the Lagrangian and the Hamiltonian are P̂ Ĉ-pseudo-
Hermitian:

L̂†ðxÞ ¼ ðP̂ ĈÞL̂ðxÞðP̂ ĈÞ−1 and Ĥ† ¼ ðP̂ ĈÞĤðP̂ ĈÞ−1:
ð6:49Þ

The inner product h·jP̂ Ĉ ·i yields a theory that is invariant
under proper Poincaré transformations.

VII. CONCLUSION

In this work, we have considered a generalization of the
Poincaré group when the generator of time translations, i.e.,
the Hamiltonian operator, is non-Hermitian. The time evo-
lution of the quantum field operator ψ̂ and its Hermitian
conjugate ψ̂† are then governed by distinct Hamiltonians, Ĥ
and Ĥ†, respectively. As a consequence, a theory built from ψ̂
and ψ̂† exhibits inconsistent equations of motion and lacks
Poincaré invariance. We have also shown that when the
Hamiltonian is non-Hermitian, its non-Hermiticity extends to
the other group generators, such as space translations,
rotations, and boosts. Specifically, if the Hamiltonian is
diagonalizable, we can always find an operator η̂ such
that Ĥ† ¼ η̂ Ĥ η̂−1, which implies that the Hamiltonian
is η̂-pseudo-Hermitian. The pseudo-Hermiticity of the
Hamiltonian leads to pseudo-Hermiticity of the other gen-
erators in the Poincaré algebra. These generators become
Hermitian if and only if they commute with η̂.

For a quantum field theory to be Poincaré invariant, the
Lagrangian should transform as a single object under the
proper Poincaré group. However, we observe that the field
operator ψ̂ and its Hermitian conjugate ψ̂† transform in two
different representations, leading to the lack of Poincaré
invariance in both the Lagrangian and the theory as a
whole. This prompts us to search for a new conjugate field,
which we refer to as the “dual” field. This dual field
operator, denoted by ˆ̃ψ†, transforms in the dual represen-
tation of ψ̂ . In Sec. IV, we found it to have a general form,
which holds for fields of any spin j:

ˆ̃ψ†
jðxÞ ¼ η̂−1ψ̂†

jðxηÞη̂π: ð7:1Þ

Herein, the operator η̂ is such that the Hamiltonian is
η̂-pseudo-Hermitian, xη is the coordinate transformation with
respect to the operator η̂ (e.g., parity xP), and the matrix π is
such that the finite-dimensional Lorentz representations are
π-pseudo-Hermitian. Equation (7.1) is the central result
of this work, and we have demonstrated its importance using
a simple model of two complex scalar fields with non-
Hermitian mass mixing, where the Hamiltonian is pseudo-
Hermitian with respect to the parity operator P̂.
With this result, we have established a fundamental

framework for developing self-consistent non-Hermitian
quantum field theories. By laying down these foundational
principles, we pave the way for future applications, in
particular in the challenging context of interacting non-
Hermitian quantum field theories.

Note added. After the preprint of this work was posted,
Ref. [58] appeared, which brought the earlier work [59] to
our attention. The construction of the dual field for the
second-order fermionic theory described in these works,
while not motivated by Poincaré invariance, bears some
similarities with the construction described here, and we
leave a detailed application of the present approach to this
theory for future work.

No data were created or analyzed in this study.
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