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Modular symmetry in magnetized 7% torus and orbifold models
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We study the modular symmetry in magnetized 729 torus and orbifold models. The 729 torus has the
modular symmetry I'y = Sp(2g, Z). The magnetic flux background breaks the modular symmetry to a

certain normalizer N (H). We classify remaining modular symmetries by magnetic flux matrix types.

Furthermore, we study the modular symmetry for wave functions on the magnetized 729 and certain
orbifolds. It is found that wave functions on magnetized 7% as well as its orbifolds behave as the Siegel

modular forms of weight 1/2 and N 4(H, h), which is the metaplectic congruence subgroup of the double

covering group of N,(H), N,(H). Then, wave functions transform nontrivially under the quotient group,
N,y =N,(H)/N,(H, h), where the level h is related to the determinant of the magnetic flux matrix.
Accordingly, the corresponding four-dimensional chiral fields also transform nontrivially under Ng‘h
modular flavor transformation with modular weight —1/2. We also study concrete modular flavor
symmetries of wave functions on magnetized 729 orbifolds.

DOI: 10.1103/PhysRevD.109.065011

I. INTRODUCTION

One of the significant mysteries in particle physics is
the origin of the flavor structure of quarks and leptons
such as their hierarchical masses, flavor mixing angles, and
CP phases. Many scenarios have been studied. Among
them, one of the interesting approaches is to assume certain
non-Abelian discrete flavor symmetries such as Sy, Ay,
A(3N?), and A(6M?) among generations of quarks and
leptons [1-6].

As the origin of flavor symmetries, the geometrical
symmetries of compact spaces predicted in higher-dimen-
sional theories such as superstring theory have been
attractive. (See, e.g., Refs. [7,8].) The modular symmetry
is the geometrical symmetry of compact spaces such as tori,
orbifolds, and Calabi-Yau manifolds as the transformation
of cycle basis. Recently, the modular symmetry has been
attractive since it includes certain non-Abelian discrete
flavor symmetries such as Sz, A4, S4, and A5 [9]. Thus, the
modular symmetry can be a source of flavor symmetries of
quarks and leptons, obtained from the compactification.
Actually, various bottom-up approaches of model building
have been studied [10-20], in which the assumed modular
flavor symmetries play an important role to determine the
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flavor structure of quarks and leptons from the geometrical
parameters called moduli. (See for more Ref. [21].)

In top-down approaches, on the other hand, it is
important to look for what modular flavor symmetries of
chiral fields such as quarks and leptons appear in an
effective theory of superstring theory. For example, the
ten-dimensional (10D) N = 1 supersymmetric Yang-Mills
theory with nonvanishing magnetic fluxes on a torus or its
orbifold is an interesting effective theory of magnetized
D-brane models in superstring theory [22-25]. Magnetized
D-brane models have several interesting features. Multi-
generational chiral fermions [26-35] (including three gen-
erations of chiral fermions [36-38]) can be obtained by
specific magnetic fluxes and boundary conditions. Their
Yukawa couplings [26,32,33,39] as well as higher-order
couplings [40] and also Majorana neutrino mass terms
generated by D-brane instanton effects [41,42] can be
calculated analytically since we can find their wave
functions explicitly. (See for D-brane instanton computa-
tions Refs. [43,44].) Actually, realistic quark and lepton
masses and mixing angles as well as CP phases have been
realized in Refs. [39,45-52].

These magnetized torus and orbifold models have the
modular symmetry.1 Their effective field theory is con-
trolled by the modular symmetry. The torus 72 has a single
complex structure modulus and the modular symmetry
SL(2, 7). The modular symmetry and its implications on

'For heterotic orbifold models, see Refs. [53-57].
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the flavor structure in the magnetized 77 and its certain
orbifold models with a single complex structure modulus
have been studied in Refs. [30,58] and in detail in
Refs. [59,60]. (See also Refs. [61-70].)

Generic compact space has many moduli, and they have
a larger modular symmetry, Sp(2g, Z). That can lead to a
rich flavor structure. Such symplectic modular symmetries
were studied in Calabi-Yau compactifications [71-74]
and others [75-78]. The torus 729 has the modular sym-
plectic symmetry Sp(2g, Z). In this paper, we extend the
above analysis on magnetized 72 and orbifold models to
the magnetized 729 (including 7% and 7°) and its certain
orbifold models. We study the modular flavor symmetry in
these higher-dimensional torus and orbifold models with
magnetic fluxes.

This paper is organized as follows. We review the
modular symmetry on 7% in Sec. Il A and modular forms
in Sec. I B. In Sec. III, we review magnetized 7% com-
pactification. Then, we study the modular symmetry in
magnetized 729 and orbifold compactifications. Generally,
the modular symmetry on 729 with a magnetic flux can be
smaller than that on 729 without a magnetic flux. Hence, we
classify the modular symmetry, which is consistent with a
magnetic flux in Sec. IV A, and then we study the modular
flavor symmetry of wave functions on magnetized 729 as
well as orbifold by general analysis and concrete examples
in each class, in Sec. IV B. In Sec. V, we conclude this
study. In Appendix A, we discuss the algebraic relation
between the S transformation and the general T trans-
formation. In Appendix B, we derive the Landsberg-Schaar
relation. In Appendix C, we prove that the generators of
A(96) x Z, satisfy the algebraic relation. In Appendix D,
we discuss the modular flavor symmetry with the moduli
that are proportional to the unit matrix.

II. MODULAR SYMMETRY ON 7%
AND MODULAR FORMS

In this section, we review the modular symmetry on 729
and modular forms. (See, e.g., Refs. [77,79-87].) A 2g-
dimensional torus 729 can be constructed as C7/A, where A
is a lattice on CY spanned by 2¢ numbers of lattice vectors
ajand f; (j=1,...,9). We write complex coordinates of

aj and ﬁj as aj = t(a]j, ...,(ng) and ﬂ] = (ﬂlj’ ""/ng)’
respectively. Then, the ath component of the complex

coordinate on CY, u?, can be written as
u? :Zaj“-xf + B3y’ (x,y/ eR). (1)
=1

We also define the jth component of the complex coor-
dinate on 7%, 7/, as

d=(au =X +QF  (0<H <), (2)

where the g x g complex matrix, Q = a~!, is called the
complex structure moduli. Here, we consider that the
complex structure moduli lie on the Siegel upper-half
plane, defined as

H, ={QeGL(y9.C)|'Q = Q,ImQ > 0}. (3)
Then, the lattice identification is written by
Z—I—ekNZ-l-Qesz, (4)

for V k, where the jth component of e; is §; ;. The metric of
T is given by

ds? = di“du = (a'a);;dz'dz) = 2hydz'dz),  (5)

and then the volume of 729 can be calculated as

Vol(T%) = /Tw d?zd?7 /| det(2h)|
= |de;t(aTa)|2 det(2ImQ). (6)
The gamma matrices on 729, I'¥, and I'¥, satisfying
{I'¥,T¥} = 2hY, are given by
Iz = Kaf)—l]i'lrm’ < = [a—l]{?l—*u”’ (7)
where T and T are the gamma matrices on CY,

satisfying {I% T} = 254,

A. Modular symmetry on 7%

Now, let us review the Siegel modular symmetry on 729,
Let us consider the following lattice transformation:

(rim) = (¢ ) ()= (e o)
1= (5 ) esrean=r, ®)

where the almost complex structure,

(5 0) ©

needs to be invariant, i.e.,

vJy=J,= 'AC='CA, 'BD='DB, 'AD-'CB=1I,.

(10)

Since the lattice spanned by y(a) and y(f) is the same as
the lattice spanned by a and f, there is I, = Sp(2g, Z)
symmetry in 729 compactification. Associated with the
lattice transformations in Eq. (8), the moduli Q and the
coordinate z transform as
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r:Q=a"'p—y(Q) =yr(@)"rp)
= (AQ+ B)(CQ+ D)7, (11)
viz=alu-y(z) =y(@)'u="1CQ+D)"'z. (12)

Equation (11) is called the (inhomogeneous) Siegel modu-
lar transformation. Here, we call Eqgs. (11) and (12) the
Siegel modular transformation.

The generators of the Siegel modular group, I'y =

Sp(2g,Z), are given by
0 I I, B,
s:( "), Tab:(g 1’), (13)

~1, 0 0 I,

where B, are concretely written as

311:17 (14)
forg=1,
B _ 1 0 B 0 0) (0 1
11 — 0 0 ’ 22 — 0 1 ’ 12 — 1 0 ,
(15)
for g = 2, and
1 0 0 0 00
B“: 0 O 0 N Bzz— 0 1 0 N
0 00 0 0 0
0 0 0 010
Buy=10 00|, Bp=|10 0],
0 0 1 0 0 O
0 0 1 0 00
B]3: 0 O 0 N 323: 0 O 1 N (16)
1 00 010

for g = 3. The generators in Eq. (13) satisfy the following
relations:

-1, O
S2:( g >:—12gER,
0 -1,

St=R*=1,,
(ST )3_( B _Ig+Bib>

b)” = ,

‘ Ig—BZh Bab

-1,+2B2, 0
(8T,)° = ( ! 0 ’ [ 1B > =A_j o =U,
g ab

(STab>12 21297

RX=XR(X=S,T,), (17)

where we denote

X 0
AXE<0 ,Xl)ESp(Zg,Z), X€GL(g,2),  (18)

and then Ay, = £l Note that Eq. (17) corresponds to

the S3 transformation in the space spanned by lattice
vectors a, and f. (c # a, b). In Appendix A, we discuss
the algebraic relation between ths S transformation and the
general T transformation generated by the 7', transforma-
tion. Under the S and T, transformations, z and Q
transform as

§:(z.Q) = (7(z,Q)) = (-Q7'z,-Q"),
Tup: (2,Q) = (7(2,Q)) = (2,Q+ Byy). (19)

B. Modular forms

Now, let us review the Siegel modular forms. First, we
introduce the principal congruence subgroup of level n,

rg(n)={7’=<g Z)‘(g 5/)
(5 7) won

in particular, I';(1) = T';. The Siegel modular forms f(€)
of integral weight k and level n at genus g are holomorphic
functions of Q that satisfy

rif(Q) = f(r(Q)) = Jilr. Qp(r)f(Q).

A B
Ji(y. Q) = [det(CQ + D), y:<c D)erg, (21)
Ji(r2r1:Q) = Ji(r2.71(Q)) (71, Q).
p(rar1) = p(r2)p(r1)s 71,72 €Ly, (22)
with
p(y') =Ly €Ty(n). (23)

Thus, p is a unitary representation of the quotient group,
Iy, =T,/T,(n),so-called the finite Siegel modular group.
In other words, the Siegel modular forms transform non-
trivially under the finite Siegel modular transformation,
', ,. Concretely, we obtain the relations

P(R)? = p(8)* = [p(S)p(T )] = p(Top)" = 1.
(p(R) = p(8)* = [p(S)p(T,p))° = I(n = 2)), (24)

and also
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p(R) = p(S) = (~1)H1
(=F(Q) = F(S(Q)) = (~1)*

Then, we also find that

P(R)p(X) = p(X)p(R)

On the other hand, the overall factor J;(y, Q) is called the
automorphic factor, and it can be uniquely determined
once y is given.

Here, we comment on the stabilizer, H, and the nor-
malizer, N, (H), mentioned in Ref. [77]. When the moduli
Q are restricted to a certain region, as shown in Sec. IV A,
the modular symmetry is reduced from the Siegel modular
group, I'y, to the normalizer N,(H), called the Siegel
modular subgroup. When Q is fixed to a certain form in the
region, the stabilizer H is the unbroken group that is
generated by the modular transformation such that Q is
invariant. In general, the stabilizer is a normal subgroup
of Ny(H). As with T'y(n) and T'y,, =T,/I';(n), we can
consider the principal congruence subgroup of N,(H),

)

p(SPf(Q)). (25)

(X =58.Tup). (26)

N,H,n)={/eN,H)[y =L, (modn)}, (27)

and the quotient group, N, ,(H) = N,(H)/N,(H,n), is
called the finite Siegel modular subgroup.

We extend the above analysis for wave functions y(z, Q)
in Sec. IV B. To see that, however, we have to introduce
the Siegel modular forms of the half-integral weight. First,
we introduce the metaplectic double covering group of

I, =Sp(29.2),

[, =Sp(29.2) = {7 =[y.ellyel,.ee{£1}}. (28)

The multiplication is given by

7172 = [r1.€1llras €] = 1172, Alr1, 72)€1 €3]
= [y12.€12] =12 €T, (29)

where A(yy,7,) denotes the Rao’s 2-cocycle [88],” satisfy-
ing the following relation:

(7172)73 = 71(7273)-
S A(r1,12)A(r172:73) = A(r1.1273)A(r2.73).  (30)

In particular, the generators of fy = SA'1/7(2 Z) are given by
Tab = [Tab’ 1}7 (31)

and they satisfy the following relations:

S [ 1297 ] = R’ RZ = 34 = [IZg’ (_l)g]’ SS [1297 1] = Zng
(3T0) = (ST (=101, (3T0s)® = [Ay o, <—1>~ff-'1,
(ST ) [ 29> ( )g—g’] = U’ 02 = (STab)24 = [129’ 1} = 72;}7
RX=XR  OUX=X0U  (X=5T,). (32)
with
g’—{l (a=0) (33)
2 (a#b)’
Similarly, we can introduce the metaplectic congruence subgroup of level n( €4Z7Z),
Lyn) ={7" = /.|l |y €ly(n).e = 1}. (34)
Then, the Siegel modular forms f() of half-integral weight k/2 and level n at genus g are holomorphic functions of Q that
satisfy
fg E] 771f(9) - f(f’(g)) = ]k/z(f” Q)P(T’)f(g)’ jk/z(f” Q) = €ka/2(% Q) = Ek[dEt(CQ + D)]k/zv (35)
T2 (7271, Q) = [A(r1. 72)1" 2 (72. 71 ()T 2 (71. Q). p(7271) = p(72)p(71)- 71.72 €y, (36)
with
p(7)=1 7 el,(n), (37)

2See also Ref. [89].
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Here, we note that 7(Q) = y(Q), and we choose (—1)%/% = ¢~"9%/2_ Thus, p is a unitary representation of the quotient
group, Iig‘,l = fg/ fg(n), called the metaplectic finite Siegel modular group. In other words, the Siegel modular forms

transform nontrivially under the metaplectic finite Siegel modular transformation, l:g,n. Concretely, we obtain the relations

PR =p(8)F =1 p(0)=pS)pTup)* =1 p(Tw)" =1,
(p(R) = p(8)* = I(n =2)), (38)
and also
p(R) = p(5)7 = ™21 (&£(Q) = f(53(Q)) = e™/2p(5)*f()), (39)
PR =p(8)* = (-1)*1  (<f(Q) = f(5H(Q)) = (=1)%p(5)*f (), (40)
p(0) = p(8T4)"* = (=1 K  (&f(Q) = f(5Tw)*(Q)) = (=1)p(5T ;) 2 £(Q)). (41)
Then, we also find that
p(R)p(X) =p(X)p(R),  p(O)p(X) =p(X)p(0), (X =5.Ty). (42)

On the other hand, the overall factor J;(y, Q), called the
automorphic factor, can be uniquely determined once 7 is
given.

Similarly, we can consider the double covering group of
N,(H), N ,(H), and the metaplectic congruence subgroup
of level n(€42Z), N ,(H. n), by replacing y €T, in Eq. (28)
with y € N (H) and replacing y' €T'y(n) in Eq. (34) with
yY' €N,(H,n), respectively. In that case, p is a unitary
representation of the quotient group, N, ,(H) = N, (H)/
N,(H,n), called the metaplectic finite Siegel modular
subgroup.

IIIl. MAGNETIZED T% COMPACTIFICATION

In this section, we review a 729 compactification with a
background magnetic flux, so-called a magnetized T%9
compactification [26,32]. We introduce the following U(1)
magnetic flux:

F = z[N(ImQ)™"];;(idz" A dZ), (43)
with
(NQ) = NQ, (44)

which is needed for the magnetic flux F to be the (1,1) form
(F-flat condition). Here, N denotes the g X g flux matrix
and the flux must be quantized, i.e., N; i€ Z. It is induced
by the gauge potential,
A(z) = #zIm[/(NZ)(ImQ)~'dz]
Ty gk Ty —17 gk
= —E[(Nz)(ImQ) |xdz +5[(Nz)(lm9) 1xdz

= Ajdzt + Aydzt. (45)

I
Here, we do not consider Wilson lines. Under the lattice
translations, it transforms as

A(z + e) = A(z) + d['N(ImQ)~'Imz],
= A(z) + dy.,(2), (46)

Az + Qey) = A(z) + d[zIm{(NQ)(ImQ)~'z}],
= A(2) + dyge, (2)- (47)

It corresponds to the U(1) gauge transformation. Through
the covariant derivative with U(1) unit charge, g = 1,

D =d-iA(z)

—_ (azk - g [(NZ) (ImQ)“]k> dzt

T

+ (azk -4 [f(Nz)(Img)—l]k> a7t
= Dzdek + Dzkdzk,

wave functions on the magnetized 7% with ¢ = 1 satisfy
the following boundary conditions:

Wz + ef, Q) = 2@ EY(7), (48)
\P(Z + Qe,, Q) — p2rifer pitae, (Z)T(Z), (49)

where @ =(af,...,a;) and 5 = (7, ....p5) with 0 <
ay, B} <1 are called as the Scherk-Schwarz (SS) phases.
Note that the Wilson line phases can be converted into the
SS phases through a proper redefinition of fields [28]. We
consider solutions of the zero-mode Dirac equation,
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iP¥(z,Q) = i([¥ D +T¥D.)¥(2,Q) =0,  (50)

with the boundary conditions in Eqgs. (48) and (49). When
all eigenvalues of N are positive in addition to Eq. (3), only
the component of ¥(z, Q) whose chirality on V zX(k =
1,...,g) is positive has the det N number of degenerated
zero modes,

(J+as.p5).N

T2 (z,Q) = [Vol(T%9)]~1/2(det N) /4

% e—2ﬂi’(J+aS)N’lﬂS e™i(N2)(ImQ)~'Imz g
(J+a®)N~!
Lo

for VJ € Ay, where 9 denotes the Riemann-theta function
defined by

}(Nz,NQ), (51)

Iq ) .[
9 [’b] (v, Q) = Z emi(I+a)Q(I+a) p2ri'(l+a) (w+b)

ez’
a,beRI, veCy, (52)

and Ay denotes the lattice cell spanned by

‘Ne, (k=1,...,9). (53)

This means that

INe {IS. S , aS. S s
W;JJN +as p )N(Z’Q) _ W(TJ; Vi )N(Z’Q>' (54)

The normalization condition is given by

/ 492497 \/| det(zhﬂ(W;szas,ﬁmv(z’Q))*ngas,ﬁ*‘)w
T
x (z,Q) = [det(2ImQ)]"/25; . (55)

Finally, we give a comment on the four-dimensional
(4D) low-energy effective field theory. We assume that 4D
N =1 supersymmetry remains, although our results on
modular flavor symmetries in the following sections are
independent of whether supersymmetry remains or not.
Higher-dimensional fields ®(x,z) are decomposed as
follows:

D(x,2) = Y _ph()wh(2), (56)

i.e., the Kaluza-Klein decomposition. Here, I denotes the
degeneracy index for a fixed mass level n. The lowest
modes with n = 0 are relevant to the 4D effective field
theory, although they may be degenerate. We naturally
assume the canonical kinetic term of ®(x,z). Then, we
integrate the extra dimension so as to obtain the Kihler
potential of 4D low-energy effective field theory,

K(0.9) = Zixo} (x) 0f (x),  Zzx = [det(2ImQ)] /25 ¢.
(57)

In the following section, we study the modular symmetry
in the magnetized 7% and its orbifold compactifications.
Since the field ®(x,z) is invariant under the modular
symmetry, the modular transformation of the 4D fields
@l(x) is inverse to one of w}(z) [90].° Hereafter, we
consider the modular transformation for the zero-mode
wave functions in Eq. (51).

IV. MODULAR SYMMETRY IN MAGNETIZED 7%
AND ORBIFOLD COMPACTIFICATIONS

In this section, we study the modular symmetry in
magnetized 729 and orbifold compactifications.

A. Modular symmetry consistent
with magnetized fluxes

First, in this subsection, let us see what kind of the
modular symmetry is consistent with a magnetic flux
matrix N. By using Egs. (11), (12), and (44), we can find
that Eq. (43) is invariant and Eq. (44) is consistent for the
modular transformation by y = (£ 5), when the following
conditions:

(CQ+ D) ''N(CQ+ D) =N = 'CN = CN,
D = DN, (58)

[N(AQ+B)(CQ+D)"'|=N(AQ+ B)(CQ+ D)™
=AN=NA, BN=NB, (59)

are satisfied. In particular, for the N matrix to be consistent
with generators in Eq. (13), the following relations:

N =N, (60)
Bath = NBab’ (61)

have to be satisfied.* The N matrix that satisfies Egs. (60)
and (61) for Va,b is just N = nl. However, it is too
restrictive for the N matrix, and then we consider other
compactifications with a more relaxed N matrix while the
restricted modular symmetry than I'j appears. In particular,
to study nontrivial modular symmetry, we consider N
matrices that are consistent with S and certain 7' trans-
formations generated by combinations of some of T .
Thus, we consider the case that Egs. (3), (44), and (60), i.e.,

*Note that the modular transformation corresponds to the
change of basis w)(z).
“See also Ref. [34].
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TABLE L.
the magnetic flux (matrix) (in the second column) in the class.

The complex structure modulus (in the third column) and the modular symmetry (in the fourth column) are consistent with

Class Magnetic flux (matrix) N Complex structure moduli Q Modular symmetry N gda“) (H) (generators)
(1-1-a) n Ty (8. Ta))

Q;; =Qj;, (62)  for g = 3.Inthe case of g = 1, obviously, any moduli Q are

consistent with an arbitrary magnetic flux (matrix) N. In the

Nij=Nj, (63)  following, we classify the modular symmetry, which is

consistent with a magnetic flux matrix N, for g =1, 2, 3.

Z Nyl = Zgi Ny, (64) First, let us see the case of g = 1. The complex structure

X X modulus and the modular symmetry, which are consistent

with the magnetic flux (matrix), are summarized in Table I.

& Z(Niijk - N Q) (i) Class (1-1-a) There is only one case for g = 1. Since

Py

+ [(Nij = Nj;)Q;; — N;j(Q;; —Q;;)] =0, (65)

are satisfied. Hereafter, we denote AN;; = N;; —N;; and

AQ;; = Q;; — Q;;. Obviously, we find AN;; = —AN;; and
AQ;; = —AQ;;. Equation (65) is concretely written as

AN1pQpp — NjpAQy, =0, (66)
for g =2 and

(N31Q03 = Np3Q31) + (AN pQ); = N1pAQyp) =0
(N12Q31 = N31Qp5) + (AN»3Q03 — Ny3AQy3) =0,
(N12Q03 — N23Qy5) + (AN31 Q31 — N3 AQ3,) =0

(67)
ANp N3y =Ny Qpp
< | =N3; ANy Npp Q3
Ny —Npp AN3 Q3
N AQ, 0
- Nas AQy; | =101, (68)
N3 AQs, 0

TABLE IL
the magnetic flux matrix (in the second column) in each class.

any moduli Q = 7 are consistent with a magnetic
flux (matrix) N = n, we can consider S and 7'y
transformations, which generate aI';, = Sp(2,Z) =
SL(2,Z) transformation. In particular, between S
and T'(1;), the following relation:

(STy)* = I, (69)

is satisfied. The stabilizer is H = {+l,} = Z},
which acts on z = z! as

+1,: 7! - 7. (70)

Hence, the T2/ Z} twisted orbifold also has the same
modular symmetry.

Next, let us see the case of g = 2 in the following classes.
The complex structure moduli and the modular symmetry,
which are consistent with the magnetic flux matrix in each
class, are summarized in Table II.

Class (2-1) In this class, we consider the case with
N, = 0. Equation (66) is written by

ANIZQIZ = 0’ (71)

The complex structure moduli (in the third column) and the modular symmetry (in the fourth column) are consistent with

Class Magnetic flux matrix N Complex structure moduli Q Modular symmetry N (H) (generators)
(2-1-a) n 0 T T2 I, (S’ Tah(va’b))
0 n th ) >ij—127ijBij
(2-1-b) ng, O Wt g ®;_Iy, (generators of 'y )
0 ny Ti2 ™22 '
- 2—-2—a
(2-2-a) < n ) ( : ) — B, + By NS (H) (8T T)
np n T 7T ;
2- 2-2-b
(2-2-b) ("11 ”12) (T+TNN12/P TNN12/P) — B, + 1yBy, Né )(H) (8.7,,.Ty,)
ny Ny N1/ p 7
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and it is satisfied for ¥ AQ,. This class is further classified
as follows.
Class (2-1-a) In this class, we also consider the case with

Ale = 0, i.e.,

n 0

N = ( ) =nl,. (72)
0 n

Equation (71) is also satisfied for V Q,,, i.e.,

T T
Q— ( 11 12>
T2 T

ij=12

Then, we can consider S and T, ( V a, b) transformations,
which generate the I'; = Sp(4, Z) transformation. In par-
ticular, among S and T, the following relations:
(ST11)"? =14,
(STp)? = I,

(Sle)6 =1y, (74)

(ST11)6 = ABll—Bzz’
(ST22)6 = ABzz—Bn ’
(ST12)3 = ABlzv

are satisfied. The stabilizeris H = {+I4} = Z}, which acts
on z =(z',7?) as

1 1
z +z

:*:141 < 2) g < 2>. (75)
z +z

Hence, the T%/Z! twisted orbifold also has the same

modular symmetry.
Class (2-1-b) In this class, we consider the case with

Ale Sé 0, i.e.,
nyy 0
N = . (76)
0 nyy

Equation (71) is satisfied for Q;, =0, i.e.,

(3 )
Q =
0 Ty
= ZfiiBii- (77)

i=1.2

This is nothing but direct products of magnetized 72 com-
pactification. Then, we can consider Sy, and Ty, (k=1, 2)
transformations, which generate the Ngz_l_m(H )=
®7_ I, =®;_,SL(2,Z), transformation. Between Sy,

and T, the following relation:

(Skkak)3 = 12’ (78)

is satisfied. In particular, the stabilizer is H = {:tI 4
+Ag, g, ) = ®%ZIZ;", which acts on z = (7', %) as

1 1
b4 +z
:l:AB”_Bzz: <22> b <:FZ2), (79)

in addition to Eq. (75). Hence, the ®}_,T7/Z5 twisted
orbifold also has the same modular symmetry.

Class (2-2) In this class, we consider the case with
N1, # 0. Equation (66) is written by

AN pQpp = NjpAQ,. (80)

This class is further classified as follows.
Class (2-2-a) In this class, we also consider the case with

Ale = O, i.e.,
N = ( ! "12) (81)
ni» n

Equation (80) is satisfied for AQ;, =0 and V Q,, i.e.,

T T
o ( 12)
T12 T
= TZBii +712B12

i=1,2
= ‘L'BI2 + 112312' (82)

Then, we can consider S, Ty, and T, with B = By,
transformations, which generate the Ngz_z_”)(H ) trans-
formation. In particular, between the S and T, trans-

formations, the following relation:
(ST12)3 = 147 (83)

is satisfied. In particular, the stabilizer is H = {£l,,
+Ap, } = 7 x 75, which acts on z =(z",z?) as

1 2
Z +z
s <z2) - <izl > ®4)

in addition to Eq. (75). Hence, the T*/(Z4 x Z%) twisted
and permutation orbifold also has the same modular

symmetry.
Class (2-2-b) In this class, we consider the case with
Ale ?é 0, i.e.,

n n
N — ( 11 12>. (85)
nyp Ny

Equation (80) is satisfied if the following condition:
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TABLE IIL
the magnetic flux matrix (in the second column) in each class.

The complex structure moduli (in the third column) and the modular symmetry (in the fourth column) are consistent with

(class)

Class Magnetic flux matrix N Complex structure moduli Q Modular symmetry N3 (H) (generators)
(3-1-a) n 00 Dij—123TiiBij I3 (8. Tup(¥ a, b))
0 n O
0 0 n
(3-1-) NC-D 0 ik TkeBik (+712B12) Ngz_l)(H) x I'y (generators ofNéz_l)(H) andT’)
0 n33
o (N%_Z) ; ) with Eq. (99) wBr, +onBy, + 733B NS (H) x T (generators of N~ (H) andTy)
n33

(3-2-b) NZ2 0
0 n33

(3-3) ny Ny N
n3 ny 0
ni3 0 n33

(3-4-a) ny Ny N3
nyiz Npy nNp3 with Eq (l 19)
ny3 nNp3  Na3

> with Eq. (103)

(3-4-b) ny Ny N3
ny3 Nyy  Np3 W]th Eq (]24)
niz Np3 N33

’Z'l;[2 + TNBNZ + T33B33 + 7.'IBQC

TBI3 —+ TNBN3 + TN_]BNS_I

’L'B]3 =+ TNBN3 + TN—IBN;I

] / / / / /
B, + 11, B1, + 153853 + 73, Bj,

-1

Ng3—2"’) (H) (generators of Ny ' (H),T',)

N (H) (8. Ty, T, Ty)
NS (H) (8. T4, Ty, Ty

3-4-b
NS H) (ST, Ty, Ty, Th))

Qi Njp = AQp AN, (86)
is satisfied, i.e.,

B <T+TNAN12/P TNle/P>
TN/ p 7

= TzBii +n(AN12/pBii + N1io/ pB12)
i=12

ETB]2 +TNBN2’ (87)

where p = gcd(AN|,, Ny,). Note that the classes (2-1-b)
and (2-2-a) are specific cases of the class (2-2-b). Then, we
can consider S, T;,, and Ty, with the B = By, trans-

formations, which generate the Ngz_z_b)(H ) transforma-

tion. In particular, when AN, = N,, between § and Ty,
the following relation:

(STy,)* = L. (88)

is satisfied, as shown in Appendix A. The stabilizer is
H = {+1,} = Z}, which acts on z = /(z!, z?) as Eq. (75).
Hence, the T%/Z! twisted orbifold also has the same
modular symmetry.

Finally, let us see the case of g =3 in the following
classes. The complex structure moduli and the modular
symmetry, which are consistent with the magnetic flux
matrix in each class, are summarized in Table III.

Class (3-1) In this class, we consider the case with
N, = No3 = N3; = 0. Equation (68) is written by

AN, 0 0 Q. 0
O AN23 O 923 - O N (89)
0 0 ANy ) \Qy 0

and it is satisfied for V AQ,,, V Q,3, and V Q3. This class
is further classified as follows.

Class (3-1-a) In this class, we also consider the case with
ANIZ = AN23 = AN31 = O, i.e.,

n 0 0
N=|0 n 0| =nls. (90)
0 0 n

Equation (89) is satisfied for VQ,, VQ,;, and VQy3, i.e.,

Q=1 7 723
T13 723 1733

= ) By (91)

ij=123

Then, we can consider the S and 7, (V a, b) transforma-
tions, which generate the I'; = Sp(6, Z) transformation. In
particular, among S and T, the following relations:
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(STll)6 = ABH—BZZ—B337 (ST11)12 = I,
(ST2)° = Ap,, b, -5, (ST)"? = I,
(ST33)° = Ap,,—B,, -5,y (ST33)"* = I,
(ST12)6 = AB“+322-B33» (Sle)lz = I,
(ST23)° = Ap,, 1By, (ST53)"? = I,
(ST31)° = A, 15,,-B.,» (ST31)"* = I, (92)

are satisfied. The stabilizeris H = {+Is} = Z}, which acts
on z="(z",2%,2%) as

7! +7!
i[ﬁ . Zz g :i:Zz . (93)
3 +73

Hence, the T°/Z, twisted orbifold also has the same
modular symmetry.

Class (3-1-b) In this class, we consider the case with
AN23 ?é O, AN31 ;é O, and also AN12 = O, i.e.,

n 0 O
N=|0 n 0 |. (94)
0 0 ns33

Equation (89) is satisfied for Q,3 = Q3; = 0and VQ,,i.e.,

71 T2 O

Q= |7y 7 0
0 0 733
= ZTijBij+TBBB33- (95)
ij=12

This is nothing but direct products of magnetized T* with the
class (2-1-a) and T? compactifications. Thus, we can consider
the NS~ (H) =T, xT, =Sp(4,Z) x SL(2.Z) transfor-
mation. The 7*/Z}, x T?/Z!, twisted orbifold also has the
same modular symmetry. On the other hand, when we have
AN, #0, AN»; #0, and also AN3; # 0, i.e.,

ni 0 0
N = 0 nyy 0 5 (96)
0 0 nss

Equation (89) is satisfied for Q, = Q,3 = Q3 =0, i.e,,

;7 0 0
Q=10 10 O
0 0 =33
= 7;;Bij (97)
=123

This is nothing but direct products of magnetized T* =
T? x T? with the class (2-1-b) and T? compactifications.
Thus, we can consider the Ng3_l_c)(H) =@ I, =
®;_,SL(2,Z), transformation. The ®;_,T7/Z5 twisted
orbifold also has the same modular symmetry.

Class (3-2) In this class, we consider the case with N3 =
N3 =0 and Ny, # 0. Equation (68) is written by

ANy 0 0 Qpp N, AQy
0 ANy Npp Qo3 | = 0 ,

(98)

and it is satisfied for VAQ,; and VAQs,. This class is
further classified as follows.

Class (3-2-a) In this class, we also consider the case
satisfying

AN»;AN3; + N3, # 0,
(N11 + Ny) £ /AN{, + (2N)*

© N33 # 5 (99)
that is,
nyg np 0
N=|ny nyp 0 [,
0 0 njs3
Ny +n)* Ny —nyn)* + (2n,)?
n%3¢( 11 22) \/( 11 22) ( 12) i (100)

2

In particular, when AN, =0%&n;; =ny =n and
ns3 Sé n+ ni, Eq (98) is satisfied for AQ]Z = 923 =
931 =0 and Vle, i.e.,

T 110 O
Q= T12 T 0
0 0 733
= TZBii +712B1y + 733833
=12

= 1B, + 712812 + 733B33. (101)
This is nothing but products of magnetized T* with the
class (2-2-a) and T? compactifications. Thus, we can
consider the N g3_2_“) (H) = N (H) x T, transforma-
tion. The T*/(Z, x Z%) x T?/Z}, orbifold also has the
same modular symmetry. On the other hand, when
AN, #0, Eq. (98) is satisfied if Q3 = Q3; =0 and
Eq. (86) is satisfied, i.e.,
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T+ 1tyANp/p tyNp/p 0
Q= tvNi/p 7 0
O 0 733

= TB12 + TNBNZ + T33B33. (102)

This is nothing but products of magnetized T with the
class (2-2-b) and T? compactifications. Thus, we can
consider the N f—z_h) (H) = Ngz—z—h) (H) x Ty transforma-
tion. The T*/Z4 x T?/Z} twisted orbifold also has the
same modular symmetry.

Class (3-2-b) On the other hand, in this class, we

consider the case satisfying
AN3AN3; + N, =0,

_ (N +Np) & /ANT, + (2N)p)?

& N3 5 . (103)
that is,
ny np o 0
N = ni ny» 0 s
0 0 I’l33
nay — (nyy +nyp) £ \/(”;1 —nyn)* + (2n),)? €7 (104)
In particular, when AN, =0 & nyy = ny, = nand n33 =

n =+ np,, Eq. (98) is satisfied for AQ;, =0, VQ,, and
931 = :l:Q23, i.e.,

T T, T

Q=1\|r7, 1 £
A A
= 1B, + 712B1 + 133833 + 7' (B13 £ Bys),
=18, + 112B1, + 133833 + 7B, (105)

On the other hand, when AN, # 0, Eq. (98) is satisfied if
Eq. (86) and

923: 931 = N]Z:AN32 = AN31 :N12 = r2i3:r1i3

(ged(ryz:ri3) = 1) (106)
are satisfied, i.e.,

t+yAN/p tyNp/p 7y

Q = TNN12/p T T/r2i3

7rh 7y T33

=B, +tyBy, +733B3; + T’Z%BB
i=1.2

= ’Z'BI2 + TNBNZ + T33B33 + T/B/:t‘ (107)

Note that the former case is the specific case of the latter case.
Then, we can consider 77, with the B, transformation in

addition to transformations by N 53_2_(1)

N?‘Z'b)(H) transformation. In particular, when n;; =

ny = nandnyy = n £ ny,, between S and 77, , the following
relations:

, which generate the

(STI:E)4 = A$B]2—B33’ (ST;:)S = 16’

are satisfied, as shown in Appendix A. Except for the case
with ny; = n,, =n and n33 = n+ ny,, the stabilizer is
H = {+I,} = 7}, which acts on z = (!, 2%, 2%) as

(108)

7! +7!
g | 22| = | £22 (109)
o +73

Hence, the T°/ Z}, twisted orbifold also has the same modular
symmetry. When n;; = ny, = n and n33 = n + nj,, on the
other hand, the stabilizer is H = {£lc, £Ap, 5. .} =

74 x 7%, which acts on z = /(z!,72,7%) as

z! +72
:l:ABIZJ"B}}: Zz i :I:Z] N (110)
2 +73

in addition to Eq. (109). Hence, the T%/(Z}, x Z%) twisted
and permutation orbifold also has the same modular
symmetry.

Class (3-3) In this class, we consider the case with
N, #0, Ni3 #0, and N3 = 0O case, i.e.,

ny np N3

N = I’l12 I’l22 O (111)
n3 0 n33
Equation (68) is written by
ANy Ny 0 Qpp N, AQ
—N3; ANy; Ny Qy | = 0
0 =N, AN3 Q3 N3 AQs,
(112)
Then, it is satisfied when the following relations,
AN
Qpp =1yNiy/p+ N 239237
31
Q3 =1yN3,/p,
ANy, N3
AQ,H,=—=Q — Q)
12 N 12‘*‘1\/]2 23
AN N
AQyy = =10y — Q3
N3 N3
AN AN N2, — N2
AQpy =——2Qp, - =10y +—2_1BQ,  (113)
Ny N3 NppNy3
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are satisfied, i.e.,

1 00 ANp/p Nip/p Ni3/p
Q=70 1 0| +zy| Np/p 0 0
0 0 1 Niz/p 0 —ANa;/p
AN, ANy + NT;)/p*  NiaANos/p? 0
+ Ty ( leAsz/P 0 NpNy3/p?
NipNi3/p* (AN ANy + N1y = Ny,)/p?
Bu +TN<AN]2/pBll AN3/pBss + Zle/PBu>
=123 i=23

+ 7y [(AN1,ANy3 + Ni3)/p*Biy = (AN 12 ANy + Nis = Ni,)/p*Bsz + AN 1, AN/ p? + N1oN1s/ p*Bas]
= 1B, + Ty By, +TN_|BN3-|, (114)
where p = gcd(ANy,, AN,3, Njp, Ny3). Then, we can consider S, T;,, Ty, with B = By,, and Ty with B = By

transformations, which generate the N§3_3)(H) transformation. In particular, when AN, = AN,; = AN3; =0 and
Ny = N3, among Ty, Ty, TN;I, and S, the following relations:

(ST,,)* = I,
(STy,)* = —Ap,, 15, (STy,)® = I,
(STn:1)* = A ypye (STh:)® =1, (115)

are satisfied, as shown in Appendix A. Except for the case with AN»; = 0 and N1, = N3, the stabilizeris H = {£/¢} = Z},
which acts on z = (z',z%,7%) as Eq. (109). Hence, the T°/Z} twisted orbifold also has the same modular symmetry.
When AN,; =0 and Ny, = N3, on the other hand, the stabilizer is H = {£/s, £Ap, .5, } = Z5 x Z5, which acts on

z=1z",7%,7%) as

z! +71
:I:ABII+BZ3 . Zz - :tZ3 ’ (116)
z +72

in addition to Eq. (109). Hence, the T°/ (75 x Z%) twisted and permutation orbifold also has the same modular symmetry.
Class (3-4) In this class, we consider the case with Ny, # 0, Np3 # 0, and N3; # 0. Equation (68) is written by

AQ, Ny, 0 0 AN, N3 =Ny Q,
AQZ; — O N531 O —N31 AN23 N12 923
AQ;, 0 0 Ng Ny —=Npp ANz ) \ €3
AN'Z 2Q, + MQZS - %931
= | a4 80, 4 ey |. (117)
N
N—ijglz _N_;TQB +N—3’IQ31

Note that it is required that

AQIZ + AQz:}, + AQ31 - 0,

912
o <AN12_N§I_N§3 ANy _ NL-N5 o AN, _N§3—N%2) Q =0 (118)
No ~ NuNy,  Nu  NuyNpp Ny NNy 23 :
931

This class is further classified as follows.
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Class (3-4-a) In this class, we consider the case with the vector,

2 a2
AN, N3 =Ny,

Nip N33 N3 0

ANy _NIZZ_N§I 0 119
N3 N3 N1, a ’ ( )
ANz N3=N, 0

N3 NiaNas

In this case, there are 2 degrees of freedom of the vector, /(Q,,, Q,3, Q3;), which satisfies Eq. (118). Indeed, that vector can
be written as

Q, Ny Np3N3; — NipNs3
Qy | =7y | Noz | + 751 | N3yNip—NnNyy |, (120)
Q3 N3 N3Nz — N3Ny

and then, from Eq. (117), we can obtain that

AQIZ AN]Z N%l _N%2 - AN12N33
A923 = TN AN23 +TN—I N%Z_N%I —AN23N1] . (121)
AQ31 AN31 N%3 —N%Z—AN31N22

Thus, the moduli can be written by

1 00 Ny Npp Nj
Q=710 1 O|+zv/py| Ni2 Ny Nixn
0 0 1 N3 N3 Nsj

N22N33—N§3 Nyp3N3jp — NipN33 NjpNy3 — N3 Ny
+7y-1/Py1 | N3sN3j — NjpNas N33Ny —N§1 N3Ny — NosNyy
N3Nz = N3Ny N3 Nip — NNy N11N22—N%2

= TZ B +1y ZNij/pNBij + Ty Z Nij/pn-1B;
= TB[3 + ’I,']\]BN3 + TNleNgl N (122)

where py and py-1 denote the greatest common divisor of all elements of the N matrix and the adjugate matrix N [defined
by N~! = (det N)~' N1, respectively. Note that the class (3-3) is the specific case of the class (3-4-a). Then, we can consider

S, Ty,, Ty, with B= By, and TN3_1 with B = BNB—I, which generate the Ng3_4_b> (H) transformation. The stabilizer is

H = {+£I¢} = Z}, which acts on z = (z',z%,7%) as Eq. (109). Hence, the 7°/Z} twisted orbifold also has the same
modular symmetry.
Class (3-4-b) In this class, we consider the case that

_ nzinip
ng,=n+=tLez
nyp Ny N3 1 o €
— LPLE]
N=|ny ny ny |, ip=n+-"2€Z, (123)
no3n
N3y N3 N33 ny =n+=" el

which satisfies

ANy, _ N3N,

Nip — Ny 0

ANy NNy || 124

Ny N31N1a ’ ( )
2 a2

AN5 _ N3=Nj, 0
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Equation (118) is satisfied for V Q,, V Q,3, and V Q3;. By combining Eq. (117), the moduli in this case are given by

100 (N%l - N%3>/P%2 N23N31/P%2 0
Q=70 1 0| +7), NyN3y/pt, 0 0
001 0 N%1/P%2
N%z/P%% 0 0
+ 73 0 (N1, =N31)/p33 N3iNi2/p3s
0 N3iN12/p3; 0
0 0 N12N23/P§1
+ 75 0 N%3/P%1 0 (125)

N12N23/P%1 0

(N%3 - N%z)/ﬁ%l

=1 Z Bii + 715 (No3N31/pioBia + N3,/ T, Bs + (N3 = N33)/ piaBii)

=123

+ 753(N31N12/ p33Bas + N1,/ p33B11 + (N7, — N3,)/p33Ba)
+ 74 (N12N23/ p3 Bis + N33/ p3Bay + (N33 — N1,)/ p3,Bss)

— / / / / /
= 1B, + 11,B), + 133823 + 75, B3,

where  pi; = ged(Ngs, N3i), pas = ged(N3j. Nyp), and
P31 = gcd(Nya, Nos). Then, we can consider S, T, T,
with B = B),, T}, with B = B/, and T}, with B = B,
which generate the N g3_4_b) (H) transformation. In particu-
lar, when Ny, = Ny; = N3, among T',, T5;, T%,, and S,
the following relations:

(STIIZ)6 = 16’
(ST3,)° = I,
(ST/31)6 = I6v

(STIIZ)3 = A312+B33’
(ST/23)3 - A323+Bll ’

(ST%,)° = Ap,,vp,- (127)
are satisfied. The stabilizer is generally H = {£Is} = Z5,
which acts on z =(z!,z2,z%) as Eq. (109). Hence, the
T6/Z) twisted orbifold also has the same modular sym-
metry. In particular, when 7}, = 75, = 74, is also satisfied,
the stabilizer becomes H = {£l¢, £Ap . p.,.+Ap, 5,
+Ap, g, TAp,, . £Ap, ,} = Z x S5, which acts on z =
(z',72,7%) as

Z! 472

+Ap,, : 2| - 2], (128)
z +z!
! +73

:f:Ame 2| - £, (129)
z +7?

(126)
|
7! +73
iAB31+322 . Z2 g iZz ’ (130)
2 +7!

in addition to Egs. (109), (110), and (116). We note that

AB|2+333AB31+322 = AB31+322A323+BH
= A323+B||AB|2+B33 = AP23| ’

AB3|+322A312+B33 = A323+B||AB31 +By

= A312+333A323+Bn = AP3|2‘ (131)
Hence, the 7°/(Z} x S3) orbifold also has the same
modular symmetry.

In the above cases, not only the magnetic flux F but the
gauge potential A and the covariant derivative D as well as
the Dirac operator iP) are invariant under the corresponding
modular transformation.

B. Modular symmetry of wave functions
on magnetized 7% and orbifold models

Now, let us see the modular symmetry of wave functions
on magnetized 7% in Eq. (51). First, for the boundary con-
ditions of wave functions on magnetized 729 in Egs. (48)
and (49) to be consistent with the modular transformation,
particularly for § and T transformations, the following
conditions:

S transformation = f{ =a; =0, or 1/2, (132)
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T transformation = (NB); + (2'a’B);

Z Niy +2a})(B),; €2Z,
x

(133)

are required,5 in addition to Egs. (62)—(65), where B denotes
a g-dimensional symmetric matrix generated by some
combinations of B, In particular, to consider the full I’y =
Sp(2g, Z) transformation for wave functions on magnetized
T29, itis required that the N matrix is in the class (g-1-a) with
n€2Z and the SS phases are ap = f; = 0. Hereafter, we
consider vanishing SS phases, and then we omit the SS phase
indices. In this case, to satisfy Eq. (133), the N matrix in each
class must be V N €2Z. In the following, we often denote
the N matrix as

N = sN', (134)

where s is the greatest common divisor of all components of
the N matrix, V N;;.

When the above conditions, including conditions in
individual classes discussed in the previous subsection,
are satisfied, wave functions on magnetized 729 in Eq. (51)
transform under the modular transformation [34,87] as

7iwn (2.9) =y (7(2.Q))

= -71/2(77vQ)pT2”<7)JKW§i§V<ZvQ)v (135)

§=18.(=1)7: J12(8,Q) = (=1)?(det(-Q))" "2,
~ (—e7i/%)9 P —

(S =~ L 2INTK 136
pro( )JK BN (136)
T = [T, 1]: jl/Z(T7 Q) = 1, png(T)JK = e”iIJBN71J5J’K

(137)

This means that the wave functions behave as the Siegel
modular forms of weight 1/2. Then, as mentioned in
Sec. 11, the corresponding 4D chiral fields, ¢’(x), also
transform as

7107 (x) = J_1 27, Q)pr2e (7)™ (). (138)
This means that the 4D chiral fields transform nontrivially
under the P (%) modular flavor transformation with
modular weight —1 /2,% which can also be found from
Eq. (55). In the following, we study under what modular
flavor group the wave functions transform nontrivially.
Here, we note that the following relation [34,87] should, in
particular, be satisfied,

5When B=B 1,0 it is consistent with the analysis in Ref. [60].
®That is, the s1gn of the modular weight of 4D fields is flipped
from one in extra dimensions.

i (A% (2.Q)) = J1 o (A% Q)proa (A xwysr (2. Q)

=y’ (2.Q),
A5 = [Ax. £1]: T, 5(A%. Q) = £(det X)!/2,
pra(A%) sk = £(detX) ™25y, k. (139)
Indeed, as for the §? = A_ 1, =~y transformation, we can
find that
pros(R) g = pT29(§)%K = e"25_y .
pres(R)3x = proo(8)jx = (=1)96, x,
proa(R)jx = PT2J(§)J1< =0jk- (140)

As for the (ST)" =
detailed structure of the B matrix in the 7 transformation, as
in Appendix A. For example, when B? = [, is satisfied, we
can find that

Agy transformation, it depends on the

C/)l
ﬂz

(o720 (8)prs (T = e—mnB/2(SBJ K>
[pr20(S )Przﬂ(T)]JK = (=1)" _5J.K’

o1 (S)prn (D)) = 6, x4 (141)

where n? denotes the number of negative eigenvalues of
the B matrix and we apply the g-dimensional Landsberg-
Schaar relation,

/n(g 2n8) /4

Z e—m"KNB"K
9
3V, |det | KR,

(142)

Z 7i'KN"'BK _
\/detNKeA

for the above calculations. (See Appendix B for the
Landsberg-Schaar relation.) By considering Eqgs. (140)
and (141), we can also find that

Long(S‘)png(T)]?K = (=
LUTZg(S)PTZQ(T)]}%( = (=)~ g5J K>
U’Tzf/(s‘)ﬂrzv(ﬂB4 =0;k- (143)

1 ,37i(g—¢')/2
1)7=1 el O(-1,428,)1 K>

Similarly, by utilizing the relation in Eq. (142), we can
calculate the other relations among S and 7, e.g.,

[or+ (S)PT4
lors (S)PT4

lor+(8)pr+(T)]35 = =01 K
(T =TawpTpe((a.b.c) = (1.2,3).(2.3.1).(3.1,2))).
lor« (S )PT‘*( )]SK =0,k (145)

(T)BK =65k
(T))5% = 6.k

(T = TaaTIZ(a = 1’2))’
(144)
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In addition, we obtain the following relations among T
transformations:

(T =5, . {sdetN’ ((BxN");;€2Z for Vi)
29 - 9 -

Ptk =0nk 2sdetN’ (otherwise)
lores(Tx)pres(Ty)) sk = lp720 (T Do (Tx)] s

where Ty and Ty denote T transformations with B = By
and B = By, respectively. Thus, the wave functions on
magnetized 729 in Eq. (51) behave as the Siegel modular
forms of weight 1/2 and N,(H, h), and then they transform
nontrivially under the N, ,(H) = N,(H)/N,(H, h) modu-
lar flavor transformation, where #/ denotes the least
common multiple of all orders of hy. In particular, we
denote NY™'"Y(H) = r, N (7, n) = I,(h), and
then N'%' =T, with h = 2n.]

Furthermore, when we consider the 729 orbifold con-
structed by identifying a stabilizer Ay € Z, transformation
(e.g., discussed in Ref. [331%), the wave functions on the
magnetized 7%/ Z,, w1 sz (z,Q), which satisfy the boun-

(146)

g.h>

dary condition for the Ay € Z, transformation,

Vryzy (X2 Q) = (C)"Wp 7y (2.9Q). - (147)

as well as the boundary conditions in Egs. (48) and (49), can
be expanded by wave functions on the magnetized 729 as

Vi (22 Q) = Nz, (0 (2. Q) + (=1)"yrp ™ (2.Q).
(148)

and then they transform under the Ay transformation as

W;zly (A%(Z’ Q) = -71/2(;‘%» Q)Przﬂ/z;‘ (A%)JK‘//;%ZZQ: (z,Q)
= (_1)’”4/‘],"2[;,/2'2" (Z’ Q)’
Ay = [Ax, £1]:7, (A%, Q)
= £(detX)"/%, ppouzn (Ax)sx

= £ (=1)"(det X)1/%5, g, (149)

where m and N'72 7, denote the eigenvalue of the Ay € Z,
transformation and the normalization factor such that
Eq. (55) is also satisfied, respectively. Similarly, we can

find that the behavior of wave functions on the magnetized
T29/ Z, under the modular transformation is the same’ as that

"For g =1, it has been studied in Ref. [59].
*See also Refs. [34,35].

As discussed in Ref. [70], if Z, eigenvalues around orbifold
singular points convert into localized fluxes on the orbifold
singular points, which can be potentially required even for the
total magnetic flux on the fundamental domain of the 729 orbifold
to be integer quantized, the modular weight can be shifted.

3

of wave functions on the magnetized 7%9. The difference is
just the basis of the representation. In particular, in the
orbifold eigenbasis, the representation can be block diagon-
alized by orbifold eigenvalues. In other words, once the
orbifold eigenvalue is fixed, we can obtain a smaller
representation in the orbifold case than in the 729 case, in
general. Hence, we basically consider the orbifold case,
hereafter.

Now, let us see concrete modular flavor symmetry of
lower-dimensional (two-, three-, and four-dimensional)
wave functions on magnetized 7% orbifolds. In particular,
we mainly discuss g = 2 cases. For g = 1 cases, we have
studied g = 1 cases in Refs. [59,60]. On the other hand,
while a lot of g = 3 cases can be studied in ways similar to
g =2 cases, the generation numbers become larger in
general, and then the modular flavor groups become larger
and the analysis becomes more complicated. Hereafter, we
often use the following notation:

1o dy) =i (2.Q) with J="(Jy,....J ). (150)

At first, let us see the class (g-1-a) with n€2Z. Wave
functions on magnetized 729 as well as 7%/Z}, transform
nontrivially under the fg,Zn modular flavor transformation.
For example, n = 2 is the minimal example. For the g = 1
case, in Ref. [60],10 it was found that two-dimensional Z),
twisted even (m’ = 0) modes on magnetized 72 /Z} trans-
form nontrivially under 1:1’4 ~T' xZ,~8,[92]. Let us see
the g = 2 case, i.e.,

2 0
N:< >:212,
0 2

1 T2
Q= < = E T”B”
T2 ™2

ij=123
In this case, the following four-dimensional Z) twisted
even (m' = 0) modes'' on magnetized T2/Z}:

(151)

transform under S and T, transformations as

'%See also Ref. [91].
"The four-dimensional modes can be modular forms at z = 0.
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1 1 1 1 1
- i1 -1 1 -1 - 1
S =3 ) T - )
pT“/Zﬁ_’( ) 201 1 21 4 PT“/Zg( 2) 1
I -1 -1 1 -1
1 1
~ i - 1
prijzo(Thi) = : o prypn(Tn) = ; ; (153)
i i
which satisfy the following relations:
PT4/Zg(S)2 =1,
[pT4/Z‘2’(~)/)T4/Zg(T12)]6 =-I,
[PT4/zg(§)PT4/zg(Tn)]6 = [PT“/zg(S)/)T‘*/zg(Tzz)}6 = —il,
PT4/zg(T12)2 =1, PT4/zg(T11)4 = PT4/zg(Tzz)4 =1,
PT4/zg(Tab)PT4/zg(Tcd) = PT‘*/zg(Tcd)PT‘*/zg(Tab) (a,b,c,de{1,2}). (154)
|
Then, they transform ?Zontrivially under the T, , modular a = T*ST*ST?, a = ST*S~'72,
flavor transformation. © We note that we can similarly b= TST2. ¢ = ST2ST®, (156)

consider the g = 3 case; eight-dimensional Z} twisted even
(m' = 0) modes on magnetized T%/Z, with N = 2I,
transform nontrivially under the I'; , modular flavor trans-
formation. Moreover, by combining the classes (1-1-a) and
(2-1-a), we can similarly consider the classes (2-1-b) and
(3-1-b). In the above example, if 7|, is restricted to 7, = 0,
it corresponds to the specific case of the class (2-1-b).
Hence, the four-dimensional Z twisted even (m' =
0,k =1,2) modes on magnetized 7?/Z5 x T?/Z% in
Eq. (152) transform nontrivially under the T’ , x Ty 4 =
S, x S, modular flavor transformation. Furthermore, if
there is a constraint between 7;; and 75, such that 7;; =
Ty, = 7 in addition to 7, =0, i.e., Q =7/, the three-
dimensional Z} twisted even (m' = 0) and Z} permutation
even (m” = 0) modes'’ on magnetized T2/(Z, x Z%'),

0.,0)
Jdy) = | 5010+ o) |,
1.1)

(155)

transform nontrivially under the I",~8) ~A'(24)~

[(Zy x Z)) x Z3] x Z4 modular flavor transformation with

weight 1 [60,66], where we can write the generators of Z,,
Z),, Z3, and Z, as

"’The order is too large to specify the concrete modular flavor
group.

The three-dimensional modes can be modular forms at
z=0.

respectively, and we can indeed check the relations among
them;

ad=d’=pP=c*=1 (c=-1),
ad =da, bab'=a'd"', bdb!=a,
cac'=d7',  cdc'=a', cbc'=b"".  (157)

On the other hand, if the constraints are 7;; = 75, = 7 and
71, # 0, it corresponds to the specific case of the class
(2-2-a). Hence, the three-dimensional modes on magnet-
ized T?/(Z, x Z%) in Eq. (155) transform under the S,
T;, =TTy and T, transformations as

(1 V2
~ 1
pT4/(Z(2)r><Z(:F)(S) = E \/z 0 _\/z P
1 V2 1
1
P2z (Tr) = i :
-1
1
/)T4/(Zgl><zgﬂ)(7112) = 1 ’ (158)
-1

which satisfy the following relations:
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’DT4/ O’XZ (S) ’

[pTA/(ZOIXZOI))(S)pTA/(ZOIXZOP)(TIZ)} = I,
L[)T4/( Orxzol))<S)pT4/(Zgrngp)(T12)]3 = _iL
pTA/(Z XZO” (TIZ) =1 pT4/(Z XZO” (le) =1,

pT4/(Z(2)rXZ(;P)(le)pT4/(Z(2)tXZ(2)P)(Tl2) = pT4/(Z(2)IXZ(2)P)(le)pr4/(zgtXZ(Z)F)(le)' (159)

Then, they transform under the N<2242 a>(H ) modular flavor transformation. Actually, when we define

a=T,TSTT,S™' T, T, (STy,)?, = ST, T,S™' T T
b=T,8T;, = ST§ZST§2(ST12)3,
d = (STy»)*, (160)

we can find that they satisfy the following relations:

a, bab™' = a a1, ba'b~! = a, dac—' =@~} cdacd =g} bV = b1,

dx=xd(x=a,a,b,c); (161)

that is, the three-dimensional modes in Eq. (155) transform nontrivially under the A(96) x Z, modular flavor
transformation. Notice that we can find the following relation between a" in Eq. (160) and a”) in Eq. (156):

(@a")? = al. (162)

We can check it in Appendix C. Therefore, we can obtain two patterns of breaking chains, i.e.,

T12=0 1—‘2,4 T11=T22
T N\
S4 X 54 A(96) X Z4 . (163)
N\ v
TI1=T22 S’i T12=0

As another example of the class (2-2-a), let us consider the case that

4 =2 2 -1 - - 2 1
N = =2 =2N/, detN =4detN' = 12, N=2N=2 ,
-2 4 -1 2 1 2

T T
Q: < 12) :TB]2+712B12. (164)
T12 T

In this case, the following three-dimensional Z} twisted odd (m' = 1) and Z} permutation odd (m” = 1) modes:

%(\—1 3) - 13.-1)
i) = | 2(1.0) = 10.1) + [2.1) = [1.2) |. (165)
ﬁ<|2,o>— 2))

transform under the S, T;,, and T, transformations as
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1 Vv2 1
pT“/(Z;/XZ;/’)(S) = —— \/E _\/j ,
1 =2 1
eﬂi/3 1
pT“/(Z;’XZ;")(TIZ) - e”i/3 — em’/3 1 ,
e47ri/3 -1
e—rri/3 1
Priyzizir)(Ti2) = em/f = e : (166)
T 62711'/3 -1
which satisfy the following relations:
1 (3)2 =7
pT4/(Z;IX22[}) N
S F V13
[/)T-/&/(Z;/XZ;P)(S)pT4/(Z;,XZ;p)(T12)} I’
1 ziszir) Pz )P =i,
o2 ~ il
PT4/(z;rxz;P)(le) = pTA/(Z;’XZ;p>(T12)4 — o27i/ I,
pT“/(Z;’xZ;P)(le)pTﬁi/(Z;le;P)(Tu) = pT“/(Zé’xZé”)(TIZ)'OT‘*/(Z;XZ;P)(TQ)- (167)

Then, they transform nontrivially under the ]Vgl_zz_a)(H)

modular flavor transformation. We note that wave functions
in the class (2-2-a) generally transform nontrivially under

the N g?;vzcgtll)v’ (H) modular flavor transformation. Actually,

similar to Eq. (158), we can find that the three-dimensional
modes in Eq. (165) transform nontrivially under the
A(96) x Z, x Z; modular flavor transformation, where
the generators of A(96) x Z, are in Eq. (160) replacing
S, Ty,, and T, with the following s, 7, and t,,,:

s=8(8T,)7, 1= T12T1_22(ST12)_6, 1, =T, T}, (ST,)°,
(168)

respectively, while the Z; generator is e =T7 = T1,,
satisfying
e =1, ex=xe (x=a,a,b,c',d). (169)
Here, if 71, is restricted to 7y, = 0, i.e., Q = 7/, the three-
dimensional modes in Eq. (165) transform nontrivially
under the S3 x Z3 ~ (Z} % Z,) x Z3 modular flavor trans-
formation with weight 1, where the generators Z%, Z,, and
Z5 are written as
p:Sle’ q:Ti’

e=T3, (170)

satisfying

ex =xe (x =p,q).

(171)

Therefore, we can obtain the following breaking pattern:

A(96) X Zy X Z3 238, x Zs,. (172)
So far, we have seen the modular flavor symmetry of three-
dimensional Z twisted odd (m' = 1) and Z} permutation
odd (m” = 1) modes in Eq. (165). On the other hand, the
following two-dimensional Z, twisted even (m' = 0) and
Z, permutation odd (m” = 1) modes,
1,2))
) . (173)

10y = (5(

transform under S, 7';,, and T, transformations as

1,0) — [0, 1) — [2.1) +
L (2.-1) — -1.2))

3z 0
V3\vz -1/
B en’i/3

pT4/(Z(2)‘><2;”)(T12) = < _1>7

B eﬂi/6
pT“/(ngxz;p)(Tu) = ( —i)’

Préy (2% xz'r) (S)

(174)

which satisfy the following relations:

065011-19



KIKUCHI, KOBAYASHI, NASU, TAKADA, and UCHIDA

PHYS. REV. D 109, 065011 (2024)

’

'074/(Z(Z)’XZ;I’)

—

L [S)
=

0

3 __
Prs @zt ()P gty TRV =1
Pr Zixz ()P 2 O’XZP)(TIZ)P = il,

PT4 ZOIXZ Py I ) pT4 (ZO’XZP (T12)

)
(T
p (T1)* =il
T4/ Otle’ 12
pT4 U’XZP (
(

T} = 2x2?) (T1)* = -1,
PT4 O’XZ P TIZ)pTA/ o ZI’ (T12)

= pT4/(Zngz;p)(le)pth/(ZSer;p) (TIZ)' (175)

Then, they transform nontrivially under the Ngzlzz “)(H)

modular flavor transformation. Actually, when we define

s = S_], t= SQTIZ, Cc = ST[2T12, (176)

we can find that they satisfy the following relations:

52 =—1, st=8=(st))=c*=1,

clxe=x (x,xX€T). (177)

Thus, the two-dimensional modes in Eq. (173) transform
nontrivially under the 7" x Z, modular flavor transforma-
tion. Here, if 7, is restricted to 71, = 0, i.e., Q = 7/, the
two-dimensional modes in Eq. (173) transform nontrivially
under the 7" modular flavor transformation with weight 1,
where the generators are s and 7 in Eq. (D15). Therefore, we
can obtain the following breaking pattern:

71,=0

T x 2,257 (178)

Similarly, let us see the following example of the class
(2-2-b) with the AN, = N, case:

2 =2 1 -1
N = =2 =2N/,
-2 4 -1 2
- - 1 -1
detN = 4detN' =4, N:2N:2<1 2),

T+7T T
Q: < N N) :TBIZ+TNBN2.
N T

(179)

In this case, the followmg four-dimensional Z} twisted
even (m' = 0) modes'*:

"The four-dimensional modes can be modular forms at z = 0.

.0)
1)
1,-1)
-1.2)

1. J2) = , (180)

transform under the S, T, and T, transformations as

1 1 1 1
(S’) il1r -1 1 -1
PR =5l 1 -1 <1 |
1 -1 -1 1
1
- i
pT“/Z‘Z’(TIz) = ; ,
-1
1
- i
prészo(T,) = . , (181)
—i
which satisfy the following relations:
prejze(S)? =~
[PT4/ZO( )pT“/ZO(T )]3 =1,
L0T4/ZU< )pT“/ZU(T )} = -,
PT4/Z‘2'(T12) =1, PT4/zg(TN2)4:1,
PT4/zg(T12)PT4/zg(TN2) = pT“‘/Zg(TNZ)pT“/Zg(TIZ)' (182)

Then, they transform nontrivially under the N2242 t) (H)
modular flavor transformation. We note that wave functions
in the class (2-2-b) generally transform nontrivially under

(2-2-b)
the N 225 det N’

above S, Ty, =TTy, and Ty, = T, T, transformations
in Eq. (181) correspond to the S, T1;Ty, and T;T,
transformations in Eq. (153), respectively. Actually, we can
find that the four-dimensional modes in Eq. (180) transform
nontrivially under the [(Z4 X Z, X Z,) % (Z, X Z,)] % As
modular flavor transformation. If zj is restricted to 7y =0,
ie., Q =7/, the four-dimensional modes in Eq. (180)
transform nontrivially under the T}, ~ S} modular flavor
transformation with weight 1. Therefore, we can obtain the
following breaking pattern:

(H) modular flavor transformation. Here, the

[(24 X ZZ X 22) X (22 X Zz)] el ASTN—:())SQ (183)

Now, we can similarly consider the case of the class
(3-2-a). As a specific case, let us see the following example
of the class (3-2-b) with the Ny =N, =n =4 and
N3z =n—+ N, =4—-2=2 case, i.e.,
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4 =20
N=|-2 4 0|=2
0O 0 2

T T, T
Q=|17, 7 7
R A

=B, + 71,81, + 733833 + 7' B,

-1 0
-1 2 0] =2N,
0 1

(184)

In this case, the following four-dimensional Z) twisted even (m’ = 0) and ZJ permutation odd (m” = 1) modes:

1 V2 1 V1
%) — e3mi/4 \/E -1 \/E -1
pTW(Zg'xZ;[’)( ) - \/6 1 \/§ ]

-2
V2 -1 =v2
i/ /6
~ -1 - —i
pT"/(Zg’xZ;”)(TIZ) = i/ ' pT“/(ZQ'xZ;”)(Tﬂ) = /6 ’
-1 _
1 1
- 1 - 1
Pzl (T33) = o e = » : (185)
[ -1

satisfy the following relations:

pTﬁ/(ZO’xZ]”)(S)Z = —il,
L07‘(’/ ZO’xZ r (S)pT(:/ ZO’ 7 1)>(T[2)]6 == —lI,
L07‘6/ l'xZ p)( )'07"6/ ZO’XZ ,,)(le)](’ =il,

T ) = 2
pTﬁ/(Zg’xZ;”) le) —PTs/(Zngz;p)(Tu) )

pTG/(Z(2)1XZ;P>

(
(
7 )3 — 6 _
pTG/(Zg’xZ;”)(TIZ) _prﬁ/(zorxz‘p)(le) =-I,
(

pT4/(Zgz><Z;F) X)pT4/( Or ZI) (TY)

Then, they transform nontrivially under the
Ng?l_zz_b) (H) modular flavor transformation. Actually,

we can similarly find that the four-dimensional
modes transform nontrivially under the (77 x A;) x
Z4 modular flavor transformation. If 7/, is restricted to
7/, =0, they transform nontrivially under the (7’ %
Z,) x (T" x Z4) modular flavor transformation, which

is nothing but the direct product of 7%/ (Zg’ xZé”)
with the N matrix in Eq. (164) and T2?/Zy with

Priz °txz">(TY)pT4/( X2, (Tx)

1oz SPres i) (Ta)l® = =1,
S 71 \14
1o @ity (IPps gty T = 1.

. .
Preoy@xzyT%) = Py Tss)"

=gl T)* =1

(X.Y =1,,12,33,+).

pTﬁ/(ZO’le”)(T/Jr)Z
(186)

N = 2. Therefore, we can obtain the following break-
ing pattern:

7, =0
(T' X Ay) ¥ Zy——(T' x Z,) x (T' x Z,).  (187)
Finally, let us see the specific cases of the classes (3-3)
and (3-4). First, let us see the specific case of the class (3-3)
[and also the class (3-4-a)] with N{; = N, = N33 and
N12 = N]3, i.e.,
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4 2 2 2 1 1
N=|[2 4 0]=2]l1 2 0| =2N,
2 0 4 1 0 2
4 -2 =2
detN =8detN' =32, N=4N=4| -2 4 1 [,
-2 1 4
T+Ty1 Ty N
Q= TN T Ty
TN Ty-1 T

= 1B, + yBy, + TN—]BN;I. (188)
In this case, the generation number of zero modes on mag-
netized 7%/(Z}, x Z5) with (m',m?) = (0, 1), (1,0), (1,1)
is 6 while that of zero modes on magnetized 72/ (Z}, x Z5)
with (m',m?) = (0,0) is 14. Hence, the modular flavor
groups, generated by those dimensional representations
of S, Ty, Ty,, and Ty transformations, become larger

and complicated, and then we were not able to specify
the modular flavor groups. Next, let us see the specific
case of the class (3-4-b) with N;; = Ny, = N33 and
N12 = N23 = N31, i.e.,

4 2 2 2 1 1
N=|[2 4 2]|=2]l1 2 1| =2N,
2 2 4 1 1 2
3 -1 -1
detN =8detN' =32, N=4N=4| -1 3 -1 |,
-1 -1 3
T+ T L3P 4
Q= ™ TH Ty 03
5 Th3 T+ 1)

= 7By, + T1pB)y + 793 By; + 73, By (189)
In this case, the generation number of Z) twisted even
(m' = 0) modes on magnetized 7%/Z} is 20 while that of
Z) twisted odd (m' = 1) modes on magnetized 7%/7Z is
12. Hence, the modular flavor groups, generated by those
dimensional representations of S, T/, T),, T, and T%,
transformations, become larger and complicated, and then
we were not able to specify the modular flavor groups.

V. CONCLUSION

We have studied the modular symmetry in magnetized
T?9 and orbifold models. There is I'y = Sp(2g, Z) modular
symmetry on 729 and its orbifold by the stabilizer H. When
a magnetic flux is introduced on 7% as well as its orbifold,
the modular symmetry is reduced from I'; to a certain

normalizer N,(H). We have classified the remaining
modular symmetry by magnetic flux matrix types in
Sec. IVA. Furthermore, we have studied modular sym-
metry for wave functions on the magnetized 72 and certain
orbifolds in Sec. IV B. We have found that wave functions
on magnetized 7% as well as its orbifolds behave as the
Siegel modular forms of weight 1/2 and N o(H, h), which
is the metaplectic congruence subgroup of the double
covering group of N,(H), N,(H). Then, they transform
nontrivially under the quotient group, N,, =N, (H)/
N,(H.h), where the level  is related to the determinant
of the magnetic flux matrix. Accordingly, the correspond-
ing 4D chiral fields also transform nontrivially under the
N, modular flavor transformation with modular weight
—1/2. We have also studied concrete modular flavor
symmetries of wave functions on the magnetized 729
orbifold. The study in this paper is extended from the
studies in Refs. [59,60,66] and one specific application of
the study in Ref. [77].

Our results are important to study four-dimensional
effective field theory derived by torus and orbifold com-
pactifications with a magnetic flux background, in particu-
lar, the realization of quark and lepton masses. We would
investigate the realistic model building in the magnetized
T?9 orbifold models elsewhere to understand quark and
lepton masses as well as their mixing angles from their
modular flavor symmetries.
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APPENDIX A: (ST)" TRANSFORMATION

In this appendix, we discuss the algebraic relations
between the S transformation and the general 7 trans-
formation generated by the T, transformation. Generally,
(ST)" can be written as

_bn—l bn

ST)" =
( ) ( _bn bn+1

)v bn+1 :_an_bn—l’ (Al)

with

—by b 0 I
—b, b, -1, -B

where B denotes a general g x g symmetric matrix. Here,
we assume Q, (detQ, # 0) such that it satisfies
Q)+ B =-Q;", (A3)

& —(Qy+ B)™' =Q; (A4)
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that is, €, is nothing but the fixed point of the ST
transformation in moduli space. Then, the recursion for-
mula in Eq. (A1) can be rewritten by
(b1 Q) — (b, QNG =1, (A5)
Furthermore, by introducing
E=(1,- Qg)_l

(det(l, £ Q) #0).  (A6)

the recursion formula can be solved as
n—1

by = (I, =)™ (1, - @™V =01 (A7)
k=0

where we use the following relation:

—_

n—

(Ig - ‘Q(z))_l(lg - Q%n) = ‘Q%k’ (A8)

T
o

for the last equality. Now, we can rewrite Eq. (A1) as

—b,Q + Q! b,
(ST)" = ( o )
—b, b, Q5" + O

by = (1, - 93)7'(1,— 93"y, (A9)
In particular, when it is satisfied that Qf" = I, < b, =0,
(ST)" can be written as

srr= (B0 2
“\o o) "W

(ST)*" = I, (A10)
Then, in the case that Qg"“ =1, we can find that
(ST>2n+l — 129.

Let us see the meaning of the result in detail. When we
consider Q = Q, (z,9q) transform under the ST trans-
formation as

ST (z,Q0) = (Qoz, Q). (A11)

In addition, if Qf = I, & (ST)" = I,,, we can find that

(ST)" = I,: (2,9Q) = (42.Q) = (2.Q). (Al2)
This means the Z, transformation.

From now on, we discuss how to determine the fixed
point &, and the order n such that (ST)" = I,,. First, the
fixed point Q, with Qf = I, is written by the diagonalized
matrix and a real orthogonal matrix O as

Qy = O~ 'diag(e*”i/M) 0,
ReQ + ilmQ, = O~'diag(cos(27k;/n))O

+ i0~'diag(sin(27k;/n))0.  (A13)
In addition, from Eq. (A3), we can obtain that
1
ReQ, = O~ !diag(cos(27k;/n))O = —5B. (A14)

Thus, the B matrix determines ReQ,, the eigenvalues, and
the O matrix. In addition, from the result, we can also find
ImQ, and the order n. Here, we note that B;; = 0, %1 by
considering that the fixed point € is on the fundamental
region, |(2Re€);;| < 1. In the following, we show the

above analysis concretely through examples.
First, let us consider the g = 1 case:
(i) When we consider B = 1, that is ST transformation,
we obtain ReQy = —1/2 = cos(2z/3), and then
QO — eZzn'/3’
Q=1 (ST} =1,. (A15)

(i) When we consider B = 0, that is S transformation,
we obtain ReQy = 0 = cos(27/4), and then

QO — 82’”/4,
QB =-1,o8=-1,
Q=1e8=1I. (A16)

(iii) When we consider B = —1, that is ST~ trans-
formation, we obtain ReQy = 1/2 = cos(2x/6),
and then

QO — €2ﬂi/6
QS =—1, & (ST = -1,

Q=1 & (ST =1,. (A17)

Next, let us consider the g = 2 case:
(i) When we consider B=(" boz), that is ST}I"I‘ T2
transformations, with b;; :O,écl, we obtain

o eZﬂi/nl 0
0= 0 e2mi/m ’

3 (bi=1)
np=44 (b;=0) ,
6 (by=-1)

Q") = 1) & (STIITYE)emimm) = 1, (A18)

These are nothing but 7% x T2 cases.

(i) When we consider B = (/| '), that is ST, T, T,

transformation, and B = (7} %)), thatis ST1 75 T1;

transformation, we obtain
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e 0 (iv) When we consider B = (!, ¥}), that is ST, T3, T
Q,=0" ( 0 +1 ) 0. (A19) transformation, we obtain

From it, however, there is no solution since

ethi/S 0
2 — -l
det(I — Q2) = 0. Q=0 ( 67”./8)0
(iii) When we consider B = (%), that is ST7; trans- 0 ¢
formations, we obtain B (—% + ﬁ == % )
1 eZm/'% 0 F % % + ﬁ
Qy,= 0" ) (0]
’ ( 0 62’”/6> Q=1 & (ST Ty TH ) = —1y,
B <‘/7§l :F%> Q=1L e (ST T3HTH ) = L. (A21)
T3 éi . : | £1)5
O = 4B, & (STH)? = +A, . Similarly, we can find that (ST} T2, 7575 ) = Iy.
. e (v) When we consider B = (/! %), that is STy T}
Q=L s (ST3 )" =14. (A20) transformation, we obtain

i (Vi VER) 7 (bR - V)
(% (\/ Slf)) (VB 25)

Q(5) (ST11T12 )5 = (A22)
Similarly, we can find that (ST, T )° = I,.
(vi) When we consider B = (7} %), that is ST1 T3 transformation, we obtain
o — ol £27i/10 0 o
0= 0 £67i/10
1 i 5-V5 1_ i 5+/5 5-v5
§+§<\/ >+ 10) 3F<§—z< e T))
<l L(,/ 5= \/§>> L'< 5425 4 5—2\/§>
272 10 2 5 5
Q) = -, & (ST{|TH) = -4,
Q) =1, & (ST{{T,)" = . (A23)
Similarly, we can find that (75, 73)!° = I,.
Finally, let us consider the g = 3 case:
by b 0 — ) by 0 b3
(i) WhenweconsiderB= | by, by, 0 |, thatisST}'T,7 T3§3T1‘22 transformation, B=| 0 by, 0 |, that
0 0 b3 bz 0 b3
by 0 0
is ST’{;'T’;;Z T;’;3 Tf? transformation, and B = | 0 by, by |, that is ST’{;'T;%Z Té’? TZ? transformation, with
0 Dby by

b;j =0, =£1, they are nothing but T* x T? cases.
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0 0 41
(i) When we consider B = 0 0
+1 +1 0
eﬁni/S 0 0
Q=0" 0 B8 0
0 0 €4ﬂi/8
1 1
(t+353):
(D)D) (455
F1 %

Q) = —((£11)(£21)B1z + By3) &

Q=1 (ST T2 = 1.

Similarly, we can find that (ST,3'T,?')% =
+1 1151
(Sle1 T3 )8 = I¢.

APPENDIX B: THE LANDSBERG-SCHAAR
RELATION

We derive the g-dimensional Landsberg-Schaar relation
with N and B matrices, satisfying

Nij = Nj;,
B;; = By,
(NB)ij = (NB)ji’
(NB),; €27, (BI1)

where i, j€{1,2, ..., g}. In the process of the derivation of
the Landsberg-Schaar relation, we use the Poisson resum-
mation formula, and to make it converge, we introduce an
infinitesimal positive number ¢ (0 < € < 1).

First, we introduce the following function f(A) to
describe the Poisson resummation formula with ¢ x g
symmetric matrix A:

flA) =) emmKaK, (B2)
Kez’
We find the Poisson resummation formula
1
A) = A1), B3
f(A) \/Mf (A7) (B3)
Next, we define A~! as

A™' =iB7'N +el,. (B4)

45,1 |, that is ST1i3‘1T2i321 transformation, we obtain

2
(% + #E)l F23 |-

T2 % ﬁ
(ST T53')* = —A(w, 1) (11814 By

(A24)

We will take the limit ¢ — +0 later to obtain the
Landsberg-Schaar relation. Hereafter, we ignore higher-
order terms of ¢ because the final result we obtain is
unaffected. Then, A can be written as

A = —iBN~' + eB>N72. (BS)

Now, f(A) can be written as

f(A)

2 : e—ﬂ’K(—iBN"-&-eBZN’z)K
Kezs
~ne'(BN™'K)(BN™'K) ,ni'’KBN™'K

e
Kezs
§ : } : e~me(JB+LBN™")(BJ+BN'L)

LeEAyJEZ!

% gmi('IN+L)BN™ (NJ+L)

_ } :eni’LBN’]LE :e—ne‘(J+N"L)BZ(J+N"L)
b

LeAy JEZY

(B6)

where we write K = NJ + L (J € Z9, L € Ay) in the third
equality and we use (NB),; € 2Z in the fourth equality. In
the limit ¢ — +0, we can obtain

11 "LBN!

1' g L1 miLBN™'L B7

g—lgrl()f( ) €_I,TO\detB|€g/2Le§A e (B7)
N

where we use the formula of the Gaussian integral with

multiple variables. On the other hand, f(A~')/+/detA can
be written as
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1
A—l
detAf( )
1 (i R—1 y
— e—][K(lB N+tel)K
Vv detAK;g
1 1 it —1
— e—ﬂeKKe—mKB NK
VdetA Kezzg
1

_ o~ 7€ (BI+L)(BJ+L) p—i'(BJ+L)B~' N(BJ+L)
VdetA L; ]z:(
sJEZY

1 ot —1 1 -1 2 —1
_ e~ miLB NLZe—zze(J+B L)B*(J+B~'L) (BS)
vdetA Z '

LEA, JEZY

where we write K = BJ + L (J € Z9, L € Ap) in the third
equality and we use (NB);; €2Z in the fourth equality. In
the limit ¢ — +0, we can obtain

1 (g+2(n1l’—n§))/4

lim A = hm v I|detN| ————
e>+0 \/detAf< )= e | l \/|detB|
1

1 AL B!
—mi'LB~'NL
X |detB|€g/2L; e , (B9)
B

where we use the formula of the Gaussian integral with
multiple variables and we take (4i)*/? = ¢*#*/4 with the
number of negative eigenvalues of the B- (N-)matrix,

nZ (nl).

Thus, we can obtain the g-dimensional Landsberg-
Schaar relation:

—xin¥ /2 ig/4 ,~min® /2

e~ "/ Z om'KN"'BK _ e e/ Z o-m'KNBTK
\/ldetN|KeAN \/|detB| KeAg

(B10)

In Eq. (142), we assume that all eigenvalues of the N matrix
are positive, i.e., n¥ = 0.

APPENDIX C: THE GENERATORS OF A(96) x Z,

In this appendix, we prove the generators in Eq. (160)
satisfy the algebraic relations of A(96) x Z, in Eq. (161),
where S, T;,, and T, satisfy the following relations:

Th =1,

(ST1p)* = —il,

(ST12)6 =8 =-

(ST1p)"? = 8% = (ST12> =1,

T‘,‘2 =1 (C1)

In addition, from Eq. (70) in Ref. [60], the above Eq. (158)
also satisfies

= ($7'T7,/ST,,)?
= (T,,ST,,SST},)?
= (T,8°T})°
= (
= (8

T3 $3T),)°
T3,). (€2)

We note that, in Ref. [60], we have already proved that
the generators in Eq. (156) satisfy the algebraic relation of

" =~ A'(24) in Eq. (157). First, we can easily check that
d = (ST,)? satisfies

d* =1, (C3)
dx=xd(x=a,a,b,c). (C4)

Next, &' can be rewritten as
a = ST, TS\ T T (C5)

- ST]ZSles_lTI_ZI (ST12)3

== 711_215'_1T'I_Zl7-'127']25‘71[2S(STvlz)3
B TI_ZIST12ST[2S_1 (ST12)3

=TTy, ST\, T, 8™

=Ty T ST, TS, (C6)

and then we can prove that
a? = ST,ZTIZS‘ITl‘zlTl‘zlSleleS‘1T1‘21T1‘21
- ST12T12S_IST]2T12S_1T1_22T1_22
= ST; S7'T;?
=d. (C7)
Similarly, @ can be rewritten as
a =TT 2ST 2T, 87" T, T1»(ST1,)?
= T%ZSleTIZS_] (ST1,)°
= ST12T125_1T%2 (ST1»)%, (C8)
and then we can prove that
a* =T} ST\, T, S (ST2)* ST\, T, ST (ST)2)?
= TiST%ZST%2
=a. (C9)

They are the proof of Eq. (162). Hence, by considering
Eq. (157), we can obtain that

it =1, (C10)
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(C11)

We can also check that

Ela, = Zl’zl = ST%2S_1T12T12(ST12)3. (C12)

Similarly, since b in Eq. (160) and b in Eq. (156) are the
same, we can obtain that
b =1. (C13)

On the other hand, by considering that ¢ in Eq. (156)
satisfies that

we can obtain that ¢t =5 (C14)
=1 (C15)

We also obtain
bl = chc! = b7, (C16)

The other relations can be checked that
bab™' =T}, S*T7 ST, T1,S™'T; T 28T (ST),)?
= ST ST, ST, (ST)5)?
= 8T8 T T, (ST,)?
= (8T,) Ty, T ST 25!
(C17)
|

ba'b~' =T, S*T] T;' Ty ST\, T, ST T 2S7 T
=T, ST, T, ST T T ST T T ST
=S ST ST ST T} ST, SST;,S572(ST )~
=S\ T S7IT] ST S(ST )
=S8'T,T7!S7'ST} ST7 (ST,)°
= ST, T,,S7'T7 (ST o)’

(C18)

:a’

cdac'™!

= ST7 ST} ST, T\oS™'T1 TS™' T2 (ST,)?

— ST%ZSST‘I2 T%ZS3T12 T12S_1 Tl_zl S_] TI_2] TI_Z] S_l (ST12>3

= ST;'S T *T\,T,,SST,, ST}, (ST1,)?

= ST ST ,8T,(ST1,)’

= ST T ST\ Ty,

=T, TST T S™!

=a !, (C19)

ca'd™! = ST} ST} Tr Ty ST, T S™' TS TS ™!
= T\ T ST} S°T,, T7 3T, T\, T, T ST AT ST 28!
=T\ T STy ST 2T, T, 17 S°T, 8™
=TT ST ST T, T7 ST, 57!

- T12ST12T%2S3TIZS_I

= ST12ST%2ST12S_1 (8T},)3

= ST T T, ST, T, ST, S (STy,) ™

= ST Tr'S7'T;2

= a_l’

where we also used the following relation proved in
Ref. [60]:

2p o—172 — 2, 2 2P o—
ST,S'T7 = (ST7. S™M)PT! = T!ST,"S™",  p.qeZ.
(C21)

Therefore, the generators in Eq. (160) satisfy the algebraic
relations of A(96) x Z, in Eq. (161).

(C20)

|
APPENDIX D: MODULAR FLAVOR SYMMETRY
WITH Q=1l, CASE

In this appendix, let us see the modular flavor symmetry
of wave functions on magnetized 729 and its orbifolds, in
particular, for the Q = 7/, case. First, in the Q = 7/, case,
we can consider the I} = SL(2, Z) modular transformation
for any N matrices. In addition, in order for the modular
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transformation to be consistent with the boundary con-
ditions of wave functions on magnetized 729 as well as its
orbifolds, it is required that the diagonal elements of the N
matrix must be even (N;; €2Z) in the case of the vanishing
SS phases. In this case, the wave functions on magnetized
T?9 transform under the modular transformation as

I >

37w (2.Q) — v (7(2. Q)

j 2 (7 ’Q)pTl‘?(?)JKWI;iz]/V(Z’Q)’ (D1)
§S=1[S.(=1)9: J,p(8.Q) = (-1)9(-1)9/2,
pr20(8) k= ( y IINTK (D2)

VdetN
T] — [TI N 1]: jq/2(Tlg’Q) — 1,
pTZ‘/<TI )k = €N (D3)

where pp2, satisfy the algebraic relations in Eq. (140), the
top of Eq. (141) with B =1, and n8 =0, and Eq. (146).
Thus, the wave functions behave as the modular forms of
weight g/2 and T (%), and then they transform under the
[y, =T,/ (h) modular flavor transformation nontri-
vially. Note that, for g =2, it corresponds to the I", , =
I', /T, (h) modular flavor transformation. From now on, we
show concrete modular flavor symmetries of three-dimen-
sional wave functions. g = 1 cases have been studied in
Refs. [59,60]. Once we study g = 2 cases, we can similarly
study the g = 3 case, and the result is similar to g = 1 cases
by replacing the modular weight from 1/2 to 3/2.
Hence, we show examples of g = 2 cases, in particular.
Moreover, the cases of the class (2-1) have been studied in
Refs. [60,66]. Then, let us see the case of the class (2-2).

First, let us see the case of the class (2-2-b).
Reference [33] shows that only Z) twisted odd (m' = 1)
modes with detN =7 are three-dimensional modes on
magnetized 7%/ 7}, with vanishing SS phases and N;; € 2Z.
In this case, we can find that s = 1 and N}, = N;; €27Z.
Hence, the order % is determined as h = detN = 7. In
addition, by considering that the wave functions are Z}
twisted odd modes, we obtain the following algebraic
relations:

l\‘

Pr/z) (3)
VT‘*/Zl (S)PT4/ZI (TI )] =1,

Pr/7} (le) =1 (D4)

Thus, the three-dimensional modes transform nontrivially
under the I'; ; = PSL(2,Z;) modular flavor transforma-
tion. Indeed, let us see the following example:

2 1
=)
1 4

The three-dimensional Z twisted odd (m’ = 1) modes,

det N0 — 7. sz:(“ ‘1>.
-1 2

(D5)

1) - [2,4))
1. 0) = | J5(11.2) = [2.3)) (Do)
L(1.3) - [2.2)
transform under the § and 7', transformations as
in(%) sin(%)  sin()
~ 2 .
pre /Z;(S) = 7 sin(¥#)  —sin(¥)  sin(%) |,
sin(%)  sin(%)  —sin(%)
e4m’/7
PT“/Z;(TQ) = ebril ’ (D7)

eZﬂi/7
which satisty the algebraic relations in Eq. (D14) and also
L0T4/z;(S)_lpﬂ/z;(le)_l/’r‘/z;(SV)PT‘*/z;(jVZ)]4 =1
(D8)

Thus, they transform nontrivially under the I'j; =
PSL(2,Z7) modular flavor transformation.

Next, let us see the case of the class (2-2-a). There are
two types of examples, besides one in Egs. (164)—(172),
such that there appear three-dimensional modes on mag-
netized T*/(Z, x Z4) with vanishing SS phases and
Ny = Ny, =ne€?2Z. The first one is that the N matrix
is given by

_(4 3>_Ng det NV =7, N<'>_<4 _3>,
3 4 -3 4

(D9)

The three-dimensional Z} twisted odd (m'=1) and Zp
permutation even (m? = O) modes,"”

5(3.3) - 4,4)
i) = | 5(2.2)=[5.5)) [, (D10)
L(11.1) - [6.6))

“There are no Z), twisted odd and Z4 permutation odd modes.
In other words, all Z, twisted odd modes are Z) permutation
even.
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also transform under S and T';, transformations as Eqgs. (D7)
and (DS8), and then they also transform nontrivially
under the I'j ; = PSL(2, Z;) modular flavor transforma-
tion. On the other hand, the second one is that the N matrix
is given by

4 1 . 4 -1
N = =N, detN") =15, N0 = )
1 4 -1 4

(D11)

The three-dimensional Z), twisted odd (m' = 1) and Z}
permutation odd (m” = 1) modes,

L(2.1) = 11,2) = 3.4) + 14,3))
i) = [ 331 =113 - 2.4 +14.2) |, (D12)
5(3.2)-12,3))

transform under § and 7', transformations as

2sin(3%) 2sin(%) —v2
25in(1—’6) 25in(ﬁ) V2 |,
-2 V2 -l

167i/15

[N

pT“/(Z;’XZ;]’)(S) \/‘5‘

f”r“/(zi’xzi")(le) = etri/13

., (D13)
107i/15

which satisfy the following algebraic relations:

T2
pT4/(Z;’XZ;p)(S) - ]’

LOT“/(Z;’XZ?) (S‘)pTA‘/Zé (le)]3 = I?

pT“/(Z;'xZ;’)(TIZ)S = 647”/31' (Dl4)

Then, they transform nontrivially under the I'; ;5 modular
flavor transformation. Actually, when we define

s=S8, =T, =T, (D15)

we can find that they satisfy the following relations:

Thus, they transform nontrivially under the A5 x Z; modu-
lar flavor transformation.
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