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Superradiant black hole rocket
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We calculate the total thrust resulting from the interaction between charged scalar modes and a
superradiant Reissner-Nordstrom black hole, when the modes are deflected by a hemispherical perfect
mirror located at a finite distance from the black hole’s horizon.
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I. INTRODUCTION

The superradiance phenomenon in black hole physics
refers to the emergence of a particle from a scatte-
ring process with more energy than that of the incident
state. This implies that energy can be extracted from a
black hole.

However, the above description raises two important
questions. First, what happens to the one-way nature of
the black hole horizon? The answer is that energy is
extracted from the black hole in plane wave states that do
not contain information. Second, as energy is taken from
the black hole, how do we ensure that its entropy does
not decrease? The answer lies in the fact that super-
radiance only occurs when there is a second charge
which allows the horizon area to increase as the energy is
removed [1].

Initially, superradiance was described in the context of
Kerr black holes, where angular momentum serves as the
second charge [2]. However, it can also be observed in
electrically charged Reissner-Nordstrom black holes [3].
The advantage here is that these black holes are spherically
symmetric, making the analysis of wave modes around
them simpler.

The purpose of this note is to investigate whether the
superradiant effect can be harnessed to extract momentum
from a black hole and generate thrust.

II. THE SETUP

The idea we want to test is whether the superradi-
ant phenomenon, which allows us to extract energy
from a black hole, can be also used to extract momen-
tum. To keep the calculations as simple as possible, we
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concentrate in a spherically symmetric charged black
hole. In contact with a thermal bath, the black hole
superradiates low energy charged particles until equi-
librium is reached. To collect the momentum, we use a
semispherical mirror centered at the black hole, as
shown in Fig. 1.

To make this proposal concrete, we set a Reissner-
Nordstrom black hole in asymptotically flat space as a
background solution. The bath is made of probe plane wave
modes of a charged massive scalar field, featuring a thermal
energy distribution at finite chemical potential. The scalar
modes are scattered by the black hole and reflected at the
mirror, ultimately leading to the total thrust that we aim to
compute.

In order to do that, we first solve the classical scattering
problem of a scalar plane wave hitting the black hole and
mirror system. Then, putting the scalar on a thermal
atmosphere corresponds to averaging on the plane wave
directions isotropically, and on its energy with a thermal
Bose-Einstein distribution.

The total thrust can be then calculated as the flux of the
scalar energy momentum tensor on a sphere centered at the
black hole and enclosing the mirror.

FIG. 1. A hemispherical perfect mirror around a Reissner-
Nordstrom black hole.

© 2024 American Physical Society
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III. SCALAR MODES ON A
REISSNER-NORDSTROM BLACK HOLE

Reissner-Nordstrom black holes are charged solutions to
the Einstein-Maxwell field equations, which have a metric
and an electromagnetic field with the form [4]

1
s2 = —fdr? +}dr2 + r?dQ; A=hdt (1)
here the lapse f(r) and the electrostatic potential i(r) are
functions of r given by
2M Q?
< =2 0
r r r
The integration constants M and Q correspond to the
ADM mass and charge respectively. Nonextremal solu-
tions M > Q generically have two horizons that we
denote r = ry.

The equation for a charged Klein-Gordon field with

charge e and mass m in the above background reads

7 2
3,(r2f0,®) + <r—12vg2 —@ _

r

m2> =0 (3)

where V2 is the Laplace operator on the two-sphere,
with eigenvalues —#(¢ + 1) and eigenfunctions given
by the spherical harmonics Y(0,¢) = \/(2¢ + 1)/4n x
V(& =m)!/(€+m)! e™ P (cos@) where PZ is the
associated Legendre polynomial. If we consider a solution
with energy @ we can decompose the scalar field as

O(r,0,¢,1) = e"a”Zaf R/(r

r)Yp(0.¢)  (4)

Where o are coefficients that depends on @ which are
determined once the boundary conditions are imposed.
Plugging back into the equations of motion, we get an
equation for the radial dependence in the form

® +feh)2 ~ f(fr;r Ol m2> R —0
(5)

Notice that the equation is independent of the spherical
index m, which was anticipated in (4) when we omitted to
include it as a label for R,.

We solve the above equation imposing causal (ingoing)
boundary conditions at the outer horizon r, . At infinity, we
impose the conditions of a scattering problem: an incident
Coulomb wave with energy @ and propagating in an
arbitrary direction 71, added to the corresponding scattered
outgoing spherical wave. The inner and outer solutions are
matched at a finite radius r, > r,, where we place a perfect
mirror in the southern hemisphere (Fig. 1) at which the
scalar field vanishes.

9, (r*fo,Rs) + ((

r

A. Boundary conditions at the horizon

Close to the outer black hole horizon r = r, the lapse
function can be expanded as f(r) = 4zTgy(r — r,) where
Ty = f'(r.)/4n is the Hawking temperature [5]. The
radial equation is then approximated by

w—w,\2
) R, ~
ot <47TTBH> e=0 ©)

where we defined the superradiant frequency w, as o, =
e(upy —p) with pgy = Q/r,. Eq. (6) has two linearly
independent solutions representing ingoing and outgoing
waves. We call u,(r) the solution to the full radial
equation (5) that close to the black hole horizon behaves
as an ingoing wave

log(r— fur

W — Wy
4T[TBH

ik log(r—r.)

uy(r)~e with k= -

This represents a plane wave with group velocity
vy, = 0w/ok = —4nTgy. Since v, < 0 then wave packets
(i.e., information) are falling into the black hole horizon.
On the other hand the phase velocity is v, = w/k =
—4rxTgyow/(w — w,). Then, if o < w; we have v, >0
and plane waves (i.e., energy) are being radiated from
the horizon. This condition characterizes a superra-
diant mode.

Notice that the superradiant behavior takes place as
long as w,; # 0 or in other words u # ppy. This can be
interpreted as the black hole not being at equilibrium
with its environment. Indeed, since A(r.) = p — pgn,
the gauge field does not vanish at the horizon, which
would imply a conical singularity in the corresponding
Euclidean continuation.

Imposing ingoing boundary conditions at the horizon
entails writing the solution in the form (4) in the region
between the horizon and the mirror, choosing the ingoing
form for the radial part R,(r) = u,(r),

—lmt E a

O~ (r,9,0,1) 7(0.9),

r. <r<ry.

(8)

Here we rescaled the coefficient as o = al}'/u,(ry) in
order to simplify the forthcoming calculations.

B. Boundary conditions at infinity

When the radial coordinate goes to infinity, we can
expand the radial equation (5) as

(k2 2 _fEHDF >Rf(r):0

l2ar("‘2aer(r)) r ”
9)

7
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with k> = (0 + eu)> —m? and = Q(w + eu) — 2Mk* —
Mm?. This corresponds to a Coulomb scattering problem,
with solutions behaving as outgoing spherical waves [6].
Calling (=i)“*'v,(r) to the solution to the full radial
equation (5) that matches such behavior at infinity, we have

1
(kr)1+in

v(r) =~ e'kr (10)

The scattered part of the scalar field can then be written

as in (4) with the radial solution replaced by its outgoing
form R,(r) = v,(r),

—l(l)tzbm

@1, 0, b, 1) 70, ).

r > ro,
v (”0

(11)

where again we have rescaled o = b7 /v,(rg) for
future use.

Regarding the incident wave, we consider a plane wave
with momentum & = ki, with o, = £V + m? — ey,
and amplitude A;i, which in the Coulomb background
picks a power law factor. It can be decomposed in outgoing
and ingoing spherical waves as

(I)Inc<r 0, ¢ ) '/:(i kei(krﬁ-?—wit) (kr)—i'?(l —-n- ;?)—i’?
~ —iN iAiZYm* Y76, )
elkr e—ikr )
- (41 4 - —lwyt
* ((2kr)1+m =D (2kr)1—m> ¢

(12)

Now, calling i“*'w,(r) to the solution that behaves as the
parenthesis at infinity, we can write the incident part of
the scalar field as

(1,0, ¢, 1)

_z(uitch Ym (9 ¢)

r>r0,

(13)

with ¢} = i" VL A=Y} (/t)w(ro). Notice that at infinity
we have w,(r) « Re{v,(r)} and since both w,(r), v,(r)
solve the same linear equation, then this relation holds
for all r.

The outer solution is a superposition of the incident
and the scattered parts. In consequence, for r > r, the
solution reads

O (r,0,¢p, 1) = O(r,0,p,1) + D (r,0, ¢, 1)

_ e-imizz<b? v (r) Y Wf(’))

e ve(ro)

x Y7(6,9),

C. Matching at the mirror

The mirror is a hemispherical shell centered at the black
hole that sits at a fixed radius at the southern hemisphere.
For a perfect mirror the scalar field vanishes at its surface.
We then impose that the scalar field must be zero at r = ry
for7 <0<,

®(rg.0.¢.1) =0 ggagn. (15)
On the other hand, the wave function is continuous on the
sphere r = ry,

O (r, 0., 1) = D (r,0..1) 0<0<m (16)

whereas the radial derivative is continuous only on the
northern hemisphere

Lot (r,0.¢.1),_,, = -

0.¢.1)|,— <0<
dr 7 & (0.0l 0202

(17)

These three matching conditions at r = r; determine the
coefficients a and b7 in (8) and (11) in terms of ¢’ in (13)
or, equivalently, the incident amplitudes AEi. In particular,

continuity of the wave function at r = r; implies
by = aj' —cy (18)

so we just have to determine the coefficients a'. Since the
solution vanishes at the mirror, we have

0= aryr0.4) for gsGSm (19)
‘m

On the other hand, continuity of the radial derivative at
r = ro implies

0= ;(Hfa;’ —T,emY"(0,¢) for0<0< g (20)
where
_ up(ro) _ v (ro)
M=) " ver0)
w,(rg)  v,(ro) i 1
T,=-¢% _ 20 . (21
“ T wero)  ve(ro) krgf (ro) we(ro)ve(ro) @)

In the second equality we use the Wronskian definition and
the asymptotic value of the functions. Expressions (19) and
(20) hold for any ¢ € (0,2x) so they immediately lead to

0= Z Yoar\/(2¢ + 1 1/ Pm ), (22)
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0= (Hear —T,e0) /7 + 1) | L= o).
Pl (€ +m)!
3)

for each meZ and 0 < x =cos 8 < 1. Using that the
associated Legendre polynomials P}(x) and P7(x) are
orthogonal in the interval (0,1) whenever £ — £’ is even,
we obtain

O=ay = > (vpy = der)ap. (24)

' >|m|

0="Heay —ZLscy + Z (v = bce)(Hpay —Lpcy),

£'>|m|
(25)
where we have introduced the coefficients
m 2+ 120 + 1)(¢ —m)!(£' —m)!
Tee = (& +m)\(£ + m)!
1
x / dxP? (x) P2 (x), (26)
0

which take the particular values y,, = 0 for £ — ¢’ even
and y}, = 1." Note that with this values the only nonzero
components in the sums (24) and (25) are with £ — ¢’ odd,
but the used notation is more convenient. The matrix y”
of coefficients 77, is real and symmetric and it satis-
fies ()2 =2y and (y" —1)~! = y™ — 1 (where 1 is the
identity matrix). The set of matrices y” is even in the index
m satisfying y=" = y".

Replacing expression (24) in (25) and regrouping the
coefficients, the result reads

> Mudl = > ciTory, (27)
h=|m| '=|m|
valid for any # > |m| and where

(M) en = [FHG™ =1) = (7" = DH +y"Hy"|, (28)

with H a diagonal matrix of elements H,. As a conse-
quence, we finally have

[Se]

Cl? = E (O?ﬂ +6ff/)c:;ll,
£'=|m|

br=>Y"omnch (29
£'=m|

'Had we considered a mirror with the form of a spherical cap
or zone instead of a full hemisphere, we would have to deal with
two different set of y”* matrices, both with nonvanishing elements
for £ — ¢’ even.

where

o7y i

= My =6, (30
TR we ) e =0 G0

With this, we get the coefficients a, and b, in terms of
the functions u,(r), v,(r) and w,(r), which have to be
obtained numerically by solving the radial equation (5)
with the appropriate boundary conditions (7), (10) and (12)
respectively, and the matrix elements y7,, of (26).

D. Numerical analysis

In this section we analyze the classical field obtained
from the previous sections that fulfill all the boundary
conditions. To do so, we need to obtain numerically the
radial solutions u,(r), v.(r) and w,(r) of the radial
equation (5), and compute y7,,. These components char-
acterize the field obtained in the whole space, in terms of
the incident wave amplitude A;i and direction 71 which are

free parameters.

In order to obtain numerically u,(r) that satisfies the
near horizon behavior (7), first we extend the ingoing
wave to a finite radius away from the horizon to avoid the
singularity, and then solve numerically up to the mirror.
On the other hand, v,(r) and w,(r) are obtained numeri-
cally by shooting, integrating from some arbitrary initial
condition at the mirror up to a distance where the
space-curvature effect is negligible; and there fitting
with the asymptotic behavior (10) and (12). For further
details, see the open code [7]. Lastly, the matrix of
coefficients y7,, are numerical integrals which can be
seen in Appendix B 1.

To gain some intuition on the resulting field, we first
consider the flat space case (see Fig. 2, first line) with
an isotropic set of incoming waves with equal fixed
amplitude Ali:. In this case, the radial solutions are the
spherical Bessel functions (=)’ lu,(r) = (=i) T 'w,(r) =
je(kr) and the first kind spherical Hankel functions
(=)' v,(r) = hY (kr). On the left plot we see the charge
density |®?| on a plane that contains the z axis. We can see
the spherical aberration pattern in the form of a high
intensity vertical region at the center of the plot, as expected
for a hemispherical mirror. The field ® as a function of the
variable z is depicted on the right, where we can see how
the matching works at the mirror radius. We can expect
that, as particles are coming from every direction, the
mirror would move downward, since there are more
particles impinging from the concave side of the mirror.
As a consequence, we have a ‘background force’ acting on
the mirror.

Next we consider the charged black hole background in
the second and third lines of Fig. 2. There, we show two
different energies, the plots on the second line correspond
to the nonsuperradiant regime @ > @,, while those on the
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FIG. 2. Classical field for a superposition of incident waves with 0 < @ < 7 with m = 0.1 and e = 0.5. Left: amplitude |®|?> on a
transverse plane containing the z axis. Right: field ®(0, 0, z) as a function of z. First line: on flat space M = Q = 0 with k = 0.3. Second
and third lines: on a black hole with M = 10, O = 0.99 M, with k = 0.6 (nonsuperradiant mode) and k = 0.3 (superradiant mode)
respectively.

third have superradiant energies @ < w,. Again, we can see IV. CALCULATION OF THE THRUST
how the matching of the field works in the z direction and

also the behavior near the black hole. On the left we can see A. Quantization

clearly how the black hole rocket works, as the energy In the previous sections we have written the full solution
going out from the black hole due to superradiance pushes  for a classical scalar field corresponding to an incident
on the mirror. plane wave that scatters at the hemispherical mirror and
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satisfies ingoing conditions at the black hole horizon. Next,
we will submerge the setting in a bath of charged scalar
particles [8] at temperature 7 and chemical potential y. In
order to satisfy the canonical relation [®(t, X), (¢, y)] =
i6®3) (X — ¥), we chose the normalization

o + ey 1

N p—
22 |0 | VE2 oy

(31)

In this way, the operators 2\; and B;(., which are the quantum
upgrade of the amplitudes A;{F and A]g of the classical field
(12), create particles and antiparticles with momentum
k and satisfy the usual algebra [A,;,A;{,] = [B,;,B;{,] =
(27)38(k — k).

Now we assume an isotropic thermal distribution of

plane waves with temperature 7" and chemical potential p.
This implies that the expectation values of the quadratic

operators fﬂf\,? and BiBzr are given by the thermal Bose-
k k
Einstein distribution, in the form [9]

1 (27)383 (k- k),

By) = | (2r)383 (k= K). (32)

et —1

Any other expectation value quadratic in those operators
is zero.

B. Total thrust

To calculate the thrust induced on the system by the field
modes, we use the energy momentum tensor of the scalar
field. The flux of any of its spatial components through a
spherical surface enclosing the system at infinity gives the
total force in the corresponding direction.

Fj = / sz l’l;Tl]
r—o0

= / dQy (0,7 T,y + 0,0T g + 0,0T,,),  (33)

where the indices i, j refer to the asymptotic Cartesian
coordinates x’, and the unit vector n’ points in the radial
direction.

In the first term in (33) we have o0;r =x'/r=
(cos ¢ sin 6, sin ¢ sin 6, cos 0). Due to the symmetry of
the setting, the energy momentum tensor at spatial infinity
does not depend on ¢ so the only nonvanishing component
of the thrust from the first term in the integrand points
in the z direction. Regarding the second term, we have
r0;6 = (cos ¢ cos 0,sin ¢ cos 6, —sin 6), so again only
the z component remains. For similar reasons, there is no
contribution from the third term. We are left with

F,=3,2n /O " d0sin0(cos 01°T,, —sinOrT )|, (34)

We use the energy momentum tensor obtained as the
mean value of the corresponding quantum expression
(see Appendix A). The needed components 7, and 7,4
at r - oo are

1
T, = 5 (0;6, + leﬂ(a; - at) + 0,0, — m? + ezluz)

a

x (10T (x)D(x) 1) |y (35)

Trez—(aa’+a’ae>< DT (x)d(x') 1)y (36)

[\

with the colons : - : denoting normal ordering. Here T,
vanishes at infinity and for 7°T',, we have (see Appendix A)

2T :/wdk|w++e'u|2k2
"=y o]

Xam@;—m_wxf;—w>

X > U Y (0, )Y, ) (37)

£, \m

where we defined

|Wf”( 0)|2 mk

= el se—e) L0 O
Uee f,,z;n vp(ro)ve(rg) 7007
1y We(ro)
+2Re[ 5= ”U;( 0) P (38)

Inserting into (33) and computing the angular integral,
we get

1 © oy +eplk
= | ak R
g ”"%f(ro)[) 7r|a)+a) |
x ( ! )
o, (T —1) (6_7_—1)
m)(¢ + m)
- Z Z 2f+ )27 —1)
x Re Lf_ (ro)ve(ro) ( "ocre = IMu'r" e
. My }f—l,f”[Mm "o
2 2 TR oo o) )} 9

"= m|

where m € Z, £ €N, and we have changed the overall sign
in order to obtain the force acting on the system.
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el-mm =

FIG. 3.

LS}

_‘u

Superradiant phenomenon. Left: plane wave frequency @, and superradiant frequency. The green region is the superradiant

region and the green dot mark the intersection at k,. Right: behavior of the superradiance frequency w, with the ratio Q/M and the

charge e.

C. Numerical results

The numerical analysis of the force (39) starts by
noticing that it depends on the same classical pieces
as in Sec. IIID, i.e., the inverse operator M;!, the
matrices y” and the radial solutions evaluated at the
mirror radius.

To understand how superradiance works, we plot in
Fig. 3 (left) the dispersion relation o, = £vk> + m? —eu
as compared to the superradiant frequency w,. The inter-
section at k = k, divides the k axis into two regions:
For k > k, we have no superradiance and we expect to have
a positive thrust force (pushing the mirror upward).
For k < k; on the other hand, the system superradiates
and thus we expect a negative thrust force (pushing the
mirror downward). Moreover, in Fig. 3 (right) we plot
the superradiant frequency w, as a function of the black
hole charge, showing that it is maximal for the extremal
black hole, while it goes to —u in the Schwarzschild limit.

2x1073

. k
0.5 1.0

FIG. 4. Thrust force without the black hole M = 0, Q = 0. This
plot corresponds tom = 0.1,e = 3m, u = —0.01, T = 0.07. The
points represent the values of the integrand in (39) as a function of
k, and the resulting thrust force is given the area under the
interpolating curve.

We start by calculating the thrust without any black
hole, corresponding to an isotropic superposition of
modes with momentum k. As anticipated in Sec. III D,
we get a nonvanishing background force, see Fig. 4.
This happens because the mirror at rest is not in
thermodynamic equilibrium with the thermal bath. As
it is accelerated through the bath, the force eventually
equilibrates with the drag on the opposite side, resulting
in an equilibrium state in which the mirror moves with
constant velocity. The background force depends on the
parameters 7 and p, being not sensitive to the particle
mass m or charge e.

We move now to the case in which a charged black
hole sits at the centre of the geometry. In Fig. 5 we
show the thrust force for two different black holes, from
which the background contribution has been substracted.
We consider one case which is not favorable to super-
radiance (left) and another one with a large superradiance
region (right). As it could have been expected, there is a
change of sign in the resulting force as we move into
the superradiance region. These plots correspond to an
isotropic superposition of modes with fixed k, the total
thrust corresponding to the integral over k. We see that in
the less superradiant case the total area bellow the curve
is positive, while in the more superradiant case it is
negative.

These results imply that it is possible to use the
superradiant process to effectively build a “superradiant
black hole rocket.” As we discuss in what follows, the
rocket parameters can be optimized to maximize the
resulting thrust.

The parameters of the thermal bath 7 and u only
appear in the force (39) through the prefactor con-
taining the Bose-Einstein distribution. This dependence
is easy to analyze with the help of the plots in Fig. 5.
Indeed, since the modes with small k have a larger
weight for lower the temperatures, we can always get a
negative (superradiant) total force. This can be seen in
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F.- F%,
A
1.2x102 |
6x10°7 |-
, > k
0.5 1.0
FIG. 5.

F.- F?,

103 |

0.5 1.0

-10° |

-1.5x10% |

Black hole thrust force obtained by removing the background. The green regions are superradiant. Left: we take O = 0.8M for

a smaller superradiant region. Right: we take Q = 0.99M for a bigger superradiant region. These plots correspond to ry = 5r,
m =0.1,e =3m, u = —0.01, T = 0.07. The points represent the values of the integrand in (39) as a function of %, and the resulting

thrust force is given the integral under the interpolating curve.

A 0.0037
1.2x10°1 T

0.0039

-1.5x107%7

6x107 -3x1077

F.-F®,
A
5x102}
1 1 ] ;M
0.2 0.2 -
5x102

FIG. 6. Thrust force as a function of the thermal bath parameters, with the same background parameters as in Fig. 5 (left).

the plot in Fig. 6 (left). On the other hand, the modes
with smaller k get a larger weight as the chemical
potential approaches its limiting values +|m|/e. This
results in a change of sign of the total force as the
superradiant region become dominant, see the plot in
Fig. 6 (right).

B
Ij: T=0.07, u=-0.1
1.2x10° |- o0 T=0.01, u=-0.33
o%.°
o0t L T=0.07, u=-0.01
.c.-'
B
sooee’
.o
44
028
6x10* o2

T=0.04, u=-0.01

o
40 8o 10

FIG.7. Background force for different thermal baths and mirror
radii, from ry, = 0.1 to ry = 80.

Lastly, we studied the variation of the thrust as a func-
tion of the mirror radius ry. We first plot in Fig. 7 the
background force without the black hole, as a function
of the mirror radius and for different values of the thermal
parameters. As expected, it vanishes at ry = 0 and grows
monotonically with ry. Then, in Fig. 8 we obtain the thrust
force in the presence of the black hole, varying the mirror
radius ry for different values of the temperature 7 and
chemical potential 4. We see that the sign of the force
can change with the radius and, more interestingly, a set
of peaks appear for discrete and approximately evenly
spaced radii.

To further understand such “resonant” modes, in
Fig. 9 we plot the force (39) for an isotropic super-
position of modes with a fixed value of k as a function
of the mirror radius. We see that the resulting peaks
coincide almost perfectly with the zeros of the radial
function u,(r). This supports the interpretation of the
peaks as due to the modes that would resonate on a
closed cavity with similar radius. For a more detailed
analysis, see Appendix B 4.
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F.- F%,
A

1 ’flﬁn M 5 ~
B

-3x10* |

(a) T=0.07,u = —0.01

NA To

-5x10° |

-2x10+4|

T =0.05,1=—0.1

FIG. 8. Total thrust force obtained as a function of the mirror radius

0 = 0.99M and e = 5m.

F.- F%,
A ; i ‘

\J

Sl

109

-3x10° |

-5x10°

FIG. 9. Total thrust force obtained as function of the mirror
radius ry normalized with the horizon r, at k = 0.37. Here we fix
0=099M,e =5m, T = 0.07 and u = —0.01. The blue and red
lines correspond to the zeros of Re[u,(r)] and Imlu(r)]
respectively for 2 = 0.

V. DISCUSSION

In this note, we calculated the thrust on a semispherical
mirror centered around a charged black hole, which is
immersed in a thermal bath made of charged scalar particles.
We dubbed the system a “black hole superradiant rocket.”

A ‘ AL ‘ Io

" i ”WW S

-3x10+ |

-5x10+ |2

(b) T =0.07, p = —0.1
F.-F*

-5x10° |

-2x102|

T =0.05,=—0.2

ro normalized with the horizon r, at different 7" and p. Here we fix

We obtained the resulting force as a function of the
black hole parameters mass and charge, the thermal bath
parameters temperature and chemical potential, and the
rocket parameter corresponding to the mirror radius. We
compared it with the equilibration thrust that we would
obtain in the absence of the black hole.

We found that within the superradiant regime there is
a net force acting on the system, originated on the super-
radiant modes. Furthermore, we identified that by fine-
tuning external and rocket parameters, this force can be
optimized to maximize its value. Particularly noteworthy
are the resonant peaks in the thrust profile, reminiscent
of the well-known “black hole bomb” modes [10]. The
presence of these peaks can be understood as follows: the
resonant modes of the black hole bomb do not disappear
as we open a hole in the spherical mirror enclosing the
black hole; rather, they shift and are smoothed out,
persisting even when the hole becomes a full hemisphere.
Leveraging these resonances by adjusting the mirror’s
radius to coincide with one of these peaks allows for the
extraction of maximum thrust.

The results we have obtained represent just one instance
of a broader phenomenon: an object near a superradiant
black hole experiences a force due to the superradiant
modes. We deliberately chose a semispherical mirror to
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match the horizon’s geometry, making it easier to establish
a separable system and formulate dynamics through a
boundary value problem. However, the mirror’s shape
could potentially vary to include any arbitrary spherical
cap or zone, which would imply adding more y”* matrices
in our calculations.

A related but slightly different calculation would involve
computing the flux of the energy-momentum tensor on
a surface that encloses only the mirror, excluding the
black hole. This would yield the force acting on a semi-
spherical sail.

To explore slightly more realistic scenarios, one could
attempt to solve the problem for a superradiant Kerr black
hole. In such cases, selecting a mirror shape corresponding
to a constant radius value within a coordinate system
where the scalar equations can be separated is crucial.
Additionally, it would be worthwhile to calculate the force
originating from a fermionic thermal bath. These consid-
erations are essential steps before applying any of our
present results to astrophysical settings, such as estimating
the force exerted by a superradiant Kerr black hole on
surrounding objects [11-13].

APPENDIX A: ENERGY-MOMENTUM TENSOR

The Lagrangian of a free complex scalar field is
given by:

A

L=:(0,®)(0"®") — m*dd: (A1)

From this we can compute its energy-momentum tensor:

oL A oL R
T;w = 2 aD(I) + 2 aucDT - g/wﬁ
0(*d) d(0"d")

= (ayai/ + a;tal/ — G (a,aaa - mZ))( : qA)T (X)CAD(X/> : >|x’:x
(A2)

where we write aﬂﬁ)(x) = a;cﬁ(x/ )|x/—y in order to simplify
the notation. However, since we are interested in a thermal
bath of particles and antiparticles at temperature 7 and

chemical potential y, then it will be more useful to take the
mean value of the energy-momentum tensor:

1 . A
w =7 (040 40,0, = 9 (90" =m?)) (: DT (X)D(x') 1)
(A3)

the prefactor 1/2 is to avoid double counting. Finally, we
couple the gauge field,

pf(x) - 9 dF(x I D (x
{aﬂcb( ) = 0,7 (x) + ieA,d(x) (A4

9,B(x) > a,d(x') — ied,d(x)

and obtain the energy-momentum tensor:

1 : .
T, = 3 ((0, +ieA,)(a, — ieA))
+ (0, —ieA,)(0, + ieA,)
- gﬂl/((a:l - ieAﬁx)(aa + ieAa) - m2))

x (10" (x)D(x) )|y

Now, for the calculation of the thrust force in Sec. IV B
we only need to compute 7, and T ,4 in the limit r — oo.

(AS)

In this limit, the gauge field will be just A, = A}, = u, then
for the components of interest we have:
1 / . / 1 /
T, = 5 09, + ieu(d; — 9,) + 9,0, — ﬁaeae
- La/ 9, —M? + e2u?
rsin?(9) ¢
X (20 (x)B(X') 2 (A6)

1 .
~(0,0)) + 9,0,)(: ®

T, =
re D)

(X)O(x) ) v—x (A7)
Therefore, in order to obtain these components of the energy-
momentum tensor, it only remains to obtain the expected
value of the fields (: ®'(x)®(x'):). Since we are computing
the energy-momentum tensor at infinity, the field at infinity is
given by two contributions ® = &M + &% the incident
and the scattered components at infinity. Thus, we can use this
contributions of the field to separate the expectation value as:

(DT (R)D(X) ) [y = [(: D% (x) D (x') 1)
+ < . q)scat’r(x)(i)im(x/) :>
+ < . q")incT (X)ci)scat(x/) : >

+W@éﬂ”x’:x

where the pure incident field term vanishes when we integrate
in all directions (it is the total force without the mirror). In the
same way, the momentum energy tensor can be separated by
writing:

T — Tffat/scat + Tscat/mc + Tlnc/scat
{ rr (A9)

Tr6' _ ngat/scat + Tscat/lnc + Tlnc/scat

In order to obtain each of this terms, we will need the fields
expectation value, but ﬁrst we will compute the mean value

between the operators b and & % which are presentin the field
definitions (14).

1. Mean values between operators by and ¢%

Starting from the definition of the incident field
operator (13) but using the normalization of the quan-
tum field (31):

Am w++el" e’

“ /| o] \/Za)+

iwe(ro)  (A10)
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and its analogue for antiparticles,

o w, +eu et
& == BrYp (it)we(ro) (All)

‘T aw,o_ | V2o
AT am

where we used |0, + eu| = w, + eu. We can immediately obtain the expectation value of the quadratic operator &' ¢
over all directions of incidence:

iE(-2) ’
/dﬁdﬁ <€’?TE’;‘,> = /dhdﬁ' e’ (wy +eu)(a, +eu)
22w\ 20, o o_|\/|o o]

X Ym( )Y’n *(v/)wf(}’o)wﬂ(rox A > (A12)

Using the Bose-Einstein distribution (32) and writing the Dirac delta in spherical coordinates,

i5(¢'=2) /
/dﬁ di’ (& eny = /dﬁ i —C - : (w4 +eu)(, ,+ e/u)
T/ O\ O \/|w+w_|\/|a)+a)_|
wié(ro)wﬂ(ro) S(k—k)5(0—0)8(p— ')
-1 k* sin(0)

X V()Y ()

(A13)

The integral is over all the possible directions but not over k, then by doing the angular integration it remains:

2 2 S(k-K
/dn dn’ <AmTA?/> — (w+ + eﬂ) |ng:0)| ( R )52%15’”,”/ (A14)
ﬂ|a)+a)_| a)+(eT — 1) k

Proceeding in the same way for antiparticles, the expectation value of the quadratic operator is obtained considering all
directions of incidence, where the change of sign in the exponential is due to the change in the Bose-Einstein distribution:

2 2 _
lojo_| w_(e"T—1) k

Moreover, using the result (A14) and the classical result (29) we can obtain the mean value between ¢/ and IA)’LZ’ over
all directions:

/ di dit’ (¢27BY) = / dit dh’< Z cf,,ofr,,w> = > Opp / divdit (&)

'=|m’| '=|m'|

2 2 _
_ Of,f(w++eu) [we(ro)|” 6(k k)(smm, (A16)

oo | @ (eT-1) K

Analogously, other useful results are obtained:

2 2 _
/dﬁ dn’ <BV;T8‘;',’> = O* (er + e/’t) |Wf (r0)| (k k)ém’m (A17)

£t T |a)+a)_| a)+(e T — 1) k2
e 1" 2 ok — K
/dndh' meb Z O*f//OIf”f’/ 60++ M) |Wf5 O)| ( . )5mm’ (Alg)
o= ‘m‘ |CO+CO_| w+(€T - 1) k

In addition, we obtain the same expressions between the antiparticles operators é’;’ and ZJ? by using (A15).

A A 2 2 5(k—K
/dﬁ i’ <E";Tb?/> — _Of’f (Cl)+ + e/,l) ‘Wf(:;()” ( . )5mm’ (A19)
How | o(eF-1)

y +eu)? |wa(ro)|* 6(k—K)
dit i (BTEm Y = —07 (@, S A20
/ n < Cf> et |w @ | a)_(e_T_—l) k2 m'm ( )
2 2 _
/ di di (5" b § 00,0 O T O Mol Sk—K) (A21)
f//_lml |(l)+0)_| (I)_(e_T - 1) k
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We then have the needed tools to compute the expectation values of the fields.

2. Expectation values (:®'(x)d(x):)

The quantisized version of the classical fields obtained in Sec. III B are

scat r, 3 —iwt jm ( ) ym e—im_t Zmt U;(}") mx

0.0 = [T (e i 0.9 s B v 00) ()
inc r 3 —iw,t (}") m o=t ém"' W;(}") m

R Y R R I B

First we obtain (:®S (x)®°(x’):), then replacing with (A22) and expanding the product we have:

<:(i)scah”(x)(i)scat(x/):> /d3k dSk/ZZ |: (0, -0, 1) Mym*(e ¢)Y;ﬁ/(9',¢')<l;;1-rl;?/>

vy (ro)ve (1)

Zm ' .m'
s+ ecorvor) D)y, g0 B8 (A24)
v (ro) vy (o)

where we used that the only non zero mean value is <l3;”'l;?/> (as discussed in Sec. A 1). Also, using spherical coordinates
we can use the angular integral (A18), obtaining then the mean value of the fields:

< q)scatl(x)q)scat( ) > /dk (w++e/” Z Z |Wf” Yo |2[ iw, (1—1) v*(r)vf/(r’) Y?*(G,(b)YZ’,(Q',qﬁ’)O;ﬂ,Oﬂfﬁ

7lo,o-| 6.8 m " =m| v5(ro)ve (o) w, (eT—1)
_ eia)_(t—l’) Uf(r) Ui’(r) Y;l (97 ¢) Y?’* (9(:,_417/)0;///, Ofg//:| (A25)
”f(”o)vﬂ(”o) a)_(e‘T - 1)

In the same way we can obtain the expectation value (: ®S%! (x)®"(x’):), then replacing with (A22) and (A23) we
have:

* /
- pseatt (x\dINC(x/) ) — /dskd?’k/ |:ei((11+l—a)ﬁrt’) Uf(r)Wf/(r) Y™ (0, ¢ Ym,/ 0, ¢/ meC !
(05 ()b (x):) >y Ay 0.V @) )

)

e v (ro)wi (ro)

V0.0 ) E D) (426)
Using the angular integrals (A16) and (A17), we then obtain the expectation value of the fields:

<:é)scatT(X)(i)inc(X/)Z> :/ dk (a)+ +e’“ k2 Z |Wf/ ro |2|: iw, (t—1) Uf( ) ( /) Y?*(G, ¢)Y?’(9/ d)/) e

mlo o] bt vp(ro)we(ro) w,(eT —1)
_ (=1 vf(r)w’%(r/) Y7 (o, gb)Y;’,i_(Q’, 4)/)0”,] (A27)
”f(”o)W,f/(Vo) w_(e"T — 1)
Finally, we proceed in the same way for (:®""(x)®5%(x):), so replacing with (A22) and (A23) we have:
<:(i)inc‘r( )(Dscat( ) > /d3kd3klzzx|:ei(w+t—w’+ﬂ) Wf( ) ( ) Y’"*(e ¢) (9/7¢/)<€’?+BZ€I>
com £ Wf(ro) Ve (r )
4 eritcorsat ) WDVT) y iy e g ¢’)<1§'”/fé'">} (A28)
we(ro)vy(ro) o . ’ e
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Using the angular integrals (A16) and (A17), we then obtain the expectation value of the fields:

<:(i)inc’r(x)ci)scat<xr>:> :/dkw Z ‘w,g(ro)|2 [eim(;_ﬂ) W;<r>vf’<r’) Y?*(9,¢)YZL/(9”¢')0/’£

mlo o | A=, wy(ro)ve (ro) w, (7 —1)

- o) PO Y70 0000 (A29)
we(ro)vy(ro)  w_(e7T 1)
We can now continue with the computation of each term of the energy-momentum tensor in (A9).
3. Computation of 7,,
We obtain the component 7',, of the energy-momentum tensor separating the different field contributions:
T Tscat/scat + Tscat/inc + Tinc/scat (A30)
rr rr rr

where each of this part satisfies the definition (A6):

1 1

1 .
Tp=35 <3§0z + ieu(d; — ;) + 0,0, — p%aa - m%% -m’ e’ 2>< O (x)d(x) 1)y (A31)

Now we need to replace with each fields expectation value computed in Sec. A 2. Beginning with gAY seat

the result (A25):

, we will use

1 A
et =2 (3, + eu(0 - 0) + 0,0, 000 - Oy00 =P 1 €32 ) (O ()G )y (A2)
r

1
r2sin?(0)

since we are interesting in the limit » — oo, the angular derivatives will vanish at leader order (since the angular dependence
are only in the spherical harmonics). First we will obtain the terms with time derivatives 0,:

0,0, (: 5% (x) &2 (x') 1) = / GRS ST

|60 - | 2.0 \m " =|m|

« |:(1)2 eiaq(t—t’) v}(r)vfr(r') Y;”(H, ¢)Y?(9l,¢/)0;ﬂ,0ﬂfﬁ
' vy (ro)ve(ro) w,(eT —1)
2 lw (I t/) Uf(r)’l)bpr( ) Y?(Q, ¢)Y;I/*(9l::¢/) f’f”off” (A33)
Ve (7o) vy (o) w_(e7T —1)
and
A A e
(0, - ) (6 (@ (x)5) = [ak @I ST S
|CU+CU | £ m " =|m|
X [26#w+ei”)+(’ ) ( )W”(r/) Ym*(é?, ¢>Y?'(6V ¢)Off”0f'f"
vy (ro)ve(ro) w, (T —1)
mx* / / *
 20u0_eio-1-0) LADVeT) YO PVENG ) O Ocr (A34)
v, (ro) vy (ro) w_(eT —1)

Putting these terms together and using the dispersion relation (10), we can write for the energy-momentum tensor:

scat/scat
Trr / -

(K2 + 0,0) (: D% (x) D% (x') 1) . (A35)

N[ =
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Now all that remains to be done are the radial derivatives. Since the function v,(r) satisfies the boundary condition at
infinity (discussed in Sec. III B) given by:

kr—n1n2kr)

kr

i(
(1) = e~ 50+ ¢

(A36)

and whose derivative at leading order is

Y eilkr—nin 2kr)
0,v,(r) = i e 57+ = ikv,(r). (A37)
r

Then, at leading order in this limit, we have for the component T fffat/ scat,

Tf;:at/scat _ k2< - gpscati (X)(i)scat(x/) ) (A38)

|x’ =X
Now, replacing with (A25), using the asymptotic limit (A36) of v,(r) and taking x’ = x, we obtain:

scat/scat _ /°° dk (0 + eﬂ)zkz |Wf”(r0)|2
0

rr 2
T |w+a)—| f.f/,m f//:‘ml r

- . (A39)

{eiﬁﬂﬂ)%ﬂow VI O.)YR0.0) 050000 VIO 4V (0. 4)
w,(eT —1) vy(ro)ve(ro) w_(e”T —1) ve(ro)v(1o)

Moreover, noting that it can be exchanged £ <> ¢’ since it is summing over all possible values of £ and #’, then we finally
have:

Tf;:at/scat _ /°° dk (o) + eﬂ)2k2 |Wf”(’0)|2 B2 O O Y?*(e’ ¢)y;§(9’ ®)
0 T |(1)+(1)_| £ m " =|m| ’,,2 e U;(r())Uﬂ(ro)
1 1
X |: W - w_ :| (A40)
o, (eT —1) w_(e7T —1)
We compute now the component 7SN in the same way by using the definition of 7',, in (A6) and the expectation

value obtained in (A27). First, notice that the time dependence is the same than in the previous case with scat/scat fields
(since the difference between the fields are in the radial functions), then using (A35) we have:

. 1 & cmats o
T3 = 2 (K 4 0,07) (: 6% ()™ (x) 1)l

21,2 * e m(p 4 *
B [ e s

2z w0 it vp(ro)we(ro) w (€T —1)
—(K*+0 a’)eiw,(t—t’) ve(r)wy () Y7(0.4)Y(6'.¢')Opp (A41)
nr v(ro)wy (ro) w_(e=T —1) X=x

Again, to compute the radial derivatives we use the asymptotic of v,(r) (A36) but we also need the asymptotic behavior
of wy(r) (also discussed in Sec. III B):

fer—=n In 2kr+2%)

2kr

e~

Wf(r) ~ ((_l)f _ ei2(kr—i1 In 2kr)) (A42)

and whose derivative at leader order is

e—i(kr—n In 2kr+-£%) ((_l)f 4 ei2(kr—;7 In 2kr))

P (A43)

arwf(r) =
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scat/inc

Then, replacing in 77 with this asymptotic functions behavior and taking x’ = x we have:

Tscat/inc _/ dk a)+ +e/4 2k2 Z ‘W[’ rO [ (ei%(f_f/) Y?*(Q, ¢)Y’;/(9, 4)) ;f/

N 7w, 0| bt vy (ro)we (ro) w, (T —1)
—i&(¢=1") Y™ (0, Y™+ (0, O
_ e 2 i f( ¢) fm_( ¢) ff] (A44)
(o)W (ro) w_(e7T —1)

Since # and ¢’ are dummy indices, we can simplify a bit by interchanging £ <> ¢’ in the second line, finally getting:

wy(ro) O;f’ _ we(ro) Opy
vi(r0) w, (e — 1) ve(ro) o_(e”T —1)

scat/inc _ / dk (0, + e/")zk_z (A45)

" 7o w_| 2r?

ey (0. 0) Y (0. ¢){

Z.ml

We compute now the component T/ i1 the same way by using the definition of 7', in (A6) and the expectation value

obtained in (A29). Again, the time dependence is the same as in the other cases. Then, using (A35) we have:
Tre = <k2 +0,0) (: "7 () (x') 1) [y

* mx m (! /
—/dkM Z|Wf ro) P [(k2+aa/) iw, (1-1) wi(r)va(r') Y3 (0.0)Y0(0'.¢')Op,

2w | A, wi(ro)ve (ro) w. (€T —1)

@2+ gyt LAV ) SEQOVEL 000z (A4

we(ro) vy (ro) w_(e7T = 1) X'=x

Replacing with the asymptotic functions behavior and taking x’ = x we have:

inc/scat / dk (0, + eu)’k? Z |w,,ﬂ ro [ e B0 Y (0.9)Y (0. 4) O,
rlo,o| y wy(ro)ve(ro) w, (T —1)
3 eli(ﬂ—j) Y7 (0, ¢)Y”j)*_(9 $)0O N]. (A47)
we(ro)vp(ro) — @_(e7T —1)

Since ¢ and ¢’ are dummy indices, we can simplify a bit by interchanging ¢ <> ¢’ in the first line, finally getting:

Tlran/scat / dk (w+ +e/’t Z e iE(6-1") Ym(g ¢)Y’;l*(€ ¢) |:Wf/( 0) Ouif/ _w}(r()) O%’_f (A48)
z|w.o| 2r £t (1) o, (e = 1) vp(ro)w_(e7T —1)

Note that comparing with the component Tffat/ " in (A45) we have:
Tirnrc/scat _ (T%;at/inc)* (A49)

Lastly, bringing together the three calculated terms in T,, (expressions (A40), (A45) and (A49) and multiplying by r?
(as appears in the total thrust force in Sec. IV B) we obtain:

rzTrr _ rszcat/scat +2 2R e[ scat/inc]

(0, +eu)? { N Y7 (0.0)Y7(0, ) 1 1
= dk _— Woen (T 2 f f 4 Om*// Om/ 1" ® - w_
A |CO+O) | § § | 4 0)| * "l a)+(eT+—1) a)_(e_T—l)

£ m N E=|m| vy (ro)ve(ro)

W;;(ro) ;’;/ 1
v;(r0) w, (e — 1)

2| N 0.9)Y2(0.9) sy 0.yt e |

ve(ro) w_(e7T —1)
(AS0)

If we now interchange £ <> £’ in the last line, replace with the conjugate and regrouping the remaining terms, we can finally write:
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o + eu)?k? 1 1
PT,, = / i 2 — - U Y™ (0, )Y (0, A5l
0 7o wo_| w,(eT=1) w_(e7T—-1) f;n e Y2 (0. 9)Y7(0.4) (AS1)
where we defined
un, = 3= f’)momm'ﬂ, u+91e[e2f 7 Welro )0'", ] (A52)
v f;n vy (ro)ve (o) e ve(ro) ¢

4. Computation of 7'
We now compute the other energy-momentum tensor component of interest for calculating the thrust force in Sec. IV B
rT,o. We use its definition (A7):
1 PR
30,0+ 9,05) (: & ()B(X) )y (AS3)
and we calculate this component using each expectation value of the field obtained in Appendix A 2. Beginning with the

T,y=

component Tscat/ scat , we use (A25):

rngat/scat 5 r(@ra/ +0.0p)(: (i)scat’r(x)(i)scat(x/> WMoy
i 0,05 (P) 0 (F) Y (0. )y Y (O, ) Oy O g

(a)+ + e/l k r i ) Yr
= | dk ————F— wer(rg)[* | e +(=) % 2
/ 27w 0| f;n f”zl:ml velro)ve(ro) @+(eT = 1)

(t—l‘/) ar/[]f(r) U;/(r/) Y};l (0, ¢)a/9Y};l/* (9/, ¢l) e O/f”

v (r0) vy (ro) w_(e”T —1)
1 i (1) vp(r)dva (1) 0gY 7" (6.9)Y (6. 4') 05, O
vp(ro)ve(ro) w, (T —1)
o (rr) V(1) 005 (1) 0Y (0. )Y (6. ) O} om] (As4)
ve(ro) vy (ro) w_(e”T —1) Kex

Using the asymptotic form of v,(r) in (A36) and taking x’ = x we have:

2 .
scat/scat _ /dk (0, +ep) & Z Z W (7o) 2

ré 2
r
JT |C()+Cl)_| .l m f//zlml

05,10 ppr (Y?/ (0,0)05Y (0, ¢) — Y7 (0, $)0p Y7 (0, 45))
vp(ro)ve(ro) w, (T —1)
04y Oppr <Y';L(9’ $)0pY 7} (0. ) — Y7 (6. $)0pY 7 (6, 45))] (AS5)

ve(ro)vyi(ro) w_(e7T —1)

% |:€i’2’(f—f’)

o)

Note that this component is O(r~1).
We obtain in the same way the component rTscat/ "¢ by using (A27):

1 N o
T = 2 r(0,0) + 9,0 ><:q>3°at*(x)<p'“°(xf):>|x,:X
= [ OO g e SN Y O DBV 410
2z|w o | bmt! vy (ro)we(ro) w, (€T —1)

L gio (=) V)0 () 06 Y7 (0. Q)Y (0. ) Oppr sy (1o e ()W (1) YO, $)0pY 7 (0. ') O

vy(ro)we(ro) w,(eT —1) v (R)W3 (o) w_(e”T = 1)
iw_(1=1') Uf(l’)alr\/t:’f,(}" ) aHY? (0’ ¢)Y%l’:k (6/’ ¢/)0f)f”:| (A56)

ve(ro)wy(ro) w_(e7T —1) Kex
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Using the asymptotic form of v,(r) and w,(r) in (A36) and (A42) respectively, and taking x’" = x we have:

Tscat /inc

B4 ((=1) gmi2kr —

D) Y2 (0.0)3,Y2(0.4) 0},

i o, +eu)krk
"ty :/dk—( " lef’<r0 |2[

4z o w_| A

ei%(f—f/Jrl)((_l)f’e—iZkr + 1) 0pY™* (6, p)

vy (ro)we (ro)

Y™(0, ) 0%,

w0, (7 - 1)

- vy (ro)we(ro) w.(eT —1)
e AU ((=1)" e — 1) Y7 (0, $)9pY " (0. ) O
- v (ro)wii(ro) w_(e7T —1)
N (1) e 1 1) 3,Y2(0. )Y (O, ¢)0W} (57
ve(ro)wy (ro) w_(e”T —1) '

Also, note that this component is O(r7!).

Finally we obtain the component Tirnec/ scat by using (A29):

1 . R
rTlrr;)c/scat r(ara/g + a/rae)<:q)mc”r(x)q)scat(x/):>|X/:X
:/dkMZh’Vf (ro |2{ iw, (=)
27 |w w_| P
L el (=1) w(r)d,ve (1) 0pY (0. §)Y3(6, ¢')Oprp

o wp(r)ve () Y7 (0,9)0,Y (6, ¢') Opr

wi(ro)ve(ro)

w+(€w% - 1)
_ pioni=?) O,we(r)vs (r) Y2 (6, ¢)o, Y5 (0, ¢")O

wy(ro)ve (ro) w.(eT —1)

we(ro) vy (ro) w_(e7T - 1)

e SN - 4102 .
Wf(l" )vf’(rO) (6 wT_ - 1) x'=x
Using the asymptotic form of v,(r) and w,(r) in (A36) and (A42) respectively, and taking x’ = x we have:
rTInC/scat / die 2= a)+ + e:“ Z |wf ro |2[ —£+1) ((—l)feizkr + 1) Y?*(G, ¢)09Y?/ (9, ¢)0M
"’ 4zl o_| P wy(ro)ve(ro) w (T —1)
T s ((=1)7e*" —1) 0pY7"(6.9)Y}:(0. ) Oprs
wy(ro)ve (ro) o, (eT —1)
e (CDY e 1) V2(0.0)0,72(0.9)
we(ro)vs(ro) w_(e”T = 1)
_ 1\ p—i2kr _ m e
ei%(f’—f+]) (( 1) € 1) aGYf (9’ d))Yf’ (07 ¢) (A59)

Wf(”o)”}/(’”o)

Again, note that this component is O(r7!).

In conclusion, bringing together the three components
of T,y we see that this component is O(r~!). On the
other hand, the other term in the force is °T,, (which we
already computed in Sec. A 3) and it is O(#°). Therefore,
at leading order when r — oo, the component 7T,
vanishes.

APPENDIX B: NUMERICAL COMPLEMENT
1. y™ analysis

The results obtained in Secs. III D and I'V C depend on m
matrices of coefficients y,, [defined in (26)] and which do
not depend on the system parameters. As can be seen in

w_(e”T = 1)

|

Fig. 10, these matrices have their highest value on the
diagonal yJ, = 1 and oscillate around zero as we move
away from the diagonal. This behavior will allows us to cut
down the matrix and still grasp the physics of it.

1.0

FIG. 10. Matrix of coefficients y,, with m = 0.
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Re [O?Z/ + 5gg/]

FIG. 11.

2. Numerical cutoff

In order to obtain the numerical results we need to
defined a cutoff in the sums over £ (cutting £ we have cut
the sum over m as well since ¢ > |m|). To do so, first
we notice that the result for the matching in Sec. III C
depends on the radial functions evaluated at the mirror.
Moreover, the result depends indirectly on the inverse of
the derivative” R, (ry,) (these are inside the definition of H,,
which is inside of M™ defined in (28); for our results we
need the inverse (M™)~'). Then, analyzing the radial
equation (5):

L0 A0 RA1)
(@+eh(r)? €+  N\p oy _
+ ( 70 p m )R,g( )=0 (B1)
If we define
Ye(r) = r2f(r)R,(r) (B2)
we have:
(=2 (a)—l-eh(r))z_f(f—l—l)_ 5 .
i =-r (I L e ), 3)
'(r) = yf(r)
Ryn) =200 (B4)
Note that the parenthesis (W - @ — m?) vanishes

at a certain value of # (for k and r fixed), therefore the
derivative y/,(r) is zero and we have a minimum of R/, (r).
Then, for this value of # we have a maximum of (R, (r))~!,
so taking r = r, we define £g o5 as:
(0 + eh(ro))2 _ ? cutof (€ cutots + 1) —m2=0
f(ro) r

(B3)

Here we use the notation R,(r) to refer to all the radial
solutions u,(r), v.(r) and wy(r).

Jm [O?Z, + (5@@/]

Elements of 07, + 6, with m = 0 and k = 0.3, we mark the value ¢t = 14 (in this case) where a peak is predicted.

which depends on the value of k. This behavior can be seen
in Fig. 11, where the predicted peak is near the £y
Then, to ensure that we are having a good approximation in
the numerical analysis we take £max = Coutorf + 10. From
Fig. 11 we also see that for £ > ¢4 and far away from the
diagonal this does not go to zero, which means that the
matching will be better if we take more #. However, for
the thrust force (39) we only need the values near the
diagonal which we see that go to zero for £ > ¢ \ax. Then,
this value is a good cutoff to calculate the thrust force we
are interested in.

3. Matching at the mirror

In Sec. III D we show the obtained scalar field in the
whole space. In Fig. 12 we show how this field fulfills
the 3 matching conditions at the mirror radius studied in
Sec. I1I C by using the cutoff for # discussed in the previous
section. First, we see the fields @ and ®~ at r = r,, where
we notice that both curves coincide in the whole sphere and
are zero at the mirror position, so continuity and the perfect
mirror condition is satisfied. Second, we see the radial
derivatives of the fields where we notice that the curves
match pretty well, so continuity of the derivative (where
there is no mirror) is satisfied. This matching condition can
be improved by taking more values of #. However, we see
that the used cutoff already gives a good approximation of
the analyzed system.

4. Resonance on the electromagnetic cavity

In this section we study the case of a pure electromag-
netic case where we change the black hole for a perfect
conductor sphere of the same radius r,, maintaining the
spherical mirror. To obtain the solution in this case, we
consider a combination of the spherical Bessel solutions
(the exact radial solutions of (5) in the case without the
black hole) such that it vanishes at the conductor sphere:

up(r) = yelkry)je(kr) = jo(kry )y (kr) (B6)
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FIG. 12. Matching conditions of the obtained fields with k = 0.6 at the mirror radius r = r, = 5r, and varying the angle 6. Left:
density particle of the fields @ and ®~ at the mirror radius in the whole sphere 0 < 6 < 2z. Right: radial derivatives at the mirror radius

9,®%(r)|,—, and 0,®(r)|,_, on the upper hemisphere —% < 6 <Z.
F.- F%,
t 3 o] _lk__ B_U(__ #, n
| i ' ' R
| i ‘ | Iv II |
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| ! [ ' | '
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FIG. 13. Total thrust force at k = 0.37 obtained as function of the mirror radius r,, normalized with conductor sphere radius

r, = 11.4107. Here we fix em =5, T = 0.07, y = —0.01 and the radius r, correspond to a black hole horizon with Q/M = 0.99.
The colored lines correspond to the zeros of u,(r) defined in (B6) and varying #.

In Fig. 13 we show the total thrust obtained for a fix value
of k (this is, without performing the integral in k) in the same
way than the background force in Sec. IV C and using the
previous radial function. Moreover, we show the zeros of
the function (B6) as a function of r for different #. This zeros
correspond for a resonant modes in the case of a closed

cavity, then we see in 13 that the peaks coincide perfectly
with the resonant modes where the lowest £ are dominant. As
¢ grows, they group together next at the right of the peaks.
Therefore, we conclude that the peaks observed in Sec. IV C
are a characteristic of the geometry and not due to the black
hole, although these are modified by its presence.
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