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Two perfectly conducting, infinite parallel plates will restrict the electromagnetic vacuum, producing an
attractive force. This phenomenon is known as the Casimir effect. Here we use electromagnetic field
correlators to define the local interaction between the plates and the vacuum, which gives rise to a
renormalized stress-energy tensor. We then show that a Lorentz boost of the underlying electric and
magnetic fields that comprise the correlators will produce the correct stress-energy tensor in the boosted
frame. The infinite surface divergences of the field correlators will transform appropriately, such that they
cancel out in the boosted frame and produce the desired finite result.
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I. INTRODUCTION

First introduced by Hendrik Casimir in 1948 [1], the
boundaries of an enclosed cavity in free space will impose
strict limitations on the underlying quantum vacuum and
restrict fundamental vacuum modes of the background
vacuum field. For the simplest cavity configuration, com-
posed of two infinite, perfectly conducting parallel plates
located a distance a from each other, there is a resulting
force per unit area of

F
A
¼ −

π2ℏc
240a4

:

This force, duly named the Casimir force, seeks to push the
plates together (evident by the minus sign) and, remarkably,
the interior of the plates has a corresponding negative
energy density. This phenomenon, the Casimir effect, is not
limited to just simple cavity configurations. It extends to a
wide variety of physical interactions between the quantum
vacuum and surfaces with various geometries and boundary
conditions (or physically, the properties of the materials
constituting that surface). The Casimir effect is commonly
referred to as a physical manifestation of the quantum
vacuum [2–8]. There is an abundance of literature that
encompasses the extensive influence of the Casimir effect
to many aspects of physics: see [4,6,9,10] for detailed
reviews of this topic.
The Casimir effect is not limited to just theoretical

perspectives; there is an extensive history of experimenta-
tion that ranges from advancing force measurements
[11–14] to the consequences of dielectric response [15–19]

to the effects of geometry [20–23]. It has even been shown
that the Casimir effect can facilitate heat transfer across the
vacuum via quantum fluctuations between nanomechanical
systems [24]. In fact, Casimir experiments are no longer
limited to the static Casimir effect.When amirror interacting
with the vacuum is subjected to time-dependent boundary
conditions, the system produces real photons by means of
the dynamical Casimir effect [25–27]. In 2011, the first
experimental detection of this effect was performed. In this
experiment, photon production was observed by utilizing a
superconducting circuit whose electrical length can be
changed bymodulating the inductance of a superconducting
quantum interference device at high frequencies [28]. For a
modern review of Casimir experimentation, see [29].
When computing the electromagnetic Casimir effect

(specifically the vacuum expectation values of the Maxwell
stress tensor or the relativistic stress-energy tensor) it is
important to correctly account for the local behavior due to
the presence of strong divergences as we approach the
boundaries [30,31]. It is possible to remove these infinities
if one chooses a suitable method of locally defining the
field, seen in Brown and Maclay’s original derivation of the
stress-energy tensor for the parallel plate cavity [32].
However, the electromagnetic field correlators we will
use to define the local interaction between the field and
the plates contain divergences that cannot be removed with
standard renormalization methods [31]. These correlators
encode the entire local behavior near both sides of the
material boundaries and can be used to directly calculate
the components of the stress-energy of the Casimir cavity.
In this paper, we show that one can apply a local Lorentz

transformation (boost) to the underlying electric and
magnetic fields that compose the electromagnetic field
correlators of a parallel plate Casimir cavity and recover
the resulting transformation applied directly to the stress-
energy tensor. From Brown and Maclay’s derivation [32],
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the renormalized stress-energy tensor for perfectly con-
ducting parallel plates, separated by distance a, takes the
form

hΘ̂μνðzÞiren0 ¼ π2ℏc
720a4

diagð−1; 1; 1;−3Þ: ð1Þ

This stress-energy tensor will transform according to the
standard methods employed in special relativity when the
Lorentz boost is applied in the perpendicular direction
relative to the surface of the plates. It should be expected
that applying a Lorentz boost to the electric and magnetic
field correlators will produce the same result. Thus, we
present an explicit derivation that shows this is indeed the
case and that the divergent infinities present in the field
correlators also transform correctly, such that they exactly
cancel each other out and the resulting stress-energy tensor
in the boosted frame remains a finite result. While this
result is not surprising, the authors are not aware of any
existing literature that explicitly demonstrates the relativ-
istic transformation of Casimir setups.
Here we will be using the metric signature convention

ð−1; 1; 1; 1Þ. Einstein summation notation will be used,
where Greek indices will run from 0 to 3 and Latin indices
will run from 1 to 3, with the exception of α which is used
to track the modal function of the electromagnetic field.
Gaussian units are employed throughout, and we will take
c ¼ ℏ ¼ 1 hereafter.

II. PARALLEL PLATE CASIMIR CAVITIES

The classical Maxwell stress tensor for any system is
given by [33]

Tij ¼
1

4π

�
EiEj −

1

2
δijE2 þ BiBj −

1

2
δijB2

�
; ð2Þ

whereE andB are the electric and magnetic fields, denoted
in bold to indicate vector quantities. Our first task is to
express this quantity in terms of the Casimir electromag-
netic field correlators. To facilitate computation we will
assume that the parallel plate’s cavity walls will be oriented
such that the surfaces lie parallel to the xy plane, and
perpendicular to the z axis.
The quantum version of the stress tensor in Eq. (2) can be

obtained by quantizing the electromagnetic field [31],
which becomes

4πhT̂iji0 ¼ hÊiÊji0 −
1

2
δijhÊ2i0 þ hB̂iB̂ji0 −

1

2
δijhB̂2i0:

ð3Þ

Here we employ the shorthand notation hÂi0 ≡ h0jÂj0i to
denote the vacuum expectation value of some operator Â
throughout this paper. We will use this version of the

Maxwell tensor to find the spatial components of the
renormalized stress-energy tensor. For example,

hT̂zzi0 ¼
1

8π

h
hÊ2

zi0 − hÊ2
ki0 þ hB̂2

zi0 − hB̂2
ki0

i
; ð4Þ

where Ê2
k ¼ Ê2

x þ Ê2
y and B̂2

k ¼ B̂2
x þ B̂2

y.
To find the renormalized stress-energy tensor, hΘ̂μνðzÞiren0 ,

of the stationary Casimir cavity, we will use the relation
ΘijðzÞ ¼ −TijðzÞ [33] to find the spatial components, along
with the energy density, ρðzÞ ¼ hΘ̂00ðzÞiren0 , given by

ρðr; tÞ ¼ 1

8π
ðhÊ2ðr; tÞi0 þ hB̂2ðr; tÞi0Þ: ð5Þ

Crucially, the local natureof thecorrelatorspossesses strongly
divergent behavior near the boundaries of the plates that
cannot be renormalized in the usual manner. Yet, the stress-
energy tensorwill itself be renormalized to a finitevalue as the
divergences resulting from the correlators always appear in
pairs which exactly cancel.
In Casimir’s original experimental setup [1], and in

subsequent results from Brown and Maclay [32], two
infinite perfectly conducting parallel plates are kept at a
fixed distance a from each other. We will set this up such
that one of the plates is placed at z ¼ 0 and the other one at
z ¼ a. The perfectly conducting plates will impose the
following boundary conditions on electric and magnetic
fields: the tangential components of the electric field, Êx

and Êy, along with the normal component of the magnetic
field, B̂z, will vanish on the surface of the plates.
A detailed calculation using the cavity setup introduced

above, presented by Santos, Sobrinho, and Tort in [31],
yields the following results for the electric and magnetic
field correlators:

hEiðr;tÞEjðr;tÞi0¼
�
π

a

�
4 2

3π

�
1

120
ð−δkijþδzijÞþδijFðξÞ

�
;

ð6Þ

hBiðr;tÞBjðr;tÞi0¼
�
π

a

�
4 2

3π

�
1

120
ð−δkijþδzijÞ−δijFðξÞ

�
;

ð7Þ

where δkij ≡ δxij þ δyij. The function FðξÞ is defined by

FðξÞ≡ −
1

16

d3

dξ3
cotðξÞ; ð8Þ

where ξ≡ πz=a. This function is divergent on the bound-
ing plates, i.e., for ξ → 0 and ξ → π, which correspond to
z → 0 and z → a, respectively. These divergences appear
such that the divergent pieces cancel away when computing
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the stress-energy tensor. It is worthwhile noting that this
type of divergence is not directly related to the usual sort of
loop divergences appearing in quantum field theory, but is
instead related to the idealized nature of our boundary
conditions (perfect conductors) which cannot be physically
realized [34].
The nonvanishing components of the electric field

correlators are

hÊ2
xðz; tÞi0 ¼ hÊ2

yðz; tÞi0 ¼
�
π

a

�
4 2

3π

�
−

1

120
þ FðξÞ

�
;

hÊ2
zðz; tÞi0 ¼

�
π

a

�
4 2

3π

�
1

120
þ FðξÞ

�
: ð9Þ

Additionally, the nonvanishing components of the magnetic
field components are

hB̂2
xðz; tÞi0 ¼ hB̂2

yðz; tÞi0 ¼
�
π

a

�
4 2

3π

�
−

1

120
− FðξÞ

�
;

hB̂2
zðz; tÞi0 ¼

�
π

a

�
4 2

3π

�
1

120
− FðξÞ

�
: ð10Þ

We see here that the perfect conductor boundary conditions
also transform into moving coordinates. This is reflected in
the form of hÊxi0, hÊyi0, and hB̂zi0, which each vanish at
the, now moving, locations of the plates. A straightforward
calculation leads to the following nonvanishing Maxwell
tensor components,

hT̂zzi0 ¼
π2

240a4
; hT̂xxi0 ¼ hT̂yyi0 ¼ −

π2

720a4
: ð11Þ

These components, along with the energy density

ρðaÞ ¼ −
π2

720a4
; ð12Þ

lead to the well known result for the renormalized stress-
energy tensor presented in Eq. (1).
One can then apply a Lorentz boost to see how

hΘ̂μνðzÞiren0 transforms when boosted to a moving frame.
To do this, we explicitly transform Eq. (1) by the Lorentz
transformation corresponding to a boost following the
covariant transformation rule

Θ0μν ¼ Λμ
ρΛν

δΘρδ: ð13Þ

In what follows we will take β to be the dimensionless
boost parameter related to the velocity in our units as β ¼ v
and γ−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − β2Þ

p
to be the Lorentz factor.

It is straightforward to verify that Eq. (1) remains
unchanged for arbitrary boosts in the x̂ and ŷ directions,
due to the translational invariance along the face of the
infinite parallel plates. To illustrate this, consider a boost in
the x direction only, noting that any other boost in the xy
plane may be obtained by applying a spatial rotation about
z prior to the boost. In this case β ¼ βx̂ with the explicit
(passive) boost transformation

Λμ
ν ¼

0
BBB@

γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

1
CCCA: ð14Þ

Acting this on Eq. (1) gives hΘ̂0μνðzÞiren0 ¼ hΘ̂μνðzÞiren0 .
Considering now the somewhat more interesting case of

a boost along the ẑ direction we have β ¼ βẑ with the
(passive) transformation now taking the form

Λμ
ν ¼

0
BBBB@

γ 0 0 −γβ
0 1 0 0

0 0 1 0

−γβ 0 0 γ

1
CCCCA: ð15Þ

Acting this new transformation on Eq. (1) produces the
appropriate renormalized stress-energy tensor in the
boosted frame,

hΘ̂0μνðzÞiren0 ¼ π2

720a4

0
BBBB@

−γ2ð1þ3β2Þ 0 0 4γ2β

0 1 0 0

0 0 1 0

4γ2β 0 0 −γ2ð3þβ2Þ

1
CCCCA:

ð16Þ

This agrees with the derivation in [35], which examined the
change in Casimir energy for uniformly moving plates
using Greens functions.

III. CORRELATOR BOOST

We now seek to show that a transformation of the
underlying electric and magnetic fields that compose the
correlators will correspond to the standard transformation
applied directly to the stress-energy tensor.
The general (passive) Lorentz transform ofE is (see 13.3

in [36])

E↦
Λ

E0 ¼ γðEþ β ×BÞ − γ2

γ þ 1
βðβ ·EÞ; ð17Þ
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where elements of the boosted frame are denoted by primes. This will transform the electric field correlator in the following
way:

hÊ0
iðr; tÞÊ0

jðr; tÞi0 ¼
X
α

E0
iαðrÞE0�

jαðrÞ

¼
X
α

�
γ2
�
EiαE�

jα þ ðβ ×BÞiαðβ × B�Þjα þ Eiαðβ ×B�Þjα þ ðβ ×BÞiαE�
jα

�

−
γ3

γ þ 1

�ðEiαβj þ ðβ ×BÞiαβjÞðβ ·E�
αÞ þ ðβ · EαÞðβiE�

jα þ βiðβ ×B�ÞjαÞ
�

þ γ4

ðγ þ 1Þ2 βiβjðβ · EαÞðβ · E�
αÞ
�
; ð18Þ

where the summation on α is over the two modal functions of the fields. The functional dependence on r for the electric and
magnetic field terms is suppressed within the calculations for compactness.
Aligning the boost along the ẑ direction (βi ¼ βδiz), this correlator becomes

hÊ0
iðr; tÞÊ0

jðr; tÞi0 ¼
X
α

�
γ2
�
EiαE�

jα þ βðβðẑ ×BÞiαðẑ ×B�Þjα þ Eiαðẑ × B�Þjα þ ðẑ ×BÞiαE�
jαÞ

�

−
γ3

γ þ 1
β2
�ðEiαδjz þ βðẑ ×BÞiαδjzÞE�

zα þ EzαðδizE�
jα þ βδizðẑ ×B�ÞjαÞ

�þ γ4

ðγ þ 1Þ2 β
4δizδjzEzαE�

zα

�
:

ð19Þ

In calculating the E0
zz component, where we recognize

that ðẑ ×BÞ vanishes, we get

hÊ02
z ðz; tÞi0 ¼

�
γ2 − 2

γ3

γ þ 1
β2 þ γ4

ðγ þ 1Þ2 β
4

�X
α

EzαE�
zα

¼
X
α

EzαE�
zα ¼ hÊ2

zðz; tÞi0: ð20Þ

We see that the E0
zz component of the electric field

correlator remains unchanged as a result of the boost.
This should not be surprising, as the component of any
electric and magnetic field in the direction of the Lorentz
boost remain unchanged (Here E0

z ¼ Ez and B0
z ¼ Bz).

For the calculation of the two other nonvanishing
components of the electric field correlator, we recognize
that the second and third term in Eq. (19) will vanish for
both the E0

xx and E0
yy components. The E0

xx correlator now
becomes

hÊ02
x ðz;tÞi0¼γ2

�X
α

ExαE�
xαþβ2

X
α

ByαB�
yα

�

¼γ2
�
π

a

�
4 2

3π

�
−

1

120
þFðξÞ−β2

�
1

120
þFðξÞ

��
;

ð21Þ

where the terms ðẑ × BÞiαE�
jα and Eiαðẑ ×B�Þjα vanish

since hÊiðr; tÞB̂jðr; tÞi0 ¼ 0. The E0
yy correlator can be

computed in the same manner,

hÊ02
y ðz; tÞi0 ¼ γ2

�X
α

EyαE�
yα þ β2

X
α

BxαB�
xα

�

¼ γ2
�
π

a

�
4 2

3π

�
−

1

120
þ FðξÞ

− β2
�

1

120
þ FðξÞ

��
: ð22Þ

It is straightforward to show that the off diagonal
components for the electric field correlator still vanish
under the boost.
With the general Lorentz transform of B,

B↦
Λ

B0 ¼ γðB − β ×EÞ − γ2

γ þ 1
βðβ · BÞ; ð23Þ

we see that the magnetic field correlator transforms in the
following way:
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hB̂0
iðr; tÞB̂0

jðr; tÞi0 ¼
X
α

B0
iαðrÞB0�

jαðrÞ

¼
X
α

�
γ2ðBiαB�

jα þ ðβ ×EÞiαðβ ×E�Þjα − Biαðβ ×E�Þjα − ðβ ×EÞiαB�
jαÞ

−
γ3

γ þ 1

�ðBiαβj − ðβ ×EÞiαβjÞðβ ·B�
αÞ þ ðβ · BαÞðβiB�

jα − βiðβ ×E�ÞjαÞ
�

þ γ4

ðγ þ 1Þ2 βiβjðβ ·BαÞðβ ·B�
αÞ
�
: ð24Þ

With the boost aligned as before, in the ẑ direction, we see that this becomes

hB̂0
iðr;tÞB̂0

jðr;tÞi0¼
X
α

�
γ2ðBiαB�

jαþβðβðẑ×EÞiαðẑ×E�Þjα−Biαðẑ×E�Þjα−ðẑ×EÞiαB�
jαÞÞ

−
γ3

γþ1
β2ððBiαδjz−ðẑ×EÞiαδjzÞB�

zαþBzαðδizB�
jα−δizðẑ×E�ÞjαÞÞþ

γ4

ðγþ1Þ2β
4δizδjzBzαB�

zα

�
: ð25Þ

In calculating the B0
zz component, where we again

recognize that ðẑ × EÞ vanishes, we get

hB̂02
z ðz; tÞi0 ¼

�
γ2 − 2

γ3

γ þ 1
β2 þ γ4

ðγ þ 1Þ2 β
4

�X
α

BzαB�
zα

¼
X
α

BzαB�
zα ¼ hB̂2

zðz; tÞi0: ð26Þ

The magnetic field correlator aligned with the boost
direction remains unchanged, just as we saw before with
the electric field component.
The second and third terms in Eq. (25) will vanish for

both theB0
xx and B0

yy components. The B0
xx correlator is now

hB̂02
x ðz;tÞi0¼γ2

�X
α

BxαB�
xαþβ2

X
α

EyαE�
yα

�

¼γ2
�
π

a

�
4 2

3π

�
−

1

120
−FðξÞ−β2

�
1

120
−FðξÞ

��
;

ð27Þ

where the terms ðẑ × EÞiαB�
jα and Biαðẑ × E�Þjα vanish

since hÊiðr; tÞB̂jðr; tÞi0 ¼ 0. The B0
yy correlator can be

computed in the same manner,

hB̂02
y ðz;tÞi0¼γ2

�X
α

ByαB�
yαþβ2

X
α

ExαE�
xα

�

¼γ2
�
π

a

�
4 2

3π

�
−

1

120
−FðξÞ−β2

�
1

120
−FðξÞ

��
:

ð28Þ

It is again straightforward to show that the off diagonal
components for the magnetic field correlator still vanish
under the boost.
With the newly calculated electric and magnetic field

correlators in the boosted frame, we can show how the
stress-energy tensor transforms as a result of the trans-
formation of its constituent quantities. We begin with the
Lorentz transformation of the quantum version of the
Maxwell stress tensor in Eq. (3), which becomes

4πhT̂ 0
iji0 ¼ hÊ0

iÊ
0
ji0 −

1

2
δijhÊ02i0 þ hB̂0

iB̂
0
ji0 −

1

2
δijhB̂02i0:

ð29Þ

The T 0
zz component is now

hT̂ 0
zzi0 ¼

1

8π

	hÊ02
z i0 − hÊ02

k i0 þ hB̂02
z i0 − hB̂02

k i0


; ð30Þ

which simplifies to

hT̂ 0
zzi0 ¼ γ2ð3þ β2Þ

�
π2

720a4

�
: ð31Þ

It is clear that we recover the zero velocity rest-frame value
seen in Eq. (11). In the same way,

hT̂ 0
xxi0 ¼ hT̂ 0

yyi0 ¼ −
1

8π

�hÊ02
z ðz; tÞi0 þ hB̂02

z ðz; tÞi0
�

¼ −
π2

720a4
¼ hT̂xxi0 ¼ hT̂yyi0: ð32Þ

We see that the perpendicular components of the stress
tensor relative to the boost remain unchanged. This is an
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expected result, as the regularized stress-energy tensor Θμν,
where ΘijðzÞ ¼ −TijðzÞ, is invariant with respect to an
arbitrary Lorentz boost parallel to the plates [37]. As in the
rest-frame setup, the off diagonal boosted terms of hT̂ 0

iji
vanish. This is an expected result as the infinite parallel
plate Casimir setup should not experience additional shear
stress when boosted into the new frame.
The energy density, whose rest-frame form is presented

in Eq. (5), with the specific value given by Eq. (12), can be
calculated in the boosted frame as

u0ðr; tÞ ¼ hΘ̂000iren0 ¼ 1

8π

�hÊ02ðr; tÞi0 þ hB̂02ðr; tÞi0
�

¼ −γ2ð1þ 3β2Þ
�

π2

720a4

�
: ð33Þ

It is now necessary to calculate the momentum density
terms of the stress-energy tensor, hΘ̂0jiren0 , in the boosted
frame. With the definition

hΘ̂00jiren0 ¼ 1

4π

�hÊ0 × B̂0i0
�
j; ð34Þ

it is clear to see that in the rest-frame of the Casimir cavity
there is no net momentum since hÊiðr; tÞB̂jðr; tÞi0 ¼ 0.
This will not be the case in the boosted frame. Here, the
subscript j denoting the momentum direction is replaced by
k to make the cross product notation more agreeable. With
this change, the right-hand side of Eq. (34) will be
expressed as

1

4π
ðhÊ0 × B̂0i0Þk ¼

1

4π

�
ϵijk

X
α

Ê0
iαB̂

0�
jα

�
k
: ð35Þ

The mixed boosted correlator term can be expanded out
with the transformed electric and magnetic field terms in
Eqs. (17) and (23), respectively. This now becomes

X
α

Ê0
iαB̂

0�
jα¼

X
α

�
γ2
�
EiαB�

jα− ðβ×BÞiαðβ×E�Þjα−Eiαðβ×E�Þjαþðβ×BÞiαB�
jα

�

−
γ3

γþ1

�ðEiαβjþðβ×BÞiαβjÞðβ ·B�
αÞþðβ ·EαÞðβiB�

jα−βiðβ×E�ÞjαÞ
�þ γ4

ðγþ1Þ2βiβjðβ ·EαÞðβ ·B�
αÞ
�
: ð36Þ

Any mixed terms containing both Eiα and B�
jα, along with

their complex conjugates, will vanish. Additionally, once
the boost is aligned in the ẑ direction, any terms formed
from a mixing of ðẑ ·AÞ and ðẑ ×AÞiα, with appropriate
conjugates in place, will vanish for both A ¼ E;B. This
leaves us with

X
α

Ê0
iαB̂

0�
jα ¼ γ2β

X
α

	ðẑ ×BÞiαB�
jα − Eiαðẑ ×E�Þjα




¼ γ2β
X
α

	ð−Byαδix þ BxαδiyÞB�
jα

þ EiαðE�
yαδjx − E�

xαδjyÞ


: ð37Þ

We are finally left with

X
α

Ê0
iαB̂

0�
jα

¼

8>>><
>>>:

−γ2β
P
α
ðByαB�

yα þExαE�
xαÞ for i¼ x and j¼ y;

γ2β
P
α
ðBxαB�

xα þEyαE�
yαÞ for i¼ y and j¼ x;

0 otherwise:

ð38Þ

Substituting this into Eq. (35), and contracting against the
Levi-Civita symbol, we see that the only nonvanishing
momentum component is along the boosted ẑ direction, as
expected, and equal to

hΘ̂00ziren0 ¼ −
γ2β

4π

�hB̂2
xðz; tÞi0 þ hB̂2

yðz; tÞi0
þ hÊ2

xðz; tÞi0 þ hÊ2
yðz; tÞi0

�

¼ 4γ2β

�
π2

720a4

�
: ð39Þ

With this, we now have all the necessary components to
verify that a Lorentz transformation of the underlying fields
that construct the quantum correlators used to calculated
the parallel plate Casimir cavity is exactly equal to the
Lorentz transformation of the renormalized stress-energy
tensor. Applying the relation ΘijðzÞ ¼ −TijðzÞ to the
transformed quantum Maxwell stress tensor components
in Eqs. (31) and (32), along with the directly computed
energy and momentum terms of the transformed stress-
energy tensor in Eqs. (33) and (39), we arrive at the full
expression for the boosted stress-energy tensor in Eq. (16).
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IV. CONCLUSION

In this paper, we have shown that a Lorentz boost of the
underlying electromagnetic field correlators of a parallel
plate Casimir cavity will generate a renormalized stress-
energy tensor which agrees with the direct calculation of
the Lorentz boost of the rest-frame stress-energy tensor.
This transformation was taken in the direction perpendi-
cular to the surface of the plates, as the system is unaffected
by an arbitrary Lorentz boost parallel to the plates. In the
rest-frame, the electromagnetic field correlators possess
divergences, but the resulting stress-energy tensor will be
finite as these infinities exactly cancel. We find that the
same applies to the boosted frame, whose correlators
continue to possess divergences but transformed such that
the resulting stress-energy tensor components retained the
correct finite values.
While this derivation is not novel per se, we do hope that

its explicit form is useful in enabling future calculations of
Casimir phenomenon involving moving configurations. Of
particular interest would be an an analysis of the effect of
this boost on the plate geometry itself which determines if
the change in Casimir energy density corresponds to a plate
setup with length-contracted plate separation. Additionally,

an extension of this work to the finite plate case would be
interesting, as in this case boosts in the x direction are no
longer trivial since fringing fields would transform to
nonidentical fields.
We additionally note that this method of computed

boosted energy densities is generally applicable to any
Casimir situation in which one knows rest frame field
correlators. Of particular interest would be applying this
to situations involving more complex geometries such as
skewed plates or spheres. In such cases, we expect it is not
possible to determine explicit and analytic forms of the
correlators, but since our transform acts linearly, it may be
possible to extend this scheme to perturbative or series
expansion solutions and pass through the transform at
each order. To the best of the authors’ knowledge, this is
the only method in literature for computing Casimir
energies and forces in moving frames using field
quantities.
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