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From the perspective of effective field theory (EFT), Wilson coefficients of the low energy theory are
determined by integrating out modes of the full ultraviolet (UV) theory. The spectrum can be in principle
resummed if one has access to all available infrared (IR) coefficients at low energies. In this work we show
that there exists a general class of consistent massive resonance double-copy (CMRDC) models where UV
massive residues are reconstructed through double-copy consistency conditions between the IR Wilson
coefficients of the full EFT expansion. Through a color-dual bootstrap, we find surprisingly that double-
copy consistency alone introduces the kinematic factors of CMRDC models that soften high energy
behavior by exponentiating color-dual contacts. This bootstrap suggests that our massive resonance
paradigm is an inevitable consequence of the duality between color and kinematics, thereby providing a
path towards emergent UV structure directly from the IR. We then demonstrate how CMRDC models can
capture a spectrum of massive modes compatible with general multiplicity, and use Padé extrapolation to
solve the inverse problem of identifying massive UV resonance from a small number of IR Wilson
coefficients.
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I. INTRODUCTION

The duality between color and kinematics [1,2] and
associated double-copy construction [2] has proven to be
an effective tool in the calculation of quantum gravity
scattering amplitudes to high orders in perturbation
theory [3–6]. In addition, beyond perturbative calculations,
recent literature has demonstrated that color-kinematics
duality can also place unexpected constraints on all-
order higher-derivative operators. This has been shown
in higher-derivative vector theories [7,8], effective scalar
theories [8–10] as well as constraints on generalizations
of the inverse Kawai-Lewellen-Tye (KLT) momentum
kernel [11,12]. This growing body of literature concerning
the color-dual constraints on effective field theory (EFT)
suggests that graphical organization of scattering ampli-
tudes can be used to bootstrap ultraviolet (UV) physics
directly from infrared (IR) data [7]. Here we suggest that it
is precisely this structure that can inform the organization
of massive residues in the context of low-energy EFT
operators.

Before proceeding, we note that there are many other
studies of encoding massive states1 with double-copy
construction that are different than what we propose here.
Typically, massive double copies approach the problem via
local construction of massive modes, where kinetic terms
are quadratic in the normal field-theoretic sense, Lkin ¼
Bð∂2 −m2ÞB. These approaches apply the double copy
over local massive propagators of the form

A ¼
X
g

cgng
dg −m2

g
→ M ¼

X
g

ñgng
dg −m2

g
: ð1Þ

While this is a potentially insightful approach to under-
standing the gravitational equivalence principle through the
lens of the double copy, our construction here proposes a
different paradigm.
The approach we take is informed by the above-men-

tioned constraints on higher-derivative operators. Because
the duality between color and kinematics is agnostic to the
spacetime dimension, as we emphasize below, consistent
factorization places constraints beyond the renormalizable
sector of any theory. As demonstrated by Z theory [20–26],
the duality between color and kinematics applied to cubic
graphs encoding massless dynamics, in combination with
consistent factorization, can consistently capture massive
resonance and emergent ultraviolet behavior characteristic
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of stringy dynamics at least through tree level. From this
perspective, direct approaches like Eq. (1) that capture
massive residues in the propagators of massive cubic
graphs, could be inadvertently sidestepping a key insight
of known double-copy models.
Our approach in this work is grounded in the idea that

massive residues in amplitudes of UV-complete double-
copy theories,AUV, including gauge theories, are strikingly
described in terms of the massless double copy. In this
paradigm, massive residues are encoded in the Wilson
coefficients of color-dual higher-derivative operators that
can be resummed in the UV:

AUV ¼
X
g

cgNg

dg
→ MUV ¼

X
g

ñgNg

dg
ð2Þ

where the effective kinematic numerators, Ng, contain
contributions from all orders in higher-derivative operators,

Ng ¼ ng þ
X
k

ckðα0ÞknðkÞg ; ð3Þ

whose Wilson coefficients ck are rigidly tuned to produce
the desired resonance profile upon resummation.
Our setup is perhaps not so surprising in principle.

However we also suggest there is a straightforward path to
resolve the color-dual UV prediction directly from the
color-dual IR amplitude,

AIR ¼
X
g

cgng
dg

→ AUV ¼
X
g

cgNg

dg
: ð4Þ

At four points we identify a simple and suggestive formula
for the UV-ordered amplitudes that exhibits two represen-
tations: one that highlights the location of massive poles,
and one that exposes the exponential behavior that softens
the UV. Both are expressed in terms of the IR amplitude,
AIR, stripped out as an overall factor:

AUV
4 ¼ AIR

4 ×
Y
k¼1

Pkðσ2; σ3Þ
ðs − μkÞðt − μkÞðu − μkÞ

ð5Þ

¼ AIR
4 ×

Y∞
k¼1

exp½ckΩkðσ2; σ3Þ� ð6Þ

where s, t, u represent the typical four-point Mandelstam
invariants, and Pk and Ωk at four points are simply
functions of Mandelstam permutation invariants,

σ2 ¼
s2 þ t2 þ u2

2
; σ3 ¼

s3 þ t3 þ u3

3
: ð7Þ

We should emphasize that our results do not assert that
string theory amplitudes are unique, that color-dual

amplitudes must play well with supersymmetry, or that
the monodromy relations of open string amplitudes are in
some sense generic. Rather the type of extended structure
represented by exponential higher-derivative towers of
Eq. (6) can be a generic feature of color-dual low-energy
EFT. Such towers, for which string theory amplitudes
(superstring and bosonic) are exemplars, originate from a
simple bootstrap that starts with a minimal amount of
information—simply the duality between color and kin-
ematics—and emerge2 due to factorization consistency.
The organization of the paper is as follows. We start with

a brief review in Sec. II of the notation and formalism that
we employ throughout the paper. In Sec. III, we begin our
study with examples of massive spectra that appear in
double-copy consistent (DCC) theories encoding massive
modes, like the DF2 þ YM theory of [27], followed by the
open and closed strings in Sec. IV. We then explore to what
extent the DCC EFTs can be bootstrapped in Sec. V,
finding surprisingly rigid constraints locking Wilson coef-
ficients to the UV, forcing the emergence of exponential
structure whose massive resonance interpretation softens
the UV in the dramatic manner we are familiar with from
string theory. This leads us to suggest the following generic
form for the all-multiplicity structure of ordered amplitudes
in DCC theories:

AUV
n ¼ AIR

n ×
Y
k

exp
�
ckΩDCC

k

� ð8Þ

where ΩDCC
k are matrix-valued operators that promote the

color-dual structure of a Bern-Carrasco-Johansson (BCJ)
ðn − 3Þ! basis of IR amplitudes, AIR

n , to DCC higher-
derivative amplitudes, AUV

n . Then in Sec. VI we show how
one can begin to use resurgence methods to tune desired
resonance profiles beginning from an all-multiplicity color-
dual UV promotion. We conclude with a discussion of
future work in Sec. VII, including some comments on the
implications for constructing color-dual integrands for
generic theories.

II. BACKGROUND

We include this section as a brief review to fix a
consistent notation and vocabulary around cubic-graph
representations, color-dual numerators, ordered ampli-
tudes, and full amplitudes. For more thorough reviews
and tutorials we refer the interested reader to recent reviews
on scattering amplitudes [28,29], double-copy construction
[30–33] as well as perturbative string amplitudes [34,35].
For massless adjoint double-copy theories—theories
describable as X ⊗ Y—we can write full tree-level ampli-
tudes at any multiplicity m in terms of the set of distinctly
labeled cubic graphs with m external legs, G3;m,

2We suspect additional principles are at play in uniquely
specifying known string theory amplitudes.
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AX⊗Y
m ¼

X
g∈G3;m

nXg nYg
dg

ð9Þ

where dg is simply the product of massless internal
propagators associated with the labeled graph g, and both
nX and nY separately obey Jacobi relations over every
internal edge and antisymmetry around acyclic permuta-
tions of internal vertices. For example at four point, the
cubic graphs for the three channels obey color-dual Jacobi-
like relationships

nXs ¼ nXt þ nXu ; nYs ¼ nYt þ nYu : ð10Þ

This means that as far as the numerators contributing to the
full amplitude are concerned, the number of graphs is
overcomplete; there is a minimal basis. Going to a minimal
basis in nX, is called ordering with respect to the X copy, or
color ordering when A is a gauge theory and the nX are
entirely given in terms of adjoint structure constants fabc.
There will be some minimal basis of nXg present. Collecting
those basis elements, the resulting coefficients must be
gauge invariant and are called ordered amplitudes. One can
always pick as a basis the half ladder, or comb graphs, with
leg 1 and leg m at the far left and far right of the graph; this
is a basis of ðm − 2Þ! graphs:

AX⊗Y
m ¼

X
σ ∈ Sðn−2Þð2;…;m−1Þ

nXð1jσjmÞA
Yð1; σ; mÞ: ð11Þ

Here the ordered amplitudes AYð1jσjmÞ are entirely given
in terms of cubic graphs that share an ordering with σ,

AYð1; σ; mÞ ¼
X

g∈G3;σ

sigðgjG3;mÞ
ng
dg

ð12Þ

where sigð…Þ encodes the relative signature between the
graph’s labeling and its canonical labeling in G. For
example, consider the four-point amplitude in a minimal
basis in nX,

AX⊗Y ¼ nXs nYs
s

þ ðnXs − nXu ÞnYt
t

þ nXu nYu
u

ð13Þ

¼ nXs AYð1234Þ þ nXuAYð1324Þ ð14Þ

where we write nXt in terms of basis numerators nXs and nXu ,
and the ordered amplitudes are given by,

AYð1234Þ ¼ nYs
s
þ nYt

t
; ð15Þ

AYð1324Þ ¼ nYu
u

−
nYt
t
: ð16Þ

The ordered amplitudes themselves are related by virtue of
algebraic properties of the nY and these are typically called
the Kleiss-Kuijf (KK) [36] and the BCJ [1] relations which
allow reduction to a smaller basis. The fact that the nY also
satisfy Jacobi identities and antisymmetry allows one to
reduce the ordered amplitudes to a BCJ basis. This means
one can write the full amplitude in terms of a product
between ðn − 3Þ! ordered amplitudes involving a field-
theory KLT [37,38] momentum kernel, S, to remove the
double-pole structure

AX⊗Y ¼ AX ⊗ AY

¼
X

σ;ρ∈ Sðn−3Þð2;…;n−2Þ
AXð1; σ; n − 1; nÞS½σjρ�1

× AYð1; ρ; n; n − 1Þ ð17Þ

where S½σjρ�1 can be defined recursively [22,23,39] as

S½A; jjB; j; C�i ¼ ðkj · kiBÞS½AjB;C�i: ð18Þ

This is named after Kawai, Lewellen, and Tye who
found [37] that one could express closed-string amplitudes
as sums over products between Chan-Paton stripped open-
string amplitudes.
As some of the most dramatic all-order examples of the

structure we describe today are in the low-energy expansion
of string amplitudes, it is worth taking a second to identify
some moving parts in string amplitudes and how they may
appear to obey different rules than field-theory amplitudes.
String theory Chan-Paton factors are not in the adjoint, so
Chan-Paton ordered open-string amplitudes do not obey
field-theory relations. Rather than thinking of Chan-Paton
ordered amplitudes as field-theory building blocks (which
they are not) it is far more fruitful, from a low-energy EFT
perspective at least, to view Chan-Paton dressed amplitudes
as field theory double copies where one copy carries all-
order-in-α0 corrections as a putative EFT, called Z theory.
Indeed, as we will review in Sec. IV, given Chan-Paton
dressed Z-theory amplitudes one can build the so-called
single-valued (SV) map order by order in α0, so that one can
write both the open string and closed string as field theory
double copies as follows:

Aopen
n ≡AsYM⊗Z ¼ AsYM

n ⊗ Zn; ð19Þ

Aclosed
n ≡AsYM⊗h½sYM�iSV ¼ AsYM

n ⊗ h½AsYM
n �iSV: ð20Þ

In string theory the Chan-Paton ordered amplitudes
respect an α0-dependent generalization [40,41] of the field
theory relations known as monodromy relations. The
monodromy relations go to field-theory relations in the
α0 → 0 limit. As such we can see a similar α0-dependent
string-theory KLT kernel holds for string-theory ordered
amplitudes when contracting over the Chan-Paton-stripped
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orderings of open strings and Z theory, defined re-
cursively as,

S½A; jjB; j; C�α0i ¼ sinðα0πkj · kiBÞS½AjB;C�α0i : ð21Þ

This will be used to construct the SV map from Chan-Paton
stripped Z-theory amplitudes in Sec. IV. As noted above,
the composite nature of closed-string and gravity ampli-
tudes (at tree level) has been known since the time of KLT,
and is by now long established knowledge. However, it has
only recently been understood [7–12] that the graphical
organization underlying KK [36] and BCJ [1] field-theory
relations can also be used to rigidly fix the a priori
unconstrained freedom of EFTs. Below we sketch the
origin of these constraints.

III. EMERGENT MASSIVE MODES:
A BOSONIC HINT

First let us review the factorization properties of DF2 þ
YM theory, a known color-dual dimension-six theory [27]

that plays an integral part in double-copy construction of
bosonic and heterotic string theories [26]. As we learned in
Ref. [7], the amplitudes for this theory can be bootstrapped
from the bottom up by starting with

LYMþF3 ¼ −
1

4
ðFμνÞ2 þ α0

3
FμνFνρFρμ ð22Þ

and demanding that the amplitudes are DCC (i.e. both color
dual and factorizable) through five points. Subject to this
constraint, the mass-dimension mixing between operators
at Oðα0nÞ in higher-derivative corrections introduces an
inductive relation between color-dual four-point contacts,

Aðn−1Þ
4 ⇒ AðnÞ

4 , that appear at ordersOðα0n−1Þ andOðα0nÞ in
the EFT. Explicitly, if we include the color-ordered four-

point contact, Aðn−1Þ
ð1234Þ, which factorizes with the F3 vertex,

then we must include an additional contact at one dimen-

sion higher, AðnÞ
ð1234Þ, that mixes with the Yang-Mills vertex:

ð23Þ

The precise definition of AðnÞ
ð1234Þ appearing in the factori-

zation above is the following:

AðnÞ
ð1234Þ
u

¼ ðF1F2ÞðF3F4Þsn−112 þ cycð234Þ ð24Þ

where ðFiFjÞ ¼ tr½FiFj� is a trace over linearized vector
field strengths, Fμν

i ¼ kμi ϵ
ν
i − kνi ϵ

μ
i . After setting residual

freedom in the bootstrap to zero, one is led precisely to the
four-point amplitudes for the DF2 þ YM theory by resum-
ming the bootstrapped geometric series:

ADF2þYM
4 ¼ AYM

4 þ α0AF3

4 þ α02u
�ðF1F2ÞðF3F4Þ

ðα0s − 1Þs

þ ðF1F4ÞðF2F3Þ
ðα0t − 1Þt þ ðF1F3ÞðF2F4Þ

ðα0u − 1Þu
�
: ð25Þ

In terms of color-dual kinematic numerators, the four-point
A4ðs; tÞ ordered amplitude is given by,

ADF2þYM
4 ðs; tÞ ¼

�
nDF

2þYM
s

s
þ nDF

2þYM
t

t

�
ð26Þ

where

nDF
2þYM

g ¼ nYMg þ α0nF3

g þ � � � þ α04nD4F4

g

ð1 − α0sÞð1 − α0tÞð1 − α0uÞ ð27Þ

where nOi
s are color-dual vector building blocks defined

in [42]. The full color-dressed amplitude is given by,

ADF2þYM ¼ csnDF
2þYM

s

s
þ ctn

DF2þYM
t

t
þ cunDF

2þYM
u

u
: ð28Þ

Concordant with Eq. (5), we can clearly rewrite this as,

AUV
4 ¼ ADF2þYMðs; tÞ

¼ AIR ×
1

ð1 − α0sÞð1 − α0tÞð1 − α0uÞ : ð29Þ

We are promoting here a color-dual massless IR theory,
given,

AIR
4 ¼ csnIRs

s
þ ctnIRt

t
þ cunIRu

u
; ð30Þ

with IR numerators,

nIRg ¼ nYMg ð1 − α0sÞð1 − α0tÞð1 − α0uÞ
þ α0nF3

g þ � � � þ α04nD4F4

g : ð31Þ

Concordant with Eq. (6), it is not so hard to also see that,
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AUV
4 ¼ AIR

4 ×
Y∞
k¼1

exp

�
α0k

k

�
sk þ tk þ uk

��
: ð32Þ

The forms of Eq. (27), Eq. (29), and Eq. (32) demon-
strate a central theme of this paper, namely, that massive
residues in DCC theories are best understood as all-order
higher-derivative corrections to color-dual numerators that
are resummed over massless poles. In the case of DF2 þ
YM theory, the massive residues that live in nDF

2þYM
s are an

emergent property of demanding double-copy consistency.
Indeed while the IR amplitude in Eq. (30) is certainly color
dual, the tower of higher-derivative operators encoding for
the massive resonance is forced upon us for five-points to
be color dual and correctly factorize. For the remainder of
the paper, we elide the proliferation of α0 to simplify the
expressions, which of course can be reinstated by dimen-
sional analysis.
Now let us consider a general EFT expansion of Yang-

Mills theory to understand why one might naturally expect
massive resonance to emerge from imposing color-dual
structure at all orders in α0:

LYM-EFT ¼ F2 þ
X∞
n¼1

Xn−2
k¼0

D2kFn−k: ð33Þ

At fixed order α0n, these operators will participate in contact
terms that appear at order α0n−2 in a higher-derivative
expansion of the theory. If we were only considering the
single-copy gauge theories that are DCC, we could cap the
operator expansion at some fixed α0n for spacetime dimen-
sion D ¼ 2nþ 4. This is because the biadjoint scalar is
critical in D ¼ 6, and thus the dimension of renormaliza-
tion is unchanged when double copying with color factors.
However, in the interest of constructing generic theories

from the double copy, one will in principle need to consider
all-order corrections to Yang-Mills theory. Indeed, while
Yang-Mills theory is critical in D ¼ 4, double copying it
with itself yields a gravitational theory, that is critical in
D ¼ 2 by naive power counting. Absent enhanced UV
cancellation [43–56] from some hidden symmetry (as is the
case in some supersymmetric theories of gravity for which
the UV divergence is delayed beyond the naive power-
counting argument), we should expect an infinite tower of
operators to become relevant near the UV cutoff scale
of the theory. As such, understanding all-order-in-α0 cor-
rections to DCC theories is necessary for probing UV
completions. As we have shown at the beginning of
this section, many of these higher-derivative operators
exhibit surprising nontrivial relations in their Wilson
coefficients. We believe that this could be a hint for a
tower of massive resonances needed for all-order double-
copy consistency. The general setup is something like the
sketch depicted in Fig. 1. Color-dual constraints mix
operators as characterized by their critical dimension at

fixed multiplicity, which forces us to consider resummation
to higher-spin massive resonance (encoded by kinetic
corrections in red), and factorization at all multiplicity ties
them all together into a consistent theory. The simplest
example is the emergence of a massive mode via demand-
ing the color-dual consistency of YM deformed by F3 as
we have just discussed.
We call this mechanism for operator mixing in DCC

theories the color-dual factorization pyramid. This mecha-
nism, which feeds information from the IR to the UV, can
be clearly understood in terms of a color-dual bootstrap.
Suppose we started with a four-point vector contact
operator, D2F4 ∼ ∂

6A4. According to our bootstrap, these
are then related to six- and five-field operators through BCJ
relations at fixed order in α0,

Oðα03Þ∶ ∂
4A6 ∼ ∂

5A5 ∼ ∂
6A4: ð34Þ

By simple power counting, these are then sensitive to six-
point factorization constraints of the following form:

∂
4A6 ∼ ð∂5A5Þ 1

ð∂AÞ2 ð∂A
3Þ ∼ ð∂6A4Þ 1

ð∂AÞ2 ðA
4Þ: ð35Þ

Upon introducing an infinite tower of such constraints, the
operators could in principle resum and encode massive
residues in the same fashion as DF2 þ YM:

LYM-EFT ¼ F2 þ
X∞
n¼1

Xn−2
k¼0

D2kFn−k

→ F2 þ
Y∞
k¼1

�
D2 − μk

�
F2 þ � � � ð36Þ

FIG. 1. We can segment the full Yang-Mills effective expansion
by counting derivatives, D2, and field strengths, F, in what we
call the color-dual factorization pyramid. Operators appearing
at the lowest rung (lightest blue) in the factorization pyramid
are first combined via color-dual constraints on the kinematic
numerators (or partial amplitudes) at fixed order Oðα0mÞ. Then
they are woven together with lower orders in Oðα0n<mÞ via
factorization. We argue that all-order considerations could
produce modified kinetic terms, in the same spirit as what was
achieved with building DF2 þ YM from DCC YMþ F3 ampli-
tudes in [7].
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The net result would be a D-dimensionally color-dual
amplitude that captures all the available higher-derivative
freedom by resumming the masses as follows:

AUV
4 ¼ AIR

4 ×
Y∞
n¼1

Pnðσ2; σ3Þ
ðs − μnÞðt − μnÞðu − μnÞ

: ð37Þ

Note that the duality between color and kinematics has
been preserved since the four-point UV structure is entirely
permutation invariant. So if the IR ordered amplitudes
satisfy KK and BCJ relations the UV theory will as well.
The constraints on Wilson coefficients appearing in the
EFT theory that give rise to this massive spectrum come
from the factorization consistency of color-dual higher-
multiplicity amplitudes down to four-point contacts, as we
demonstrate shortly.
We should point out that this is not a derivation, but an

argument for plausibility for why we should expect to see a
massive resonance structure of the form of Eq. (5). This is in
contrast to the sharp derivations we will establish in Sec. V
towards realizing the exponential structure of Eq. (6).
Before proceeding, let us briefly study the spectrum of

the emergent off-shell resonances in Eq. (25). Taking
residues on the massive poles, and dividing through by
the relevant tensor structures, we discover that the fully
resummed theory introduces a nonminimally coupled off-
shell scalar of the same mass as the vector:

lim
s→1

ADF2þYM
4

ðF1F2ÞðF3F4Þ
¼ ðtþ 1Þ

ðs − 1Þ ; ð38Þ

lim
t→1

ADF2þYM
4

ðF1F4ÞðF2F3Þ
¼ ðsþ 1Þ

ðt − 1Þ ; ð39Þ

lim
u→1

ADF2þYM
4

ðF1F3ÞðF2F4Þ
¼ 1

ðu − 1Þ : ð40Þ

How dowe identify the presence of a scalar? The u-channel
residue is degree zero in Mandelstam invariants, con-
straining what could be exchanged via factorization to
scalar power counting.
This emergent massive scalar mode in all three channels,

along with the vector poles appearing in the s and t channels,
are indeed encoded by the DF2 þ YM Lagrangian density, a
color-dual dimension-six theory first described by Johansson
and Nohle [27]:

LDF2þYM ¼ 1

2
ðDμFμνÞ2 − 1

2
m2ðFμνÞ2 þ 1

2
ðDμφÞ2

−
1

2
m2φ2 þ 1

3
FμνFνρFρμ þ � � � ð41Þ

Why is the simple addition of this massive mode compat-
ible with double-copy consistency? As we will show, the

answer is because it enforces the requisite exponential
structure on the Wilson coefficients, a condition we will
establish over the next two sections.

IV. CONSISTENTMASSIVE STRUCTUREVIA THE
SINGLE VALUE MAP

Massive spectra similar to those appearing in DF2 þ YM
theory can also be found in the double-copy construction of
open- and closed-string amplitudes. Just as we found in the
case of DF2 þ YM, massive residues of string amplitudes
can be encoded as higher-derivative corrections in massless
color-dual numerators. In this section, we explicate this
structure and use the low-energy EFT expansion of string
amplitudes as an exemplar for massive resonance in the
double-copy construction.
We have long known [37] that closed-string amplitudes

can be understood in terms of Chan-Paton ordered
(stripped) open-string amplitudes

MCS ¼ AOS⊗
α0
AOS ð42Þ

where ⊗α0 is the string momentum kernel of KLT that
works between Chan-Paton stripped quantities which obey
the monodromy relations of ordered open strings. We refer
to such constructions as string double copies. In addition to
the above string double-copy construction relating open
and closed strings, the open-string amplitudes themselves
admit a field-theory double-copy description. The open
string can be written as

AOS ¼ Z ⊗ AYM ð43Þ

where Z refers to a putative effective bicolored scalar
theory that carries all-order-in-α0 corrections, and ⊗ is the
field theory double-copy over massless graphs. As can be
seen here, all the massive modes of the superstring are
carried by Z theory.
The Z amplitudes have special properties with respect

to one of the color factors. One set of factors associated
with string theory relations, the Chan-Paton factors, in-
volve antisymmetric fABC ¼ tr½tA; ½tB; tC�� and symmetric
dABC ¼ tr½tA; ftB; tCg� color weights. Ordering along the
Chan-Paton factors results in functions that obey string
monodromy relations. The other set of color factors are
simply adjoint structure constants. Ordering along the
adjoint color factors, which we call field-theory ordering,
results in functions that obey field-theory amplitude rela-
tions including the famous ðn − 2Þ!-basis KK relations
associated with graph-by-graph numerator weights that
obey antisymmetry and the ðn − 3Þ!-basis BCJ relations
associated with numerator weights that also obey adjoint-
type Jacobi-like relations.
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The field-theory double-copy ⊗ can be equivalently
expressed as replacing the Yang-Mills color weights with
Z-theory color-dual kinematic numerators cubic graph by
graph in the full amplitude, or replacing Z-theory adjoint
color weights with color-dual Yang-Mills numerators cubic
graph by graph in the full amplitude, or as a relationship
between ordered amplitudes contracted with a field-theory
KLT momentum kernel. As we will explain, the Z-theory
double-copy construction is consistent with our paradigm
of massive resonance and the double copy. We will demon-
strate this explicitly by computing some of the low-
multiplicity matrix elements at four- and five-point below.
Furthermore, through a little matrix algebra, it is not hard

to see that the closed string itself also exhibits via only
single-valued multiple zeta values [57–62] a field-theory
double-copy construction:

MCS ¼ svðAYMÞ ⊗ AYM ¼ AYM ⊗ h½AYM�iSV ð44Þ

where we annotate with h½…�iSV the SV promotion
described in [7],

h½X�iSV ≡ ðZ⊗α
0
ZÞ ⊗ X: ð45Þ

Note Z⊗
α0
Z is a doubly ordered object, where both orderings

obey field-theory relations. This promotion lifts color-dual
field-theory gauge amplitudes to UV-complete field-theory
gauge amplitudes with an infinite tower of derivatives that
encode massive spectra in a manner consistent with color
kinematics and factorization to all multiplicity. The kin-
ematic numerator h½ng�iSV that obeys antisymmetry and
Jacobi identities, can be defined implicitly so that if

X ¼
X
g

cgng
dg

ð46Þ

over massless propagators in dg, and cg is the copy to be
ordered along,3 then the SV promotion is,

h½X �iSV ¼
X
g

cgh½ng�iSV
dg

: ð47Þ

It is worth noting that the SV promotion can be applied
interchangeably to both sides of the field-theory double
copy. The important takeaway, which we suggest is a general
feature of massive resonance in double-copy theories, is that
all of the massive modes can be taken as higher-derivative
corrections on one side of the double copy.

A. Z theory

The Z-theory amplitudes introduced above have an
elegant disc integral definition [21]:

ZðΠÞðPÞ ¼
Z
DðΠÞ

dz1dz2…dzn
volðSLð2;RÞÞ

Q
n
i<j jzijj−sij

zp1p2
zp2p3

…zpnp1

ð48Þ

where Π ¼ ðπ1; π2;…; πnÞ is the Chan-Paton ordering that
obeys monodromy relations and determines the order
of integration, and P ¼ ðp1; p2;…; pnÞ is the standard
field-theory color ordering that functionally specifies the
Park-Taylor factor in the denominator of the integration.
The full Z-theory amplitude is thus recovered by summing
over the generators of the SUðN1Þ × SUðN2Þ color
symmetry:

Zn ¼
X
Π;P

tr½tπ1tπ2 � � � tπn �tr½tp1tp2 � � � tpn �ZΠðPÞ: ð49Þ

By integrating over the worldsheet, we obtain towers of
massive modes consistent with the dual-resonant structure
of the open string.

1. Four-point

We can perform the integral of Eq. (48) by fixing three
points in the color ordering, ðz1; zn−1; znÞ → ð0; 1;∞Þ,
which allows us to evaluate the disc integral over the
remaining (n − 3) points. For example, at four point, the
(1234) ordering becomes

Zð1234Þð1234Þ ¼
Z

1

0

dz2z
−s12−1
2 ð1 − z2Þ−s23−1: ð50Þ

To avoid the proliferation of indices, we introduce a slightly
modified version of the double-ordered graph notation
of [63], where the external points are Chan-Paton ordering,
and the internal points are the field-theory color ordering.
For example, we have

ð51Þ

With this notation in hand, we find that the crossing
symmetric amplitude of Eq. (50) is the Veneziano ampli-
tude, and the other differs by a factor of s12=s13 from
BCJ relations:

ð52Þ

3Say adjoint color factors for a gauge theory.
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These Z amplitudes have poles located at integer values
sij ¼ n, and traditionally can be expressed in their dual
resonant form as a sum over poles:

ð53Þ

where the nth massive residue ðxÞn ¼ Γðxþ nÞ=ΓðxÞ is
simply the Pochhammer symbol. To line them up with the
massive resonance formula proposed in Eq. (5) it is best to
first compute the SV promotion. Before doing so, we also
provide some five-point examples with an eye towards
general multiplicity.

2. Five-point

Evaluating the five-point Z amplitudes yields a closed-
form expression in terms of 3F2 hypergeometric functions:

ð54Þ

ð55Þ

ð56Þ

ð57Þ

where we have used five-point BCJ relations [1] on the field theory ordering in order to obtain the last two functionally
distinct Z-theory amplitudes that appear at five-point. All other Z-theory amplitudes are just functional relabelings of these
four amplitudes.
Above, the intersection points of the field-theory ordering indicate the valid region of massless poles, but say nothing of

restrictions on the massive residues. The star diagram is free of massless poles, but carries an infinite tower of massive
residues characteristic of string amplitudes. Evaluating on the ðs12; s34Þ ¼ ðm1; m2Þ massive poles, we find the following
tower of resonances:

ð58Þ

Note that the series truncates due to the restriction on negative integer values of the Pochhammer symbol, ð−mÞn ¼ 0 when
n > m. In the Appendix, we provide helpful background on these functions and their analytic properties.
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B. SV promotion

The Z-theory amplitudes we have computed in the
previous section are sufficient to specify the five-point
SV promotion acting on ordered amplitudes. We need only
the string KLT kernel given in Eq. (21) to proceed.

1. Four-point

As there is only one ordered amplitude under the BCJ
relations at four points, the SV promotion is literally
multiplication by a permutation invariant σV , for both full
amplitudes and individual numerators. Why σV? It turns out
that the string KLT product of two complementarily
ordered Veneziano factors is the famous Virasoro factor,

ð59Þ

To tease out the infinite product formulas presented in
Eq. (8), we make use of two gamma-function identities to
expand the Virasoro factor of the four-point SV promotion:

Γð1þ xÞ ¼ lim
n→∞

nx
Yn
k¼1

k
xþ k

;

Γð1þ xÞ ¼ e−γx
Y∞
k¼2

exp

�
ζk
k
ð−xÞk

�
: ð60Þ

The first expression of Eq. (60) allows us to rewrite the
Virasoro factor in terms of an infinite product expansion
over the massive poles of the theory,

σV ¼
Y∞
k¼1

ðs12 þ kÞðs23 þ kÞðs13 þ kÞ
ðs12 − kÞðs23 − kÞðs13 − kÞ ð61Þ

whereas the second allows us to rewrite the Virasoro factor
as an infinite product over UV soft exponential factors

σV ¼
Y∞
k¼1

exp

�
2ζ2kþ1

2kþ 1

�
s2kþ1
12 þ s2kþ1

23 þ s2kþ1
13

	�
: ð62Þ

While this certainly resembles our formula stated in Eq. (8),
at this point it could just be a consequence of the simplicity
of four-point for which adding higher derivatives to a
BCJ basis is just a matter of multiplying by permutation
invariants. However, we find surprisingly that the same
exponential behavior likewise appears at five-point.

2. Five-point

Performing the same operation as above, but now
generalizing to five-point, we obtain the following expres-
sion for the SV promotion matrix for orderings
ð1P45j1Q45Þ:

ð63Þ

While the fully resummed SV promotion is a complicated function of nested integrals over hypergeometric 3F2 functions,
we can series expand around small α0 in the field-theory limit, as was done in [21,57] using a series of polylogarithmic
identities. Massaging the results of [21] into a form compatible with our definition of the SV promotion, one can show that it
exponentiates a countable set of higher-derivative matrices:

ðZ⊗
α0
Z ⊗Þ ¼ exp

"X
n¼1

X
k1;k2;…;kn

ck1;k2;…;kn ½Ωkn ; ½Ωkn−1 ;…; ½Ωk2 ;Ωk1 �� � � ��
#
: ð64Þ

Above, Ω2mþ3 are indexed by odd integers, and take the following form:

Ω2mþ3 ¼
2
4 σð1j23j45Þð1;mÞ þ s12s34X

2mþ3
ð23j23Þ s13s24X

2mþ3
ð23j32Þ

s12s34X
2mþ3
ð32j23Þ σð1j23j45Þð1;mÞ þ s13s24X

2mþ3
ð32j32Þ

3
5 ð65Þ
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where we have defined the odd degree kinematic factor,

σð1j23j45Þðn;mÞ ¼ ðs15s12s25Þnðs215 þ s212 þ s225Þm

þðs34s45s35Þnðs234 þ s245 þ s235Þm: ð66Þ

We have matched the X2mþ3
ð23j32Þ and X2mþ3

ð23j23Þ terms appearing

in Eq. (65) up to Oðα07Þ, the expressions for which are
included in the ancillary file of the arXiv submission. For
higher-order expressions, we refer the reader to [64].
It is maybe not too surprising that the single zeta values

exponentiate, as they must consistently factor down to the
four-point Virasoro factor, which permits an exponential
product expansion as we have shown above. However, it
seems at first glance like a small miracle that the expo-
nential form persists to the (SV) multiple zeta value sector
which indexes higher-point contacts in the low-energy
expansion. As we will argue in the next section, we believe
that exponentiation is actually a very general property of
DCC amplitudes and furthermore expect this to be an all-
multiplicity feature, not a glitch of the simplicity of beta
functions and hypergeometric structure at four- and five-
points.

V. DOUBLE-COPY CONSISTENCY =
EXPONENTIATION

It is easy to imagine that double-copy consistency admits
more freedom in Wilson coefficients than simply the zeta
values present in the disc integrals of Z theory and the SV
promotion. Indeed, recent literature has argued that open-
string amplitudes could permit a vast landscape of gener-
alizations consistent with unitarity [65]. As such, here
we explore what constraints are placed on Wilson coef-
ficients by the requirement of double-copy consistency, i.e.
the duality between color and kinematics and consistent
factorization. We begin with some general four-point color-
dual amplitude with a tower of permutation invariants each
indexed by a free Wilson coefficient. We will see how
considerations at five- and six-points relate these coeffi-
cients together. We find that the type of exponentiation
exemplified in the SV map (and indeed in the single
massive resonance required to make YMþ F3 DCC), as
per Eq. (6), appears universal to DCC theories in the realm
we explore—those related to the easiest-to-analyze higher-
derivative operators at four-points, i.e., those encoded in σn3
contributions.

A. Five-point

Guided by the structure of the SV promotion, we
consider to what extent a color-dual amplitude at four-
point acquires further constraints from double-copy con-
sistency at five- and six-point. We start with the four-point
EFT expansion for a color-dual vector amplitude, AEFT

4 ,

AEFT
4 ¼ Að0;0Þ

4 þ
X
m;n

cðm;nÞA
ðm;nÞ
4 ð67Þ

where

Aðm;nÞ
4 ≡ Að0;0Þσm3 σ

n
2: ð68Þ

To be consistent with field-theoretic locality we assume

Að0;nÞ
4 ¼ 0 for n ≠ 0. In what follows, without loss of

generality we will fix the ordering of the legs,
ð1; n − 1; nÞ, to mirror our exposition of string amplitudes
in the previous section. We are interested in bootstrapping
a higher-derivative transformation matrix Ωðm;nÞ that builds
a higher-multiplicity vector amplitude, Aðm;nÞ, at mass
dimension 3mþ 2n above Að0;0Þ, which consistently fac-

torizes to A3 × Aðm;nÞ
4 :

Aðm;nÞ
ðPÞ ¼

X
Q∈ Sðn−3Þ

cðm;nÞΩ
ðm;nÞ
ðPjQÞA

ð0Þ
ðQÞ: ð69Þ

Furthermore, we want Aðm;nÞ
ðPÞ to be DCC and obey all the

same field theory relations as Að0;0Þ
ðPÞ .

Let us emphasize that we are talking about the factoriz-
ing part of the amplitudes. There can always be entirely
color-dual consistent contact terms that have no factoriza-
tion channels. For example, it is sufficient to consider a
commutator of Ω’s which when nonvanishing, by defini-
tion, will represent contact terms. Indeed in string-theory
amplitudes these show up with Wilson coefficients that are
multiple zeta values [21] that consistently encode the
overlap of the massive modes responsible for single zeta
valued Wilson coefficients at four points.
Since the matrix elements in each row are related by

functional relabeling, a completely general ansatz for
factors of ðkikjÞ3 has 70 free parameters. Imposing BCJ
relations and factorization constraints on the s12, s34 and
nonplanar s13, s24 channels, we obtain the following
restricted form:

Ωð1;0Þ ¼
2
4 σð1j23j45Þð1;0Þ þ s12s34X

ð1;0Þ
ð23j23Þ s13s24X

ð1;0Þ
ð23j32Þ

s12s34X
ð1;0Þ
ð32j23Þ σð1j32j45Þð1;0Þ þ s13s24X

ð1;0Þ
ð32j32Þ

3
5 ð70Þ
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where σð1j32j45Þð1;0Þ is the kinematic factor defined in Eq. (66),

and Xð1;0Þ
ð23j23Þ and Xð1;0Þ

ð23j32Þ are functional expressions of

Mandelstam invariants sij with five free parameters each.
Finally, imposing the s45 and s15 cuts, which mixes
contributions from the (12345) and (13245) orderings,

ð71Þ

ð72Þ

we find surprisingly that there is no remaining freedom

in the ansatz; both Xð1;0Þ
ð23j23Þ and Xð1;0Þ

ð23j32Þ are completely

determined:

Xð1;0Þ
ð23j23Þ ¼ −ðs13 þ s24Þ ð73Þ

Xð1;0Þ
ð23j32Þ ¼ ðs12 þ s23 þ s34 þ s45 þ s51Þ: ð74Þ

While we did not impose the s23 cut, we find that it is
consistent with this result. We can perform the same task at
one higher order in σ3. Starting with an ansatz of degree
ðkikjÞ6 with 420 free parameters, and imposing the same
factorization constraints on s12, s34 and nonplanar s13, s24
channels, we find the transformation matrix takes the
following form:

Ωð2;0Þ ¼
2
4 σð1j23j45Þð2;0Þ þ s12s34X

ð2;0Þ
ð23j23Þ s13s24X

ð2;0Þ
ð23j32Þ

s12s34X
ð2;0Þ
ð32j23Þ σð1j32j45Þð2;0Þ þ s13s24X

ð2;0Þ
ð32j32Þ

3
5 ð75Þ

where again, Xð2;0Þ
ð23j23Þ and X

ð2;0Þ
ð23j32Þ are functional expressions

of Mandelstam invariants sij, now each with with 70 free
parameters each. Imposing BCJ relations and factorization
on the remaining three poles, s45 and s15, we find again that
both Xð2;0Þ are completely determined. Furthermore, they
exhibit an iterative structure in terms of the leading-order
correction matrix:

Ωð2;0Þ
ðPjQÞ ¼

�
Ωð1;0ÞΩð1;0Þ�

ðPjQÞ: ð76Þ

At one order higher in σ3, where the starting ansatz has
1430 free parameters, we find that terms proportional to the
four-point Wilson coefficient index a transformation matrix
with the same iterative structure, Ωð3;0Þ ¼ ðΩð1;0ÞÞ3. While
we anticipate that at higher orders in the EFT expansion
there will be five-point contacts that are unconstrained by
factorization, we conjecture that after setting that residual
freedom to zero, the five-point DCC amplitudes that factor

to σn3A
ð0Þ
4 × A3 should obey the following form:

Aðn;0Þ
ðPÞ ¼ cðn;0Þ

�
Ωð1;0ÞΩð1;0Þ � � �Ωð1;0Þ�

ðPjQÞA
ð0Þ
ðQÞ ð77Þ

We have checked that this is consistent with the single zeta
values in the SV promotion, for which cðn;0Þ ¼ ð2ζ3Þn=n!,
in agreement with the exponential behavior of the four-
point Virasoro factor appearing in closed-string amplitudes
in Eq. (62). Now we will show that double-copy consis-
tency through six-points actually places further constraints

on cðn;0Þ, reflective of the exponential structure that appears
in the disc integrals of string theory.

B. Six-point

We carry out the same procedure as at five point, but now
with a 6 × 6 transformation matrix acting on a BCJ basis
ð1jQj56Þ of six-point amplitudes. At Oðα03Þ above the
zeroth-order amplitude, we impose all the five-point cuts
required by double-copy consistency. One example of a cut
that we impose is the s12 factorization channel, shown
below:

ð78Þ

After imposing all the two-particle cuts of this form, we
then impose BCJ relations on the higher-derivative ampli-
tudes. To be DCC with the five-point amplitudes, the
resulting three-particle cuts must then factor as follows:

ð79Þ

where the cartoon stands in for something of order α0 sewn
with something of order α0. It is sufficient to simply be
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tracking the orders here. Thus, given the strong evidence for the iterative structure of the five-point DCC amplitudes, we

anticipate that in order to be DCC, the Að3nÞ
6 six-point amplitude must factorize as follows:

ð80Þ

Assuming such a six-point constraint4 from double-copy consistency, we can finally impose four-point factorization, from
which we obtain a set of additional constraints on the four-point Wilson coefficients through Oðα012Þ:

ð81Þ

ð82Þ

ð83Þ

In general, when the leading-order coefficient has unit norm, cð0;0Þ ¼ 1, we expect to find the following set of quadratic
constraints imposed through factorization relations for all orders in α0n:

Oðα03nÞ∶
Xn
k¼0

cðn;0Þ



n
k

�
σkð123Þσ

n−k
ð456Þ ¼

Xn
k¼0

cðk;0Þcðn−k;0Þσkð123Þσ
n−k
ð456Þ ð84Þ

which implies that the Wilson coefficients, cðn;0Þ at four
point that label matrix elements of the form σn3A4, should
precisely exponentiate,

cðn;0Þ ¼
cnð1;0Þ
n!

: ð85Þ

We will now generalize this construction towards the all-
multiplicity structure and argue that one should expect
double-copy consistency to introduce exponentiation
whenever a new contact is added to a color-dual EFT.

C. All-multiplicity structure

We believe that this exponential behavior is likely a
universal property of higher-derivative contact terms in

DCC theories, and not just a special property of four-point
permutation invariants. In the previous section we just
considered how σn3A

YM
4 -type contacts exponentiate.

Instead, consider a color-dual n-point contact, Xn, with
dimensionful coupling at OðΛÞ, that is constructed from
transformation matrix Ωn acting on an ðn − 3Þ! basis of
n-point vector amplitude at OðΛ0Þ. Then we can define a

general family of degree-k contact operators, XðkÞ
n , as

follows:

ð86Þ

where cðkÞ is an unconstrained Wilson coefficient of the

XðkÞ
n operator. Now we can promote the product structure of

these contacts to higher orders in α0 by taking a series of
4A constraint which has been verified through order α012 at six-

points via explicit construction.
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NkMax cuts at successively higher point amplitudes, and imposing color-dual constraints at each step:

ð87Þ

The blue interaction regions are three-point vertices atOðα00Þ, which do not contribute to the mixing of Wilson coefficients.
This is parallel to the first step in checking six-point factorization above, where consistent factorization down to five-point
promoted the product structure to the six-point factorization channel. Carrying out double-copy consistency up to the
Nn−2MCut level, allows us to now impose a split factorization constraint on the s12…n−1 pole. At this level, the Ak

2n−2
amplitude would factor into two contact diagrams that set the seed of our recursion:

ð88Þ

ð89Þ

Much like at four point, all-order color kinematics and
factorization would then require that the Wilson coefficients,
cðkÞ, are related to each other by the binomial expansion of
ðΩ12…n−1 þΩnþ1…2n−2Þk appearing in Eq. (88),

cðkÞ



k

j

�
¼ cðjÞcðk−jÞ: ð90Þ

Solving these quadratic constraints, thus gives the following
set of relations:

cðkÞ ¼
1

k!
ckð1Þ: ð91Þ

Since we have made no assumptions about the structure of
the color-dual contact beyond it being related to a BCJ basis
amplitude, Xn ¼ ΩnAn, we state here an all-order ansatz for
the all-multiplicity structure of DCC theories:

AUV
n ¼

Y
k

exp ½ckΩDCC
k �AIR

n ð92Þ

where ΩDCC
k are ðn − 3Þ! × ðn − 3Þ! matrices sourcing

color-dual contact operators that act on an ðn − 3Þ! basis
of vector amplitudes at leading order in the EFT expansion.

While this remains a conjecture, motivated by structure
uncovered in the four-point σ3 sector, directly analyzed at
five- and six-point, we find it exciting to consider that by
making no assumptions about the high-energy behavior
of an EFT, exponential factors that are compatible with
massive modes encoding UV soft behavior could be required
at all multiplicity through double-copy consistency. This
is entirely compatible with the position that double-copy
consistency as a physical principle is capable of bootstrap-
ping UV theories directly from effective operators that live in
the IR, which we now turn to.

VI. CONSISTENT MASSIVE RESONANCE
MODELS

EFTs allow a consistent parametrization of our ignorance
beyond data relevant to the scales at hand. We, especially in
the field of scattering amplitudes, are accustomed to
considering EFT perturbatively, recognizing a finite bound
of validity on relevant energy scales. In the context of DCC
theories, we have shown how to propagate Wilson coef-
ficients from four-points to higher multiplicity within the
EFT framework. Both DF2 þ YM and the SV map that
appears in closed-string and heterotic amplitudes provide
evidence for a compelling idea: Wilson coefficients that
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encode massive resonance order by order in α0, when
constrained by double-copy and factorization, should be
compatible with (and in some cases could even be sufficient
for) the interpretation of a consistent massive spectrum
to propagate from multiplicity to multiplicity solely via
Wilson coefficients. Such a conjecture allows massive-
resonance model building in terms of massless kinematics
starting at directly from four-points.
Before we continue with this story let us imagine where

such a conjecture could fail. Factorization alone is insuffi-
cient to fix contact terms generically. However, double-
copy consistency as we have seen in the emergence of
DF2 þ YM theory uniquely establishes a minimum set of
higher-point contact Wilson coefficients in terms of lower-
point Wilson coefficients as a bootstrap from Yang-Mills
theory deformed by F3. In that case, factorization and the
duality between color and kinematics is sufficient to
establish the propagation of massive modes M established
as a four-point global prefactor of simply

MDF2þYM ¼ 1

ð1 − sα0Þð1 − tα0Þð1 − uα0Þ ð93Þ

against an IR theory that at four points is color dual.
One might ask if factorization and the requirement of

color-kinematics duality to all multiplicity may be suffi-
cient to entirely fix the α0 expansion of Chan-Paton dressed
Z theory at five-points. This possibility, while attractive, is
at least not obvious nor necessary. Starting at α05 in the five-
point amplitude there are local color-dual Wilson coeffi-
cients required by Z-theory unfixed by factorization to
four-points. The presence of multiple zeta values starting at
five-points is a clear sign that any such constraints imposed
by all-multiplicity factorization would have to be incredibly
nontrivial and seem intimately tied to how massive reso-
nances must interact. It would be an interesting exercise
to learn which Wilson coefficients are ultimately fixed by
the factorization of color-dual higher-points amplitudes,
and what additional constraints are required for consistent
interaction of mass spectra multiplicity by multiplicity.
That of course does not rule out a bootstrap, but suggests
that additional principles will be relevant as the multiplicity
increases. Given the factorization consistency of color-dual
amplitudes with an exponential structure, we are confident
a resonance color-dual bootstrap starting from four-points
exists, and it will be fascinating to learn the minimal
amount of additional principles required to extract Z theory.
Of course one can imprint massive resonances of some

desired spectrum (from some hierarchically encompassing
EFT) into Wilson coefficients of color-dual IR four-point
amplitudes. We will discuss how straightforward such a
program is, with some words of caution. We then discuss
the much more fascinating knowledge-discovery problem
of extracting information about massive resonances,

directly from a finite set of Wilson coefficients using
resurgence.

A. From masses to Wilson coefficients

To go from a finite spectrum of masses to Wilson coeffi-
cients of our EFT local operators at four points, we simply
expand in the large effective cutoff limit. If the spectrum of
masses is given in terms of μk with mass scale Λ,

M ¼
Y
k¼1

Pkðσ2; σ3Þ
ðs=Λ − μkÞðt=Λ − μkÞðu=Λ − μkÞ

ð94Þ

then we simply series expand Λ → ∞ and read off the
Wilson coefficients as functions of scaleless μk order by
order in some α0 ¼ 1=Λ. Of course, generic multiplication
by terms of order

M ¼
Y
k¼1

fk
ðs=Λ − μkÞðt=Λ − μkÞðu=Λ − μkÞ

ð95Þ

where fk is independent of kinematics, certainly establishes
a tower of massive modes, but are subject to whatever
massless factorization properties are present in the IR theory.
One might worry about contact terms of the form σm2 =s,
which suggest the presence of higher-spin massless
exchange in the EFT [66]. In this paper, we postpone
judgement on the matter for the following reasons:
(1) Such dubious channels can be disposed of by the

other theory appearing in the double copy with, e.g.
the nonlinear sigma model (NLSM) which is famous
for absorbing channels in the double copy. We use
NLSM as an exemplar of color-dual model building
with massive resonance in the next section.

(2) If σm2 =s issues are resolved via double copy with all
theories of interest, this can be suggestive of apply-
ing adjoint-type double-copy construction where
symmetric dabc-type double copy results in identical
well-behaved double-copy theories but with more
physical-looking ingredients [67,68]. This strikes us
as similar to using a gauge with spurious poles that
cancel in the end, which is perhaps aesthetically
unappealing, but not actually problematic unless one
has real issues in the final product.

That said, the unphysical behavior of σ2 factors can be
entirely disposed of if one is willing to start with an IR theory
that is proportional to σ3. Another choice of polynomial
residue sufficient for canceling unwanted higher-spin modes
at four point would be, Pnðσ2; σ3Þ ¼ μ3n − μnσ2 þ σ3. Given
such a choice of numerator, the massive spectra are related to
the Wilson coefficients of the exponential factors at four
point as follows:

cð1;mÞ ¼
X∞
n¼1

1

μ2mþ3
n

: ð96Þ
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Clearly, when μn ¼ n, the Wilson coefficients that we have
shown exponentiate at four point, just reproduce the zeta
values of the SV promotion, cð1;mÞ ¼ ζ2mþ3.
We should note that simply engaging with a finite

spectrum of massive modes, while it may lead to incredibly
well-behaved UV scaling, could introduce problematic
behavior like violating positivity bounds [69],5 or dis-
turbing partial-wave unitarity upon resummation.6 Of
course, one is free to keep adding and tuning modes
ad infinitum until one lands on an EFT that looks like a
healthy UV theory, or be content with an EFT that allows
one to describe the relevant physics at hand to desired
accuracy.
Either way, empirically there is a much more pressing

problem. The mass parameters are nonperturbative, requir-
ing information of the full theory at energy scales beyond
the UV cutoff scale, Λ ¼ 1=α0. However, often we only
have empirical access to the Wilson coefficients that are
valid below the cutoff scale. Solving for the mass spectrum
analytically runs into an inverse problem where we must
determine an infinite number of degrees of freedom, μn,
from a finite number of outputs, cð1;mÞ (up to some fixed
order in α0), and thus may seem forever out of reach from an
amplitude-based perturbative bootstrap. Fortunately, there
are incredibly well-developed mathematical tools that we
can use to extract nonperturbative information about the
spectrum, directly from the Wilson coefficients of color-
dual operators appearing in Eq. (92). We turn to these
methods now.

B. From Wilson coefficients to masses

In the remainder of this section we introduce Padé
approximants as an analytic tool for probing the non-
perturbative spectra of DCC amplitudes with generic
Wilson coefficients. A Padé approximant is a rational
function of the form,

R½m;n�ðxÞ≡ AmðxÞ
BnðxÞ

; ð97Þ

where ½m; n� is the degree of the polynomials, Am and Bn,
respectively:

AmðxÞ ¼
Xm
j¼0

ajxj; BnðxÞ ¼ 1þ
Xn
j¼0

bjxj: ð98Þ

The coefficients of R½m;n� are defined in order to match the
first mþ n derivatives when expanded around a point,
x ¼ x0,

fðkÞðx0Þ ¼ RðkÞ
½m;n�ðx0Þ k ≤ mþ n: ð99Þ

Padé approximants have been used widely in the resur-
gence literature for extracting information about nonper-
turbative physics, like instantons, when only perturbative
information is available. For background, we direct the
reader to Refs. [82–85]. For our purposes, we use them to
study the behavior of mass spectra in generic classes of
consistent mass-resonance double-copy models, even when
the closed-form resummation of the amplitude is not
directly computable.
As a straightforward example that demonstrates the power

of these ideas in the context of EFT, let us consider a scalar
EFT that looks like a chiral perturbation theory [86], with
two resonant masses beyond the α0 ¼ 1 scale of the pion
decay width. To demonstrate the reach of these non-
perturbative methods, we introduce an order-of-magnitude
separation between resonances with μ1 ¼ 1 and μ2 ¼ 10. In
our framework the purely IR amplitude, AIR, is just that of
the NLSM, a known color-dual theory [87–90], which is the
leading-order contribution in the chiral Lagrangian [86].
The four-point amplitude is simply

AIR ¼ fa1a2bfba3a4ðs23 − s13Þ þ fa4a1bfba2a3ðs12 − s13Þ
þ fa3a1bfba4a2ðs23 − s12Þ: ð100Þ

To recover the pions of the Standard Model, one simply
treats the structure constants as describing some flavor
symmetry, specifying SUð2Þ for the desired isospin sym-
metry of low-energy QCD. We embed the UV mass
spectrum encoded by,

M2-mode ¼ 1

ðsα0 − 1Þðtα0 − 1Þðuα0 − 1Þ

×
103

ðsα0 − 10Þðtα0 − 10Þðuα0 − 10Þ : ð101Þ

Again, α0 ¼ 1=Λ, where Λ is the cutoff scale and α0 is the
pion decay width for the NLSM. For the purposes of this
exercise, we take ourselves as living deep in the IR and so
we only have experimental access to theWilson coefficients
measured in some fixed-angle scattering, taking u ¼ −s − t
and t ¼ −s=2, up to some finite precision.
Let us consider the difference between what we can infer

with Padé approximants if we have access to six vs ten
Wilson coefficients, to a precision of four significant
digits.7 The relevant expansions are subsets of the series
expansion,

5See for example Refs. [70–74] for recent applications of im-
posing positivity constraints.

6This venerable consistency constraint was first found in [75–
78] but see also, e.g., Refs. [79–81] for recent discussions.

7Perhaps we should emphasize that this does not come for free.
Measuring the Wilson coefficients to such precision at Oðα0Þ10
deep in the IR requires astoundingly accurate experiments.
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AUV ¼ AIR ×
�
1.000þ 1.010ðα0Þ2σ2 þ 1.001ðα0Þ3σ3 þ 1.010ðα0Þ4σ22 þ 2.01ðα0Þ5σ2σ3

þ ðα0Þ6ð1.010σ32 þ 1.001σ23Þ þ 3.02ðα0Þ7σ22σ3 þ ðα0Þ8ð1.010σ42 þ 3.01σ2σ23Þ
þðα0Þ9ð4.03σ32σ3 þ 1.001σ33Þ þ ðα0Þ10ð1.01σ52 þ 6.03σ22σ

2
3Þ þOðα0Þ11�: ð102Þ

Of course any perturbative expansion will fail to catch
even the first resonance. Even with access to only four
significant digits, the R½3;3� approximant to the Oðα0Þ6
expansion captures the first resonance, and the R½5;5�
approximant to the Oðα0Þ10 expansion manages to encode
both resonances. We plot the fixed-angle predictions for the
Að1234Þ ordered amplitude8 in Fig. 2.
As we discuss in the Conclusions, leveraging nonper-

turbative data from such a small number of Wilson
coefficients has a number of potential opportunities for
both empirical expectations for new signals as well as
formal insight relating the nonperturbative behavior of
theories participating in the double-copy web of theories.

VII. CONCLUSIONS

In this work we have demonstrated two mechanisms for
understanding the UV behavior of scattering amplitudes
directly from perturbative information in the IR: double-
copy consistency of EFT, and Padé approximants for fixed-
angle two-to-two scattering amplitudes. To properly frame
these approaches, we provide below a brief outline of the
main results of the paper and future directions made
possible by this work.

A. Summary

1. Menu of massive resonance

We began with an overview of the interplay between
massive resonance and double-copy constructible theories
studied in the literature from YMþ F3 theory in Sec. III, to
string amplitudes and Z theory in Sec. IV. We provided an
argument for why one might expect color-kinematics
duality to impose all-order constraints on effective oper-
ators that in principle could resum to nonlocal kinetic
operators in the UV. In Fig. 1, we introduced the color-dual
factorization pyramid, where gauge field operators at fixed
orders in α0n,

Oðα0nÞ∶ A2nþ4 ↔ ∂
2A2nþ2 ↔ � � � ↔ ∂

2nþ2A2; ð103Þ

are mixed via color-dual constraints on kinematic numer-
ators (or partial amplitudes). Then, factorization bundles
together remaining operators higher up on the pyramid at
all orders α0m<n. Through this bundling, one might expect
massive resonances to appear due to modified kinetic
terms, Lkin ⊃

Q
kð∂2 − μ2kÞA2. We thus proposed a simple

paradigm for encoding massive resonance through all-order
towers of higher derivatives that live in massless color-dual
numerators of the form,

FIG. 2. Expanded series expansions,Oðα0Þ6 andOðα0Þ10, as well as the Padé approximantR½3;3� to theOðα0Þ6 expansion (left) plotted
against the fully resummed UV function. No matter how high the perturbative expansion, it will never capture even the first emergent
resonance, but the behavior is spectacularly captured in theR½3;3� approximant. In the second panel (right), we show the behavior of the
Padé approximants R½3;3� to the Oðα0Þ6 series expansion and R½5;5� to the Oðα0Þ10 series expansion near the domain of the second
resonance. We find that a relatively small number of Wilson coefficients allow us inR½5;5� to recover the full spectrum of massive modes.

8The coefficient of fa1a2bfba3a4 after using the Jacobi identity
to rewrite fa4a1bfba2a3 ¼ fa1a2bfba3a4 − fa3a1bfba4a2 in Eq. (102)
as per Sec. II.
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Mmass ¼
X
g

ngNHD
g

dg
: ð104Þ

Motivated by the higher-derivative bootstrap of YMþ F3

studied [7], we then pursued a bootstrap to determine to
what extent the Wilson coefficients of higher-derivative
operators are constrained by double-copy consistency.

2. Color-dual bootstrap

In Sec. V, we began by studying the promotion of a
color-dual four-point contact, σn3A4, with Wilson coeffi-

cients, cðn;0Þ, to five-point amplitudes, AðnÞ
5 , under double-

copy consistency. We found through third order, that the
amplitude is completely determined, and exhibits an
iterative structure in terms of a higher-derivative trans-

formation matrix, AðnÞ
5 ¼ ΩnA5. Requiring that the six-

point amplitude is color dual and factorizes to ΩnA5,
imposes a constraint on the split factorization channel of
Eq. (80). Double-copy consistency thus requires that the
four-point contact exponentiates:

cðn;0Þ ¼
1

n!
cnð1;0Þ: ð105Þ

Guided by the structure of this bootstrap, in Eq. (86)
through Eq. (89), we provided an all-order procedure for
generalizing this exponential behavior to all multiplicity by
imposing a series of NkMCut conditions and found that
IR color-dual amplitudes must in general exponentiate
any higher-derivative contact operator consistent with the
duality:

AUV
n ¼

Y
k

exp
�
ckΩDCC

k

�
AIR
n ; ð106Þ

where ΩDCC
k are DCC higher-derivative matrices that map

color-dual amplitudes to color-dual contacts at higher
orders in the effective expansion. In doing so, we have
demonstrated that double-copy consistency alone could
be sufficient to introduce kinematic factors that soften the
UV behavior of gravity, among all other theories that are
double-copy constructible.

3. UV spectra via Padé

Finally, to resolve the inverse problem posed by the
expression of Eq. (96), we invoked Padé approximants used
widely in the resurgence literature [82–85],

RðkÞ
½m;n�ðx0Þ ¼ fðkÞðx0Þ k ≤ mþ n; ð107Þ

where fðkÞ is the kth derivative of fðxÞ. This analytic
continuation can be used as a mechanism for recovering

nonperturbative information about the mass spectrum,
directly from the Wilson coefficients of Eq. (92). In doing
so we showed how increasing orders in Wilson coefficients
allow us to gain further reach in the spectrum of the
UV theory as per Fig. 2, directly from Wilson coefficients
in the IR.
Before discussing some specific future directions, we

comment about the potential implications of the color-dual
factorization pyramid for novel representations of color-
dual loop-level integrands.

B. Pyramid implications for loop corrections

If we take seriously the possibility that a D-dimensional
classification of the kinematic algebra requires one to
introduce nonlocal field-theory operators, then restricting
ourselves to just consider F2 operators at Yang-Mills mass
dimension might prove too restrictive for constructing all-
loop color-dual integrands. Here we sketch an argument for
why one might expect higher-dimensional operators to
force themselves into the conversation starting at two loops.
Suppose we have a color-dual three-point operator that

manifests Jacobi-like relations at all multiplicity in arbitrary
dimensions, V ðabcÞ. As we argued above, consistency
conditions between higher-derivative contact diagrams
could introduce nonlocal propagators with modified kinetic
terms. These would appear as corrections to the propa-
gators, yielding the following sum over physical states:

V ðabjkÞ · PðkÞ · V ð−kjcdÞ ð108Þ

where in general, our state-projector operator could be
some string-like vertex operator with a tower of massive-
resonant modes, like those appearing in the amplitudes of Z
theory,

PðkÞ ∼
ημν

k2
þ
X∞
n¼0

Xn
j¼1

P
μ1μ2…μj
ν1ν2…νj

ðk2 − μnÞ
: ð109Þ

However, as we have argued in the text, color-dual theories
with massive resonances should be captured as higher-
derivative corrections in the cubic graphs. After absorbing
these massive residues into the definition of the vertices of
kinematic numerators, we could expect to see interactions
resembling,

V ð123Þ → VYM
ð123Þ þ

X
n1;n2;n3

B⊗ðn1Þ
1 · B⊗ðn2Þ

2 · B⊗ðn3Þ
3

ðk21 − μn1Þðk22 − μn2Þðk23 − μn3Þ
ð110Þ

where B⊗ðnÞ is an on-shell state tensor valued operator with
up to spin-n modes. When inserting only on-shell vector
states of Yang-Mills theory, in the α0 → 0 limit, we know
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that this must recover the normal on-shell Yang-Mills
vertex:

lim
α0→0

V ð123Þ · εi → VYM
ð123Þ · εi: ð111Þ

At both tree level and one loop, the basis diagrams for
color-dual theory expose every internal vertex to at least
one on-shell state:

ð112Þ

However, at two loops, the off-shell vertices become
relevant in the basis diagrams of a color-dual gauge theory:

ð113Þ

The red vertices are completely off shell, and thus there
would be no external state to temper any nonlocal denom-
inator introduced by D-dimensional double-copy consis-
tency. Since purely nonvector modes would be allowed to
contribute to the state sum of the two-loop basis graph,
color-dual numerators at two loops and beyond could be
constructed from nonlocal kinematic numerators of rational
functions, rather than of polynomial kinematics that one
would expect from local Feynman rules. Off-shell local
color-dual numerators of minimal power counting were
excluded for Yang-Mills theory at two loops and four-
points in arbitrary dimensions in Ref. [91]. This exclusion
was recently confirmed and extended by relaxing all power-
counting assumptions by recent work in collaboration with
one of the authors [92]. A by now venerable example of
nonlocal representations at two loops can be found in [93],

which studied five-point Yang-Mills integrands for a
specific choice of 4D external states.

C. Future directions

We see many future directions and applications of this
work. Possibly the most exciting is the prospect for
phenomenological model building. The results of our
bootstrap suggest that the space of DCC amplitudes is
necessarily softened at high energy, while providing free-
dom to tune Wilson coefficients beyond the zeta values of
string theory. In Sec. VI A, we shared our framework for
using Padé approximants to study massive spectra above
the cutoff scale. Better understanding the sensitivity of UV
physics on the IR operators would allow the construction of
bespoke UV completions. It would be worth understanding
how our DCC operators, ΩDCC

k , when appropriately tuned
match the spectral constructions of [65].
To this end, a natural application of our results towards

model building would be in the low-energy confining
regime of QCD. One could use the massive resonance
framework of Eq. (37) to construct pionic scattering models
that incorporate excited meson resonances, and then
promote the spectrum to higher-= multiplicity through
exponentiated contacts of Eq. (92). Indeed, a large class
models in the web of color-dual theories [30], not just low-
energy QCD, could be uplifted to consistent higher-
multiplicity massive resonance scattering in this way.
Beyond the possibility of model building, we should

emphasize that the exponential structure we have identified
only takes into account constraints placed by color kin-
ematics and split factorization. However, these constraints
do not preclude the possibility of additional relations
between Wilson coefficients from more factorization chan-
nels at higher multiplicity. Consider for example an eight-
point factorization channel that mixes four-point contacts at
different orders:

ð114Þ

where σk ¼ cðkÞA
ð0Þ
4 ðsk þ tk þ ukÞ. By considering addi-

tional all-order constraints, our exponentiated contacts could
further conspire at overlapping orders in the effective α0
expansion. Better understanding whether there are additional
relations between the Wilson coefficients of Eq. (92) is an
important direction of future study, that could give further
understanding about the uniqueness of stringy dynamics.
Absent additional constraints, our bootstrap at the very

least offers an IR perspective on why certain terms are

excluded from the low-energy effective expansions in the
closed string. For example, consider the multiple zeta
value, ζ3;5, that appears in the open-string expansion, but
is absent in the closed string [21]. From a UV perspective,
ζ3;5 is not SV and thus cannot be constructed from the
spherical integration of closed-string amplitudes. Fasci-
natingly, we can now identify an IR reason from our
bootstrap for why this term must be excluded from the
closed-string expansion.
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Consider, by way of example, the Oðα08Þ sector at five-
point, the order at which one would expect ζ3;5 to appear.
At this order in the open-string expansion, ζ3;5 weights a
contact of the form, ΩOS

5;8 ∼ ζ3;5ðΩð1;0ÞΩð1;1Þ − Ωð1;1ÞΩð1;0ÞÞ,
where Ωðm;nÞ are the five-point higher-derivative matrices
that we defined in Eq. (69), andΩOS

5;8 just indicates the open-
string five-point contact that appears at Oðα08Þ. The only
permissible factorization channel at this order is the
following:

ð115Þ

After imposing color-kinematic constraints at five-point,
and demanding consistent factorization down to four-point,
we find that there are only two additional color-dual five-
point contacts. Let us call these contacts Ω1

5;8 and Ω2
5;8,

whereΩm;n is am-point contact atOðα0nÞ. Intriguingly, one
finds that ΩOS

5;8 is not compatible with any linear combina-
tion of Ω1

5;8 and Ω2
5;8. Thus we find that the ζ3;5 Wilson

coefficient is restricted from the closed-string expansion
because its operator is excluded by double-copy consis-
tency. An obviously compelling future direction is to build
a detailed understanding of which IR operators in the
closed- and open-string expansions are prohibited by
double-copy consistency.
Finally, it would be worth further studying the extent

to which resurgence can be leveraged to make UV predic-
tions from IR physics. One could start by understanding
the relationship between partial-wave unitarity [79,81]
applied to massive residues of Padé approximants, and
positivity bounds on Wilson coefficients from the optical
theorem [69]. Indeed, utilizing analytic continuations of
EFT beyond the perturbative sector could be fruitful in
further bounding the UV directly from IR data. Further-
more, it is clear that leveraging resurgence methods in an
EFT context should serve as a mechanism for identifying
potential energy scales for new physics directly from a
finite number of Wilson coefficients. It does not escape us
that applying resurgence methods to Wilson coefficients
gleaned from loop-level effective predictions, directly
constructed via on-shell methods, could represent a rather
novel amplitude path towards probing nonperturbative
physics in theories of both phenomenological and formal
interest. This has the potential to expose shared non-
perturbative structure within the double-copy web of
theories.
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APPENDIX: HYPERGEOMETRIC RESIDUES

Below we provide some identities that we use to recover
the residues of the hypergeometric functions appearing in
five-point Z-theory amplitudes. The 3F2 hypergeometric
function can be expressed as an infinite sum over
Pochhammer symbols,

3F2

�
a1; a2; a3
a4; a5

; z

�
¼

X∞
n¼0

ða1Þnða2Þnða3Þn
ða4Þnða5Þn

zn

n!
; ðA1Þ

where ðxÞn ¼ Γðxþ nÞ=ΓðxÞ. In the text we find that the
fully resummed Z-theory ðn − 3Þ! basis amplitudes can be
expressed in terms of a single functional with different
kinematic arguments, depending on whether the color
ordering is planar or nonplanar with respect to the
Chan-Paton factors:

ðA2Þ

ðA3Þ

Here we have defined the five-point Z5 function using a
particular ordering of 3F2 as,
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Z5ða1; a2; a3; a4; a5Þ≡ 3F2

�
a1; a4; a23 − a5

a12; a34
; 1

�

×
Γða1ÞΓða2ÞΓða3ÞΓða4Þ

Γða12ÞΓða34Þ
; ðA4Þ

and employed the shorthand notation ai1i2…in ¼ ai1þ
ai2 þ � � � þ ain . Since 3F2 → 1 when any one of the top
arguments vanishes, it is clear that Z5 factorizes to the
appropriate four-point Veneziano amplitudes in the a1,
a4 → 0 limits. However, as noted in the text, the other
factorization channels are obscured when defined in this
way. To elucidate the remaining pole structure, one can
apply a Thomae transformation to the Z5 function,

ðx123Þ!
ðx13Þ!ðx23Þ! 3

F2

�
1þ x123;−x4;−x5
1þ x13; 1þ x23

; 1

�

¼ ðx345Þ!
ðx34Þ!ðx35Þ! 3

F2

�
1þ x345;−x1;−x2
1þ x34; 1þ x35

; 1

�
: ðA5Þ

By making the following variable replacements, one can
show that the Z5 is cyclically invariant in its arguments:

x123 ¼ a1 − 1 ⇒ Z5ða1; a2; a3; a4; a5Þ
¼ Z5ða2; a3; a4; a5; a1Þ; ðA6Þ

x123 ¼ a4 − 1 ⇒ Z5ða1; a2; a3; a4; a5Þ
¼ Z5ða5; a1; a2; a3; a4Þ: ðA7Þ

As such, we can use this relationship between different
cyclic orderings of Z5 do derive the ai → 0 limits of the

hypergeometric function appearing in Z theory amplitudes:

lim
a1→0

3F2

�
a1; a4; a23 − a5

a12; a34
; 1

�
¼ 1; ðA8Þ

lim
a2→0

3F2

�
a1; a4; a23 − a5

a12; a34
; 1

�
¼ 2F1

�
a4; a3 − a5

a34
; 1

�

¼ Γða5ÞΓða34Þ
Γða3ÞΓða45Þ

; ðA9Þ

lim
a3→0

3F2

�
a1; a4; a23 − a5

a12; a34
; 1

�
¼ 2F1

�
a1; a2 − a5

a12
; 1

�

¼ Γða5ÞΓða12Þ
Γða2ÞΓða15Þ

; ðA10Þ

lim
a4→0

3F2

�
a1; a4; a23 − a5

a12; a34
; 1

�
¼ 1; ðA11Þ

lim
a5→0

3F2

�
a1; a4; a23 − a5

a12; a34
; 1

�
¼ 1

a5

Γða12ÞΓða34Þ
Γða1ÞΓða23ÞΓða4Þ

þOð1Þ: ðA12Þ

Together these limits of the 3F2 hypergeometric function
give the desired factorization properties endowed in the
fully resummed Z-theory amplitudes studied in the text.
While in the text we just study the s12 and s34 factorization
channels at five-point, the remaining residues can simply be
recovered through functional relabelings due to the cyclic-
ity of Z5.
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