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We derive the electromagnetic response of a particular fermionic sector in the minimal QED contribution
to the Standard Model Extension (SME), which can be physically realized in terms of a model describing a
tilted and anisotropic Weyl semimetal (WSM). The contact is made through the identification of the Dirac-
like Hamiltonian resulting from the SME with that corresponding to the WSM in the linearized tight-
binding approximation. We first calculate the effective action by computing the nonperturbative vacuum
polarization tensor using thermal field theory techniques, focusing upon the corrections at finite chemical
potential and zero temperature. Next, we confirm our results by a direct calculation of the anomalous Hall
current within a chiral kinetic theory approach. In an ideal Dirac cone picture of the WSM (isotropic and
nontilted) such response is known to be governed by axion electrodynamics, with the space-time dependent
axion angle Θðr; tÞ ¼ 2ðb · r − b0tÞ, being 2b and 2b0 the separation of the Weyl nodes in momentum and
energy, respectively. In this paper we demonstrate that the node tilting and the anisotropies induce novel
corrections at a finite density which however preserve the structure of the axionic field theory. We apply our
results to the ideal Weyl semimetal EuCd2As2 and to the highly anisotropic and tilted monopnictide TaAs.
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I. INTRODUCTION

The one loop effective action of QED in terms of external
electromagnetic fields is a powerful tool to study multi-
photon interactions at energies where the fundamental
fermions are not excited, as well as transport properties
arising from the resulting currents [1,2]. This action is
obtained by “integrating” the fermions, yielding an effec-
tive Lagrangian which introduces additional contributions
to the Maxwell term having the general form of a nonlinear
electromagnetic response. A distinguished member of this
class is the Euler-Heisenberg Lagrangian [3] which cor-
rectly anticipated some important results in QED, among
which we find: (i) light-light scattering, as first discussed in
Ref. [4] and subsequently given a full solution in Ref. [5];

(ii) pair-production from vacuum in an electric field,
already noticed in [3] motivated in part from Ref. [6] and
later given a complete description in [7]; and (iii) the need
of charge renormalization, further developed in Refs. [8,9].
This effective Lagrangian is known to all orders in the
electromagnetic field only in a restricted family of back-
grounds, such as constant fields or plane wave fields,
to name some well-known cases. For a review see for
example [10]. The extension to the case of nonhomogeneous
electromagnetic fields has remained a subject of investiga-
tion and several advances have been reported [11–15]. The
inclusion of temperature and density, which is relevant to
the study of transport properties in many body theory
(e.g., metals, topological matter and quark-gluon plasma)
and in spontaneously broken theories, has also been under-
taken [16–24]. A recent review can be found in Ref. [25].
The advent of high power lasers together with increas-

ingly energetic particle beams has fostered the theoretical
and experimental interest in the general theory of quantum
electrodynamics (QED) with intense background fields.
Higher intensity, together with higher accuracy, demands
an increase in the number of loops in the calculation and
also to develop further nonperturbative methods. A detailed
review of this whole topic, with emphasis on the advances
in the last decade, is presented in Ref. [26]. Among the new
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theoretical tools providing an alternative to the standard
Feynman diagrams calculations, the semiclassical world-
line instanton method, deriving from the “first quantized”
approach to field theory, has proven particularly useful in
the calculation of effective actions and related quantities in
the study of QED processes in external fields [27,28].
Effective QED actions have been extensively studied

in the framework of the Standard Model Extension
(SME) [29,30]. This model parametrizes Lorentz invari-
ance violations (LIV) in the fundamental interactions and
by itself can be viewed as an effective model resulting from
a more fundamental theory where this symmetry could be
spontaneously broken by nonzero vacuum expectation
values (VEVs) of tensorial operators. Contrary to the scalar
Higgs field, such VEVs introduce fixed directions in space-
time yielding the presumed violation. Such fixed tensors
are coupled to the fields of the Standard Model providing
all possible violating terms in the Lagrangian, consistent
with the known symmetries of the fundamental inter-
actions. These parameters must be extremely suppressed
in order to find agreement with current experimental
observations.
A relevant issue in this framework is to find relations

among the actions characterizing a given sector of the
model, in order to reduce the proliferation of coefficients
which codify the LIV, as well as to understand the induced
radiative corrections. This provides a natural setup for
searching new effective electromagnetic actions arising
from the additional couplings of the fermions to the electro-
magnetic field. A much studied particular case includes the
CPT-odd violating terms in the fermion-photon sector of
the minimal QED extension of the SME. There we find the
modified Dirac action,

SD ¼
Z

d4xΨ̄ðxÞ�iγμ∂μ − b̃μγ5γμ
�
ΨðxÞ; ð1Þ

which includes the LIV coefficient b̃μ, together with the
CPT-odd contribution to the photon sector

Seff ¼
e2

32π2

Z
d4xΘðxÞϵαβμνFαβFμν; ΘðxÞ ¼ c̃μxμ; ð2Þ

codified by another LIV coefficient c̃μ. Incidentally, the
addition of (2) to the standard Maxwell action yields
Carroll-Field-Jackiw (CFJ) electrodynamics [31], which
can also be considered as a restricted version of axion
electrodynamics [32,33] since the axion field Θ is not
dynamical. The challenge here is to regain the action (2)
through radiative corrections induced by the fermionic
coupling in (1), which effectively amount to obtain the
corresponding effective electromagnetic action. The conclu-
sion is that in fact c̃μ ¼ ζb̃μ, but with ζ being undetermined,
having a finite value which depends on the regularization
method. This was the subject of intense debate in the

literature as can be appreciated by the numerous references
to the topic. A survey of the principal approaches regarding
this issue can be found in Refs. [34–43]. Additional work
yielding the effective one loop electromagnetic action
induced by many of the additional LIV terms appearing
in the fermionic sector of the minimal QED extension of the
SME include nonperturbative [44–46] and perturbative
calculations for some specific LIV parameters to first
order [47–51], the inclusion of higher -derivative terms
in the action [52–54], and higher order contributions of the
LIV parameters in the one-loop effective action [55]. A
review including these results is found in [56] and refer-
ences therein.
Recently, a very interesting connection between the SME

and the area of topological materials in condensed matter,
where LIV occurs naturally, has been found through the
identification of fermionic quasiparticles (excitations) of
Dirac and/or Weyl-type in the linearized approximation of
tight-binding Hamiltonians of topological phases of matter
in regions close to the Fermi energy. Then, one can embed
such Hamiltonians into a Dirac-Weyl field theory of the
form (1) and subsequently apply the wealth of tools already
developed in previous studies of LIV. In particular, the
electromagnetic transport properties can be obtained
through the calculation of the effective electromagnetic
action, computed with standard methods in field theory. It
is important to observe that, contrary to the case in high-
energy physics, the LIV parameters that one identifies in
such materials need not be highly suppressed, but are
determined by their electronic structure and further subjected
to experimental determination. In this way, the standard
perturbative approach frequently used in most related
calculations in high-energy physics, might prove inadequate
in the condensed matter case, where nonperturbative meth-
ods could be required to obtain realistic results. Steps in this
direction can be found in Refs. [57–62].
As we will show in the following, the use of quantum

field theory methods can be particularly fruitful in the
case of Weyl semimetals (WSMs), whose electronic
Hamiltonians naturally include some of the LIV terms
considered in the fermionic sector of the SME.
WSMs are topologically nontrivial conductors in which

the valence and conduction bands touch at isolated points,
(the so-called Weyl nodes) in the Brillouin zone, locally
forming Dirac cones [63–65]. According to the Nielsen-
Ninomiya theorem [66], the Weyl nodes in crystals occur
in pairs of opposite chirality, indicating the presence of
fermionic excitations of the Weyl-type. The individual
nodes within a pair act as a source and sink of the
Berry curvature, a topological property of the electronic
Bloch wave functions. In this way the WSM phase is
topologically protected by a nonzero Berry flux across the
Fermi surface.
WSM phases in crystals require either broken spatial

inversion symmetry or broken time-reversal symmetry,
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or both. The Weyl phase with broken inversion symmetry
has been predicted [67,68] and experimentally confirmed
for the family of transition metal monopnictides com-
pounds TaAs, NbAs, TaP, and NbP [69–75]. Those with
broken time-reversal symmetry have been proposed for
pyrochlore iridates R2Ir2O7 (R is a rare-earth element) such
as Y2Ir2O7 [76–78].
In general, Weyl nodes in solids do not behave exactly in

the same manner as their high-energy Lorentz invariant
analogs because they are tilted and anisotropic. In a non-
centrosymmetric WSM, for example, the Weyl nodes
appear in pairs of opposite chirality, opposite tilting and
rotated anisotropy. These deviations from the ideal Dirac
cone picture influences several properties of WSMs like
optical [75], spin texture [79], and expectedly, several
anomalous transport phenomena.
There are a few common approaches for studying elec-

tronic transport in WSMs, including the Kubo formula [80],
the chiral kinetic theory [81] and the loop effective action of
quantum electrodynamics. In order to compare our results
obtained within a quantum field theory approach we will
use the chiral kinetic theory in this paper. This is a topo-
logically modified semiclassical Boltzmann formalism
(SBF) to describe the behavior of Weyl fermions at finite
density. Within this approach, the many-electron system is
described by a moving wave packet whose center satisfies
semiclassical equations of motion augmented by an anoma-
lous velocity term arising from the Berry curvature, which
acts as a magnetic field in reciprocal space.
The relevance of the topological Berry curvature in the

calculations of the transport properties, together with the
presence of the Abelian-Pontryagin density as a factor in
the effective action (2) arising from (1) has promoted the
use of tools akin to anomaly calculations in field theory
to obtain the effective action. Let us recall that the
electromagnetic chiral anomaly is proportional to the
Abelian-Pontryagin density whose integral is a topological
invariant, thus suggesting that the topological properties
ensuing from the Berry curvature in the SBF could be
understood as a manifestation of the anomaly in the field
theory approach. For example, using path integral methods
the effective action (2) was obtained by introducing the
electromagnetic coupling in Eq. (1) and subsequently
eliminating the fermionic term proportional to b̃μ through
a chiral rotation. Nevertheless, instead of yielding a free
fermionic action this produces an electromagnetic contri-
bution arising from the nonzero Jacobian of the chiral
transformation which is proportional to the Pontryagin
density [82]. Following this idea, the Fujikawa prescription
to obtain the chiral anomalies [83,84] has also been used to
calculate the effective electromagnetic action of different
materials in Refs. [85–87]. Nevertheless, as pointed out in
Refs. [88–91] the anomaly does not incorporate all the
parameters which one would expect to determine the full
dynamics of the effective action. Also, the method of

eliminating the additional fermionic contributions via a
chiral rotation cannot be easily extended to deal with the
more complicated configurations envisaged in generaliza-
tions of the action (1). The reasons indicated above point to
the need of presenting a full quantum-field theory method
to obtain the required effective electromagnetic actions
corresponding to fermionic systems described by such
extensions. This is the purpose of this work. In particular,
this procedure should clarify how the LIV corrections enter
in the effective action, while the chiral anomaly remains
insensitive to them, as mentioned above. As an application,
this method will provide us with an alternative way to
calculate the electromagnetic response of some particular
cases in topological quantum matter.
In this work we consider the more general fermionic

action,

S ¼
Z

d4xΨ̄
�
Γμi∂μ −M − eΓμAμ

�
Ψ; ð3Þ

coupled to the electromagnetic field Aμ, and we restrict
ourselves to

Γμ ¼ γμ þ cμνγν þ dμνγ5γν; M ¼ aμγμ þ bμγ5γμ: ð4Þ

This corresponds to a particular choice of coefficients in the
SME where we set m ¼ m5 ¼ Hμν ¼ eμ ¼ fμ ¼ gμνλ ¼ 0,
in the notation of Table P52 of Ref. [92]. In Eq. (4), the
matrices γμ are the standard ones and the isolated γμ

contribution takes care of Lorentz covariant piece of the
Dirac field. Also we have ψ̄ ¼ ψ†γ0. Our main motivation
for this choice is that, close to the Fermi energy, the linear
approximation of the tight-binding Hamiltonian of a WSM
with two cones, having arbitrary tilting and anisotropy,
can be embedded in the action (3). This will provide the
opportunity to obtain the electromagnetic response from
standard field theory methods via the effective action, as
well as to compare these results with those obtained using
the SBF. Also, we focus upon the CPT-odd contribution to
the electromagnetic response since this sector describes
novel and interesting phenomena such as the anomalous
Hall effect and also provides contributions to the chiral
magnetic effect. Since the conduction process strongly
depends on the fermion filling of the valence and con-
duction bands we require to consider a finite particle
density, which we achieve by introducing the chemical
potential at zero temperature as a first approximation.
Aside from further detailing the calculations in our

previous results [61], together with extending them to the
anisotropic case, our aim in this work is to make the first
steps in establishing the relation between the two alter-
native methods considered; the effective action calculation
and the semiclassical Boltzmann formalism. This might
shed additional light in the role that the chiral anomaly
plays in the characterization of the electromagnetic
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transport properties of WSMs in the framework of the
effective action.
The paper is organized as follows. In Sec. II we define

the general effective electromagnetic action and consider
only the restriction to the CPT-odd contribution of the
vacuum polarization tensor Πμν, which we relate to the
resulting axionic electrodynamics describing the response
of the medium we study. The action to be integrated in the
presence of an external electromagnetic field is selected
from the fermionic sector of the SME with the choices
indicated in Eq. (4) and turns out to be chiral. The detailed
decomposition of the full vertices and propagators into
their chiral contributions, labeled by χ ¼ �1, is carried in
Sec. II A together with Appendix A. In this way, the
vacuum polarization tensor is split into two contributions,
Πμν

χ , whose expressions are analogous and are calculated in
Sec. II B with the help of the Appendix B. The condensed
matter Hamiltonian describing a tilted anisotropic WSM,
whose electromagnetic response is obtained as an appli-
cation of the previous results, is introduced in Sec. III.
We show how to embed this Hamiltonian in the fermionic
action (4) and write the relations among their para-
meters. To calculate the effective current we incorporate
the finite density regime via the chemical potential μ at zero
temperature, which is introduced in Sec. IV using the
Matsubara prescription. The calculation is further split into
a μ-independent contribution, calculated in Sec. IVA plus
the Appendix C, together with a μ-dependent piece,
carrying all the information regarding the tilting and
anisotropy, which is summarized in Sec. IV B and heavily
relies on the Appendixes D–F. Section V is devoted to the
calculation of the anomalous Hall current using the kinetic
theory approach, as a way of comparing the effective action
results with a well-established and powerful method in
condensed matter physics. Some applications of the match-
ing results focusing on the anomalous Hall current are
described in Sec. VI using EuCd2As2 and TaAs, which are
well-known tilted and anisotropic WSMs. Finally we close
in Sec. VII with the summary and results. Our metric
convention is ημν ¼ diagð1;−1;−1;−1Þ and ϵ0123 ¼ þ1.

II. THE EFFECTIVE ACTION

Let us start from the action (3) together with the selection
(4) for Γμ andM. We are interested in a low-energy regime
where the fermions are not excited, yielding an effective
contribution to the electromagnetic interaction allowing
the determination of the induced current. To this end we
calculate the effective action SeffðAÞ given by

exp½iSeffðAÞ�

¼
Z

DΨ̄DΨ exp

�
i
Z

d4xΨ̄ðΓμi∂μ −M − eΓμAμÞΨ
�

¼ det
�
Γμi∂μ −M − eΓμAμ

�
: ð5Þ

Following the standard procedure we introduce the non-
interacting Green function S ¼ i=ðiΓμ

∂μ −MÞ and we
write

det
�
iΓμ

∂μ −M − eΓμAμ

� ¼ det ðΓμi∂μ −MÞ
× det

�
1 − SΓαð−ieAαÞ

�
: ð6Þ

Discarding the irrelevant normalization factor
det ðiΓμ

∂μ −MÞ, using the identity detM ¼ expTr lnM
and the power expansion of the logarithm we solve Seff
from Eq. (5) obtaining

iSeffðAÞ ¼ Tr
X∞
n¼1

−
1

n

�
S
�
−ieΓαAα

��
n: ð7Þ

The trace Tr is taken in coordinate as well as in matrix
space, while tr is reserved to the trace in matrix space. To
second order in Aα we obtain

iSð2Þeff ðAÞ ¼
e2

2

Z
d4xd4x0Aμðx0Þtr

×
�
Sðx − x0ÞΓμSðx0 − xÞΓν

�
AνðxÞ; ð8Þ

in coordinate space. Going to the Fourier space, with the
conventions

AνðxÞ ¼
Z

d4k
ð2πÞ4 e

−ikxAνðkÞ;

Sðx − x0Þ ¼
Z

d4k
ð2πÞ4 e

−ikðx−x0ÞSðkÞ; i∂μ ¼ kμ; ð9Þ

yielding

SðkÞ ¼ i
Γμkμ −M

; ð10Þ

we recast Eq. (8) as

iSð2Þeff ðAÞ ¼ þ e2

2

Z
d4p
ð2πÞ4 Aμð−pÞ

�Z
d4k
ð2πÞ4 tr

�
Sðk − pÞ

× ΓμSðkÞΓν
��
AνðpÞ: ð11Þ

Let us introduce the vacuum polarization tensor ΠμνðpÞ

iΠμνðpÞ ¼ e2
�Z

d4k
ð2πÞ4 tr

�
Sðk − pÞΓμSðkÞΓν

��
; ð12Þ

which produces the final expression for the effective action
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Sð2Þeff ðAÞ ¼
1

2

Z
d4p
ð2πÞ4 Aμð−pÞΠμνðpÞAνðpÞ; ð13Þ

Since Sð2Þeff is real we must have Π�
μνðpÞ ¼ ΠνμðpÞ.

In the following we consider only the CPT-odd con-
tribution to the effective action (13) which, as we will show,
keeps the form of Eq. (2) with a new vector Bλ to be
determined, which replaces the original c̃λ. The resulting
vacuum polarization contribution together with the new
axion field is

ΠμνðpÞ ¼ −i
e2

2π2
Bλpκϵ

μνλκ; ΘðxÞ ¼ 2Bλxλ: ð14Þ

In other words, the LIV parameters of the model
cμν; dμν; aμ; bμ will contribute only through the vector Bλ

yielding the full electromagnetic action (in Gaussian units),

S½Aμ�¼
Z

d4x

�
−

1

16π
FμνFμν−

1

c
JμAμþ

α

16π2
ΘðxÞFμνF̃μν

�
;

ð15Þ

where the electromagnetic tensor is Fμν ¼ ∂μAν − ∂νAμ,
with its dual F̃μν ¼ 1

2
ϵμναβFαβ, and α ¼ e2=ðℏcÞ is the fine

structure constant. The resulting equations of motion are

∂μFμν ¼ 4π

c
Jμ þ α

π
ð∂μΘÞF̃μν: ð16Þ

Following the conventions of Ref. [93], we have

∇ ·E ¼ 4πρþ α

π
ð∇ΘÞ ·B;

∇ ×B −
1

c
∂E
∂t

¼ 4π

c
J −

α

π

1

c
∂Θ
∂t

B −
α

π
ð∇ΘÞ ×E; ð17Þ

in terms of the electromagnetic fields. Equation (17) yield
the effective current densities

ρeff ¼
α

4π2
ð∇ΘÞ ·B; Jeff ¼ −

cα
4π2

�
∂Θ
∂x0

Bþð∇ΘÞ×E

	
:

ð18Þ

which provide a realization of the magnetoelectric effect.
From the homogeneous Maxwell’s equations ∂μF̃μν ¼ 0

one can verify the effective charge conservation ∂tρeff þ
∇ · Jeff ¼ 0 for an arbitrary coordinate dependent axion
field ΘðxÞ. Equation (18) can be written in terms of B0 ¼
∂0Θ=2 and B ¼ fBig, with ¼ Bi ¼ −Bi ¼ ∂iΘ=2. The
current JAHE ¼ ðcα=2π2ÞB × E describes the anomalous
Hall effect, while JCME ¼ −ðα=2π2ÞB0B contributes to the
chiral magnetic effect. In the following we set ℏ ¼ c ¼ 1 so
that α ¼ e2 ¼ 1=137.

A. The chiral propagators

Now we give some preliminary steps for the calculation
of the vacuum polarization tensor. In the absence of the
unit matrix, our generalized Dirac operator Γμkμ −M, in
Eq. (4), is linear in γμ and γ5γμ. The appearance of the
matrix γ5 suggests the convenience of using left and right
chiral projectors in order to replace γ5 by its eigenvalues
�1. This procedure was first performed in Ref. [39] and
subsequently used in Refs. [89,94], among others. There-
fore, it is convenient to define the operators,

Pχ ¼
1þ χγ5

2
; γ25 ¼ 1; Pþ þ P− ¼ 1;

P2
χ ¼ Pχ ; PþP− ¼ P−Pþ ¼ 0; ð19Þ

which project onto the right-handed (R) and the left-handed
(L) subspace, with χ ¼ þ1 and χ ¼ −1, respectively. Note
that γμPχ ¼ P−χγ

μ. The projectors (19) allows us to define
the matrices Γμ

χ such that

ΓμPχ ¼
�
δμν þ cμν − χdμν

�
γνPχ ≡ Γμ

χPχ ; ð20Þ

which explicitly identifies

Γμ
χ ¼ ðmχÞμνγν; ðmχÞμν ¼ δμν þ cμν − χdμν: ð21Þ

The apparent mismatch that ðmχÞμν gets a −χ factor in
front of dμν is readily clarified recalling that in our con-
ventions we have γ5γμPχ ¼ −γμγ5Pχ ¼ −ðχÞγμPχ . In the
following we indistinctly use the notation χ ¼ ðþ1;−1Þ
or χ ¼ ðR;LÞ.
To proceed forward with the calculation we now split

the combination Tμνðk; pÞ ¼ Sðk − pÞΓμSðkÞΓν inside the
trace of ΠμνðpÞ in Eq. (12) into its left- and right-handed
parts, i.e.,

Tμν
χ ðk; pÞ ¼ Sðk − pÞΓμSðkÞΓνPχ ; ð22Þ

which implies that the vacuum polarization can be written
as the sum ΠμνðpÞ ¼ Πμν

L ðpÞ þ Πμν
R ðpÞ, with

iΠμν
χ ðpÞ ¼ e2

Z
d4k
ð2πÞ4 tr

�
Tμν
χ ðk; pÞ� ð23Þ

being the vacuum polarization of a massless fermion with
chirality χ.
The next step is to calculate SðkÞΓνPχ , with SðkÞ given in

Eq. (10). The Γν in the numerator changes into a linear
combination of standard matrices γα according to Eq. (20),
but we are still left with SðkÞγαPχ where we require to
determine the action of the projector in the denominator of
the propagator. This is done in the Appendix A with the
results
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i
Γμkμ −M

γαPχ ¼ PχSχðkÞγα;

SχðkÞ ¼
i�

kμðmχÞμν − ðCχÞν
�
γν
;

ðCχÞν ¼ aν − χbν: ð24Þ

Note that the propagators Sχ , having the generic form
i=ðZνγ

νÞ, can be readily rationalized as iðZνγ
νÞ=Z2.

B. The vacuum polarization tensor

We now concentrate in the calculation of each contri-
bution Πμν

χ ðpÞ. Inserting Eqs. (12) and (24) into (22)
and (23) and using the cyclic property of the trace we have

iΠμν
χ ðpÞ ¼ e2ðmχÞμβðmχÞνα

×
Z

d4k
ð2πÞ4 tr

�
Sχðk − pÞγβSχðkÞγαPχ

�
: ð25Þ

Having in mind the application of our results to the
transport properties of WSMs, in the following we restrict
ourselves to the CPT-odd (axial) contributions Πμν

A;χ of the
vacuum polarization, which are obtained by selecting the
terms χγ5=2 in the projector Pχ of Eq. (25). Then we are
left with

iΠμν
A;χðpÞ ¼

χ

2
e2ðmχÞμβðmχÞνα

×
Z

d4k
ð2πÞ4 tr

�
Sχðk − pÞγβSχðkÞγαγ5

�
: ð26Þ

Clearly, the full-axial contribution to the vacuum polari-
zation is the sum of the L and R parts, i.e., Πμν

A ¼
Πμν

A;L þ Πμν
A;R. The calculation indicated in Eq. (26) is

presented in the Appendix B with the result

Πμν
A;χðpÞ ¼ −2χe2ðdetmχÞðm−1

χ ÞρλϵμνλκpκI
χ
ρðCÞ; ð27Þ

with

IχρðCÞ ¼
Z

d4k
ð2πÞ4 g

χ
ρðk0; kÞ; gχρðk0; kÞ ¼

ðk0χ − CχÞρ
½ðk0χ − CχÞ2�2

;

ð28Þ

where we have taken that ðk0χÞμ ¼ kαðmχÞαμ. Previous to
regularization, the above expression is our final result
for the vacuum polarization in Minkowski spacetime.
The result (27) holds for arbitrary LIV parameters cμν;
dμν; aμ, and bμ as long as these produce invertible matrices
ðmχÞμν. Note that this result is nonperturbative in these
parameters. From Eqs. (14) and (27) we can read the chiral

contributions to Bλ ¼ Bþ
λ þ B−

λ as

Bχ
λ ¼ −i4π2χðdetmχÞðm−1

χ ÞρλIχρðCÞ: ð29Þ

III. THE MODEL

In order to further motivate the additional choices we
make to obtain our final result for Bμ which will determine
the electromagnetic response (18), we introduce a simple
model of a WSM consisting of two Weyl nodes of opposite
chiralities separated in momentum and energy, ignoring the
nonuniversal corrections due to band bending far away
from the nodes. The low-energy Hamiltonian for a Weyl
node with chirality χ can be expressed as

HχðkÞ ¼ vχ · ðkþ χb̃Þσ0 − χb̃0σ0 þ χðkþ χb̃ÞAχσ;

WAχσ ≡WiAχijσj; ð30Þ

where k is the crystal momentum, σ is the vector of Pauli
spin matrices, σ0 is the 2 × 2 unit matrix, and Wi denotes
an arbitrary vector. This model describes two Weyl nodes
located at −χb̃ (−χb̃0) in momentum (energy) with respect
to the origin at k ¼ 0 (the zero-energy plane). The tilting
velocity of each cone is vχ ¼ fviχg and Aχ ¼ ½ðAχÞij� is the
matrix of anisotropic Fermi velocities, with the notation
indicated in the second term of Eq. (30).
The dispersion relation of this model is

EsχðkÞ ¼ −χb̃0 þ Vχ ·Kχ þ sKχ ; ð31Þ

where s ¼ �1 is the band index, Vχ ¼ A−1
χ vχ , Kχ ¼

ðkþ χb̃ÞAχ , and Kχ ¼ jKχ j. In order to illustrate the emer-
gence of the linearly dispersing model we are considering
in Eq. (30), the left panel of Fig. 1 shows a general energy
dispersion for a two-node Weyl semimetal, including band
bending far away from the nodes described by a more
general tight-binding Hamiltonian. When the Fermi level
is close to the band crossings, this Hamiltonian can be
linearized around each node, yielding to our model of
Eq. (30). In the middle panel of Fig. 1 we show the Weyl
cones without tilting and with isotropic Fermi velocity. The
right panel displays tilted Weyl cones with anisotropic
Fermi velocity.
An important step in our calculation is the identification

of the parameters in the condensed matter Hamiltonian (30)
with the parameters entering the free Hamiltonian, i.e.,
without the electromagnetic coupling, resulting from the
fermionic action (3) in the SME. These relations allow us to
express the results obtained from the effective action in
Sec. II, in terms of the physical parameters characterizing
the WSM. To facilitate this identification we rewrite (30) as

HLðkÞ ¼ vL · k − vL · b̃þ b̃0 − kALσ þ b̃ALσ; ð32Þ
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HRðkÞ ¼ vR · kþ vR · b̃ − b̃0 þ kARσ þ b̃ARσ; ð33Þ

where R, L denotes the chiralities χ ¼ þ;− respectively, as
indicated previously. Note that in this Hamiltonian there are
32 independent parameters contained in χb̃, χb0, vχ , andAχ .
To accomplish this task we now focus on the ferm-

ionic system described by the extended Dirac operator
ðΓμi∂μ −MÞ with the specific choices in Eq. (4), which
account for 40 independent parameters. A convenient simpli-
fication in the construction of the Dirac-Hamiltonian is to set
Γ0 ¼ γ0, which demands c0ν ¼ 0 and d0ν ¼ 0. This cuts
down the number of independent parameters in the SME to
the required 40 − 8 ¼ 32 and yields the Hamiltonian

H ¼ γ0Γki∂k þ γ0M: ð34Þ
In the chiral representation of the gamma matrices, where σ0
is the 2 × 2 unit matrix and σi are the standard Pauli
matrices, we have

γ0 ¼
�

0 σ0

σ0 0

	
; γi ¼

�
0 σi

−σi 0

	
;

γ5 ¼
�−σ0 0

0 σ0

	
; ð35Þ

and H separates into right (R) and left (L) contributions
according to the chiral projectors (19). Before writing them

explicitly it is convenient to introduce the additional para-
metrization

δμν þ cμν − χdμν ¼ ðmχÞμν ≡
�

1 0

Vi
χ ðUχÞij

	
; ð36Þ

which arises from the choice Γ0 ¼ γ0. A direct calculation
shows,

HL ¼ −Vi
Lki þ kiðULÞijσj þ CL0 − CLjσ

j; ð37Þ

HR ¼ −Vi
Rki − kiðURÞijσj þ CR0 þ CRjσ

j: ð38Þ

For further clarity, let us recap the steps we have followed:
we start with the parameters cμν, dμν, aμ, and bμ in the
SME, then the chiral representation naturally introduces
ðmχÞμν and ðCχÞν according to (21) and (24). To fulfill the
restriction Γ0 ¼ γ0 we have further introduced Vi

χ and
ðUχÞij in ðmχÞμν as defined in Eq. (36). Summarizing, at
this stage the SME parametrization of the HamiltonianH is
presented in terms of Vi

χ , ðUχÞij, ðCχÞμ, with χ ¼ �1.
The final step is to write the parameters of the SME

Hamiltonian (34) in terms of those in the condensed matter
Hamiltonian (30), i.e., to identify Eq. (32) with Eq. (37) and
Eq. (33) with Eq. (38). We obtain the following relations:

ðmχÞi0 ¼ Vi
χ ¼ viχ ; ðmχÞij ¼ ðUχÞij ¼ ðAχÞij;

ðCχÞ0 ¼ χ
�
viχ b̃

i − b̃0
�
; ðCχÞj ¼ χb̃iðAχÞij;

a0 ¼
1

2
b̃iðviR − viLÞ; b0 ¼ b̃0 −

1

2
b̃i
�
viR þ viL

�
;

aj ¼
1

2
b̃i
�ðARÞij − ðALÞij

�
; bj ¼ −

1

2
b̃i
�ðARÞij þ ðALÞij

�
: ð39Þ

FIG. 1. Left: energy dispersion for a two-node WSM including band bending far away from the nodes. Middle: low-energy spectrum
of a two-node WSM without tilting and with isotropic Fermi velocity. Right: low-energy spectrum of a two-node tilted Weyl cones with
anisotropic Fermi velocity. The black line represents the position of the Fermi level μ and Λχ ¼ μþ χb̃0 measures the band filling.
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IV. THE FINITE DENSITY REGIME

In order to apply the results of our effective action cal-
culation in Sec. II to obtain the conduction current pro-
duced by the WSM characterized by the Hamiltonian (30)
in the zero temperature limit, we have to incorporate the
effects of the chemical potential μ because its location will
determine the filling of the conduction and the valence
bands of each node, thus yielding the conductivity. To
this end we choose the Matsubara imaginary-time formal-
ism to correctly incorporate the μ-dependence in the
effective action [19,20], which we implement through
the substitution [21–23],
Z

d4k
ð2πÞ4 →

�Z
d4k
ð2πÞ4

	
T¼0;μ¼0

þ iT
X∞
n¼−∞

Z
d3k
ð2πÞ3 ; ð40Þ

in Eq. (28). Here k0 → k0 ¼ iωnþμ and the sum in Eq. (40)
is over the Matsubara frequencies ωn ¼ ð2nþ 1ÞπT
required to produce antiperiodic boundary conditions for
the fermions [20]. We think of the prescription (40) as a
natural regulator for potentially divergent contributions.
Since we are dealing with chiral fermionic excitations

whose dispersion behaves linearly around the Weyl nodes
we have to locate the chemical potential close to the nodes
in order for the approximation to be valid. Once we do
this, the calculation will tell us which band (valence or
conduction) in each node contributes to the conduction
process. Let us recall that completely filled bands do not
contribute to the current, which is due only to the partially
filled bands.
Next we focus on Eq. (28) and make use of the following

relation to evaluate the contribution of the chemical
potential at zero temperature [19],

lim
T→0

T
X∞
n¼−∞

gχρðk0 ¼ iωn þ μ; kÞ ¼
X

Reðkχ#
0
Þ<μ

Res
�
gχρðk0;kÞ

�
;

ð41Þ

where kχ#0 stand for the location of the poles in k0 of
gρðk0;kÞ, with “Res” denoting the corresponding residue.
The sum is made over all the existing poles having a real
part less than the chemical potential.

Next we split IχρðCÞ ¼ Iχð1Þρ ðCÞ þ Iχð2Þρ ðCÞ, where the
superindex (1) refers to the μ-independent contribution,
while the superindex (2) labels the μ-dependent piece.

In turn, this says that Bμ ¼ Bð1Þ
μ þ Bð2Þ

μ .

A. The μ-independent contribution

This term reduces to the standard zero-temperature, zero-
chemical potential piece, which has been previously ob-
tained in the literature [82,85]. Going back to Eq. (28), this
corresponds to the direct evaluation of the integral IρðCÞ

after the change of integration variables k0μ ¼ kνmν
μ. Since

the only vector at our disposal is Cμ, we have

Iχð1Þρ ðCχÞ ¼
i

ðdetmχÞ
NχðCχÞρ;

Nχ ¼
1

C2
χ

�Z
d4k0

ð2πÞ4
ðk0 − CχÞ · Cχ

½ðk0 − CχÞ2�2
�
E

; ð42Þ

where the integral inside the square brackets is in Euclidean
space and the factor þi comes from the Wick rotation. The
factor Nχ is regularization dependent and could only be a
function of the magnitude of the four-vector ðCχÞμ. How-
ever, a change of scale Cσ → λCσ followed by an additional
change of variables k00μ ¼ λk0μ shows that Nχ is just a
numerical factor, independent of ðCχÞμ. Therefore, Nχ is
the same for both left- and right-handed excitations, i.e.,
Nχ ¼ N. In this way, the total contribution to the vacuum
polarization in this case is summarized in the vector,

Bð1Þ
λ ¼ 4π2N

X
χ¼�1

χðCχÞρðm−1
χ Þρλ; ð43Þ

according to Eq. (14). As shown previously in the literature
the factor N is finite but undetermined [34–43]. Its depen-
dence upon the regularization procedure has been studied
in Ref. [85] and the final choice is made by selecting an
observable quantity predicted by the model. In our case we
take the anomalous Hall conductivity σxy ¼ −e2b̃z=ð2πÞ2
as the quantity to be predicted in the isotropic zero-tilting
limit, which results by selecting N ¼ −1=ð8π2Þ [85]. The
method that we employ to regularize the integral (42),
yielding the chosen value for the coefficient N, requires to
take a cutoff in the direction of ðCχÞρ and involves per-
forming a direct integration in cylindrical coordinates.
Without loss of generality, we assume that the vector Cχ

has only a component along the z-axis, such that we
can conveniently split k0 ¼ k0

z þ k0⊥. As suggested in
Ref. [38], we rely on the residual rotational symmetry in the
plane perpendicular to Cχ to perform first the integrations
over k0⊥ and ϕ. Thus, the integral (42) turns out to be

N ¼ 1

C2
χð2πÞ4

Z
∞

−∞
dk00

Z
∞

−∞
dk0z

Z
2π

0

dϕ
Z

∞

0

dk0⊥k0⊥

×
ðk00 − ðCχÞ0ÞðCχÞ0 þ ðk0z − ðCχÞzÞðCχÞz
ððk00 − ðCχÞ0Þ2 þ k02⊥ þ ðk0z − ðCχÞzÞ2Þ2

: ð44Þ

After integrating the remainig variables (see the
Appendix C), we find that N ¼ −1=ð8π2Þ as agreed.

B. The μ-dependent contribution

Using the result (41), we next consider the finite density
contribution to Eq. (28), and compute
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Iχð2Þρ ¼ i
Z

d3k
ð2πÞ3

" X
Reðkχ#

0
Þ<μ

Res
�
gχρðk0; kÞ

�#
: ð45Þ

The calculation of the poles and residues is summarized in
the Appendix D. The poles for the band s are located at

kχ#0s ¼ −kjðmχÞj0 þ ðCχÞ0 þ sjk0 − Cχ j; s ¼ �1;

k0j ¼ kiðmχÞij: ð46Þ

It is a simple matter to verify that these poles correspond to
the dispersion relations (31) of the WSM Hamiltonian (30),
as expected.
The residues of gχρðk0;kÞ at the poles kχ#0s are the real

expressions

Res½gχρðk0; kÞ� ¼ −s
1

4
δjρ

k0j − ðCχÞj
jk0 − Cχ j3

: ð47Þ

Then we have to evaluate

Iχð2Þρ ¼ −iδjρ
X
s¼�1

s
Z

d3k
ð2πÞ3

k0j − ðCχÞj
jk0 −Cχ j3

H
�
μ− kχ#0s

�

¼ −iδjρ
1

detðmχÞ
X
s¼�1

s
Z

d3k00

ð2πÞ3
k00j
jk00j3H

�
μ− kχ#0s

�
; ð48Þ

where we introduce the convenient change of variables

k00j ¼ k0j − ðCχÞj; d3k00 ¼ d3k0 ¼ detðmχÞd3k ð49Þ

and use detððmχÞijÞ ¼ detððmχÞμνÞ ¼ detðmχÞ, since
ðmχÞ0ν ¼ δ0ν.
The next step is to calculate

Iχsj ¼
Z

d3k00

ð2πÞ3
k00j
jk00j3Hðμ − k#0sÞ: ð50Þ

Recalling Eq. (27), at this stage we can write the axial part
of the vacuum polarization as

Πμν
A;χðpÞ ¼ iχ

e2

2
ðm−1

χ Þjλpκϵ
μνλκ
X
s¼�1

sIχsj : ð51Þ

Let us now rewrite the poles kχ#0s , in terms of the new
double-primed variables k00 which enter in the integral (50).
Starting from (46), the sequence kiðmχÞi0 ¼
k0jðm−1

χ ÞjiðmχÞi0 ¼ ðk00j þ ðCχÞjÞðm−1
χ ÞjiðmχÞi0 yields

kχ#0s ¼ Vχ · k00 þ sjk00j þ Eχ0; ð52Þ

with the additional definitions

Vj
χ ¼ ðm−1

χ ÞjiðmχÞi0; Eχ0 ¼ Vχ · Cχ þ ðCχÞ0 ð53Þ

A proof of consistency can be made recalling that kχ#0s
describe the energy bands of the WSM. In the notation
of (52) we see that the nodes are located at k00 ¼ 0, such that
the energy of each node has to be Eχ0, which we know it is
equal to −χb̃0. This result is recovered from the alternative
expression for Eχ0 in Eq. (53) after the relations (39)
are used.
The simplest way to calculate Iχsj ¼ −ðIχsÞj is to realize

that k=jkj3 ¼ −∇ð1=jkjÞ, which calls for an integration by
parts yielding a surface term plus a volume contribution
involving δðk�0s − μÞ. Also it is convenient to use spherical
coordinates choosing the z-axis in the direction of Vχ ,
such that

kχ#0s ¼ jk00jðjVχ j cos θ þ sÞ þ Eχ0: ð54Þ
In the following we restrict ourselves to type-I WSMs
where jVχ j < 1, implying that the sign of the factor of jk00j
in (54) is independent of the angle θ, i.e., we have that
ð1þ sjVj cos θÞ is always positive. The detailed evaluation
of the integral (50) is outlined in Appendix E and we only
present the results here. When jVj < 1 the surface integral
vanishes and we are left with

fðIχsÞjg ¼ Iχs ¼
Z

d3k00

ð2πÞ3
1

jk00j∇Hðμ − k�0sÞ: ð55Þ

The resulting delta function imposes the condition kχ#0s ¼ μ
which we write as

jk00jðjVχ j cos θ þ sÞ ¼ μþ χb̃0 ≡ Λχ : ð56Þ

Choosing W ¼ Vχ in Eq. (E8) of the Appendix E we find

Iχs ¼
�

1

2π2
1

jVχ j3
ðsΛχÞHðsΛχÞ

�jVχ j − arctanhjVχ j
�	

Vχ ;

ð57Þ

which demands ðsΛχÞ to be positive. Going back to the
vacuum polarization tensor (51) we consider a given Weyl
node (fixed χ) and evaluate its contribution. Let us examine
the location of the chemical potential μ relative to the
position of the energy of node Eχ0 ¼ −χb̃0. When μ is
above Eχ0 we have Λχ > 0 in such a way that only the
conduction band s ¼ 1 contributes with

½sIχs�s¼þ1 ¼
1

2π2
1

jVχ j3
Λχ

�jVχ j − arctanhjVχ j
�
Vχ : ð58Þ

When μ is below Eχ0 we have the opposite situation
where Λχ is negative and only the valence band s ¼ −1
contributes with
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½sIχs�s¼−1 ¼
1

2π2
1

jVj3 Λχ ½jVχ j − arctanhjVχ j�Vχ : ð59Þ

Summarizing, when jVj < 1 the contribution of each node
to the current results proportional to the corresponding
value of Λχ , independently of which band provides the
conducting charges, since Eq. (51) requires to consider the
product sIχs in each case. In other words, π2½sIχs�s¼þ1 ¼
π2½sIχs�s¼−1 ≡ NχVχ with

Nχ ¼
1

2jVj3
�jVχ j − arctanhjVχ j

�
: ð60Þ

The final result for Eq. (51) is

Πμν
A;χðpÞ ¼ i

e2

2π2
pκϵ

μνλκ
X
χ¼�1

χΛχNχðm−1
χ ÞjλðVχÞj; ð61Þ

from where we read

Bð2Þ
λ ¼ −

X
χ¼�1

χΛχNχðm−1
χ ÞjλðVχÞj; ð62Þ

according to (14). In the Appendix F we put together the
separate contributions to Bλ in Eqs. (43) and (62), express-
ing the final result in terms of the parameters of the WSM
Hamiltonian (30). We obtain

B0 ¼ b̃0 −
X
χ¼�1

χΛχNχviχ
�ðA−1

χ ÞTðA−1
χ Þ�ijvjχ ; ð63Þ

Bk ¼ b̃k þ
X
χ¼�1

χΛχNχ

�ðA−1
χ ÞTðA−1

χ Þ�klvlχ ; ð64Þ

with

Λχ ¼ μþ χb̃0; ðVχÞi ¼ ðA−1
χ Þikvkχ ;

Nχ ¼
1

2jVχ j3
ðjVχ j − arctanhðjVχ jÞ;

jVχ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðVχÞiðVχÞi

q
: ð65Þ

V. A CHIRAL KINETIC THEORY APPROACH

We now validate our results by using chiral kinetic
theory, which is a topologically modified semiclassical
Boltzmann formalism to describe the behavior of Weyl
fermions at finite chemical potential. In the presence of an
electric field, in addition to the usual band dispersion, the
velocity for Bloch electrons acquires an extra term propor-
tional to the Berry curvature [95,96]. This gives rise to a
transverse topological current given by

J ¼ −
e2

ℏ

X
s

X
χ¼�1

Z
d3k
ð2πÞ3 E ×ΩsχðkÞfF:D:sχ ðkÞ; ð66Þ

where E denotes the electric field, fF:D:sχ ðkÞ is the Fermi-
Dirac distribution function for Bloch electrons with chi-
rality χ in the s-th band and ΩsχðkÞ ¼ ih∇kusχðkÞj ×
j∇kusχðkÞi is the Berry curvature. Here, the Bloch states
jusχðkÞi are defined by Ĥχ jusχðkÞi¼Esχ jusχðkÞi, where Ĥχ

is the single particle Hamiltonian for a Weyl fermion with
chirality χ. Evaluation of the Hall current from Eq. (66)
reproduces the Karplus-Luttinger formula for the anoma-
lous Hall conductivity [97]. In the following we evaluate
the anomalous Hall current (66) for a WSM described by
the model Hamiltonian (30) characterized by the tilting vχ
and the matrix of the Fermi velocities Aχ , which we con-
sider symmetric in this section.
The topological properties of the two-node model HχðkÞ

under consideration can be seen from the Berry curvature.
Using the Bloch states jusχðkÞi the Berry curvature is
found to be

ΩsχðkÞ ¼ −
sχ
2
detðAχÞ

A−1
χ Kχ

K3
χ

: ð67Þ

In the isotropic limit this expression reduces to the usual
monopole-like Berry curvature of the Weyl nodes. Further-
more, we can check that the Berry flux piercing any surface
enclosing the node is exactly 2πχ. From Eq. (67) we
compute the topological current. First, we rewrite Eq. (66)
in the standard form of the anomalous Hall current
J ¼ e2

2π2
δB ×E, where

δB ¼ 2π2
X
s

X
χ¼�1

Z
d3k
ð2πÞ3ΩsχðkÞfF:D:sχ ðkÞ: ð68Þ

Here we have introduced δB instead of the full B of the
previous section because the semiclassical approximation
fails to predict the Hall current proportional to the Weyl
node separation. This is expected because the semiclassical
approximation accounts for the single-band Fermi surface
properties of the wave packets, and the Hall conductivity
carries information of all filled states. To evaluate the
integral (68) we change the integration variable from k
to Kχ . Substituting the Berry curvature (67), the expres-
sion (68) in the zero-temperature limit becomes

δB ¼ −π2
X
s

X
χ¼�1

sχA−1
χ

Z
d3Kχ

ð2πÞ3
Kχ

K3
χ

×H
�
μþ χb̃0 − Vχ ·Kχ − sKχ

�
: ð69Þ

This integral is exactly the same obtained when evaluating
the μ-dependent contribution to the vacuum polarization
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tensor in Sec. IV B. See Eq. (50) for instance. A detailed
solution of this integral is presented in the Appendix E and
here we take the final result only.
For a type-I WSM, defined by Vχ ¼ jVχ j < 1, the

μ-dependent correction to the anomalous Hall current is
expressed in terms of the vector

δB ¼ −
X
χ¼�1

χΛχ

2V3
χ

�
Vχ − arctanhðVχÞ

�
A−1

χ A−1
χ vχ ; ð70Þ

where Λχ ¼ μþ χb̃0. This result reproduces the one
obtained in the previous section, where it was derived
within a quantum field theoretical approach, since δB is
equal to Bð2Þ defined in the previous section.

VI. APPLICATIONS

In Weyl semimetals the energy spectrum around band-
touching points behaves as tilted and anisotropic Dirac
cones. These differences from the ideal Dirac cone picture,
where the charge carriers behave as massless relativistic
particles, have important consequences for the physical
properties of Weyl semimetals as well as for their optical
and transport features.
In recent years, there has been a great deal of interest

in measuring transport properties induced by the Berry
curvature, specially the anomalous Hall effect [98]. In
experiments, there are a number of factors which make
difficult the measurement of the ideal anomalous Hall effect
J ¼ e2

2π2
b̃ ×E. For example, since the Weyl nodes do not lie

exactly at the Fermi level, other factors are expected to be
relevant, such as the anisotropy, tilting and disorder.
However, as shown in Ref. [99], disorder-induced contri-
butions to the anomalous Hall conductivity are absent when
the Fermi level is near the nodes, thus leaving the aniso-
tropy and tilting as possible responsible of deviations from
the ideal prediction. In this section we aim to fill in this gap.
Here, we use the theory developed in the previous sections
to investigate the anomalous Hall current for different
WSM materials, mainly focusing on the effects of the
tilting and the anisotropy.

A. The ideal Weyl semimetal EuCd2As2
The simple structure of Weyl nodes in the trigonal crystal

EuCd2As2 makes it an ideal material with which to study
the different contributions to the anomalous Hall effect.
Ab initio electronic structure calculations reveal that
EuCd2As2 has only a single pair of Weyl nodes located
at �b̃ ¼ ð0; 0;�b̃zÞ along the c axis, with b̃z ¼ 0.03×
2π=c ≈ 0.26 nm−1. Inversion symmetry guarantees that the
nodes lie at the same energy, i.e., b̃0 ¼ 0. If the nodes lie at
the Fermi level, ab initio calculations predict the anomalous

Hall conductivity to be σAHCyx ¼ e2b̃z
2π2ℏ ≈ 30Ω−1 cm−1, which

is significantly larger than the observed value which is of

the order of 0.5Ω−1 cm−1 [100]. This prediction is valid
when the nodes lie at the Fermi level, however, in the
experiments carried out by authors in Ref. [100], the nodes
are slightly shifted from the Fermi level. In this case, as
our results in Eqs. (64) and (70) anticipate, the anisotropy
and tilting contribute to the anomalous Hall conductivity
by replacing b̃ to b̃þ δB. In the following we estimate
such corrections. To this end, we use the low-energy
linearly-dispersing two-band model derived in Ref. [100].
The effective Hamiltonian for a Weyl node of chirality
χ is given by Eq. (30), with vχ ¼ ð0; 0; χvÞ and Aχ ¼
χdiagðvk; vk; χv⊥Þ. These velocity parameters are obtained
by fitting the energy computed from ab initio calculations.
The obtained values are v ¼ 1.6v0, vk ¼ 3v0 and v⊥ ¼ 2v0,
where v0¼1.51×105m=s. Furthermore, from Shubnikov-
de Haas measurements and ab initio calculations, the
Fermi level is predicted to be approximately 52 meV below
the Weyl nodes thus lying in the valence band. All in all,
the shift of the Weyl node position (70) is found to be
δB ¼ ð0; 0;−0.122Þ nm−1, such that the anomalous Hall
conductivity becomes

σ̃AHCyx ¼ e2ðb̃z þ δBzÞ
4π2ℏ

≈ 15.9Ω−1 cm−1; ð71Þ

which represents a significant reduction from the originally
predicted anomalous Hall conductivity σAHCyx . However
there are other factors which could diminish further the
conductivity, for example, finite temperature effects and
higher-order terms in the model Hamiltonian.

B. The highly anisotropic and tilted
monopnictide TaAs

We will now apply our results to the archetypal
nonmagnetic transition-metal monopnictide TaAs, the best-
known WSM [71]. This material crystallizes in a body-
centered tetragonal structure with lattice parameters a ¼
b ¼ 0.34348 nm−1 and c ¼ 1.1641 nm−1. In the Brillouin
zone of TaAs, there are 24 Weyl nodes in total; 8 Weyl
nodes on the kz ¼ 2π=c plane (W1 nodes) and 16 Weyl
nodes away from the kz ¼ 2π=c plane (W2 nodes). W1
(W2) nodes are located 26 meV (13 meV) below the Fermi
level, which crosses only the conduction band (electron
pockets). The electronic structure of TaAs shows that the
Weyl bands around the W1 and W2 nodes possess strong
anisotropies and tilting. Since the Weyl nodes are separated
in the kx-direction, a linear fit of the Weyl bands near the
nodes produces an effective Hamiltonian as given by
Eq. (30), such that the tilting and matrix of Fermi velocities
depend if the node is either W1 or W2. Extracted from
ab initio calculations of Ref. [101], for W1 nodes the band
parameters are

LORENTZ INVARIANCE VIOLATION AND THE CPT-ODD … PHYS. REV. D 109, 065005 (2024)

065005-11



AW1
χ ¼ χv00

0
B@

3.963χ 0.393χ 0

0.393χ 2.318 0

0 0 0.212

1
CA;

vW1
χ ¼ v00

0
B@

−1.603χ
1.004

0

1
CA; ð72Þ

and for the W2 nodes we have

AW2
χ ¼ χv00

0
B@

3.220χ 1.127χ 0.661χ

1.127χ 0.291 2.464

0.661χ 2.464 1.659

1
CA;

vW2
χ ¼ v00

0
B@

−0.989χ
0.944

1.409

1
CA; ð73Þ

where v00 ¼ 1 × 105 m=s. These parameter values support
the picture of highly anisotropic and strongly tilted Weyl
cones in TaAs. Besides, note that W1 Weyl bands are
almost 2D, while W2 bands are 3D. With all the informa-
tion above, we are able to compute the correction to the
anomalous Hall conductivity by using our equivalent
formulas (62) and (70). The contributions to the shifting
from the W1 and W2 nodes are found to be

δBW1 ¼

0
B@

0.01719

−0.00655
0

1
CA nm−1;

δBW2 ¼

0
B@

−0.04814
0.02670

0.01967

1
CA nm−1; ð74Þ

respectively. Here, we used that ΛW1
χ ¼ 26 meV and

ΛW2
χ ¼ 13 meV, which are the positions of the W1 and W2

nodes below the Fermi level. We observe that the shifting of
the W1 nodes are confined to the x–y plane, consistent with
the fact that Weyl bands are almost 2D. The full contri-
bution to the anomalous Hall conductivity can be obtained
by summing up the contributions from the 12 pairs of nodes
of TaAs, i.e.,

δB ¼
X
i¼1;2

NiδB
Wi ¼

0
B@

−0.31639
0.18741

0.15743

1
CA nm−1; ð75Þ

where we used N1 ¼ 4 and N2 ¼ 8, which are the number
of pairs ofW1 andW2 nodes in the Brillouin zone of TaAs.
Interesting conclusions can be extracted from this result.
First, we observe that the effects of the anisotropy and

tilting can be clearly distinguished from the conventional
anomalous Hall current, which is proportional to the
Weyl nodes separation. In the present case the nodes are
separated along the x axis and hence the anomalous Hall

conductivity is σAHCzy ¼ e2b̃x
2π2ℏ. However, in the presence

of anisotropy and tilting, the resulting anomalous Hall
current is

σ̃AHCzy ¼ e2ðb̃x þ δBxÞ
2π2ℏ

; σ̃AHCyx ¼ e2δBz

2π2ℏ
;

σ̃AHCxz ¼ e2δBy

2π2ℏ
: ð76Þ

Therefore, the two last terms are purely induced by
anisotropy and tilting.
Finally, it is worth mentioning that our analysis can also

be applied to other WSM materials of the TaAs family,
such as TaP, NbAs, and NbP. These materials are also
highly anisotropic and tilted, however, unlike TaAs where
only electrons pockets occurs, ab initio calculations indi-
cate that in these other WSMs both electron pockets for W1
nodes and hole pockets for W2 nodes occur [101].

VII. SUMMARY AND RESULTS

In quantum field theory the calculation of the effective
action SeffðAμÞ starting from a fermionic system minimally
coupled to external electromagnetic fields Aμ provides
a very general method to obtain the effective current
Jeffμ ðxÞ ¼ δSeff=δAμðxÞ yielding the response of the system.
For a wide class of materials this procedure gives an
alternative to some strategies frequently used in condensed
matter physics to determine the electromagnetic response
of a medium, such as to the Kubo linear response theory
and the chiral kinetic theory approach, for example. Such
particular set of materials include fermionic excitations
having a dispersion relation which is linear near the band-
touching points in the Brillouin zone close to the Fermi
energy, thus signaling the presence of Dirac-Weyl quasi-
particles akin to the real particles resulting in the funda-
mental interactions of high-energy physics. Nevertheless,
a fundamental difference arises since the periodic and
bounded structure of a crystaline lattice induce the violation
of the spacetime symmetries such as translations, continu-
ous rotations and Lorentz invariance. Fortunately, a quan-
tum field theory model has been constructed to deal with
such violations; the SME. Its minimal fermionic sector
covers many Dirac-Weyl Hamiltonians coinciding with the
linearized version, near the Fermi energy, of the tight-
binding Hamiltonians describing materials such as topo-
logical insulators and Dirac-Weyl semimetals, for example.
Having in mind the application of our results to the

realistic case of a Weyl semimetal with tilting and aniso-
tropy we considered the selection (4) of parameters in the
SME, which embodies those included in the condensed
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matter Hamiltonian (30). The resulting fermionic action is
chiral, which simplifies enormously the calculation of the
CPT-odd contribution of the vacuum polarization tensor
Πμν

A that can be further split into the sum of the two chiral
contributions. This tensor determines the CPT-odd effec-
tive action in our approximation of two powers in the
external electromagnetic field. We restrict ourselves to this
sector since it produces novel effects such as the anomalous
Hall current and a contribution to the chiral magnetic effect.
Our calculation is nonperturbative in the parameters of
the model and yields the general result that the ensuing
effective electrodynamics remains of the axionic type (2)
with ΘðxÞ ¼ Bμxμ, where Bμ is the main objective of
the calculation being related to Πμν

A through Eq. (14). The
results, previous to the inclusion of finite density effects are
given in Eq. (29) for each chirality. They are presented in
terms of the chosen LIV parameters of the SME, but can
also be expressed using those of the condensed matter
Hamiltonian employing Eq. (39).
The filling of the valence and the conduction bands with

respect to the Fermi energy determines the conduction
properties of the material and we introduce this dependence
through the chemical potential μ. This naturally split the
basic integral (29) into a μ-independent piece plus a
μ-dependent one. In the first contribution we face the
well-known and much discussed problem that the overall
factor of the integral is finite but undetermined. We fix
this ambiguity by selecting the factor N ¼ −1=ð8πÞ2 that
reproduces the anomalous Hall conductivity σxy ¼
−e2b̃z=ð2πÞ2 in the isotropic case with no tilting and when
the cones are separated along the z-axis. After we rely on
the residual rotational symmetry in the presence of the
vector C to perform a first integration, we show that this
factor is obtained when we introduce a cutoff along the
direction where each of the remaining integrals diverge. To
deal with the second μ-dependent contribution we extend
the integral (28) to the imaginary time using the Matsubara
formalism at zero temperature and calculate it following the
prescription (41). This yields our final result for the vector
Bλ presented in Eqs. (63)–(65) in terms of the parameters of
the condensed matter Hamiltonian.
We have also obtained the anomalous Hall current from

the chiral kinetic theory approach. In this case, within the
linear approximation we are considering, the predicted
value for the μ-independent part is zero. Assuming a sym-
metric anisotropy matrix we get the result in (70) for the
μ-dependent contribution, which coincides with that in
Eq. (64) calculated via the effective action. The contribu-
tion from B0 can also be obtained within the semiclassical
approach. This agreement, together with the result itself,
constitutes the most important conclusion of our work
showing the strength of effective action calculations
in WSMs.
Our final results are further limited to type-I WSMs,

where the magnitude of the effective tilting parameter Vχ is

less than one. In this case the integral Iχs, common to
both methods and calculated in the Appendix E, has no
singularities in the angular range of integration. Different
from type-I WSMs, the energy values of Weyl nodes in
type-II WSM are not the local extrema. Their discussion
would require introducing additional cutoffs in the model,
which may be material dependent, so we consider this
situation beyond the scope of the present work. In our case
the contribution to the conductivity of each node is due to a
single band s which is determined by the sign of Λχ ¼
μ − E0 according to the condition sΛχ > 0. The constant
Λχ measures the location of the chemical potential with
respect to the energy of the node E0.
We include two applications that show the important

consequences of the tilted and anisotropic Dirac cones for
the transport properties of Weyl semimetals, focusing upon
the anomalous Hall current.
In the first case of the ideal Weyl semimetal EuCd2As2,

described in Sec. VI A, we find that the contribution δB,
resulting with components only in the direction of the
separation b̃ of the nodes, lowers down the ab initio
calculations of the anomalous Hall conductivity σAHCyx ≈
30Ω−1 cm−1 to the value σAHCyx ≈ 15.9Ω−1 cm−1 which is
much closer to the measured value of 0.5Ω−1 cm−1. How-
ever there are other factors which could diminish further the
conductivity such as finite temperature effects and higher-
order terms in the model Hamiltonian, which are not
considered in our calculations.
The second application in Sec. VI B concerns TaAs, the

best known WSM. Here we have the proliferation of 24
Weyl nodes, split in two families, 8 of them denoted by W1
located on the kz ¼ 2π=c plane, together with the remain-
ing 16 W2 nodes placed away from this plane. The
separation of each pair of nodes is along the kx direction
such that only the ideal anomalous Hall conductivity σAHCzy

should be nonzero. Nevertheless, tilting and anisotropy
endow the correction δB with components along the
three directions yielding nonzero contributions to σAHCyx

and σAHCxz , clearly distinguished from the conven-
tional anomalous Hall conductivity, and which could in
principle be measured. Finally, it is worth mentioning
that our analysis can be extended to other WSM materials
of the TaAs family, such as TaP, NbAs, and NbP, which
are also highly anisotropic and tilted, which never-
theless present additional challenges not fully covered in
this work.

ACKNOWLEDGMENTS

A. G., A. M.-R, R. M. v. D., and L. F. U. acknowledge
support from the project CONACyT (México) No. CF-
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APPENDIX A: THE PROJECTION
OF THE PROPAGATORS

To evaluate the trace appearing in Eq. (23) for the
vacuum polarization tensor we have to know the action of
the projection operator Pχ to the right of the propagator
SðkÞ. In the case of a massless standard fermion this is a
simple task, since the propagator i=kμγμ can be readily
rationalized as ikμγμ=k2. However in the problem at hand,
the presence of the γ5 is the denominator of the propagator
requires a more subtle analysis, since the projectors do not
have an inverse which could be directly applied to the
denominator. To tackle this problem in a general frame, we
introduce two numerical vectors Uμ and Vμ, and define
ð =U − γ5 =VÞ−1, with the usual slash notation =U ¼ Uμγ

μ.
Assuming that =U has a inverse given by =U−1 ¼ =U=U2,
with U2 ¼ UμUμ, we consider the following sequence:

1

=U − γ5 =V
¼ 1

1 − =U
U2 γ5 =V

=U
U2

¼
X
n

�
=U
U2

γ5 =V
	

n =U
U2

¼ =U
U2

X
n

�
1

U2
γ5 =V =U

	
n
: ðA1Þ

Now, we have to apply this expression to the projector Pχ.
To this end we use the identities γμPχ ¼ P−χγ

μ and
γ5γμPχ ¼ −γμγ5Pχ ¼ −χγμPχ , such that

γ5 =V =UPχ ¼ γ5Vμγ
μUνγ

νPχ ¼ γ5Vμγ
μP−χUνγ

ν

¼ χVμγ
μUνγ

ν ¼ χPχ =V =U: ðA2Þ

In this way, using the relation (A2) for each motion of the
projector Pχ to the left of a product =V =U we obtain

1

=U − γ5 =V
Pχ ¼

=U
U2

X
n

�
1

U2
γ5 =V =U

	
n
Pχ

¼ =U
U2

Pχ

X
n

�
1

U2
χ =V =U

	
n

¼ P−χ

X
n

=U
U2

�
1

U2
χ =V =U

	
n
; ðA3Þ

where from we read the identity

1

=U − γ5 =V
Pχ ¼ P−χ

1

=U − χ =V
: ðA4Þ

With the help of this result we can now evaluate the
quantity SðkÞγμPχ, where SðkÞ ¼ iðΓμkμ −MÞ−1 is the
fermion propagator with Γμ ¼ γμ þ cμνγν þ dμνγ5γν and
M ¼ aμγμ þ bμγ5γμ. In this way

SðkÞγνPχ ¼
i

Γμkμ −M
P−χγ

ν ≡ PχSχðkÞγν; ðA5Þ

where

SχðkÞ ¼
i

½kμðmχÞμν − ðCχÞν�γν
ðA6Þ

is interpreted as the propagator for a fermion of chirality χ
with

ðmχÞμν ¼ δμν þ cμν − χdμν; ðCχÞν ¼ aν − χbν: ðA7Þ

APPENDIX B: CALCULATION OF THE
POLARIZATION TENSOR

The goal of this section is to evaluate the vacuum polari-
zation of a fermion with chirality χ, as defined by Eq. (26).
Substituting the chiral propagator (A6) into Eq. (26)
one gets

iΠμν
χ ðpÞ ¼ e2ðmχÞμβðmχÞνα

Z
d4k
ð2πÞ4 tr

×

(
i

½ðkλ − pλÞðmχÞλτ − ðCχÞτ�γτ

× γβ
i

½kσmσ
ξ − ðCχÞξ�γξ

γαPχ

)
: ðB1Þ

Since our main concern in this paper is to calculate the
CPT-odd contribution to the effective action of a general
WSM, we now retain only the axial part of the vacuum
polarization tensor, which arises from selecting the χγ5=2
part of the projector in the right of Eq. (B1). To simplify
further such expression, we introduce the change of
variables k0ν ¼ kμðmχÞμν such that d4k ¼ 1

det mχ
d4k0 and

define p0
ν ¼ pμðmχÞμν. For simplicity in the notation we

do not explicitly write the χ-dependence of the primed
variables k0ν and p0

ν. All in all, Eq. (B1) becomes

iΠμν
χ ðpÞ ¼ χ

2
e2ðmχÞμβðmχÞνα

1

det mχ

Z
d4k0

ð2πÞ4 tr

×

�
i

ðk0 −p0 −CχÞτγτ
γβ

i
ðk0 −CχÞξγξ

γαγ5
�
: ðB2Þ

Rationalizing the propagators and taking the trace using
trðγτγβγξγαγ5Þ ¼ −4iϵτβξα with ϵ0123 ¼ þ1 we get
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iΠμν
χ ðpÞ ¼ −

χ

2
e2ðmχÞμβðmχÞνα

1

det mχ

Z
d4k0

ð2πÞ4 tr

×

"
ðk0 − p0 − CχÞτ
ðk0 − p0 − CχÞ2

ðk0 − CχÞξ
ðk0 − CχÞ2

γτγβγξγαγ5

#

¼ −2χe2ðmχÞμβðmχÞνα
1

det mχ
ϵτβξα

×
Z

d4k0

ð2πÞ4
p0
τðk0 − CχÞξ

ðk0 − p0 − CχÞ2ðk0 − CχÞ2
; ðB3Þ

which is the exact nonperturbative result. Since we are
looking for the contribution to Eq. (14) with only one
power of the external momenta, we set p0 ¼ 0 in the
denominator. A further simplification arises due to the
identity,

mμ
αmν

βϵ
αβρσp0

ρ ¼ pκðdet mχÞðm−1
χ Þσλϵμνλκ; ðB4Þ

yielding our final result of Eq. (27), with the function IχρðCÞ
defined by Eq. (28).

APPENDIX C: THE μ-INDEPENDENT
CONTRIBUTION

We now explicitly compute the integral (44)

N ¼ 1

C2
χð2πÞ4

Z
∞

−∞
dk00

Z
∞

−∞
dk0z

Z
2π

0

dϕ
Z

∞

0

dk0⊥k0⊥

×
ðk00 − ðCχÞ0ÞðCχÞ0 þ ðk0z − ðCχÞzÞðCχÞz
ððk00 − ðCχÞ0Þ2 þ k02⊥ þ ðk0z − ðCχÞzÞ2Þ2

:

Here the integrals over ϕ and k0⊥ are finite and can be
immediately calculated. Therefore, after integrating, we
obtain

Nχ ¼
1

2C2
χð2πÞ3

ðI0 þ IzÞ; ðC1Þ

where

I0 ¼ ðCχÞ0
Z

∞

−∞
dk00

Z
∞

−∞
dk0z

ðk00 − ðCχÞ0Þ
ðk00 − ðCχÞ0Þ2 þ ðk0z − ðCχÞzÞ2

;

ðC2Þ

and

Iz ¼ ðCχÞz
Z

∞

−∞
dk00

Z
∞

−∞
dk0z

ðk0z − ðCχÞzÞ
ðk00 − ðCχÞ0Þ2 þ ðk0z − ðCχÞzÞ2

:

ðC3Þ

For I0 the integral over k0z is finite, whereas the integral over
k0 shows a logarithmic divergence. Consequently, a cut-off

is introduced in the k00 direction. To compute this integral,
we initiate the process by integrating over k0z through the
introduction of the substitution�

k0z − ðCχÞz
�
2 →

�
k00 − ðCχÞ0

�
2 tan2 θ ⇒ dk0z

¼ jk00 − ðCχÞ0j sec2 θdθ: ðC4Þ

Then, integrating over θ, we arrive at

I0 ¼ πðCχÞ0
Z

Λ0

−Λ0

dk00sgn
�
k00 − ðCχÞ0

�
¼ πðCχÞ0

�Z ðCχÞ0

−Λ0

dk00sgn
�
k00 − ðCχÞ0

�
þ
Z

Λ0

ðCχÞ0
dk00sgn

�
k00 − ðCχÞ0

�	

¼ πðCχÞ0
�
−
�ðCχÞ0 þ Λ0

�þ Λ0 − ðCχÞ0
�

¼ −2πðCχÞ20: ðC5Þ

This yields a finite result in which the divergences
disappear. For Iz, the situation is equivalent, with the
difference that, in this case, the integral over k00 is finite
while the integral over k0z displays a logarithmic diver-
gence. Proceeding in analogous way to the previous case,
we find that

Iz ¼ −2πðCχÞ2z : ðC6Þ

So, finally, we obtain

N ¼ −
1

8π2
: ðC7Þ

APPENDIX D: CALCULATION OF THE POLES
AND RESIDUES OF gχρðk0;kÞ

To evaluate the μ-dependent contribution to the vacuum
polarization tensor we have to calculate the integral (45),
which requires first to determine the poles in the variable k0
of the function gχρðk0; kÞ defined by Eq. (28), together with
the corresponding residues.

1. The poles

Let us start by finding the positions kχ#0s of the double
poles of gχρðk0; kÞ in the k0-plane. From Eq. (28) we see that
they are located (in primed coordinates) at the two points
k00s ¼ ðCχÞ0 þ sjk0 − Cχ j. To find the corresponding kχ#0s we
recall the relations k00 ¼ kμðmχÞμ0 and k0i ¼ k0ðmχÞ0i þ
kjðmχÞji, together with our general condition ðmχÞ0ν ¼ δ0ν
arising from the linearized Hamiltonian (30). Under this
assumption, which avoids the mixing of k0 and ki in k0j, the
poles are located at
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kχ#0s ¼ −kjðmχÞj0 þ ðCχÞ0 þ sjk0 − Cχ j; ðD1Þ

where s ¼ �1 denotes the band index. Using the equiv-
alences in Eq. (39), one can further verify that the resulting
poles in the energy variable correspond exactly to the
values of the energy obtained from the dispersion relation
(31) calculated from the model Hamiltonian (30). To see
this, let us start from Eq. (39) where we read that
ðmχÞi0 ¼ viχ , ðmχÞij ¼ ðAχÞij, ðCχÞ0 ¼ χðviχ b̃i − b̃0Þ and

ðCχÞj ¼ χb̃iðAχÞij. The substitution of these relations into

the right hand side of Eq. (D1) yields kχ#0s ¼ EsχðkÞ.
For later use in the main text we introduce double-

primed momenta defined by the shifting k00 ¼ k0 − Cχ , such
that the poles (D1) can be written in the simple form,

kχ#0s ¼ Vχ · k00 þ sjk00j þ Eχ0; ðD2Þ

where we define Vj
χ ¼ ðm−1

χ ÞjiðmχÞi0 and Eχ0 ¼ Vχ · Cχþ
ðCχÞ0. To derive this result we use the sequence of relations:
kiðmχÞi0 ¼ k0jðm−1

χ ÞjiðmχÞi0 ¼ ½k00j þ ðCχÞj�ðm−1
χ ÞjiðmχÞi0.

In the double-primed coordinates the gap closing condition

(defining the nodes) is k00 ¼ 0, such that Eχ0 corresponds to
the position of the nodes in energy. As we explicitly verify in
the Appendix F, the expression defined for Eχ0 in Eq. (D2)
reproduces the expected result Eχ0 ¼ −χb̃0.

2. The residues

For second order poles, the residue of gχρðk0; kÞ in the
variable k0 is

Res
�
gχρðk0; kÞ

� ¼ d
dk0

h�
k0 − kχ#0s

�
2gχρðk0; kÞ

i���
k0¼kχ#

0s

; ðD3Þ

where kχ#0s denote the position of the poles, given by
Eq. (D1). To proceed, we first write gχρðk0; kÞ as an explicit
function of k0 and ki, i.e.,

gχρðk0; kÞ ¼
½k0 þ ðmχÞj0kj�δ0ρ þ ðmχÞjikjδiρ − ðCχÞρ

ðk0 − kχ#0sÞ2ðk0 − kχ#0−sÞ2
:

ðD4Þ

Calculating the residue yields

Res
�
gχρðk0; kÞ

� ¼ d
dk0

�½k0 þ ðmχÞj0kj�δ0ρ þ ðmχÞjikjδiρ − ðCχÞρ�
k0 − kχ#0−s

�
2

����
k0¼kχ#

0s

¼ δ0ρ

"
1�

kχ#0s − kχ#0−s
�
2
− 2

kχ#0s þ ðmχÞj0kj − ðCχÞ0�
kχ#0s − kχ#0−s

�
3

#
− 2δiρ

ðmχÞjikj − ðCχÞi�
kχ#0s − kχ#0−s

�
3

: ðD5Þ

However, from Eq. (D1) one finds

kχ#0s − kχ#0−s ¼ 2sjk0 − Cχ j;
kχ#0s þ ðmχÞj0kj − ðCχÞ0 ¼ sjk0 − Cχ j; ðD6Þ

and thus

Res
�
gχρðk0; kÞ

�
¼ δ0ρ

�
1

4jk0 − Cχ j2
− 2

sjk0 − Cχ j
8sjk0 − Cχ j3

�
− 2δiρ

k0i − ðCχÞi
8sjk0 − Cχ j3

¼ −sδiρ
k0i − ðCχÞi
4jk0 − Cχ j3

: ðD7Þ

We observe that the residues have the monopole-like
structure resembling the Berry curvature (67).

APPENDIX E: CALCULATION OF Iχ s

In the main text we find twice the generic integral

Iχs ¼
Z

d3q
ð2πÞ3

q
jqj3Hðμ −QsÞ; ðE1Þ

with Qs ¼ W · qþ sjqj þ E0, where s ¼ �1 denotes the
band index. The dependence of Iχs on the chirality χ is
implicit in the vector W, related to the tilting and the
anisotropy, together with E0 which determines the location
in energy of each node. In the following we do not indicate
the chirality index for simplicity in the notation. This integral
naturally emerges when computing the μ-dependent con-
tribution to the vacuum polarization tensor in Sec. IV B as
well as in Sec. V when we evaluate the anomalous Hall
current in a kinetic theory approach.
For the subsequent analyses we choose a spherical

coordinate system with W pointing along the z-axis, such
that Qs ¼ sjqjð1þ sjWj cos θÞ þ E0. The Heaviside func-
tionH appearing in the integral (E1) imposes the restriction

μ − E0 > sjqjð1þ sjWj cos θÞ; ðE2Þ

which requires some care for its implementation since it
depends on the magnitude of jWj. In this paper we consider
the case jWj < 1, which corresponds to a type-I WSM.
With this choice, it is clear that 1þ sjWj cos θ > 0 for all
values of θ, and hence the band index controls the sign of
the right-hand side of Eq. (E2). On the other hand, the case
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jWj > 1, which corresponds to a type-II WSM, presents
additional difficulties since the right-hand side changes
sign at θ ¼ arccosð−s=jWjÞ and make some integrals
diverge, thus requiring to introduce additional cutoffs in
the model. This case is beyond the scope of the present
work. The simplest way of calculating the integral (E1) is to
take advantage of the identity

q
jqj3 ¼ −∇q

1

jqj ; ðE3Þ

and subsequently integrate by parts to obtain

Iχs ¼−
Z

d3q
ð2πÞ3

�
∇q

�
1

jqjHðμ−QsÞ
�
−

1

jqj∇qHðμ−QsÞ

:

ðE4Þ

Using the Gauss theorem, the first term (to be called IχsS )
yields the surface integral

IχsS ¼ − lim
jqj→∞

I
dS

ð2πÞ3
1

jqjHðμ −QsÞ: ðE5Þ

To evaluate this integral we choose a spherical-shaped
surface centered at the origin such that dS ¼ q̂dΩ, where
dΩ ¼ sin θdθdϕ is the differential of solid angle. Besides,
we observe that we require the limit of the Heaviside func-
tion when jqj → ∞. For type-I WSMs (jWj < 1) we find

lim
jqj→∞

Hðμ −QsÞ ¼ Hð−sÞ; ðE6Þ

since 1þ sjWj cos θ > 0 for all values of θ. This makes the
integrand of Eq. (E5) independent of the angular variables,
thus implying

IχsS ¼ −Hð−sÞ
I

dΩ
ð2πÞ3

q̂
jqj ¼ 0: ðE7Þ

Thus we are left with the second term of Eq. (E4), which we
rewrite as follows:

Iχs ¼
Z

d3q
ð2πÞ3

1

jqj∇qHðμ −QsÞ

¼ −
Z

d3q
ð2πÞ3

∇qQs

jqj δðμ −QsÞ: ðE8Þ

Now, using the fact that ∇qQs ¼ W þ sq̂ and introducing
Λ≡ μ − E0, we obtain

Iχs ¼ −
Z

d3q
ð2πÞ3

W þ sq̂
jqj δ½Λ − sjqjð1þ sW · q̂Þ�: ðE9Þ

Since the only vector at our disposal is W we have
Iχs ¼ MχsW, where

Mχs ¼−
1

W2

Z
d3q
ð2πÞ3

W · ðWþ sq̂Þ
jqj δ½Λ− sjqjð1þ sW · q̂Þ�:

ðE10Þ

To evaluate this integral we employ a spherical coordinate
system withW pointing along the z-axis. The radial integral
can be performed by decomposing the Dirac delta as

δ½Λ − sjqjð1þ sW · q̂Þ� ¼ δðjqj − q�Þ
j1þ sW · q̂jHðq�Þ; ðE11Þ

where

q� ¼ sΛ
1þ sW · q̂

: ðE12Þ

Note that the Heaviside function in Eq. (E11) guarantees
that the root (E12) should be positive. The case at hand is
simple since jWj < 1 implies 1þ sW · q̂ > 0 and therefore
the Heaviside function in (E11) restricts the product sΛ to
be positive. Therefore, performing the radial integration
in (E10) we obtain

Mχs ¼ −
sΛ
jWjHðsΛÞ

Z
dΩ
ð2πÞ3

jWj þ s cos θ
ð1þ sjWj cos θÞ2 : ðE13Þ

This integral can be easily computed with a simple change
of variables. The final result is

Mχs ¼ sΛ
2π2jWj3 HðsΛÞ ðjWj − arctanhjWjÞ; ðE14Þ

such that Iχs ¼ MχsW.

APPENDIX F: THE VECTOR Bλ

Following Eqs. (13) and (14) we realize that the effective
action is determined by the vector Bλ, which has a
contribution given by Eq. (43), to be called universal for

the reasons indicated after obtaining Bð1Þ
λ in this section,

together with a correction term due to finite density given
by Eq. (62). Our Eqs. (43) and (62) are expressed in terms
of the parameters of the SME. The goal of this section is to
rewrite the vector Bλ in terms of the parameters describing
the condensed matter Hamiltonian (30).
Our first task is to compute the inverse of the matrix

ðmχÞμν. To this end we use the representation (36) together
with the equivalences in Eq. (39). In this case, the matrix
½ðmχÞμν� can be written as

½ðmχÞμν�≡
�

1 0

vχ Aχ

	
; Aχ ¼ ½ðAχÞij�; ðF1Þ

such that the inverse is given by
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½ðm−1
χ Þμν�≡

 
1 0

−A−1
χ vχ A−1

χ

!
; ðAχÞijðA−1

χ Þjk ¼ δik:

ðF2Þ

Therefore, the required components (i.e., space-time and
space-space) of this matrix become

ðm−1
χ Þi0 ¼ −½A−1

χ vχ �i ¼ −ðA−1
χ Þijvjχ ; ðm−1

χ Þij ¼ ðA−1
χ Þij:
ðF3Þ

Besides the above inverses we also need Vi, which is given
by Eq. (53). Note that Vi yields Nχ in Eq. (60). Substituting
Eqs. (F1) and (F3) into Eq. (53) we obtain

Vχ
j ¼ ðm−1

χ ÞjiðmχÞi0 ¼ ðA−1
χ Þjiviχ : ðF4Þ

Now we have the missing ingredients to establish the
correspondence between the SME coefficients with the
parameters appearing in the condensed matter
Hamiltonian (30).
On the one hand, using ðCχÞ0 ¼ χðviχ b̃i − b̃0Þ and

ðCχÞj ¼ χb̃iðAχÞij defined by Eq. (39), we compute the

vector Bð1Þ
λ given by Eq. (43) which determines the

universal contribution. Taking our choice N ¼ −1=ð8π2Þ
the time component becomes

Bð1Þ
0 ¼ −

1

2

X
χ¼�1

χ
�ðCχÞ0ðm−1

χ Þ00 þ ðCχÞjðm−1
χ Þj0

�

¼ −
1

2

X
χ¼�1

χ
�
χ
�
viχ b̃

i − b̃0
�
− χb̃iðAχÞijðA−1

χ Þjkvkχ
�

¼ −
1

2

X
χ¼�1

��
viχ b̃

i − b̃0
�
− b̃iviχ

� ¼ b̃0; ðF5Þ

while the space-component simplifies to

Bð1Þ
i ¼ −

1

2

X
χ¼�1

χ
�ðCχÞ0ðm−1

χ Þ0i þ ðCχÞjðm−1
χ Þji

�

¼ −
1

2

X
χ¼�1

χ
�
0þ χb̃kðAχÞkjðA−1

χ Þji
�

¼ −
1

2

X
χ¼�1

b̃i ¼ b̃i: ðF6Þ

Note that Bð1Þ
λ depends only upon the position of the Weyl

nodes in momentum and energy, and in this sense we call
this contribution universal, since it becomes independent of
the anisotropy, tilting and chemical potential.

On the other hand, using Eq. (F4) we obtain

Eχ0 ¼ Vχ · Cχ þ ðCχÞ0
¼ ðA−1

χ Þjiviχ
�
χb̃kðAχÞkj

�þ χ
�
viχ b̃

i − b̃0
�

¼ −χb̃0; ðF7Þ

such that Λχ ¼ μþ χb̃0. This is a measure of the position
of the nodes with respect to the chemical potential. Now,

we evaluate the components of the vector Bð2Þ
λ , given by

Eq. (62), which determines the μ-dependent contribution.
The time component becomes

Bð2Þ
0 ¼ −

X
χ¼�1

χΛχNχðm−1
χ Þj0ðVχÞj

¼ −
X
χ¼�1

χΛχNχ

�
−ðA−1

χ Þjiviχ
��ð−A−1

χ Þjkvkχ
�

¼ −
X
χ¼�1

χΛχNχvχðA−1
χ ÞTA−1

χ vχ ; ðF8Þ

while the space-component simplifies to

Bð2Þ
i ¼ −

X
χ¼�1

χΛχNχðm−1
χ ÞjiðVχÞj

¼ −
X
χ¼�1

χΛχNχðA−1
χ Þji

�
−ðA−1

χ Þjkvkχ
�

¼ þ
X
χ¼�1

χΛχNχ

�ðA−1
χ ÞTA−1

χ vχ
�
i: ðF9Þ

In these expressions

Nχ ¼
1

2jVχ j3
ðjVχ j − arctanhðjVχ jÞÞ; ðF10Þ

where Vχ ¼ A−1
χ vχ . All in all, we have obtained the full

characterization of the effective action Sð2Þeff ðAÞ given by
Eq. (13) in terms of the polarization tensor Πμν defined
by Eq. (14), with the vector Bλ written in terms of the
parameters of the Hamiltonian of the WSM (30).
Summarizing, the results are

B0 ¼ b̃0 −
X
χ¼�1

χΛχNχvχðA−1
χ ÞTðA−1

χ Þvχ ;

Bk ¼ b̃k þ
X
χ¼�1

χΛχNχ

�ðA−1
χ ÞTðA−1

χ Þvχ
�
k;

Λχ ¼ μþ χb̃0; Vχ ¼ A−1
χ vχ ;

Nχ ¼
1

2jVχ j3
ðjVχ j − arctanhðjVχ jÞÞ: ðF11Þ
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