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Using the Schwinger-Keldysh path integral, we draw a connection between localized quantum field
theories and more commonly used models of local probes in relativistic quantum information (RQI). By
integrating over and then tracing out the inaccessible modes of the localized field being used as a probe, we
show that, at leading order in perturbation theory, the dynamics of any finite number of modes of the probe
field is exactly that of a finite number of harmonic-oscillator Unruh-DeWitt (UDW) detectors. The
equivalence is valid for a rather general class of input states of the probe-target field system, as well as for any
arbitrary number of modes included as detectors. The path integral also provides a closed-form expression
which gives us a systematic way of obtaining the corrections to the UDW model at higher orders in
perturbation theory due to the existence of the additional modes that have been traced out. This approach
vindicates and extends a recently proposed bridge between detector-based and field-theory-based measure-
ment frameworks for quantum field theory [T. R. Perche et al., Particle detectors from localized quantum field
theories, Phys. Rev. D 109, 045013 (2024).], and also points to potential connections between particle
detector models in RQI and other areas of physics where path integral methods are more commonplace—in
particular, the Wilsonian approach to the renormalization group and effective field theories.
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I. INTRODUCTION

Our modern understanding of the elementary building
blocks of the physical world is ultimately based on the
concept of fields. General relativity—currently our most
successful theory of gravity—is fundamentally a theory
about the dynamics of the gravitational field and how it
manifests as the geometry of spacetime. Similarly, the
Standard Model of particle physics—our most complete
description of the fundamental constituents of matter and
all elementary forces of nature (excluding gravity)—is
entirely formulated in the language of quantum field theory
(QFT), where the concept of quantum field is essential to
combine the principles of quantum mechanics and special
relativity into a single, consistent framework. This appears
to be one of the most profound lessons of modern
theoretical physics.
It also appears to be a deep truth that the only way we can

acquire information about fields is through some form of
interaction between the field of interest and an auxiliary
system that can couple to it in localized regions of space
and time. We learn about the structure of the gravitational
field by studying how it affects the trajectories of (approx-
imately) pointlike test particles; we learn about the electro-
magnetic field by tracking the dynamics of localized

charges and currents; and although all the elementary
constituents of matter ultimately emerge from relativistic
quantum fields themselves, our knowledge about their
most fundamental properties ultimately comes from the
localized excitations detected by the countless sensors
that make up particle accelerators such as the LHC—
which, directly or indirectly, carries information about the
intricate way those fields interact. It should therefore
come as no surprise that a consistent framework for how
to extract and process information from quantum fields
will in general be intimately tied to how local probes can
interact with quantum fields.
This general principle is embodied most concretely in

the context of relativistic quantum information (RQI).
This is an area of research—mostly focused on exploring
information-theoretic features of quantum field theory
and gravity, as well as studying the role that relativity
may play in information-processing tasks—where local
probes (usually referred to as particle detectors) play a
central role. Particle detectors in RQI consist of idealized
versions of localized quantum systems that can controllably
couple to quantum fields in local regions of spacetime.
From a theoretical perspective, these have proven to be very
useful for investigations on several aspects of the interplay
between quantum information, quantum field theory, and
gravity: applications range from a measurement framework
for QFT which can be made to respect the underlying*bdesouzaleaotorres@perimeterinstitute.ca
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principles of relativistic locality and causality [1], opera-
tionally motivated protocols for quantifying and extracting
entanglement from QFTs [2–5], and detector-based
approaches to important phenomena at the foundations
of QFT in both flat and curved spacetimes, such as the
Unruh effect and Hawking radiation [6–8]. From a more
practical point of view, particle detectors also capture
important features of physical setups of great experimental
significance, such as the dynamics of atomic probes
coupled to the electromagnetic field in atomic physics
and quantum optics [9]. They are, therefore, very well-
adapted as theoretical tools for the study of relativistic
information-processing tasks that can (at least in principle)
actually be performed in a lab.
For practical purposes, it is common to assume that the

internal dynamics of the system being used as a detector
can be approximated as nonrelativistic. This is a natural
assumption to make when one thinks of archetypical
examples of particle detectors given, for instance, by
atomic probes coupled to external electromagnetic fields:
after all, in many regimes of physical interest, the internal
structure of the atom can be well-approximated by the
nonrelativistic Schrodinger equation applied to the elec-
trons under the influence of the atomic nucleus.
Approximating the probe as an internally nonrelativistic

system is also advantageous from a purely theoretical point
of view. It is well known that building a framework for local
measurements entirely within relativistic QFT is highly
nontrivial, since most immediate versions of measurement
postulates imported from nonrelativistic quantum mechanics
often lead to irreconcilable conflicts with relativistic locality
and causality [10–12]. In contrast, if we can approximate the
probe’s internal dynamics as nonrelativistic, we are justified
in applying the standard measurement framework from
nonrelativistic quantum mechanics to the physical system
being used as a detector. This dramatically alleviates the
burden of directly measuring a relativistic field, by replacing
this problem with the (arguably easier) problem of measur-
ing the detectors, and then indirectly inferring properties of
the field by letting the detectors couple to it.
However, there is something slightly vexing about

ending the story here. After all, our most fundamental
theory for the structure of matter teaches us that the internal
constituents of any physical system—including the probe
itself—fundamentally emerge from quantum fields. This
has brought a lot of attention to the question of how to
model measurements in quantum field theory using fully
relativistic probes. Progress in this direction is spearheaded
by the Fewster-Verch (FV) framework [13,14], which is an
approach to the measurement problem in QFT where the
probe system is also treated as a fully relativistic field
theory, formulated in the language of algebraic QFT in
general (possibly curved) spacetimes.
The FV framework has been remarkably successful at

providing a mathematically rigorous measurement scheme

for QFT that is fully compatible with the relativistic nature of
the theory. In particular, the formalism provides an elegant
solution to longstanding problems regarding how to make
sense of local measurements on quantum fields while taking
relativistic locality and causality into account [15,16].1

However, since the probe in this case is also a quantum
field, the FV framework is agnostic to how an external agent
(say, an experimentalist taking notes on their note pad) can in
practice extract information from their local measurements.
Strictly speaking, the framework only describes the chain of
information flow from one relativistic quantum field (the
target field we are actually interested in measuring) to
another relativistic quantum field (the probe system being
used as a detector). It is, therefore, less directly applicable to
more realistic measurement settings, especially when com-
pared to the detector-based framework of [1].
Our goal in this paper is to show how to connect a

simple, fully relativistic model of local probe—namely,
a scalar field that is effectively confined to a localized
region of space by an external potential—to a system of
local probes that is closer in spirit to the usual particle
detector models adopted in RQI. This is an attempt toward
a more comprehensive understanding of the relation
between particle detector models and field-theoretic
descriptions of local probes, with the aim of narrowing
the gap between the FV framework and the detector-based
approaches to RQI.2

A first step in this direction was taken in recent work [20]
using standard techniques from particle detector calcula-
tions in RQI—in particular, studying the dynamics of
quantum field and probe by taking the leading-order terms
in the Dyson expansion of the time evolution operator,
and then evolving the initial state of the system in the
interaction picture. Here, however, we will adopt a some-
what complementary approach, taking full advantage of
path integral methods to describe the dynamics of the field
and the probe. This will allow us to forego any explicit use
of perturbation theory, and recover the results of [20] as a
particular case of a much more general statement relating
the field-theoretic and detector-based descriptions of
probes for quantum fields.
The main technical tool employed here will be the

Schwinger-Keldysh path integral [21–23]. This can be
thought of as an upgraded version of the Feynman path
integral that is better suited for describing the

1We should emphasize that the detector-based approach of [1]
is also capable of addressing these problems; this was, in fact,
part of the motivation for its inception. However, the approxi-
mation of the probe as a nonrelativistic system comes at a price.
For more details, see e.g. [17]—or wait until Sec. II B.

2On a related note, we also draw attention to recent accounts
[18,19] which thoroughly discuss how particle detector models
and the FV framework both fit within the bigger picture of
measurements in QFT, seen from the point of view of foundations
and philosophy of physics.
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nonequilibrium dynamics of a system interacting with an
inaccessible environment. In this case, the role of the
“environment” is played, in a loose sense, by a set of
degrees of freedom of the probe system that are deemed
inaccessible, and are therefore traced out in the final state
of the system of interest. The result is an effective
description of the detector-field system that only contains
finitely many degrees of freedom of the probe—which
resembles what would be obtained if one started with a
finite number of detectors coupled to the field. Due to the
simplicity of the model for the probe, the effect of
integrating over the inaccessible degrees of freedom
can be worked out in full detail. This therefore provides
a simple setting in which to compare predictions from
particle detector models and more field-theoretic descrip-
tions for probe systems.
The Schwinger-Keldysh path integral has already been

suggested as an important tool for the development of
field-theory-based formulations of RQI [24,25]. The way
it is being used here, however, highlights its promising
role as a method of explicitly connecting fully relativistic
probes to effectively nonrelativistic particle detectors,
which is something that has not been proposed before (to
the best of the author’s knowledge at the time of writing).
This paves the way for further investigations on the
interplay between measurement schemes in RQI and
techniques from effective field theory [26,27]—which,
at least on a conceptual level, is clearly the correct
framework in which to address the apparent tension
between fundamentally relativistic dynamics of the
probes and nonrelativistic descriptions of measurements
in experimentally relevant scales.
The paper is organized as follows. Section II reviews the

basics of particle detector models most commonly used in
RQI—in particular the Unruh-DeWitt (UDW) model—and
briefly discusses some of the shortcomings of these models
when taking into account what one would expect from a
fully relativistic theory. In Sec. III we describe a simple
model of a fully relativistic probe, consisting of scalar field
that is effectively localized by some external potential. This
will be used as the concrete model for a local probe that
remedies the main issues raised at the end of Sec. II. We
then move on to Sec. IV, where we describe the dynamics
of the joint field-detector system via the Schwinger-
Keldysh path integral, and show how to effectively reduce
the localized quantum field to a finite number of UDW
detectors by explicitly integrating over and tracing out a
set of inaccessible degrees of freedom of the probe. The
remaining path integral for the modes that are kept as
detector degrees of freedom is, at leading order in pertur-
bation theory, precisely the same as what would be
obtained in the UDW model; at higher orders, the path
integral also provides a closed-form expression which can
be used to systematically calculate the deviations
between the two models. Section V contains a simple

extension of the framework described in Sec. IV, describ-
ing how detectors in multiple trajectories can emerge
from the same underlying localized quantum field. We
also comment on a few examples where this simple
extension may be of physical relevance. In Section VI
we summarize our work, and comment on a few possible
directions for future research.
Notation and conventions. Spacetime is given by a pair

ðM; gabÞ, whereM is a (dþ 1)-dimensional differentiable
manifold and gab is a Lorentzian metric on M. For
simplicity, it will always be assumed that the background
spacetime in question is globally hyperbolic. The signature
convention for the metric is such that gabTaTb < 0 if Ta is a
timelike vector. We will represent abstract points inMwith
sans-serif font x, and reserve the normal math font x for the
collection of spacetime coordinates associated to the point
x in a given coordinate system. In Sec. II, ðt; xÞ will denote
any set of coordinates such that t is a timelike coordinate
(i.e., the 1-form dt is such that gabðdtÞaðdtÞb < 0), and
x ¼ ðx1;…; xdÞ are spatial coordinates in the surfaces of
constant t; from Sec. III onward, however, ðt; xÞ will
exclusively refer to static coordinates in M, for which
the metric takes the form (18). We will denote by ∇a the
Levi-Civita connection, defined as the unique torsion-free
covariant derivative that is compatible with the metric gab.
dV is the volume form associated to gab, which in any
coordinate system takes the form dV ¼ ffiffiffiffiffiffi−gp

ddþ1x, where
g≡ detðgμνÞ. Quantum operators acting on a Hilbert
space will always be written with hats, to clearly
distinguish them from their classical counterparts: for
instance, ϕ̂Dðt; xÞ in Eq. (34) is the operator (or, if you
want to be more pedantic, the operator-valued distribu-
tion) corresponding to the quantized version of ϕDðt; xÞ—
which, when written as in Eq. (27), for example, is just a
classical field configuration. We adopt natural units,
with ℏ ¼ c ¼ 1.

II. PARTICLE DETECTOR MODELS

In this section we review some of the general aspects of
particle detector models, with the Unruh-DeWitt (UDW)
model being introduced as a paradigmatic example. We also
discuss some of the drawbacks and limitations of particle
detector models—especially pertaining to considerations
about covariance and causality—which have been used to
advocate for the necessity of a fully relativistic, field-
theoretic version of local probes for quantum fields.

A. General lore and UDW model

The general philosophy when using particle detectors as
probes for quantum fields is to extract information from the
quantum field of interest by coupling a detector to it, and
studying how the evolution of the state of the detector
indirectly depends on features of the quantum field being
probed. In very general terms, the dynamics of the joint
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detector-field system can be described through an action of
the form

S ¼ SF þ SD þ SI; ð1Þ

where SF and SD provide the free dynamics of field and
detector respectively, and SI encodes the coupling between
the two systems.
The action of the field is typically expressed as an

integral of a Lagrangian over spacetime,

SF ¼
Z

dVLFðψA;∇aψ
A;…Þ; ð2Þ

where the Lagrangian LF is a scalar function of the
dynamical fields ψA and its covariant derivatives, and
the index A encodes any possible collection of tensor/
spinor indices for the dynamical fields in question. LF also
generally depends on some external background fields
(such as the spacetime metric gab and any additional
external potentials that are treated as nondynamical), and
may also include some explicit dependence on higher
derivatives of the metric through terms such as nonminimal
coupling to curvature.
In its simplest version, the detector is pictured as a

localized system following a fixed classical trajectory zðτÞ
on M, where τ has the interpretation of the detector’s
proper time. The system is also endowed with a set of
quantum internal degrees of freedom qi, whose dynamics
can be effectively prescribed by an action which takes the
form of an integral over proper time of some Lagrangian,

SD ¼
Z

dτLD

�
qi;

dqi

dτ
;…

�
: ð3Þ

Similar to LF, the detector’s Lagrangian LD is a function of
the system’s internal degrees of freedom and its derivatives,
and it will also generically depend on features of the
extrinsic geometry of how zðτÞ is embedded in M (for
instance, the proper acceleration of the detector’s trajec-
tory), as well as other geometrical aspects of the back-
ground spacetime [for instance, the Riemann curvature
tensor of the metric gab evaluated along zðτÞ]. There can
also be extensions of the formalism where the detector is
put to evolve in a superposition of trajectories [28,29]; this
can be achieved dynamically, for instance, by letting the
detector’s center of mass also be a quantum degree of
freedom [30–32]. For the most part, the simpler setting
where the detector’s position is treated as classical will be
enough for our purposes in this paper. However, we shall
come back to briefly comment on a similar extension to
detectors associated to more than one classical trajectory
in Sec. V.
Finally, the coupling between detector and field can be

expressed through an interaction action of the form

SI ¼ λ

Z
dVΛðxÞμAðτðxÞÞOAðxÞ; ð4Þ

where μAðτÞ represents an observable of the detector,
OAðxÞ is an observable of the field, ΛðxÞ is a spacetime
smearing function that dictates the strength of the inter-
action between probe and field in space and time, and λ is
an overall coupling constant.3 The spacetime smearing
function ΛðxÞ should be pictured as most strongly sup-
ported around the detector’s trajectory zðτÞ. In Eq. (4), τðxÞ
corresponds to the Fermi normal coordinate time relative to
the trajectory zðτÞ, which extends the proper time param-
eter τ (originally only defined for points along the detec-
tor’s trajectory) to a timelike coordinate that can be
assigned to any point x in a sufficiently small neighborhood
of zðτÞ [36]. Once again, the index A in the field observable
OAðxÞ can comprise any possible collection of tensorial/
spinorial indices, with the detector’s observable μAðτÞ then
being an element of the dual space to OA in order for the
contraction μAOA to form a Lorentz scalar.
Given a coordinate system ðt; xÞ which foliates M by a

family of Cauchy surfaces Et labeled by constant values
of the timelike coordinate t, the quantum dynamics of the
joint system of detector and field interacting through the
action (4) can also be described in terms of an interaction
Hamiltonian

ĤIðtÞ ¼ −λ
Z
Et

ddx
ffiffiffiffiffiffi
−g

p
ΛðxÞμ̂AðτðxÞÞÔAðxÞ

¼
Z
Et

ddx
ffiffiffiffiffiffi
−g

p
ĥIðxÞ; ð5Þ

where we have conveniently defined the Hamiltonian
scalar density

ĥIðxÞ ¼ −λΛðxÞμ̂AðτðxÞÞÔAðxÞ: ð6Þ

This is the most common starting point in concrete
applications of particle detectors in RQI. In this context,
it is also customary to adopt the interaction picture, in
which case the operators μ̂AðτðxÞÞ and ÔAðxÞ appearing
in (5) should be understood as the resulting time evolution
implied by the free actions SD and SF, respectively. In the
interaction picture, the joint state of the detector-field

3When writing Eq. (4), we are implicitly assuming that ΛðxÞ,
μAðτÞ, and OAðxÞ are all real, and that upon quantization both
μ̂AðτÞ and ÔAðxÞ are Hermitian observables on the respective
Hilbert spaces of detector and field. An obvious—and
most importantly, sometimes physically motivated [33–35]—
generalization of this setup would allow for ΛðxÞ to be complex,
and μ̂AðτÞ and ÔAðxÞ to be non-Hermitian; in this case, the
interaction action between detector and field would contain a sum
of terms which include the right-hand side of (4) and its complex
conjugate.
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system then evolves according to the unitary time
evolution operator

Û I ¼ T t exp

�
−i

Z
dtĤIðtÞ

�
; ð7Þ

where T t exp denotes the time-ordering exponential with
respect to the time parameter t.4 It is natural to take the
initial state ρ̂0 of the system to be a product state between
detector and field,

ρ̂0 ¼ ρ̂F ⊗ ρ̂D;0; ð8Þ

with ρ̂F and ρ̂D;0 being the initial states for the field and the
detector, respectively. With that, the final state of the
detector can be expressed as

ρ̂D ¼ TrF½Û Iðρ̂F ⊗ ρ̂D;0ÞÛ†
I �; ð9Þ

where TrF denotes the partial trace over the Hilbert space
associated to the field. By then judiciously engineering the
interaction action (4) and analyzing the final state of the
detector (9), it is possible to indirectly obtain information
about features of the field. In a nutshell, this is how particle
detectors can be concretely used as probes for quantum
field theories.
The most commonly explored version of this other-

wise fairly general setting for the interaction between
localized probes and quantum fields is the so-called
Unruh-DeWitt (UDW) model [6,8]. The model consists
of a localized quantum system interacting with a free,
real scalar field, with the coupling to the detector taken
to be linear in the field amplitude. The free action of the
field is therefore

SF ¼ −
1

2

Z
dVðgab∇aψ∇bψ þM2ψ2 þ ξRψ2Þ; ð10Þ

and the interaction between field and detector is most
commonly given by

SI ¼ λ

Z
dVΛðxÞμðτðxÞÞψðxÞ: ð11Þ

The action (10) describes a Klein-Gordon field ψðxÞ
with mass M and possibly nonminimal coupling to
curvature, where R is the Ricci scalar of the background
metric and ξ is some constant. As for the detector, a
number of variants for its internal degrees of freedom
have been explored, with different types of probe being
referred to as UDW (or UDW-like) detectors. The model
first adopted by Unruh in [6] consisted of a free particle

in a box; not long after that, Unruh and Wald [37]
considered a slightly simpler version of the setup, where
the relevant dynamics of the probe is restricted to
just two of its internal energy levels. In more modern
parlance, the term “UDW detector” without further
specifications is most commonly used to describe a
local probe given by a two-level system (i.e., a qubit)—
see. e.g., [38–45]. For the purposes of this paper,
however, the most relevant variant will be the harmonic-
oscillator UDW detector [46–50], which describes a
probe with an internal degree of freedom qðτÞ whose
action is given by

SD ¼ 1

2

Z
dτ

��
dq
dτ

�
2

− ω2q2
�
; ð12Þ

and we take the observable μðτÞ that couples to the field
in (11) to simply be qðτÞ, so that we have

SI ¼ λ

Z
dVΛðxÞqðτðxÞÞϕðxÞ: ð13Þ

In (12), the parameter ω corresponds to the characteristic
frequency of the harmonic oscillator, which is also the
energy gap between any two consecutive energy eigen-
states of the detector’s free Hamiltonian in its proper
frame. Note that we have absorbed a spurious mass in
the Lagrangian of the harmonic oscillator in (12)—
which would most commonly read LD ¼ 1

2
ðmðdQ=dτÞ2þ

mω2Q2Þ—by redefining q ¼ ffiffiffiffi
m

p
Q; this gives q a

normalization which matches that of a scalar field in
dþ 1 dimensions, particularized to the case d ¼ 0 (as is
well known, quantum mechanics can equivalently be
seen as a (0þ 1)-dimensional field theory).
The main appeal of the harmonic-oscillator UDW model

(as opposed, say, to the more standard qubit detector)
resides in the fact that the full action of the system in this
case is quadratic in all dynamical variables, and therefore
the detector-field dynamics is Gaussian. The assumption of
Gaussianity vastly simplifies the description of time evo-
lution of the detector-field system, thanks to the plethora
of powerful tools and results (collectively referred to as
Gaussian methods orGaussian quantum mechanics) which
apply to systems undergoing Gaussian dynamics [51–54].
Indeed, this is one of the few known cases where the time
evolution of particle detectors interacting with quantum
fields can be studied nonperturbatively [49,50,55]. As we
will see shortly, the harmonic-oscillator UDW detector is
also the archetypical example of detector that naturally
emerges from the simplest model of probe system that we
can formulate based on a fully local quantum field theory.
This is therefore the model of reference that we will make
connection to when exploring the relation between local-
ized quantum field theories and particle detector models
later on.

4The reason why we are emphasizing the dependence on the
time coordinate used to perform the time-ordering in Eq. (7) will
be made clear in Sec. II B.
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B. Causality and covariance in particle detector models

In Sec. II A, we made an effort to introduce the basic
elements of general particle detectormodels in terms of action
functionals and Lagrangians. This approach has a number of
advantages when compared to the slightly more usual
presentations in RQI, which tend to introduce detectors at
the level of Hamiltonians. First, in this formulation, the
framework ismore immediately adapted to general relativistic
settings: the setup from Eqs. (1)–(4) applies unchanged to
detectors in arbitrary trajectories in general spacetimes, and its
generalization to the case of multiple detectors in arbitrary
relative states of motion is straightforwardly obtained by
simply adding the free dynamics and interaction terms of each
detector at the level of the total action.5 In that same vein,
results such as the transformation properties of the interaction
Hamiltonian (5) under general changes of coordinates [56,57]
can be immediately derived once the interaction Hamiltonian
is treated as a byproduct of the interaction action (4)—
which is itself written in a manifestly covariant way as a
spacetime integral of a scalar. Lastly, talking in terms
of actions and Lagrangians also allows for a more direct
connection with relativistic field theory, where describing
the dynamics of interacting fields at the level of
Lagrangians (as opposed to Hamiltonians) is often more
natural, and generally preferred if one wishes to keep the
symmetries of the system manifest.
There is, however, an important subtlety regarding the

particle detector models of the kind described in Sec. II A
which makes them, in a strict sense, not consistent as fully
relativistic theories. The problem stems from the fact that,
for generic spacetime smearings ΛðxÞ supported in the
neighborhood of the detector’s trajectory zðτÞ, the coupling
of a particle detector to a quantum field according to the
interaction (4) actually violates microcausality—that is, the
interaction Hamiltonian density ĥIðxÞ prescribed by Eq. (6)
is such that ½ĥIðxÞ; ĥIðyÞ� ≠ 0 even when the spacetime
points x and y are spacelike-separated [58]. The condition
of microcausality—i.e., the property that any two local
operators assigned to spacelike-separated points of space-
time must commute—guarantees that spacelike-separated
events cannot influence each other, and is one of the basic
requirements that a theory that respects a relativistic causal
structure should satisfy.6 The fact that microcausality is not

satisfied by the coupling derived from the interaction
Hamiltonian (6) therefore means that, strictly speaking,
the UDW model generally violates relativistic causality.
The Hamiltonian density (6) not commuting with itself at

spacelike separation also impacts the properties of the time
evolution operator (7) under general changes of coordi-
nates. Given two Cauchy surfaces Σ1 and Σ2 (representing
some “initial” and “final” times), there are infinitely many
choices of timelike coordinate twhich can be used to foliate
the spacetime region between Σ1 and Σ2 by a family of
Cauchy surfaces labeled by constant values of t. Different
choices of timelike coordinate will in general assign
different temporal orders between spacelike separated
events, which could in principle lead to different time
evolution operators from Σ1 to Σ2 since Eq. (7) explicitly
depends on time-ordering. Fortunately, this ambiguity in
the time ordering of spacelike-separated events actually
makes no difference if the theory respects microcausality:
if the interaction Hamiltonian ĤIðtÞ is the integral of a
Hamiltonian density ĥIðxÞ that commutes with itself at
spacelike separation, the ordering assigned to spacelike-
separated events is irrelevant, and any timelike coordinate t
used to evaluate (7) will result in the same time evolution
operator. This is what happens in typical relativistic field
theories, where interactions are generally local and micro-
causal by construction. For particle detector models with
ĥIðxÞ given by (6), however, different time-orderings will
generally lead to different time evolution operators.
Therefore, a purely arbitrary choice of time coordinate
used to evaluate (7) can make a difference in the results
obtained for the final state of the detector at Σ2 starting from
the same input state at Σ1—and in this sense, particle
detector models are not generally covariant.
These issues of the particle detector models described

in II A are rooted in the fact that the interaction (4) couples
one degree of freedom of the detector [i.e., the observable
μAðτÞ] to many spacelike-separated observables of the field
(i.e., the field observables OAðxÞ in the support of ΛðxÞ at
fixed τ). This creates a mild level of nonlocality in the
theory, since the detector at a given value of its proper time
τ is able to probe points that are spacelike to its position
at that time. Relatedly, the coupling (4) also seems to
implicitly select a preferred definition of “simultaneity”—
namely, the one provided by the Fermi normal coordinate
time relative to the detector’s worldline zðτÞ—which in turn
seems to be privileging one choice of time coordinate from
the outset.7

5Of course, this can also be done at the Hamiltonian level;
however, in that case, one has to be mindful of the fact that, in
general, the Hamiltonians associated to different observers will
generate time evolution with respect to distinct notions of
“time” whenever the observers in question do not share a
common frame [56,57].

6Note that this does not preclude spacelike points from being
correlated; in fact, it is well-known that the vacuum state of any
relativistic field theory is highly entangled across spatial biparti-
tions [59,60]. However, entanglement alone is not enough for
communication or transmission of causal signals. As the maxim
goes, correlation does not imply causation.

7In a sense, this can also be seen as a suggestion for how to
deal with the noncovariance issue in practice: the presence of a
preferred observer (i.e., the detector) provides, at least for
practical calculations, a preferred time coordinate relative to
which the time evolution operator is most naturally computed
(i.e., the time coordinate naturally associated to the detector).
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From a fundamental point of view, the mild violation of
causality and breaking of covariance are certainly draw-
backs of the formalism of Sec. II A. However, it must be
emphasized that these issues are not fatal problems for the
majority of the concrete applications of particle detector
models. After all, these models are not purported to be
fundamental descriptions of relativistic systems all the way
down to microscopic scales; rather, they are effective
descriptions of systems which, in some regimes, can be
accurately approximated as a single degree of freedom
smeared in a small (but finite) region of space. Particle
detectors can be very useful, for instance, as tools for
describing the physics of the light-matter interaction, where
the role of the detector is played by atoms coupled to the
electromagnetic field [9]. In this case, the scale for the size
of the detector is determined by the spread of the wave
functions of the electron in the atom, and the approximation
of assigning a single quantum degree of freedom to an
atom-sized spatial region is justified as long as we cannot
resolve time intervals that are of the order of (or shorter
than) the time it takes for light to travel between the nucleus
and the outermost electron.
More generally, the impacts of the issues with causality

and covariance on the actual predictions based on particle
detector models are well-understood, and can be quantified
in detail [17,58]. In particular, it is possible to show that the
nonlocality and breaking of convariance are well under
control for most cases of interest. For the typical regimes
where one would expect particle detectors to be good
descriptions of the phenomenology at hand (essentially,
when the spatial extension of the detector in its proper
frame is much smaller than all the other relevant length
scales of the problem, and when we consider the dynamics
for times that are longer than the light-crossing time of the
detector), these effects are ultimately negligible.
From a foundational point of view, however, it would

still be satisfying to have a setup for local probes interacting
with quantum fields which still fully respects relativistic
causality and general covariance. From the discussion in
the previous paragraphs, we see that there are essentially
two ways of achieving this. The first is to demand that the
detector be pointlike—i.e, the coupling between detector
and field only occurs at a single point in space for each
value of the detector’s proper time. In other words, given
the detector’s trajectory zðτÞ, we restrict ourselves to
spacetime smearings ΛðxÞ of the form

ΛðxÞ ¼
Z

dτχðτÞ δ
ðdþ1Þðx − zðτÞÞffiffiffiffiffiffi−gp ; ð14Þ

in which case the interaction (4) reduces to

SI ¼ λ

Z
dτχðτÞμAðτÞOAðzðτÞÞ: ð15Þ

The function χðτÞ modulates the time dependence of the
coupling in the detector’s proper frame, and is commonly
referred to as the switching function. When the coupling is
of this form, at no time can the detector probe points that
are spacelike to it. Therefore, none of the issues with
covariance and causality arise: pointlike detectors are thus
fully causal and covariant.
Restricting to pointlike detectors can be sufficient for

many purposes, especially when the size of the detector
plays no particular role in the phenomenon we are
interested in studying. However, the singular nature of
the coupling can sometimes lead to UV divergences, and in
actual physical scenarios where we may want to employ
detector-based approaches, the physical system playing the
role of the detector is certainly not pointlike. This leads
us to the second approach for solving the causality and
covariance issues, which is to assign different degrees of
freedom of the probe system to different spacelike-
separated points in spacetime. This essentially amounts
to a description of the probe that is fundamentally based on
a relativistic field theory. Explaining how to make sense of
this, and showing how to systematically connect a field-
theory-based description of probe systems to the more
usual UDW model, will be the goal of the rest of the paper.

III. LOCALIZED QUANTUM FIELDS

In line with the philosophy of describing probes for
quantum fields as fully local and relativistic systems
themselves, wewill start with a model for a probe formulated
as a full-fledged quantum field theory. In order to be useful
as a local particle detector, we would like the field theory
describing the probe to have the special property of being
“confined to a finite region of space.” The most economical
way of achieving this is to take the free action of the probe
field ϕD (the detector) to be given by

SD½ϕD�¼−
1

2

Z
dVðgabð∇aϕDÞð∇bϕDÞþ2UðxÞϕ2

DÞ: ð16Þ

The first term in the action above is just the standard
kinetic term for any scalar field, and the second term is an
additional spacetime-dependent function UðxÞ which acts
as an external potential providing some localization
profile to the probe. The intuition is that we want the
potential to suppress all field configurations where ϕD

does not go to zero as we move away from a finite region
on any spatial slice; it is in that sense that the probe field is
“confined” to a finite region of space.
To make this a bit more precise, we assume that the

potential is such that, when restricted to any spacelike
Cauchy surface Σ, UðxÞ reaches a minimum (or a set of
minima) within a region of finite volume in Σ, and UðxÞ
goes to infinity as the distance of the point x∈Σ to this
region along Σ goes to infinity. Another way of describing
this, as done in [20], is to say that there is some timelike
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curve zðτÞ on M such that, for every value of the proper
time parameter τ, it holds that UðxÞ → þ∞ when the
squared geodesic distance between the event x and the
point zðτÞ, or equivalently the Synge’s world function
σðzðτÞ; xÞ, goes to þ∞.8 Given a foliation of M by a
family of Cauchy surfaces Στ and denoting by RΣτ

the
smallest connected region containing all the minima of
UðxÞ in the Cauchy slice Στ, the curve zðτÞ can be roughly
pictured as the trajectory of the “center” of the region RΣτ

as
τ varies.
In [20], the function UðxÞ is written as

UðxÞ ¼ m2

2
þ VðxÞ; ð17Þ

where the constant m2=2 term is interpreted as giving the
mass of the field ϕD, and VðxÞ models some additional
external potential that confines the probe. However, since
the constant mass term will play no explicit role in what
follows, we will refer to UðxÞ directly as the confining
potential. This is superficially different from the nomen-
clature adopted in [20], but all of the properties that we
require of a confining potential clearly apply to both U and
V interchangeably, so the slight change in convention is
mostly cosmetic.
We will now make some further assumptions about the

setup in order to make things simpler and more explicit.
First, we will take the background spacetime to be static—
i.e., we assume there is a timelike Killing vector field χa

that is orthogonal to a family of Cauchy surfaces. With that,
we can define a coordinate system ðt; xÞ on M, where the
timelike coordinate t (which we will refer to as Killing time
from now on) parametrizes the flow of the Killing vector
field χa, and x ¼ ðx1;…; xdÞ are coordinates on the spatial
slices of constant t. In terms of these coordinates, the
timelike Killing vector takes the simple expression
χa ¼ ð∂tÞa, and the metric can be written as

ds2 ¼ −N2ðxÞdt2 þ hijðxÞdxidxj: ð18Þ

The function NðxÞ is known as the lapse function, and
hijðxÞ is the induced spatial metric on the surfaces of
constant t. We will also assume that the confining
potential UðxÞ is invariant under the flow of the timelike
Killing vector field χa. In coordinate-independent form,
this is expressed as χa∇aU ¼ 0; in the coordinates ðt; xÞ,
this just means that U is independent of the Killing time
coordinate, UðxÞ ¼ UðxÞ. The assumption that U is
confining then implies that UðxÞ → þ∞ as the distance

between x and the point where the minimum ofU is found
goes to þ∞.
For the metric written as in (18) with the coordinates

ðt; xÞ, we can write

gabð∇aϕDÞð∇bϕDÞ ¼ −
1

N2
ð∂tϕDÞ2 þ hijð∂iϕDÞð∂jϕDÞ;

ð19Þ

where hij is the inverse of the spatial metric. Writing the
volume element dV ¼ ffiffiffiffiffiffi−gp

ddþ1x explicitly as dtddxN
ffiffiffi
h

p
,

the free action of the probe then becomes

SD½ϕD� ¼
1

2

Z
dtddx

ffiffiffi
h

p

N
ð∂tϕDÞ2 −

Z
dtddxϕDN

ffiffiffi
h

p
UðxÞϕ2

D

−
1

2

Z
dtddxN

ffiffiffi
h

p
hijð∂iϕDÞð∂jϕDÞ: ð20Þ

Because of the confining potential UðxÞ, in every surface at
a constant value of Killing time t, we can restrict ourselves
to field configurations ϕDðt; xÞ that go to zero at large
spacelike separation from a finite region of space. This
allows us to integrate the last term of Eq. (20) by parts at
each slice of constant t, throw away the boundary term, and
rewrite the probe action as

SD½ϕD� ¼
1

2

Z
dtddx

ffiffiffi
h

p

N
ðð∂tϕDÞ2 − ϕDE2ðxÞϕDÞ; ð21Þ

where E2ðxÞ is a differential operator that we define as
acting on field configurations φ according to

E2ðxÞφ¼2N2ðxÞUðxÞφ− Nffiffiffi
h

p ∂iðN
ffiffiffi
h

p
hij∂jφÞ

¼N2ðxÞð2UðxÞ−DiDiÞφ−1

2
hij∂iðN2Þ∂jφ: ð22Þ

In the expression above, DiDi is the spatial Laplacian on
the surfaces of constant Killing time,

DiDiφ ¼ 1ffiffiffi
h

p ∂ið
ffiffiffi
h

p
hij∂jφÞ: ð23Þ

Note that the differential operator E2ðxÞ is independent
of Killing time, since U, hij, and N are. It also does not
contain any time derivatives, and therefore, it is a “purely
spatial” operator—i.e., E2ðxÞφðt; xÞ evaluated on a surface
Σti of constant time t ¼ ti only depends on φðti; xÞ, and is
insensitive to how φðt; xÞ varies as we move away from Σti .
This fact makes it convenient to think of E2ðxÞ as a
differential operator only on the surfaces Σt characterized
by constant values of Killing time. Moreover, on each

8Note that Synge’s world function (which is half the squared
geodesic distance between two points) is negative when evaluated
between timelike-separated events, so the requirement that it
grows to þ∞ necessarily selects only points that are spacelike to
zðτÞ. For more details about the formal definition, properties, and
applications of Synge’s world function, see [36].

BRUNO DE S. L. TORRES PHYS. REV. D 109, 065004 (2024)

065004-8



surface Σt, we can define an inner product on the space of
scalar functions f; g∶Σt → R as

ðf; gÞ ¼
Z

ddx

ffiffiffi
h

p

N
fðxÞgðxÞ: ð24Þ

The operator E2ðxÞ is clearly symmetric with respect to
the inner product (24), and we will assume that there is an
appropriate domain where E2ðxÞ is self-adjoint—
obtained, for instance, by only considering test functions
that decay sufficiently fast at spatial infinity. Finally, we
will also demand that the space of admissible field
configurations φðt; xÞ be defined such that, for any fixed
Killing time t ¼ ti, the pullback of φðt; xÞ to Σti is in the
domain of self-adjointness of E2ðxÞ. Putting all of this
together, we conclude that E2ðxÞ possesses a set of
eigenfunctions fvnðxÞg,

E2ðxÞvnðxÞ ¼ ω2
nvnðxÞ; ð25Þ

which are orthonormal according to the inner product (24),

ðvn; vn0 Þ ¼
Z

ddx

ffiffiffi
h

p

N
vnðxÞvn0 ðxÞ ¼ δn;n0 ; ð26Þ

and form a basis for the set of admissible field configurations
φðt; xÞ at any fixed time t.9 The assumption that the potential
UðxÞ is confining further ensures that E2 has a discrete
spectrum [61,62], which in turn means that the label n ranges
over a discrete set of values.We are thus justified in using the
orthogonality condition (26) in terms of a Kronecker delta,
as opposed to a Dirac delta (which would be needed if the
label n were continuous). All eigenfunctions vnðxÞ go to
zero as UðxÞ → þ∞, and are most strongly supported
around the regions where UðxÞ attains its minima.
Since all admissible field configurations ϕDðt; xÞmust go

to zero as we move away from the minima of UðxÞ along
any slice Σt of constant Killing time t, we can expand ϕD as

ϕDðt; xÞ ¼
X
n

ϕnðtÞvnðxÞ; ð27Þ

where the full time dependence of the field configuration is
incorporated in the amplitudes ϕnðtÞ in the expansion
above. Plugging this back into Eq. (21) and using the fact
that the set of functions fvnðxÞg is orthonormal in the sense
of the inner product from Eq. (24), the action for the probe
field becomes

SD½ϕD� ¼
X
n

Sn½ϕn�;

Sn½ϕn� ¼
1

2

Z
dtðϕ̇2

n − ω2
nϕ

2
nÞ: ð28Þ

where we have defined ϕ̇n ≡ dϕn=dt. We recognize (28) as
the action for a set of decoupled harmonic oscillators
(which we will also refer to as modes of the field) of
frequency ωn, and with amplitudes given by ϕnðtÞ, as we
first wrote in (12).
For concreteness, assume that, on every surface of

constant Killing time, the potential UðxÞ has a unique
minimum, with spatial coordinates given by x0. We can
normalize the timelike Killing vector field χa by a constant
such that χaχa ¼ −1 at x ¼ x0. With this choice, the Killing
time t becomes a proper time parameter for the trajectory of
the minimum of the potential, which, in the coordinates
ðt; xÞ, takes the very simple form zμDðtÞ ¼ ðt; x0Þ. Then, we
can interpret the action for the localized probe field ϕDðxÞ
as simply that of an infinite (but discrete) tower of simple
harmonic oscillators with proper time t and proper energy
gap ωn, which follow a static trajectory zDðtÞ in spacetime.
This is ultimately the rearrangement that will allow us to
reduce the theory of a probe field coupled to a Klein-
Gordon field to that of a series of particle detectors coupled
to a quantum field via the UDW-like coupling that is
commonly found in the literature on RQI.

IV. FROM PROBE FIELD TO PARTICLE
DETECTORS VIA THE PATH INTEGRAL

In this section we will show how to reduce the probe
model given by the localized quantum field of Sec. III to the
more standard harmonic-oscillator UDW model, using the
Schwinger-Keldysh path integral.

A. Setting up the path integral

Consider that the probe field ϕD will be used as a detector
that couples to a real Klein-Gordon field ψ . For brevity,
we will often refer to ψ simply as the target field. The joint
system of probe and target field can be described by
the action

S½ϕD;ψ � ¼ SD½ϕD� þ SF½ψ � þ SI½ϕD;ψ �; ð29Þ

where SD and SF are the free actions of the ϕD and ψ , and SI

encodes the interaction between the two. For the target
field ψ , we take

SF½ψ � ¼ −
1

2

Z
dVðgab∇aψ∇bψ þM2ψ2 þ ξRψ2Þ: ð30Þ

This is the usual action of a Klein-Gordon field ψ with mass
M and possibly nonminimal coupling to curvature that we
first considered in Sec. II A in Eq. (10). The probe action

9Note that in order for the probe field to be stable, the operator
E2 has to be positive-definite, which justifies writing its eigen-
values as the manifestly positive quantity ω2

n in Eq. (25).
Evidently, this was also the reason why the operator was written
in the very suggestive notation E2ðxÞ to begin with.
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SD½ϕD� will the exact same one that we introduced in
Sec. III, given by Eq. (16). Lastly, the interaction between
the probe and target field is given by

SI½ϕD;ψ � ¼ λ

Z
dVζðxÞψðxÞϕDðxÞ; ð31Þ

where ζðxÞ is a function that dictates the localization of the
coupling between probe and target field in spacetime, and λ
is an overall coupling constant.
We will make use the same simplifying assumptions

studied in Sec. III—namely, we take the background metric
to be static, and we assume that the confining potential of
the probe is independent of the Killing time t parametrizing
the flow of the timelike Killing vector field χa ¼ ð∂tÞa. The
function ζðxÞ in the interaction (31), however, can still
depend on t; this simply corresponds to the case where the
strength of the interaction between the probe and the
system of interest can be switched on and off with time.
Let us now present the quantum theory of the Klein-

Gordon field coupled to the probe. The central object of the
theory will be taken to be the Schwinger-Keldysh path
integral [21–23], which in our case can be written as

Z½J; J0� ¼
Z

½dΦf�½dΨf�
Z

½dΦi�½dΨi�
Z

½dΦ0
i�½dΨ0

i�

× ρðΦi;Ψi;Φ0
i;Ψ0

iÞZ½Φf;Ψf;Φi;ΨijJ�
× Z½Φf;Ψf;Φ0

i;Ψ0
ijJ0��: ð32Þ

There is quite a bit of notation to unpack in Eq. (32), so let
us take some time to clarify what each of the terms means.
For concreteness, consider the dynamics of the theory

between two Cauchy surfaces characterized by constant
values of Killing time ti and tf, with ti < tf. If we want, we
can take ti → −∞ and tf → þ∞, and picture the system as
evolving from the asymptotic past to the asymptotic future.
The capital Φ’s and Ψ’s in Eq. (32) denote classical field
configurations ΦðxÞ, ΨðxÞ at constant-time slices for the
fields ϕD and ψ respectively, with the configurations
labeled with the subscript “i” being defined at the initial
Killing time ti, and those with the subscript “f” being
defined at the final Killing time tf. The quantity
ρðΦi;Ψi;Φ0

i;Ψ0
iÞ denotes matrix elements of a given initial

state for the probe and target field in a basis of field
eigenstates: that is, we take a state ρ̂ describing the joint
system of probe and target field at the initial Cauchy
surface Σti , and define

ρðΦi;Ψi;Φ0
i;Ψ0

iÞ ≔ hΦi;Ψijρ̂jΦ0
i;Ψ0

ii; ð33Þ

where we have jΦi;Ψii≡ jΦii ⊗ jΨii, and the kets jΦii
and jΨii are states on the Hilbert spaces of probe and target
field satisfying

ϕ̂Dðti; xÞjΦii ¼ ΦiðxÞjΦii; ð34Þ

ψ̂ðti; xÞjΨii ¼ ΨiðxÞjΨii: ð35Þ

In short, jΦii and jΨii are field eigenstates of ϕ̂Dðti; xÞ and
ψ̂ðti; xÞ associated to the classical field configurations
ΦiðxÞ and ΨiðxÞ at time ti.
The quantity Z½Φf;Ψf;Φi;ΨijJ� is the Feynman path

integral, which gives transition amplitudes from initial field
configurations Φi, Ψi at time t ¼ ti to final field configu-
rations Φf, Ψf at t ¼ tf, in the presence of sources
J ≡ ðJD; JÞ for the probe and target field, respectively. It
can be expressed as

Z½Φf;Ψf;Φi;ΨijJ� ¼
Z

DϕDDψeiS½ϕD;ψ jJ� ð36Þ

where we have abbreviated

S½ϕD;ψ jJ� ≔ S½ϕD;ψ � þ
Z

dVðJDðxÞϕDðxÞ þ JðxÞψðxÞÞ

ð37Þ

and in Eq. (36) the path integral is performed with the
boundary conditions

ϕDðti; xÞ ¼ ΦiðxÞ;ψðti; xÞ ¼ ΨiðxÞ; ð38Þ

ϕDðtf; xÞ ¼ ΦfðxÞ;ψðtf; xÞ ¼ ΨfðxÞ: ð39Þ

Finally, the several integrals over ½dΦ�’s and ½dΨ�’s in
Eq. (32) denote sums over classical field configurations
(according to some measure) at the corresponding constant-
time slices.
It is important to not confuse the path integral measure

DϕD with the measure ½dΦ�: the former is a measure on
field configurations ϕDðt; xÞ supported on the entire space-
time region between times ti and tf, whereas the latter
simply ranges over fixed-time field configurations ΦðxÞ. If
we were dealing with a (0þ 1)-dimensional field theory of
one scalar field qðtÞ—or equivalently, if we were doing
quantum mechanics of a single bosonic particle—then ½dΦ�
would essentially reduce to a simple measure dq on the
real line, whereas DϕD would become the quantum-
mechanical path integral measure Dq for a particle with
one position degree of freedom q. We note that, from a
mathematically rigorous perspective, the quantum-
mechanical path integral measure is still not fully well
defined. Since this article is not devoted to solving this
particular problem, we will limit ourselves to the most
common physicist’s treatment, where an implicit choice of
path integral measure is justified a posteriori by verifying
that the results obtained via the path integral are physi-
cally reasonable. For a much less heuristic and more
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detailed discussion on formally defining the quantum-
mechanical path integral measure, however, see [63].
Despite its perhaps uninviting looks, the Schwinger-

Keldysh path integral (32) is actually a rather simple
object at a conceptual level. If we have the Schrodinger
picture in mind,10 we can understand Eq. (32) as arising
from the following construction (for a very detailed review,
see e.g. [64]). First we take some initial state ρ̂ for the
probe and target field at an early time ti. Next, we define
the operator ÛJðtf; tiÞρ̂ÛJ0 ðtf; tiÞ†, where ÛJðtf; tiÞ and
ÛJ0 ðtf; tiÞ are the time evolution operators from the Cauchy
surface at Killing time ti to the Cauchy surface at Killing
time tf in the presence of sources J and J0 for the probe and
target fields. We then expand the initial state on a common
basis of field eigenstates for the probe and target field at
time ti, and take the trace of the resulting operator
ÛJðtf; tiÞρ̂ÛJ0 ðtf; tiÞ† on a basis of field eigenstates at
the later time tf. The Feynman path integral appears
because it corresponds precisely to the transition ampli-
tudes between field eigenstates from early to late times—or
equivalently, they are just the matrix elements of the
time evolution operator in the basis of field eigenstates
at fixed time slices. The addition of the sources JD; J in the
Feynman path integral for the probe and target just serves
the purpose of allowing us to compute expectation values of
observables in the evolved state, by the usual trick of taking
functional derivatives with respect to the sources and then
setting the sources to zero. For instance, in terms of
Z½J; J0�, we can write

hψ̂ðxÞiρ̂ ¼
ð−iÞffiffiffiffiffiffiffiffiffiffiffiffi
−gðxÞp δZ

δJðxÞ
����
ðJ;J0Þ¼0

ð40Þ

hψ̂ðxÞψ̂ðx0Þiρ̂ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

−gðxÞp ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þp δ2Z

δJðxÞδJ0ðx0Þ
����
ðJ;J0Þ¼0

;

ð41Þ

hT ðψ̂ðxÞψ̂ðx0ÞÞiρ̂ ¼
ð−iÞ2ffiffiffiffiffiffiffiffiffiffiffiffi

−gðxÞp ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðx0Þp δ2Z

δJðxÞδJðx0Þ
����
ðJ;J0Þ¼0

;

ð42Þ

and so on. Of course, similar expressions also hold for
expectation values involving the probe field, if we take
functional derivatives with respect to the probe’s source JD.
We also used T to denote the time-ordering operation—
which, based on the discussion in Sec. II B, can be defined

with respect to any timelike coordinate that yields the same
time orientation (i.e., the same notion of past and future)
as the chosen Killing time t, since both the probe and
the target fields are fully relativistic and causal by con-
struction [17,58]. It is also worth pointing out that, unlike
the bare Feynman path integral that we are probably most
familiar with, the Schwinger-Keldysh path integral (32) can
yield arbitrary (i.e., not necessarily time-ordered) expect-
ation values, as emphasized, for instance, by Eq. (41). This
is due to the presence of two independent sources J; J0 in
the definition of (32)—note that the only difference
between (41) and (42) is that the functional derivative is
taken with respect to the same current J in the latter case,
but with respect to different currents J and J0 in the former.
For this reason, the Schwinger-Keldysh path integral is
sometimes described as the expectation-value generating
functional.
For later reference, it is sometimes also useful to

introduce the so-called influence phase WðJ; J0Þ, defined
such that

Z½J; J0� ¼ eiW½J;J0�: ð43Þ

Just like Z½J; J0� is the generating functional for expect-
ation values, W½J; J0� is the generating functional for
connected expectation values.
The Schwinger-Keldysh path integral often appears with

different names, depending on where it shows up in the
physics literature. In many-body physics and open quantum
systems, it is common to refer to it as the Feynman-Vernon
influence functional [65,66] or decoherence functional
[67]. It also comes under the guise of the so-called
closed-time-path or in-in formalism [68,69], which is a
general framework for the nonequilibrium dynamics of
quantum systems where the Schwinger-Keldysh path
integral plays a central role. These names are probably
motivated by the fact that Z can be visualized as a path
integral over two copies of the original spacetime region
between the Cauchy surfaces Σi and Σf, where the integral
over the first copy “runs forward” in time (form ti to tf) and
the integral over the second copy “runs backward” (from tf
to ti), thus bringing us back to the initial time ti where the
input state ρ̂was originally defined. This is in contrast with
the standard Feynman path integral (36), which is most
readily applicable to the computation of transition ampli-
tudes between early (in) states and late (out) states, with
time only going in one direction.
Now that we know what each of the terms in (32) means,

we can proceed with the Schwinger-Keldysh path integral
for the probe-field system. We saw in Sec. III that the action
for the probe can be written as

SD½ϕD� ¼
X
n

�
1

2

Z
dtðϕ̇2

n − ω2
nϕ

2
nÞ
�
; ð44Þ

10Of course, a completely analogous interpretation could be
provided in terms of the Heisenberg picture, which is the one that
is most useful/convenient for most purposes in field theory. I just
felt the summary presented in this paragraph was more succinctly
stated in the Schrodinger picture.
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where we recall that ϕnðtÞ are the amplitudes for the field
configuration ϕDðt; xÞ expressed as (27),

ϕDðt; xÞ ¼
X
n

ϕnðtÞvnðxÞ; ð45Þ

and fvnðxÞg is a basis of eigenfunctions of the spatial
differential operator E2ðxÞ defined in Eq. (22). By applying
the same expansion (45) to the coupling of the probe with
the target field ψ and the probe’s source JD in Eq. (37), we
directly obtain

λ

Z
dVζðxÞψðxÞϕDðxÞ ¼

X
n

λ

Z
dtϕnðtÞψnðtÞ; ð46Þ

Z
dVJDðxÞϕDðxÞ ¼

X
n

Z
dtϕnðtÞJnðtÞ ð47Þ

where clearly

ψnðtÞ ¼
Z

ddxN
ffiffiffi
h

p
vnðxÞζðt; xÞψðt; xÞ; ð48Þ

JnðtÞ ¼
Z

ddxN
ffiffiffi
h

p
vnðxÞJDðt; xÞ: ð49Þ

Now, from the point of view of the path integral, the
expansion (45) can essentially be seen as a change of
dynamical variables of the probe system, from the field
configurations ϕDðxÞ to the amplitudes ϕnðtÞ. This helps us
in two important ways. First, it allows us to schematically
write the integration measure DϕD in the Feynman path
integral (36) as

DϕD ¼ N
Y
n

Dϕn; ð50Þ

where N plays the role of the Jacobian determinant from
the change of variables. It can be shown by a simple
comparison argument that we must have N ¼ 1 (see
Appendix A for details).11 Second, since every field
eigenstate jΦi at a surface of constant Killing time can

be identified with a unique set of coefficients φn in the
mode expansion of ΦðxÞ in terms of the eigenfunctions
fvnðxÞg, we always have

jΦi ¼ ⨂
n
jφni ð51Þ

where each jφni is an eigenstate of ϕ̂n with eigenvalue φn
corresponding to the component of ΦðxÞ in the basis
fvnðxÞg. With this, we can write the Feynman path
integral as

Z½Φf;Ψf;Φi;ΨijJ� ¼
Z

DψeiSFei
R

dVJðxÞψðxÞ

×
Y
n

ZD½φn;f;φn;0jJn þ λψn�; ð52Þ

where we have defined

ZD½φn;f;φn;0jJn þ λψn�

¼
Z

DϕneiSn½ϕn�ei
R

dtϕnðtÞðλψnðtÞþJnðtÞÞ: ð53Þ

The path integral in the target field ψ is performed with the
boundary conditions

ψðti; xÞ ¼ ΨiðxÞ;ψðtf; xÞ ¼ ΨfðxÞ ð54Þ

and similarly, the boundary conditions for the Feynman
path integrals corresponding to each mode ϕn are

ϕnðtiÞ ¼ φn;0;ϕnðtfÞ ¼ φn;f ð55Þ

where φn;0 and φn;f are the components of the probe field
configurations ΦiðxÞ and ΦfðxÞ in terms of the basis
fvnðxÞg at times ti and tf, respectively. Finally, the measure
½dΦ� on fixed-time field configurations in the Schwinger-
Keldysh path integral (32) can be simply interpreted as

½dΦ� ¼
Y
n

dφn: ð56Þ

With this, we are now finally ready to see how to reduce the
probe field to a finite number of modes at the level of the
Schwinger-Keldysh path integral.

B. Reduction of probe field to a finite set of modes

Consider a subset of the probe’s degrees of freedom
consisting of modes indexed by n such that n∈A, where A
comprises some finite set of labels. As a slight abuse of
language and for the sake of brevity, we will often refer to
these modes simply as “the modes in A”. The full Hilbert
space of the probe and target field (which can be described
initially as H ¼ Hψ ⊗ HD, where Hψ denotes the Hilbert
space for the target field, andHD is the Hilbert space of the

11One might worry that equations such as (50) with N ¼ 1, as
well as (51) or (56), are not dimensionally consistent—after all,
the units of a scalar field in dþ 1 dimensions are certainly not
those of a product of infinitely many scalar fields in 0þ 1
dimensions. The reason why these equations are fine is because,
as it turns out, the more rigorous definitions of both the
integration measure DϕD and the inner product between field
configurations at a constant time (which indirectly impacts the
normalizations of jΦi and ½dΦ�) actually carry implicit choices of
dimensionful scales. If one carefully keeps track of these choices
of scale in both d ¼ 0 and higher dimensions, it can be
shown [63] that things work out in such a way that (50) (with
N ¼ 1), as well as (51) and (56), all have the correct units. I am
deeply thankful to Iván M. Burbano for clarifications on this.
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probe) can then be further decomposed as H ¼
Hψ ⊗ HA ⊗ HĀ, where HA corresponds to the subsystem
comprising the modes in A, and HĀ contains all of the
remaining modes of the probe field which are not
included in A.
The reduction of the theory of the probe field to a finite

number of modes will consist of two steps. First, we will
assume that we can only turn on sources JD for the probe
system such that Jn ¼ 0 for n ∉ A. Under this assumption,
the Feynman path integral (52) can be written explicitly as

Z½Φf;Ψf;Φi;ΨijJ� ¼
Z

DψeiSFei
R

dVJðxÞψðxÞ

×
Y
n∈A

ZD½φn;f;φn;0jJn þ λψn�;

×
Y
n∉A

ZD½φn;f;φn;0jλψn�: ð57Þ

Next, we will assume that at early times, the field þ probe
system is initialized in a state that contains no correlations
between the subsystemsHψ ⊗ HA andHĀ. In other words,
the initial state at time t ¼ ti can be expressed as

ρ̂ ¼ ρ̂ψ ;A ⊗ ρ̂Ā; ð58Þ

where ρ̂Ā is a fixed state on the Hilbert space of all the
modes of the probe field excluding the ones in A. For
concreteness, we will take this state to be the vacuum—i.e.,
we have

ρ̂Ā ¼ ⨂
n∉A

j0nih0nj ð59Þ

with j0ni being the vacuum state of the mode n. As usual,
this is defined for any mode as the unique state that is
annihilated by the annihilation operator associated to the
mode n—i.e., it is the state such that

ânj0ni ¼ 0 ð60Þ

where we define

ân ¼
1ffiffiffi
2

p ðϕ̂n þ iπ̂nÞ ð61Þ

and π̂n ≔ dϕ̂n=dt is the canonically conjugate momentum
to ϕ̂n.
If we now replace the state (58) and the Feynman

path integral (57) explicitly in Eq. (32), we find that the
Schwinger-Keldysh path integral can be evaluated in the
following way. For brevity of notation, we will abbreviate
by JA ≡ ðfJn∈Ag; JÞ the collection of sources for the probe
þ field system that excludes the modes not in A, and also
use the convenient notations

ϕA ≡ fϕn; n∈Ag; ð62Þ

dϕA ≡ Y
n∈A

dφn; ð63Þ

DϕA ≡ Y
n∈A

Dϕn; ð64Þ

S½ϕA;ψ jJA�≡ SF½ψ � þ
X
n∈A

Sn½ϕn� þ
X
n∈A

λ

Z
dtψnðtÞϕnðtÞ

þ
X
n∈A

Z
dtJnðtÞϕnðtÞ þ

Z
dVJðxÞψðxÞ:

ð65Þ

With these conventions, we can write the Schwinger-
Keldysh path integral for the modes in A and the target
field as

Z½JA; J0A� ¼
Z

dφA;fdφA;idφ0
A;i

×
Z

½dΨf�½dΨi�½dΨ0
i�ρψ ;AðφA;i;Ψi;φ

0
A;i;Ψ0

iÞ

×
Z

DϕADϕ0
ADψDψ 0eiðS½ϕA;ψ jJA�−S½ϕ0

A;ψ
0jJ0A�Þ

× eiS̃½ψ ;ψ 0�; ð66Þ

where last factor above is defined as

eiS̃½ψ ;ψ 0� ≡Y
n∉A

�Z
dφn;fdφn;idφ0

n;ihφn;ij0nih0njφ0
n;ii

×
Z

DϕnDϕ0
ne

iðSn½ϕn�þλ
R

dtψnðtÞϕnðtÞÞ

× e−iðSn½ϕ
0
n�þλ

R
dtψ 0

nðtÞϕ0
nðtÞÞ

�
: ð67Þ

But Eq. (67) is nothing but a product of Schwinger-Keldysh
path integrals for the modes not included in A, with λψn
playing the role of the source for the mode n. We remember
that the modes not included in A are assumed to start in the
ground state, which is why the factor hφn;ij0nih0njφn;i

0i
appears in Eq. (67). In this case, the quantity S̃½ψ ;ψ 0�
[which is nothing but a vacuum influence phase, as we
defined it in (43)] can be computed exactly [64], and the
result gives us

S̃½ψ ;ψ 0� ¼ λ2

2

X
n∉A

Z
tf

ti

dt
Z

tf

ti

dt0ðGnðt; t0ÞψnðtÞψnðt0Þ

−Wnðt; t0Þψ 0
nðtÞψnðt0Þ −Gnðt; t0Þ�ψ 0

nðtÞψ 0
nðt0Þ

þWnðt; t0Þ�ψnðtÞψ 0
nðt0ÞÞ; ð68Þ
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where we have defined the Wightman and Feynman
functions

Wnðt; t0Þ ≔
i

2ωn
e−iωnðt−t0Þ; ð69Þ

Gnðt; t0Þ ≔ θðt − t0ÞWnðt; t0Þ þ θðt0 − tÞWnðt0; tÞ

¼ i
2ωn

e−iωnjt−t0j; ð70Þ

with their complex conjugates given by

Wnðt; t0Þ� ¼ −
i

2ωn
eiωnðt−t0Þ; ð71Þ

Gnðt; t0Þ� ¼ −
i

2ωn
eiωnjt−t0j: ð72Þ

Now let us step back and contemplate what we have just
obtained. If it were not for the very last factor of eiS̃½ψ ;ψ 0�, the
Schwinger-Keldysh path integral in Eq. (66) would be
exactly the same as that of a finite number of harmonic-
oscillator UDW detectors with amplitudes ϕn (n∈A),
following an orbit of the Killing vector field χa, each
coupling linearly to the target field ψðxÞ with the smearing
functions Λnðt; xÞ ≔ ζðt; xÞvnðxÞ. This is true for any
initial state ρ̂ψ ;A for the restricted system containing the
modes in A and the target field. The effect of the existence
of the additional modes of the probe field that have been
integrated and traced out amounts to a correction that is
fully encoded by the vacuum influence phase S̃½ψ ;ψ 0� for
the modes not included in A. Note, however, that this
correction is of higher order in the coupling strength λ, as
made evident by Eq. (68): whereas the direct coupling
between the modes in A and the target field is of order λ, the
net effect of the extra modes that were traced out amounts
to an additional term that is of order λ2 in the action. This
means that, at lowest order in perturbation theory, if we
only have access to a finite set of modes of the probe field,
the physics is well reproduced by that of a finite number of
harmonic-oscillator degrees of freedom coupled to a finite
set of smeared field operators.
These results reinforce the analysis of [20], where it was

shown that, at leading order in the coupling constant and for
the case where the probe field starts in its ground state,
the final state of any individual mode of a full-blown field
theory after all extra modes are traced out matches that of a
harmonic-oscillator UDW detector. Therefore, in some
sense, every statement about the dynamics of a harmonic-
oscillator UDW detector can be understood as a statement
about a mode of a localized quantum field. The analysis
presented here vindicates and significantly extends the
range of validity of this conclusion, by demonstrating that
the statement remains true for an arbitrary number of modes
included as detector degrees of freedom, and for a much

more general set of initial states of the form (58).
Furthermore, the full expression (66), including the factor
of eiS̃½ψ ;ψ 0�, also provides a way to (in principle) system-
atically compute the corrections that arise at higher orders
in λ from the fact that the finite set of modes fundamentally
emerges from a local field theory with infinitely many
degrees of freedom.
It is also clear that even the assumption that the

inaccessible modes start out in the vacuum state is not
essential for the conclusions above. If we had instead
assumed another state ρ̂Ā for these modes, the only thing
that would change is that eiS̃½ψ ;ψ 0� in Eq. (66) would be the
Schwinger-Keldysh path integral with sources given by
λψn for the modes in Ā, now calculated with a different
input state. For a completely general ρ̂Ā, this may not
factorize as a product of Schwinger-Keldysh path integrals
for each mode in Ā like it did in Eq. (67); however, as long
as the expectation value of the amplitudes ϕ̂n for n ∉ A
vanish in the input state ρ̂Ā, the lowest-order term in the
perturbative expansion of S̃½ψ ;ψ 0� will be quadratic in the
sources ψ ;ψ 0, and the lowest power of the coupling
constant λ will thus be λ2. As such, the equivalence at
leading order in perturbation theory between the dynam-
ics of a finite number of modes of the field and the
dynamics of a same number of harmonic-oscillator UDW
detectors will still hold.

V. GENERALIZATIONS TO MULTIPLE
TRAJECTORIES

So far we have shown how to relate a description of a
probe system in terms of a localized quantum field to an
alternative description given by a finite number of UDW
detectors following a well-defined classical trajectory in
spacetime. The classical trajectory that we assign to the
detectors, in turn, is directly associated to the spatial profile
provided by the mode functions vnðxÞ. When UðxÞ only
has one minimum at each spatial slice of constant Killing
time, it is very natural to interpret the “trajectory of the
detector” as being simply given by the location of the
minimum of the potential; after all, this will also typically
be the location around which the mode functions vnðxÞ will
be mostly peaked. However, it is also possible to imagine
regimes where it would be more natural to picture the
potential as “localizing the field” in more than one spatial
region—as would happen, for instance, if the confining
potential actually has multiple minima which are suffi-
ciently far apart. In this section wewill briefly describe how
to adapt the story from Secs. III and IV to this case, and
comment on a few simple physical setups where this
generalization can be useful.

A. General strategy

For convenience, we will explicitly describe how the
strategy of Sec. IV can be carried over to the case where the
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potential generates localized profiles in two distinct
regions; the generalization to more than two localized
regions will be evident.
The setup is then the following. We take the potential

UðxÞ to have two distinct minima, found in two non-
overlapping spatial regions RA and RB in each surface of
constant Killing time, with UðxÞ → þ∞ as we move away
from both regions. We assume that, in RA and RB, the
potential can be approximated by UAðxÞ and UBðxÞ
respectively, where UA;BðxÞ are both confining potentials
in their own right. We can then formally write down a mode
expansion for any field configuration for the probe as

ϕDðt; xÞ ¼
X
nA

ϕðAÞ
nA
ðtÞvðAÞnA

ðxÞ þ
X
nB

ϕðBÞ
nB
ðtÞvðBÞnB

ðxÞ; ð73Þ

where vðA;BÞnA;B ðxÞ are mode functions corresponding to
spatially localized profiles associated to the potentials
UA;BðxÞ and centered in regions RA;B respectively. We will
also assume that the potential barrier and the spatial
separation between the regions RA and RB under consid-
eration are large enough for any two modes associated to
two different regions to approximately not have any over-
lap; i.e.,

Z
ddx

ffiffiffi
h

p

N
vðAÞnA

ðxÞvðBÞnB
ðxÞ ≃ 0 ∀ nA; nB: ð74Þ

Under this assumption, the expansion of the free action for
the probe field then proceeds in exactly the same way as in
the previous section. The exact same steps from Sec. III
then lead to the probe action

SD ≃
X
nA

1

2

Z
dt

��
dϕðAÞ

nA

dt

�2

− ω2
nA
ϕðAÞ2
nA

�

þ
X
nB

1

2

Z
dt

��
dϕðBÞ

nB

dt

�2

− ω2
nB
ϕðBÞ2
nB

�
: ð75Þ

In other words, the probe splits into two decoupled series of
harmonic oscillators localized around two distinct regions
of space. The quantization of the probe field then proceeds
in a manner that is mathematically identical to what one
would do in the case of two distinct fields, each under the
influence of a separate confining potential.
If we do a very similar analysis of this setup using

canonical quantization, we find that (74) can also be
interpreted as the requirement that all the quadrature
operators of the modes supported in each separate region
satisfy canonical commutation relations (see Appendix B).
This is consistent with the interpretation just described, in
which the no-overlap assumption (74) corresponds to the
case where the localized quantum field can be decomposed

in two independent fields that are localized around the
distinct minima of the confining potential.
As a limiting case of this picture, one could consider a

situation where the regions of interest RA and RB act like
Dirichlet cavities, with the potential being set to zero in
either region, and equal to infinity everywhere else. In this
limiting case, the condition (74) holds exactly, since the
spatial profiles are identically vanishing outside each of the
cavities. If, on the other hand, the condition (74) is not met,
then the approximation of two independent sets of modes
localized in either RA or RB is not good; instead, the truly
independent modes will be best described as judiciously
chosen linear combinations of vnA

ðxÞ and vnB
ðxÞ which

define a set of mode functions that do satisfy the ortho-
gonality condition (26).
Now that we know that the free action of the probe field

splits as in (75) under the no-overlap assumption (74), we
can apply exactly the same logic from Sec. IV. In this case,
we can have detectors at two fixed spatial positions xA

and xB, corresponding to the position of the minimum of the
potential that each respective field mode is associated to.
By tracing out all but finitely many modes in both of the
regions where the field is localized, the exact same steps
from Sec. IV B will then give us, at leading order in
perturbation theory, the same dynamics as that of a finite
number of harmonic-oscillator UDW detectors supported
in each individual region. If, for instance, we keep only one
mode in each region (say, the lowest-frequency mode in
both RA and RB), the physics at leading order in the
coupling constant is exactly the same as that of the
following action,

S½ϕðAÞ
0 ;ϕðBÞ

0 ;ψ � ¼ 1

2

Z
dt

��
dϕðAÞ

0

dt

�2

−ω2
A;0ϕ

ðAÞ2
0

�

þ 1

2

Z
dt
��

dϕðBÞ
0

dt

�2

−ω2
B;0ϕ

ðBÞ2
0

�

−
1

2

Z
dVðgab∇aψ∇bψ þM2ψ2 þ ξRψ2Þ

þ λ

Z
dtðϕðAÞ

0 ðtÞψAðtÞ þϕðBÞ
0 ðtÞψBðtÞÞ

ð76Þ

where, as before,

ψAðtÞ ¼
Z

dnxN
ffiffiffi
h

p
ζðt; xÞvðAÞ0 ðxÞψðt; xÞ; ð77Þ

ψBðtÞ ¼
Z

dnxN
ffiffiffi
h

p
ζðt; xÞvðBÞ0 ðxÞψðt; xÞ: ð78Þ

With that, Eq. (76) simply becomes the theory of two static
harmonic-oscillator UDW detectors at the positions xA;B,
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coupled to a quantum field with the spacetime smearing

functions ζðxÞvðA;BÞ0 ðxÞ.
A minor detail to keep in mind now is that, in general, it

is not possible to normalize the Killing vector field χa such
that χaχa ¼ −1 in both xA and xB. Instead, the best we can
do in this case is to relate the proper time of each detector to
the global Killing time t by τA ¼ NðxAÞt and τB ¼ NðxBÞt,
where NðxÞ is the lapse function from the general expres-
sion of the metric in static coordinates (18). Similarly, the
characteristic frequenciesΩA andΩB of each oscillator in its
respective proper frame are related to the Killing frequen-
cies ωA;0 and ωB;0 in Eq. (76) by NðxAÞΩA ¼ ωA;0 and
NðxBÞΩB ¼ ωB;0. These modifications, plus an additional

rescaling of the field amplitude as
ffiffiffiffiffiffiffiffiffiffiffiffi
NðxAÞ

p
ϕðAÞ
0 ↦ ϕðAÞ

0 andffiffiffiffiffiffiffiffiffiffiffiffi
NðxBÞ

p
ϕðBÞ
0 ↦ ϕðBÞ

0 , leave the free action of the detectors
in (76) in exactly the form of two harmonic-oscillator UDW
detectors as written in Eq. (12), when parametrized in terms
of each detector’s proper time.12

B. Examples

We now briefly comment on simple examples where
the general framework described in Sec. VA may be of
physical relevance.

1. Entanglement harvesting

Entanglement harvesting is a very well-known protocol
in RQI by which two localized systems interacting with a
quantum field can become entangled even when they only
couple to the field in spacelike-separated regions [2–4]. The
idea is that entanglement can be shared between the
detectors even before they are able to causally communi-
cate with each other, thanks to the pre-existing entangle-
ment between subregions in the field theory [59,60].
The most common setup for studying entanglement

harvesting consists of a minimal modification of the one
described in Section II A. Now, instead of having just one
detector, we can have two detectors (denoted from now
on by A and B) which are initialized in a completely
uncorrelated state,

ρ̂AB;0 ¼ ρ̂A;0 ⊗ ρ̂B;0; ð79Þ

and are then put to evolve as in Eq. (9),

ρ̂AB ¼ TrF½Û Iðρ̂F ⊗ ρ̂AB;0ÞÛ†
I �; ð80Þ

where the time evolution operator ÛI now contains inter-
action terms corresponding to both detectors. It is usual to

take ρ̂A;0 and ρ̂B;0 to be pure states (typically the ground
state of each detector), as we know that initial mixedness in
either of the probes generally hinders harvesting [70,71].
We then study how much entanglement the detectors have
acquired, by evaluating the entanglement between the
subsystems A and B in the final state ρ̂AB. This, in turn,
will usually require the use of mixed-state measures of
entanglement—after all, time evolution will also generi-
cally entangle the detectors with the field, and therefore the
final state ρ̂AB will typically be mixed.
It is easy to see how the general framework of Sec. VA

can be directly applied to entanglement harvesting. In this
case, the two parties that we are trying to entangle are both
fundamentally derived from the same underlying quantum
field. This mimics a setup where the systems being used as
detectors consist of identical elementary particles—for
instance, two electrons probing the electromagnetic field
in two distinct positions. Since the free action of the probe
field splits as in (75), the vacuum state of the probe field can
be taken as a tensor product of the ground states associated
to each localization region separately. In particular, if we
take only the modes of lowest frequency in both localized
regions considered in Sec. VA, the initial state of the
probes is simply ρ̂AB;0 ¼ j0Aih0Aj ⊗ j0Bih0Bj. The entan-
glement between the two modes after interacting with the
target field can then be quantified by the usual measures
adopted in entanglement harvesting—most commonly, the
negativity—in the final state ρ̂AB.
This shows how one can conceptualize entanglement

harvesting setups where each particle detector is obtained
as a different localized mode of one single field. Of
course, an even more direct setting for the study of
entanglement harvesting using quantum fields as probes
is obtained by modeling the setup with two different
localized quantum fields, each of them with one single
minimum. In this case, the global Hilbert space of the joint
system including both probes is guaranteed to factorize by
construction, and the initial state of both probe fields on
the vacuum is guaranteed to factorize between modes
supported in either one of the local regions. For a more
complete analysis of this problem, explicitly using modes
from relativistic field theories to harvest entanglement
from a quantum field, see [72].

2. Detector in superpositions of trajectories

Another physically interesting scenario is achieved by
simply looking at the action (76) from a different point of
view. Namely, we could imagine that (76) describes the
dynamics of the target field and one single detector, the
difference being that now the detector consists of two
bosonic modes instead of one.
If we adopt the perspective in which the two modes

in RA and RB are taken as a single detector with two
degrees of freedom, the probe is now associated to two
possible trajectories, centered around the points xA and xB.

12It is curious, however, that this rescaling of the amplitude
depending on the lapse function on each detector’s position will
lead to a difference in the effective coupling constants of each
detector with the target field in the interaction action in the last
line of Eq. (76).
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The interaction with the field will then promote transitions
between states that are localized around either one of the
trajectories, and the final state of the detector will generi-
cally contain coherences that connect one trajectory to the
other. In particular, one could for instance prepare an initial
state of the probe which takes the form

ρ̂AB;0 ¼ jψihψ j; ð81Þ

jψi ¼ 1ffiffiffi
2

p ðj1Ai ⊗ j0Bi þ j0Ai ⊗ j1BiÞ; ð82Þ

where we define

j1Ai ¼ â†Aj0Ai; j1Bi ¼ â†Bj0Bi ð83Þ

and â†A;B are the creation operators for the lowest-frequency
mode in regions RA;B. This describes an initial super-
position between a one-particle excitation that is localized
around position xA and another one-particle excitation
localized around position xB. The final state of the probe
will then involve contributions that depend on the dynamics
of each degree of freedom along one single trajectory, as
well as correlations that connect the degrees of freedom of
the detector in both possible positions.
This shares the same spirit of other proposals found in

the literature for how to treat delocalized detectors which
can evolve in superpositions of trajectories [28,29]; the
details of the model, however, are different. In the future, it
might be interesting to study how this model compares with
other setups previously considered, and further investigate
whether there are cases where a model for a delocalized
center of mass based on localized quantum fields (along the
lines of what was described here) is physically reasonable.
It is also interesting to note how the physical distinction

between this example (considering superpositions of trajec-
tories) and the previous one (which is naturally set up for
entanglement harvesting) is, in some sense, subjective/
context-dependent: roughly speaking, it depends on whether
we postulate the existence of an external agent that can have
global control over both modes in RA and RB, or we assume
that only operations that act separately on RA or RB are
allowed. Indeed, the state (82) is an entangled state between
the parties at RA and RB, so it certainly cannot be engineered
by only applying local operations between the two localized
regions. The framework of Sec. VA, however, captures both
physical scenarios at once; which of them is better applicable
to a given setup at hand will be determined by other
constraints of the problem being treated.

VI. DISCUSSION

In this paper we revisited a recently proposed con-
nection [20] between localized quantum field theories and
particle detector models in RQI. More specifically, we
showed how to relate the dynamics of fully relativistic

probe systems (here modeled by quantum fields that are
confined by some external potential) to the dynamics of a
finite number of probe degrees of freedom mimicking the
UDW model, with harmonic oscillators coupled to the
target field.
A series of assumptions made (namely, that the free

action for the probe field was quadratic, the background
metric was static, and the external potential that confined
the probe was invariant under the flow of the background
timelike Killing vector field) allowed us to decompose the
probe field in terms of a discrete tower of decoupled modes.
By tracing out all but finitely many such modes, we were
able to restrict the probe field to a finite number of degrees
of freedom. Doing this at the level of the Schwinger-
Keldysh path integral equipped us with an analytical
expression for the effective dynamics of the system con-
taining the quantum field of interest and any finite number
of modes of the probe.
For a rather general class of initial states for the probe-

field system, we showed that, at leading order in the
coupling constant between probe and target field, the
dynamics of any finite number of modes of the probe
matches the dynamics of an equal number of harmonic-
oscillator UDW detectors; in the latter case, the smearing
functions for the detectors are directly related to the spatial
profiles of the chosen modes of the probe field. At higher
orders in the coupling, the corrections to the naive UDW
model which arise from the existence of the additional
modes can also be written analytically, as the Schwinger-
Keldysh path integral over those modes can be computed
in full detail. Therefore, the fully “nonperturbative”
dynamics for any finite subset of modes could also be
solved exactly, and the deviations from the simpler UDW
model can be computed systematically to any order in
perturbation theory.
The mathematical steps performed in Sec. IV B are

independent of how we choose which modes of the field
should be kept as UDW detectors. For the sake of
concreteness, however, a physically motivated choice
would be to only include those modes whose frequencies
ωn are below a certain cutoff, ωn ≤ Ω. This gives an
effective-field-theory flavor to our derivation, with the
procedure performed in Sec. IV B being very close in
spirit to the Wilsonian approach to the renormalization
group: in this case, the frequency Ω plays the role of a UV
cutoff, and the action of the finite number of harmonic-
oscillator UDW detectors coupled to the field, together with
the additional factor from integrating out the rest of the
modes, behaves as a low-energy effective action. This is in
tune with the point of view that says particle detectors
should be seen as effective descriptions of systems that are
fundamentally relativistic, and provides a very simple toy
example where the connection between this point of view
and the more technical aspects of the formalism of effective
field theories can be made explicit and concrete.
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This comparison to effective field theories also sheds light
on some of the locality issues of particle detectors which
were mentioned in Sec. II B. From the literature on
Wilsonian renormalization, we know that integrating out
high energy modes can introduce mild nonlocalities in the
effective low-energy action, where the typical scale of the
nonlocalities is related to the inverse of the cutoff in energy
or momentum [26,27]. As we discussed in Sec. II B,
coupling one single degree of freedom of a detector to a
smeared (nonpointlike) field operator also generally leads to
violations of locality and microcausality at distance scales
that are controlled by the size of the spatial smearing.
Obtaining the detector model from a field theory through
coarse-graining-like steps as illustrated above draws a direct
connection between these two statements, and also shows
how to reconcile this (only apparent) conflict between
smeared particle detector models and local field theory.
From this point of view, the nonlocality that emerges in the
detector perspective is nothing but an artifact of the coarse-
graining of the probe field to a finite number of modes; by
including arbitrarily many modes, of arbitrarily high
frequencies, one can restore a full-fledged local field theory.
The careful reader may also have noticed that, although

we started out with the target field ψ being given by a free
Klein-Gordon field with action (30) and we coupled the
probe field linearly with ψ through the interaction (31),
none of the manipulations that led to the main result in
Eq. (66) actually depended on these two assumptions. All
the steps really only depended on the free action of the
probe being quadratic. The reason why we avoided a
greater level of generality is that adding self-interactions
and couplings to nonlinear observables of the target field
may introduce additional complications related to renorm-
alization and quantum corrections to the action. Taking
the total action S½ϕD;ψ � to be quadratic in all the
fundamental fields appearing in the path integral, on
the other hand, allows us to not worry about these
subtleties. Having said that, we find it perfectly reasonable
to expect that, once these potential issues are carefully
taken into account, the same logic presented here will still
apply—namely, by tracing out the inaccessible degrees of
freedom of the detector, the theory of a probe field
coupled to any (possibly composite) operator, of any
(possibly interacting) field theory, can be reduced at
leading order to a theory of a finite number of particle
detectors coupled to the target field.
This paper was largely motivated, on the one hand, by the

important role that particle detectors play in several aspects
of the interface between quantum information and QFT, and
on the other hand, by a recently renewed interest in a fully
local and relativistic measurement framework for QFT. In
this context, we believe that the connection between particle
detector models and localized quantum fields introduced
in [20], and reinforced here, is an important first step toward
a more general understanding of the interplay between the

more mathematically rigorous FV framework [13,14] and
the detector-based approach to RQI.
The present work also demonstrates the usefulness of path

integral methods for the formulation of nonperturbative
statements relating localized quantum field theories and
particle detectors. We see this as a powerful indication of the
potential insights that effective field theory tools and con-
cepts from the renormalization group can provide to particle
detector models in RQI more generally. Work in connection
to this has been initiated in [73], building on a path integral
formulation for UDW detectors introduced in [45]. It is clear,
however, that we have only begun to scratch the surface on
this topic. It would be very interesting to understand how to
make more systematic use of effective field theory methods
in the context of particle detectors, as a way of bridging the
gap between effective models of local probes in RQI and
more fundamental physics.
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APPENDIX A: COMPUTATION OF THE
JACOBIAN DETERMINANT N IN EQ. (50)

In Sec. IV we argued that the expansion in Eq. (45)
giving the localized quantum field ϕD in terms of a series of
independent localized modes ϕn can be seen as a change of
variables in the path integral. This change of variables then
induces a transformation of the measure, which can be
written as

DϕD ¼ N
Y
n

Dϕn ðA1Þ

where, as mentioned right below Eq. (50), N is formally
the Jacobian determinant of the change of variables from
ϕDðxÞ to ϕnðtÞ.
Since the map between ϕDðxÞ and ϕnðtÞ is linear,N does

not depend on any field configurations, and therefore it
changes the path integral at most by some overall constant.
We can thus compute N by comparing the results for the
same path integral evaluated in two different ways, which is
the strategy that we will use below.
The simplest quantity that we can compute in order to

infer the factor N is a transition amplitude between two
field eigenstates in the absence of sources,

hΦfjÛðtf; tiÞjΦii ¼
Z

DϕDeiSD½ϕD�; ðA2Þ
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where the path integral is performed with the boundary
conditions

ϕDðti; xÞ ¼ ΦiðxÞ; ϕDðtf; xÞ ¼ ΦfðxÞ: ðA3Þ

If we directly perform the substitution from ϕDðxÞ to
ϕnðtÞ as a change of variables in (A2), the transition
amplitude becomes

hΦfjÛðtf; tiÞjΦii ¼ N
Y
n

�Z
DϕneiSn½ϕn�

�
ðA4Þ

where now the boundary conditions are

ϕnðtiÞ ¼ φn;i;ϕnðtfÞ ¼ φn;f ðA5Þ

with φn;i and φn;f being the coefficients of the expansion of
the probe field configurations ΦiðxÞ and ΦfðxÞ in the basis
fvnðxÞg at times ti and tf, respectively. This is of course a
consequence of the fact that every well-defined field
configuration at a given constant time slice has a unique
expansion in terms of the basis fvnðxÞg.
On the other hand, the fact that every field configuration

ΦðxÞ corresponds to a unique sequence of basis coefficients
fφng also implies that we can express the kets jΦii
and jΦfi as

jΦii ¼ ⨂
n
jφn;ii; ðA6Þ

jΦfi ¼ ⨂
n
jφn;fi; ðA7Þ

and since all of the modes of the field are decoupled from
each other in the action (28), the time evolution operator
Ûðtf; tiÞ can be factored as

Ûðtf; tiÞ ¼
Y
n

Ûnðtf; tiÞ; ðA8Þ

where Ûnðtf; tiÞ is the time evolution operator acting on
the Hilbert space of each mode ϕn separately. Putting
the results of Eqs. (A6)–(A8) together, we conclude that we
can write

hΦfjÛðtf; tiÞjΦii ¼
Y
n

hφn;fjÛnðtf; tiÞjφn;ii: ðA9Þ

But now it is clear that each factor in the product (A9) is
again expressible as a path integral in each separate mode,

hφn;fjÛnðtf; tiÞjφn;ii ¼
Z

DϕneiSn½ϕn�; ðA10Þ

with boundary conditions set again by (A5). By substitut-
ing (A10) back in Eq. (A9) and comparing it with the

expression (A4) obtained by directly changing variables in
the path integral, and given the fact that these transition
amplitudes are not identically zero, it then follows that we
must have N ¼ 1, as we wanted to show.

APPENDIX B: NORMALIZATION (26) AND
CANONICAL COMMUTATION RELATIONS

Here we will verify that the normalization condition (26)
between the mode functions fvnðxÞg ensures that ϕnðtÞ and
πnðtÞ ≔ dϕn=dt satisfy the canonical commutation rela-
tions of position and momentum, and therefore define a
genuine mode of the field. This serves as a brief con-
sistency check between the general steps presented in
Sec. III and the usual story of canonical quantization,
and also provides useful insight to the generalization
explored in Sec. V where the probe field can be localized
in multiple spatial regions.
Given the foliation of spacetimeM by spacelike Cauchy

surfaces of constant Killing time t, the conjugate momen-
tum πDðt; xÞ to the field ϕDðt; xÞ can be identified directly
from the action (21) as

πDðt; xÞ ¼
δSD

δð∂tϕDÞ
¼

ffiffiffi
h

p

N
∂tϕD: ðB1Þ

By expanding ϕD as in (27) and assuming that the mode
functions fvnðxÞg satisfy the orthogonality condition (26),
we can write

ϕnðtÞ ¼
Z

ddx

ffiffiffi
h

p

N
vnðxÞϕDðt; xÞ; ðB2Þ

πnðtÞ ¼
Z

ddxvnðxÞπDðt; xÞ: ðB3Þ

Then, when ϕDðt; xÞ and πDðt; xÞ are promoted to operators
ϕ̂Dðt; xÞ and π̂Dðt; xÞ in the usual process of canonical
quantization, the equal-time commutation relations
between ϕ̂nðtÞ and π̂nðtÞ become

½ϕ̂nðtÞ; π̂n0 ðtÞ� ¼
Z

ddxddx0
ffiffiffiffiffiffiffiffiffi
hðxÞp

NðxÞ ½ϕ̂Dðt; xÞ; π̂Dðt; x0Þ�
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{¼iδðdÞðx;x0Þ1̂

× vnðxÞvn0 ðx0Þ

¼ i1̂
Z

ddxddx0
ffiffiffi
h

p

N
vnðxÞvn0 ðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼δn;n0 assuming ð26Þ

⇒ ½ϕ̂nðtÞ; π̂n0 ðtÞ� ¼ iδn;n0 1̂; ðB4Þ

which are nothing but the canonical commutation relations
between position and momentum. This shows that the
orthogonality condition (26) implies that ðϕ̂nðtÞ; π̂nðtÞÞ
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defines a canonically conjugate pair characterizing a single
mode of the field.
It is also possible to prove the converse statement:

namely, that requiring ϕ̂nðtÞ and π̂nðtÞ to satisfy the
canonical commutation relations of position and momen-
tum (B4) forces the mode functions fvnðxÞg to satisfy the
normalization condition (26). To see this, we expand ϕ̂D

and its conjugate momentum again as in (27),

ϕ̂Dðt; xÞ ¼
X
n

ϕ̂nðtÞvnðxÞ; ðB5Þ

π̂Dðt; xÞ ¼
ffiffiffi
h

p

N

X
n

π̂nðtÞvnðxÞ: ðB6Þ

Now, using the fact that ϕ̂Dðt; xÞ and π̂Dðt; xÞ must always
satisfy the field’s canonical commutation relations and
assuming that Eq. (B4) holds, we get that

½ϕ̂Dðt; xÞ; π̂Dðt; x0Þ� ¼ i

ffiffiffiffiffiffiffiffiffiffi
hðx0Þp

Nðx0Þ
X
n

vnðxÞvnðx0Þ1̂

¼ iδðdÞðx − x0Þ1̂; ðB7Þ

which implies that

ffiffiffiffiffiffiffiffiffiffi
hðx0Þp

Nðx0Þ
X
n

vnðxÞvnðx0Þ ¼ δðdÞðx − x0Þ: ðB8Þ

But note that we can always express

vnðxÞ ¼
Z

ddx0δðdÞðx − x0Þvnðx0Þ ðB9Þ

which, using the fact that the Dirac delta can be written as
in Eq. (B8), becomes

vnðxÞ ¼
X
n0
vn0 ðxÞ

Z
ddx0

ffiffiffiffiffiffiffiffiffiffi
hðx0Þp

Nðx0Þ vn0 ðx0Þvnðx0Þ: ðB10Þ

Now we note that Eq. (B10) provides an expression for the
mode function vnðxÞ as a linear combination of the other
mode functions vn0 ðxÞ. But if fvnðxÞg forms a basis, the
only possible linear combination that expresses vnðxÞ in
terms of the set fvn0 ðxÞg is the trivial one, where the
expansion coefficients are equal to 1 when n ¼ n0, and zero
otherwise. In short,

Z
ddx0

ffiffiffiffiffiffiffiffiffiffi
hðx0Þp

Nðx0Þ vn0 ðx0Þvnðx0Þ ¼ δn0;n ðB11Þ

which is precisely (26).
This explicitly shows that the set of modes constructed in

Sec. III matches precisely the set of normal modes that we
would have constructed in the process of canonical quan-
tization of the field ϕDðxÞ. Conversely, it also shows that if
the no-overlap condition (74) is not satisfied, the ampli-
tudes associated to each mode function vnðxÞ cannot be
interpreted as independent harmonic oscillators. One can
interpret this as the canonical-quantization version of the
statement alluded to in Sec. VA, in which the approxi-
mation (74) was crucial for justifying the statement that
a localized quantum field theory where the confining
potential had multiple minima could be seen as composed
of two sets of independent modes supported around each
of these minima.
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