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The Casimir effect is induced by the interplay between photon fields and boundary conditions, and in
particular, photon fields modified in axion electrodynamics may lead to the sign-flipping of the Casimir
energy. We propose a theoretical approach to derive the Casimir effect in axion electrodynamics. This
approach is based on a lattice regularization and enables us to discuss the dependence on the lattice spacing
for the Casimir energy. With this approach, the sign-flipping behavior of the Casimir energy is correctly
reproduced. By taking the continuum limit of physical quantity calculated on the lattice, we can obtain the
results consistent with the continuum theory. This approach can also be applied to the Casimir effect at
nonzero temperature.
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I. INTRODUCTION

The Casimir effect was predicted by Casimir in 1948 [1]
and, half a century later, was experimentally confirmed [2,3]
(see Refs. [4–8] for reviews). The conventional Casimir
effect means that an attractive force (corresponding to a
negative pressure) is induced by quantum fluctuations
(particularly, for photon fields in quantum electrodynamics)
in space sandwiched by two parallel conducting plates.
Recently, it is expected to be applied to the engineering

field such as nanophotonics [9], and the accurate control of
the Casimir effect will be an important issue. In particular,
the properties of the Casimir effect may be controlled by
utilizing topological materials such as Weyl semimetals
(WSMs) [10–12] (see Ref. [13] for a review). Inside such
materials, the dynamics of photons (i.e., the Maxwell
equations) is modified and can be described [14,15] by the
so-called axion electrodynamics [16,17]. The Casimir effect
in axion electrodynamics was studied in Refs. [18–25].1 In
particular, in Ref. [19], one of the most striking findings is a

sign-flipping behavior of the Casimir energy and also the
Casimir force2: there appears not only the well-known
negative Casimir energy in a short distance between boun-
dary conditions but also a positive Casimir energy in a long
distance. For the application to the engineering field, such a
sign-flipping phenomenon depending on the distance will be
useful for controllably switching the attractive, repulsive,
and vanishing Casimir force.
In this work, we propose a new and powerful approach to

investigate the Casimir effect in axion electrodynamics,
which is based on the continuum limit of physical quan-
tities regularized by the lattice space. Our approach with
techniques on the lattice will be helpful for future studies
because the success of our approach indicates as follows:
(1) When one investigates the Casimir effect by using

lattice gauge simulations of axion electrodynamics,
one can correctly simulate the behavior of the
Casimir effect in the continuum theory.

(2) The cutoff effect (namely, the dependence on the
lattice spacing) in lattice gauge simulations can be
clearly interpreted and safely controlled.

(3) Using this approach, one can correctly and easily
calculate the Casimir energy without carefully deal-
ing with the analytic continuation as in the other
approaches.

In fact, approaches using lattice regularizations [43–52]
and lattice simulations of gauge fields, such as the U(1)
gauge field [53–55], the compact U(1) gauge field [56–60],
the SU(2) gauge field [61,62], and the SU(3) gauge
field [63,64], have been successfully applied and have
elucidated the rich physics related to the Casimir effect.
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1As a related topic, the photonic Casimir effect in a chiral
material was proposed by Jiang and Wilczek [26,27]. Also, there
are many studies on photonic Casimir effects modified by boun-
dary conditions made of topological materials, e.g., between topo-
logical insulators [28–31], between Chern insulators [32–34], and
between Dirac/Weyl semimetals [22,24,35–40] (see Refs. [41,42]
for reviews).

2The Casimir force is defined as the derivative of the Casimir
energy with respect to the separation distance.
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This paper is organized as follows. In Sec. II, we intro-
duce the formulation of the axion electrodynamics and the
Casimir effect from its dispersion relations. Section III
shows the numerical results of the Casimir energy at zero or
nonzero temperatures. The conclusions are in Sec. IV. In
Appendixes A–D, we provide successful examples of our
approach with other models. In Appendix E, we show an
example of lattice gauge action simulating the axion
electrodynamics in continuous spacetime.

II. FORMULATION

A. Axion electrodynamics

We first introduce the formulation of the axion electro-
dynamics in the continuum spacetime [16,17]. The axion
electrodynamics is defined as the U(1) gauge theory with
the topological θ term in the 3þ 1-dimensional spacetime,

L ¼ −
1

4
FμνFμν þ θðxÞ

4
FμνF̃μν; ð1Þ

where Fμν ≡ ∂μAν − ∂νAμ is the field-strength tensor with
the U(1) gauge field Aμ, and F̃μν ≡ 1

2
ϵμναβFαβ is the dual

tensor. The topological term is characterized by the
spacetime-dependent θðxÞ. We define the spacetime deriv-
atives of θðxÞ as b0 ≡ ∂tθðxÞ and b≡ −∇θðxÞ.3
Throughout this paper, we set b0 ¼ 0 and b ¼ ð0; 0; bÞ.

This setup describes time-reversal-symmetry-breaking
Weyl semimetals (with a Weyl-node separation b in the z
direction) in condensed matter physics or a space-
dependent axion-field configuration in high energy phys-
ics. On the other hand, the case of b0 ≠ 0 and b ¼ 0
describes inversion-symmetry-breaking Weyl semimetals
or a time-dependent axion-field configuration. The Casimir
effects in the former and latter situations were discussed in
Refs. [19–24] and Refs. [18,23,25], respectively.
Then, the dispersion relations for photons with the

eigenenergy ω� and the three-dimensional momentum
ðkx; ky; kzÞ are

ω2
� ¼ k2x þ k2y þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ

b2

4

r
� b

2

�2

: ð2Þ

Thus, there are the two branches. Throughout this paper, we
call ωþ and ω− the plus mode and the minus mode, respec-
tively. Note that for b ≠ 0, the plus mode is gapped (ωþ ≠ 0)
at any momentum, while the minus mode is gapless
(ω− ¼ 0) at the origin of momentum ðkx; ky; kzÞ ¼ ð0; 0; 0Þ.

B. Casimir effect in axion electrodynamics

We impose boundary conditions at z ¼ 0 and z ¼ Lz,
where the z component of momentum is discretized as
kz → πn

Lz
with an integer n∈Z. Such a discretization is

realized with, e.g., the well-known perfectly conducting
plate conditions, Ex ¼ Ey ¼ Bz ¼ 0.4

The zero-point (or vacuum) energy per unit area is
represented using the dispersion relation (2),

E0 ¼
X
�

X∞
n¼0

Z
∞

−∞

dkxdky
ð2πÞ2

ω�
2

: ð3Þ

From this representation, the Casimir energy (per unit
area) in axion electrodynamics was derived in Ref. [19]:

ECas ¼
b4Lz

16π2
X∞
m¼1

�
K1ðmbLzÞ
mbLz

−
K2ðmbLzÞ
ðmbLzÞ2

�
; ð4Þ

whereK1 andK2 are the modified Bessel functions, and the
sum over the index m∈Z is convergent when m is large
enough. Since K1 and K2 are positive, the positive and
negative signs in the first and second terms of Eq. (4)
correspond to the repulsive and attractive Casimir forces,
respectively. Since the dimension of Eq. (4) is the inverse of
length cubed, a dimensionless quantity, which we call the
Casimir coefficient, is defined as

C½3�
Cas ≡ L3

zECas; ð5Þ

where “½3�” means the exponent of Lz.

C. Thermal Casimir effect in axion electrodynamics

At finite temperature T, the Casimir energy in axion
electrodynamics was derived in Ref. [24] using the Lifshitz
formula [72] based on the argument principle,

ECasðTÞ ¼ T
X
λ¼�

X
l≥0

0Z ∞

−∞

dkxdky
ð2πÞ2 ln

�
1 − e−2Lzk̃

½λ;l�
z

�
; ð6Þ

k̃½�;l�
z ¼

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2l þ k2x þ k2y

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2l þ k2x þ k2y

q
∓ ib

�i1
2; ð7Þ

where ξl ≡ 2πTl, and the sum over the index l is taken
as
P0

l≥0 fðlÞ≡ fð0Þ=2þPl≥1 fðlÞ. The integral with
respect to kx and ky is convergent, so that we can perform
numerical integration. For the zero-temperature limit
(T → 0) of the representation (6), we replace as T

P
l≥0

0 →R
∞
0

dξ
2π, which is equivalent to Eq. (4).

3A nonzero b0 is regarded as the chiral chemical potential
relevant to the chiral magnetic effect [65–70] as an extra current
jCME ¼ b0B parallel to a magnetic field B. A nonzero b produces
an extra charge −b · B relevant to the Witten effect [71] and an
extra current jAHE ¼ b × E in the anomalous Hall effect
perpendicular to an electric field E.

4In the axion electrodynamics, these boundary conditions are
not gauge-invariant because of the existence of the θ term. A
gauge-invariant boundary condition is considered in Ref. [21],
where they obtained the same Casimir energy as that with
boundary conditions in Ref. [19].
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D. Casimir effect on the lattice

Next, we show the method to calculate the Casimir effect
with a lattice regularization [43–52].5
The Casimir energy (per unit area) on the lattice with a

lattice spacing a is defined as

ELat
Cas ≡ Esum

0þT − Eint
0þT; ð8Þ

Esum
0þT ¼ 1

a3
X
λ¼þ;−

Z
BZ

dðakxÞdðakyÞ
ð2πÞ2

×
1

2

XBZ
n

�
aωLat

λ;n

2
þ aT ln

	
1 − e−

1
Tω

Lat
λ;n

�
; ð9Þ

Eint
0þT ¼ 1

a3
X
λ¼þ;−

Z
BZ

dðakxÞdðakyÞdðakzÞ
ð2πÞ3

× Nz

�
aωLat

λ

2
þ aT ln

	
1 − e−

1
Tω

Lat
λ


�
: ð10Þ

The first term of Eq. (8), Esum
0þT , is the zero-point and finite-

temperature energies made of momenta discretized by a
finite length Lz ¼ aNz (Nz is the number of lattice cells).
The second term Eint

0þT is the energies in infinite volume
Lz → ∞ which is defined by integrals with respect to the
three-dimensional momentum. The Casimir energy ELat

Cas is
defined as the difference between Esum

0þT and Eint
0þT , which is

a definition similar to the approach proposed in the original
paper by Casimir [1]. The momentum integral is taken
within the first Brillouin zone (BZ), and the discrete momenta
with the label n are summed over the BZ. When we apply the
boundary condition with akz → πn

Nz
, n is taken as n ¼

0; 1;…; 2Nz − 1 (or equivalently n ¼ 1; 2;…; 2Nz), and
the factor 1

2
in Eq. (9) is required.

For the dispersion relations on the lattice, by substituting
k2i →

1
a2 ð2 − 2 cos akiÞ into Eq. (2), we use6

ðωLat
� Þ2 ¼ 1

a2
ð2 − 2 cos akxÞ þ

1

a2
ð2 − 2 cos akyÞ

þ
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

a2
ð2 − 2 cos akzÞ þ

b2

4

s
� b

2

!2

: ð11Þ

By multiplying Eq. (8) by L3
z, we define a dimensionless

Casimir coefficient as

C½3�Lat
Cas ≡ L3

zELat
Cas ¼ a3N3

zELat
Cas: ð12Þ

E. Remark on dispersion relations

We remark on the dispersion relations, Eq. (2) for the
continuum theory and Eq. (11) for the lattice theory. In
Fig. 1, we compare these dispersion relations for the kz
direction on a coarser lattice of ab ¼ 1 and for a finer lattice
of ab ¼ 0.2 (ab is dimensionless). For example, let us
consider a fixed b ¼ 1 (b is dimensional). If a ¼ 1, the
minus modes from the two theories agree with each other in
the region of ω− ∼ ωLat

− < 0.5, equivalently aω− ∼ aωLat
− <

0.5 [see Fig. 1(a)], whereas if a ¼ 0.2, ω− ∼ ωLat
− < 2.5,

equivalently aω− ∼ aωLat
− < 0.5 [see Fig. 1(b)]. Thus, as

long as the dimensionless quantity ab is smaller, the
approximation of the low-energy/low-momentum modes in
ω� by using ωLat

� is better. This suggests that the continuum
limit (a → 0) of the lattice theory serves as a precise estimate
of the Casimir effect if the Casimir effect is dominated by the
contributions from low-energy/low-momentum modes. In
the next section, we numerically examine this discussion.

III. RESULTS

A. Zero temperature

In Fig. 2, we show the numerical results of the Casimir
coefficients, defined as Eq. (5) in the continuum theory and
Eq. (12) in the lattice theory. In a short distance, we find a
negative Casimir energy corresponding to an attractive
Casimir force, which is similar to the Casimir effect in the
usual photon field characterized by b ¼ 0. In particular, at

(a) (b)

FIG. 1. Dispersion relations for photon fields in axion electro-
dynamics in the continuum theory characterized by Eq. (2) and a
lattice theory defined as Eq. (11). (a) ab ¼ 1. (b) ab ¼ 0.2.

5In the present paper, we apply this approach to obtain the
continuum limit of physical quantities. Another use is to inves-
tigate the Casimir effects originating from degrees of freedom
realized on the lattice in solid-state physics, such as electrons,
phonons, and magnons, where a is fixed as a constant, and we do
not need to take the continuum limit.

6This form can be derived from the leading order of the small a
expansion of the action of a lattice gauge field theory with the θ
term. See Appendix E. While our discussion is limited within the
leading order, numerical simulations of lattice gauge actions,
such as Monte Carlo simulations, fully contain the higher-order a
effect. In this sense, at a finite a, our prediction of the Casimir
effect is more or less different from the results of full numerical
lattice simulations. In the continuum limit a → 0, both should
coincide.
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bLz ¼ 0, C½3�
Cas ¼ − π2

720
∼ −0.0137, which is well known as

the result for the normal photon field in the continuum theory
(also see Appendix A). The sign of the Casimir energy flips
at bLz ≃ 2, and in a long distance, a positive Casimir energy
corresponding to a repulsive Casimir force appears, which
is a feature in axion electrodynamics with b ≠ 0 and
b0 ¼ 0 [19].7 This tendency holds in both continuum theory
(plotted as the solid line) and lattice theories discretized by
lattice spacing a (plotted as the points).
In the lattice theory, we can investigate lattice spacing a

dependence. In the positive-Casimir-energy region,
bLz ≳ 2, the lattice theory at ab ¼ 0.5 is already consistent
with the continuum theory. In the negative-Casimir-energy
region, bLz ≲ 2, the a dependence is enhanced due to an
ultraviolet lattice cutoff effect (namely, a lattice artifact),

but the result agrees with that in the continuum theory by
taking smaller lattice spacing. Thus, the continuum limit
from a lattice theory can correctly reproduce the exact
solution in the continuum theory. This is evidence that a
lattice regularization scheme is useful for investigating the
Casimir effect in axion electrodynamics.
Note that the qualitative behavior of the sign flipping

does not change even when we replace the current
boundary conditions with the periodic boundary conditions
(see Appendix B). Also, the existence of the momenta
(kx and ky) perpendicular to b is crucial. We can discuss it
with the two- or one-dimensional analogous model (see
Appendix C).

B. Finite temperature

In Fig. 3, we show the numerical results at nonzero
temperatures, aT ¼ 1 and 0.1. Even at finite temperatures,
we find the sign-flipping behavior of the Casimir energy at
bLz ∼ 2.8 Low temperature (aT ¼ 0.1) mainly contributes
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FIG. 2. Casimir coefficients in axion electrodynamics at zero
temperature. The solid line and the points are the results in the
continuum and lattice theories, respectively. (a) bLz ≤ 10.
(b) bLz ≤ 1.
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FIG. 3. Casimir coefficients in axion electrodynamics at finite
temperature. (a) aT ¼ 1.0. (b) aT ¼ 0.1.

7The sign-flipping points of the Casimir energy (equivalently,
Casimir coefficient) and the Casimir force are slightly off. This is
because the Casimir force is defined as FCas ≡ − ∂

∂Lz
ECas. There-

fore, the sign-flipping point of FCas corresponds to the extremum
of ECas: bLz ≃ 2.38 [19]. Note that the extrema of ECas and C½3�

Cas
are also slightly off.

8Note that in Fig. 3(a), we also see the extremum of C½3�
Cas near

bLz ∼ 1. However, this is not the extremum of ECas, and hence
the sign of the Casimir force does not flip in this region.
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to the infrared positive-Casimir-energy region in a long
distance bLz ≳ 2. High temperature (aT ¼ 1.0) contributes
to also the ultraviolet negative-Casimir-energy region in a
short distance bLz ≲ 2. Although the ultraviolet region has
a large a dependence similar to the zero-temperature case,
we can safely reproduce the continuum result by taking the
continuum limit a → 0. This is also evidence that a lattice
regularization scheme is useful for investigating the
Casimir effect even at finite temperature.

C. Anatomy of plus/minus modes

As seen in Eq. (2) [and also Eq. (11) on the lattice], the
dispersion relations of the plus and minus modes are
different from each other, so that in general each mode
should induce a different contribution. One of the questions
here is how much each mode contributes to the Casimir
effect in axion electrodynamics.
Using regularization approaches in prior studies, such

as a zeta-function regularization and the Lifshitz formula,9

we can prove that each mode gives half of the total Casimir
energy: There is no difference between the plus-mode and
minus-mode contributions.
In this section, we investigate this question by using our

lattice regularization. In Fig. 4, we plot the results for the
plus and minus modes separately and compare them and
the sum of the two modes. At ab ¼ 1 in Fig. 4(a), we find
that the signs of contributions from the two modes are
opposite. After summing the two modes, the sign of the
total Casimir energy is determined (negative in the short
distance and positive in the long distance).
However, this is not our conclusion. As shown in

Figs. 4(b) and 4(c), we find that each contribution depends
on ab, while the total result is independent of ab. Such
relevant a dependence suggests that although each con-
tribution is not sufficiently regularized within our lattice
regularization, the total Casimir energy is correctly
regularized.
Furthermore, as shown in Fig. 4(d), if we focus on a tiny

ab, the contributions from the plus and minus modes are
almost the same, and hence the total Casimir energy is
interpreted as twice each contribution, which is consistent
with the picture in the continuum theory. Thus, the failure
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FIG. 4. Contributions from the plus/minus modes in Casimir coefficients in axion electrodynamics at zero temperature. (a)–(c)
ab ¼ 1.0, 0.5, and 0.2 within bLz ≤ 10. (d) ab ¼ 0.00001.

9Since the zero-point energy consists of the sum of the plus and
minus modes [as in Eq. (3)], one can apply a regularization
approach to each mode separately.
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of our lattice regularization is limited to the intermediate ab
region.
In this work, our lattice regularization is defined as the

form of the dispersion relations (11) on the lattice. In order
to improve our lattice regularization, it might be better to
transform Eq. (11) into an appropriate form.

IV. CONCLUSIONS

In this paper, we showed that the sign-flipping behavior
of the Casimir effect in axion electrodynamics can be
derived with a lattice regularization, which is consistent
with the continuum theory.
Our approach can be successfully applied not only to the

standard axion electrodynamics but also to other models. For
example, we can check the consistency with the continuum
theory for the massive scalar field (Appendix A), the case of
the periodic boundary condition (Appendix B), lower-
dimension models (Appendix C), and photon fields modi-
fied in chiral media (Appendix D). Thus, our approach is
basically successful, but in Sec. III C, we showed an
example of inconsistency with the continuum theory.
Such inconsistency may suggest that the regularization is
insufficient and might be improved by introducing a
modified lattice regularization, which is left for future
studies.
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APPENDIX A: MASSIVE SCALAR FIELD

In this Appendix, in order to check the applicability of
our approach with a lattice regularization, we demonstrate
the Casimir effect for a massive real scalar field, where the
dispersion relation with a massM in the dþ 1 dimensional
spacetime is given as

ðωmassÞ2 ¼ k2x þ k2y þ k2z þ � � � þ k2xd þM2: ðA1Þ

In the continuum theory, the Casimir energy (per unit
area) with the Dirichlet boundary condition for the z
direction is obtained as [73,74]

Emass
Cas ¼ −

2

ð4πÞðdþ1Þ=2
Mðdþ1Þ=2

Lðd−1Þ=2
z

X∞
m¼1

Kðdþ1Þ=2ð2mMLzÞ
mðdþ1Þ=2 :

ðA2Þ

When we take the massless limit M → 0, this formula can
reproduce the results for the massless real scalar field,

ECas ¼ − π
24Lz

, − ζð3Þ
16πL2

z
, and − π2

1440L3
z
at d ¼ 1, 2, and 3,

respectively.10

In addition, we remark on the relationship between the
Casimir effects for the massive field and in axion electro-
dynamics. When we fix d ¼ 3 and replace as M → b

2
,

Eq. (A2) agrees with the second term of Eq. (4) for the
Casimir energy in axion electrodynamics, except for the
factor 1=2 due to degrees of freedom for polarizations.
Thus, the solution (4) contains the behavior of the Casimir
effect for massive fields, and particularly the short-distance
behavior is dominated by it. While the second term of
Eq. (4) can be simply interpreted as a massive-field-like
Casimir effect, the first term leads to novel effects such as
the sign-flipping behavior and the repulsive Casimir force.
In Fig. 5, we compare the numerical results from the

lattice regularization and Eq. (A2) at d ¼ 3. The result from
the lattice theory with a small lattice spacing well agrees
with that from the continuum theory.

APPENDIX B: PERIODIC BOUNDARY
CONDITION

While in the main text, we focus on the boundary
condition with kz → πn

Lz
, in this Appendix, we show the

periodic boundary condition (PBC). Note that the Casimir
effect with the PBC for one spatial dimension is physical in
the solid-torus type of material, where the usual Casimir
force (as in the parallel-plates geometry) cannot be
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FIG. 5. Casimir coefficients for massive scalar fields in the
3þ 1-dimensional spacetime with the Dirichlet boundary
condition.

10An analytic solution for the massless real scalar field is
[Eq. (2.13) in Ref. [73]]

Emass
Cas ðM → 0Þ ¼ −ð4πÞ−ðdþ1Þ

2 Γ
�
dþ 1

2

�
ζðdþ 1Þ

Ld
z

: ðA3Þ

Note that the result for d ¼ 1 in Eq. (2.15) of Ref. [73] includes
a typo.
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observed, but the internal pressure and the internal energy
density can be modified by the Casimir energy.
Furthermore, when one simulates the Casimir effect in
numerical lattice gauge simulations, simulations with the
PBC will be helpful as a simple condition.
The zero-point energy in the PBC is

EPBC
0 ¼

X
�

X∞
n¼−∞

Z
∞

−∞

dkxdky
ð2πÞ2

ωPBC
�
2

: ðB1Þ

The differences from the case of Eq. (3), are (i) the
summation range (from −∞ to ∞) over n and (ii) the
discrete momentum kz →

2πn
Lz

in the dispersion relation

ωPBC
� . By using the definition of the zero-point energy

and an appropriate regularization scheme, we obtain the
Casimir energy as

EPBC
Cas ¼ b4Lz

16π2
X∞
m¼1

�
K1ðmbLz=2Þ
mbLz=2

−
K2ðmbLz=2Þ
ðmbLz=2Þ2

�
: ðB2Þ

This form can also be obtained by replacing Lz in Eq. (4)
with Lz=2 and by multiplying the whole by the factor 2. For
the definition of the Casimir energy in the lattice theory
with the PBC, we need to remove the factor 1

2
in Eq. (9),

which is caused by the range of n in Eq. (B1).
In Fig. 6, we show the numerical results from the

continuum and lattice theories. Thus, the magnitude of
the Casimir energy with the PBC is larger than that with the
boundary condition with kz → πn

Lz
(see Fig. 2), but the

qualitative behavior does not change. Therefore, our result
suggests that lattice simulations of axion electrodynamics
with the PBC can reproduce the sign-flipping behavior of
the Casimir energy.

APPENDIX C: TWO-DIMENSIONAL
ANALOGOUS MODEL

While the usual axion electrodynamics is defined in the
3þ 1 dimensional spacetime, it is instructive to consider
lower-dimension analogous theories, such as 2þ 1- and
1þ 1-dimensions, where we define the following
dispersion relations:

ðω2d
� Þ2 ¼ k2x þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ

b2

4

r
� b

2

�2

; ðC1Þ

ðω1d
� Þ2 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ

b2

4

r
� b

2

�2

: ðC2Þ

From Eq. (C1) and the Lifshitz formula, the Casimir
energy in the 2þ 1-dimensional continuum theory with
the boundary condition with kz → πn

Lz
for the z direction is

obtained as

E2d
Cas ¼

X
λ¼�

Z
∞

0

dξ
2π

Z
∞

−∞

dkx
2π

ln
	
1 − e−2Lzk̃

½λ�
z


; ðC3Þ

k̃½��
z ≡

h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k2x

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k2x

q
∓ ib

�i1
2

: ðC4Þ

The Casimir coefficient is defined as C½2�
Cas ≡ L2

zECas.
In Fig. 7, we compare the solution of Eq. (C3) in the

continuum theory and the numerical results with the lattice
regularization. Thus, the Casimir effect in the 2þ 1-
dimensional model is analogous to that in the usual axion
electrodynamics.
We note that the dispersion relation in the 1þ 1-

dimensional model defined as Eq. (C2) is similar to the
massive field, except for the constant energy shift of � b

2
.

Because the constant term � b
2
does not contribute to the

Casimir energy, the Casimir energy in this model is

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

 0

 0.05

 0  2  4  6  8  10  12  14  16  18  20

Periodic boundary

C
as

im
ir 

co
ef

fic
ie

nt
: C

C
as

[3
] �
L z

3 E
C

as

Dimensionless distance: bLz=abNz

Lattice: ab�0.2
Lattice: ab�0.5
Lattice: ab�1.0
Continuum theory

FIG. 6. Casimir coefficients in axion electrodynamics with the
periodic boundary condition.
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completely the same as that in the massive field theory with
the dispersion relationω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ b2=4

p
. Thus, the Casimir

effect in this 1þ 1-dimensional model is not analogous to
that in the usual axion electrodynamics. This is because
there is no momentum perpendicular to the compactified
direction in the dispersion relation (C2).

APPENDIX D: JIANG-WILCZEK MODEL

In Ref. [26] (also see Ref. [27]), Jiang and Wilczek
investigated the Casimir effect for photons in chiral media
showing the Faraday effect or the optical activity. In their
model, the dispersion relations of photons are different
from those in axion electrodynamics, and hence the
qualitative behavior of the Casimir effect is also different:
The sign-flipping behavior occurs not once but infinitely
many times: the Casimir energy oscillates. In this
Appendix, we demonstrate this effect from the lattice
regularization.
The dispersion relations in the continuum theory are

ðωJW
� Þ2 ¼ k2x þ k2y þ

�
kz �

b
2

�
2

: ðD1Þ

This expression formally means that the two (normal)
linear dispersion relations are shifted by � b

2
in the kz

direction, where we call Eq. (D1) the Jiang-Wilczek model.
Note that in Ref. [26], the constant b is related to the
parameters of the Faraday effect (the magnitude of a
magnetic field and the Verdet constant) or the parameters
of an optically active material. From Eq. (D1), the Casimir
energy in the continuum theory is obtained as [26]

EJW
Cas ¼

Z
∞

0

dξ
2π

Z
∞

−∞

dkxdky
ð2πÞ2 ln

h
1þ e−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þk2xþk2y

p
Lz

− 2e−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2þk2xþk2y

p
Lz cos ðbLzÞ

i
: ðD2Þ

For dispersion relations with the lattice regularization,
we apply the following forms:

ðωLatJW
� Þ2 ¼ 1

a2
ð2 − 2 cos akxÞ þ

1

a2
ð2 − 2 cos akyÞ

þ
�
2

a
sin

akz
2

� b
2

�
2

: ðD3Þ

In Fig. 8, we show the dispersion relations in the continuum
and lattice theories. Thus, when ab is small enough, the
structure near kz ¼ � b

2
(namely, the structure like the

separated Weyl points) is well approximated by the lattice
theory.
Note that when we apply Eq. (D3), the first BZ for akz

is not 0 ≤ akz < 2π but 0 ≤ akz < 4π. Then, for the
definition of the Casimir energy, we have to replace as

1
2

P
BZ
n → 1

4

P
BZ
n in Eq. (9) and

R
BZ

dðakzÞ
2π →

R
BZ

dðakzÞ
4π

in Eq. (10).
In Fig. 9(a), we show the numerical results for ab ¼ 0.2

and 1.0 to check the validity of the lattice regularization.
We find that the oscillatory behavior at ab ¼ 0.2 is clearly
consistent with that in the continuum theory, except for the
smallest bLz. Thus, this lattice regularization approach can
be safely applied to an “oscillating” Casimir effect. Even at
ab ¼ 1.0, we find that the oscillation almost agrees with the
continuum theory, but precisely speaking, it is slightly
modified. Such a modification suggests that the Weyl-
points-like structure is slightly different from the con-
tinuum theory [see Fig. 8(b)].
To comprehensively examine artifacts caused by a

coarser lattice spacing a (or equivalently a larger b effect),
in Fig. 9(b), we also show the results at ab ¼ 3.0 and 4.0.
At ab ¼ 3.0, we find that the amplitude of oscillation is
suppressed, compared to the continuum theory. This is due
to a large lattice artifact near the Weyl-points-like structure
[see Fig. 8(c)]. At ab ¼ 4.0, the amplitude becomes almost
zero, except for the smallest bLz. This is because, at
ab ¼ 4.0, the Weyl-points-like structure in the lattice
dispersion relations completely disappears [see Fig. 8(d)].
Thus, when a or b is large enough, the current lattice
regularization cannot approximate the continuum theory,
and hence the similar Casimir effect cannot be reproduced.

APPENDIX E: LATTICE FIELD THEORY

In the main text, we assumed the dispersion relations
of photon fields on the lattice, Eq. (11). Eq. (11) can be

(a) (b)

(c) (d)

FIG. 8. Dispersion relations for photon fields in the Jiang-
Wilczek model in the continuum theory characterized by Eq. (D1)
and a lattice theory defined as Eq. (D3). (a) ab ¼ 0.2.
(b) ab ¼ 1.0. (c) ab ¼ 3.0. (d) ab ¼ 4.0.

KATSUMASA NAKAYAMA and KEI SUZUKI PHYS. REV. D 109, 065002 (2024)

065002-8



interpreted as an ansatz for the regularization to calculate
the Casimir energy, while it can be derived from a lattice
gauge field theory.
In this Appendix, we provide a derivation of the

dispersion relations of the U(1) gauge field in an axion
electrodynamics on the lattice. We consider a total action in
the four-dimensional Euclidean space, defined as

Stot ≡ SWil þ Sθ þ Sξ; ðE1Þ
where SWil is the Wilson plaquette action [75], Sθ is the
action of the topological θ term, and Sξ is the action for the
gauge fixing. From this action, we will derive the inverse
propagator G−1

μν for the U(1) gauge field Aμ, defined as

Stot ¼ −
a4

2

X
n

AμG−1
μνAν; ðE2Þ

where n is the label of lattice cites on the Euclidean space.
First, we define the gauge-invariant plaquette Uμν as

UμνðnÞ ¼ eiag½Aμðnþμ̂=2ÞþAνðnþμ̂þν̂=2Þ�

× e−iag½Aμðnþν̂þμ̂=2ÞþAνðnþν̂=2Þ�

¼ eia
2gð∇μAνðncÞ−∇νAμðncÞÞ; ðE3Þ

where a and g are the lattice spacing and the coupling
constant, respectively. Here, nc ≡ nþ μ̂=2þ ν̂=2 is the
central point of a square lattice. With the plaquette Uμν,
we can define the Wilson plaquette gauge action [75] as
follows:

SWil ¼ −
1

2g2
X
n;μ<ν

2Re trUμνðnÞ

¼ −
1

4g2
X
n

�
2 − a4g2

	∇μAνðncÞ −∇νAμðncÞ


2 þOða6Þ�: ðE4Þ

For the calculation of ð∇μAνðncÞ −∇νAμðncÞÞ2 in Eq. (E4), we use the following equation

X
n

ð∇μAνðncÞÞð∇ρAσðncÞÞ ¼
X
n

	
Aνðnc þ μ̂=2Þ − Aνðnc − μ̂=2Þ
	Aσðnc þ ρ̂=2Þ − Aσðnc − ρ̂=2Þ


¼ −
X
n

Aνðnc þ μ̂=2Þ�∇μ

	
Aσðnc þ ρ̂=2þ μ̂=2Þ − Aσðnc − ρ̂=2þ μ̂=2Þ
�

¼ −
X
n

Aνðnc þ μ̂=2

½∇ρ∇μ

	
Aσðnc þ μ̂=2Þ
�; ðE5Þ

where we set ðρ; σÞ ¼ ðμ; νÞ or ðρ; σÞ ¼ ðν; μÞ. When we ignore the constant term and Oða6Þ contributions in Eq. (E4), we
finally get the leading order of the Wilson plaquette action which corresponds to

R
d4x 1

4
FμνFμν in the continuum theory,

SWil ≃ −
a4

2

X
n

Aμðδμν∇2 −∇μ∇νÞAν: ðE6Þ
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FIG. 9. Casimir coefficients in the Jiang-Wilczek model.
(a) ab ¼ 0.2 and 1.0. (b) ab ¼ 1.0, 3, and 4.

CASIMIR EFFECT IN AXION ELECTRODYNAMICS WITH … PHYS. REV. D 109, 065002 (2024)

065002-9



Next, we consider a topological θ term on the lattice
[76,77], which corresponds to

R
d4x iθ

4
FμνF̃μν in the con-

tinuum theory.

Sθ ¼ −
iθ
8g2
X
n

ϵμνρσtr½UμνUρσ�

¼ −
iθ
8g2
X
n

ϵμνρσ
�
1þ ia2g

	∇μAν −∇νAμ


�
×
�
1þ ia2g

	∇ρAσ −∇σAρ


�þOða6Þ: ðE7Þ

By ignoring the constant term and the Oða6Þ contributions,
we get

Sθ ≃
iθa4

2

X
n

ð∇μAνÞ
�
1

2
ϵμνρσ

	∇ρAσ −∇σAρ


�

¼ −i∇zθa4

2
ϵzνρσ

X
n

Aν∇ρAσ

¼ iba4

2
ϵzνρσ

X
n

Aν∇ρAσ þOða6Þ; ðE8Þ

where we used the definition b≡ −∂zθ for the leading part
of −∇zθ ¼ −∂zθ þOða2Þ.
We also consider the gauge fixing term

−
R
d4x 1

2ξ ð∂μAμÞ2. On the lattice, it is discretized as
∂μAμ → ∇μAμ:

Sξ ≃ −
a4

2ξ

X
n

ð∇μAμÞ2: ðE9Þ

Since the gauge fixing term does not contribute to the
calculation of the gauge invariant physical quantities, we
add this term to match our perturbative representation to the
conventional representation of the continuum theory.11

Note that the ghost field does not contribute to the
Casimir effect because of the cancellation with the con-
tribution from the longitudinal photons (see Ref. [19] for
the axion electrodynamics in the continuum spacetime).
By gathering Eqs. (E6), (E8), and (E9), we get the

inverse propagator on the lattice as follows:

G−1
μν ¼ δμν∇2 þ iϵμνzσb∇σ − ð1 − ξ−1Þ∇μ∇ν: ðE10Þ

By the replacement of ∇μ → ∂μ, we find the corresponding
inverse propagator in the continuum theory. To move on to
the momentum space, we substitute a∇μ → −i sinðakμ=2Þ.
It means that all the momenta kμ in the continuum theory
are replaced by the momenta on the lattice, sinðakμ=2Þ.
Then, by substituing sinðakμ=2Þ into the dispersion

relations (2) for photons in the continuum spacetime, we
find the lattice representation of the dispersion relations (11).
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