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It is well known that the experience of a linearly accelerated observer with acceleration a, interacting
with a massless scalar field in its vacuum state in 3þ 1 Minkowski spacetime, is identical to that of a
static observer interacting with a massless scalar field in a thermal state of temperature a=2π in 3þ 1

Minkowski spacetime. We study the robustness of this duality by comparing an observer undergoing
circular motion in a thermal bath with an observer that undergoes circular motion around a linearly
accelerated trajectory. We find that in most regimes, observers in these two cases experience the field in
different ways, and are generally able to tell the difference between the two cases by measuring
observables localized along their trajectories.
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I. INTRODUCTION

In investigating black hole evaporation Unruh consid-
ered a uniformly accelerated observer in Minkowski
spacetime probing a massless scalar field in its vacuum
state. The result of this thought experiment is now known
as the Unruh effect and states that the uniformly linearly
accelerated observer would experience a thermal bath of
particles with temperature given by [1]

TU ¼ ℏa
2πckB

; ð1Þ

where a is the proper acceleration of the trajectory,
ℏ is Planck’s constant, c is the speed of light, kB is the
Boltzmann constant, and TU is referred to as the Unruh
temperature. In essence, the Unruh effect states that there is
a duality between a static observer probing a thermal field
of temperature a=2π and a uniformly linearly accelerated
observer with proper acceleration a probing the Minkowski
vacuum. This duality becomes even more precise in the
case where the observer probes a massless scalar field in

3þ 1-dimensional Minkowski spacetime, in which case
the field correlations are identical in the two cases.
Although the Unruh effect is widely accepted within

quantum field theory, there has been no direct experi-
mental verification of the phenomenon yet. The main
reason for this is that an acceleration of 1020 ms−2 would
be required to register an Unruh temperature of 1 K. There
are, however, experimental proposals for detecting an
analogue of the Unruh effect within analogue gravity
which utilize condensed matter systems [2,3], where the
speed of light is replaced by the speed of sound in the
medium. For example, in superfluid helium, working with
a thin film of 100 nm, the acceleration required for a 1 K
analogue Unruh temperature is reduced by 10 orders of
magnitude [3]. In addition, the experimental proposals use
a circular trajectory, which has long-standing experimen-
tal and theoretical interest [4–6]. The circular trajectory
enjoys numerous advantages over linear acceleration; in
particular, it is a bounded motion, allowing for arbitrary
interaction times within a finite laboratory.
Unlike in uniform linear acceleration, observers under-

going uniform circular motion do not experience a true
thermal bath when interacting with a quantum field in its
vacuum state. The observers’ experiences can, however, be
described in terms of an effective energy-dependent tem-
perature by fitting the excitation and deexcitation rates
within a limited energy interval to Einstein’s detailed
balance formula [7,8]. We refer to this notation of temper-
ature as the detailed balance temperature [5,6].
When attempting to probe the Unruh effect, it is

important to bear in mind that all laboratories operate at
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nonzero temperatures. Indeed, the lowest-measured tem-
peratures in Bose-Einstein condensates were of the order of
picokelvin [9,10]. For this reason, when one considers the
circular motion Unruh effect, it is relevant to consider the
robustness of the effect to a background thermal bath.
Moreover, in the case of a massless scalar field in 3þ 1
spacetime dimensions, there is a duality between observers
with acceleration a probing the vacuum and static observers
probing a state of temperature TU. It is therefore natural to
ask the following:

Does an observer in circular motion through a
thermal bath of temperature TU respond in the
same way as an observer undergoing uniform
acceleration as well as circular motion in the
plane orthogonal to its acceleration?

Answering this question is the primary goal of this paper.
In addressing this, we make use of particle detectors

coupled to a massless scalar field. The concept of a detector
used to operationally probe the particle content of a quantum
field was introduced by Unruh [1] and later refined by
DeWitt [11]. Such particle detector models are referred to as
Unruh-DeWitt (UDW) detectors. A UDW detector is a
localized quantum system which interacts with a quantum
field and thus acts as a measurement device, quantifying
the excitations and deexcitations of the field. In this way, the
device could also be used as a thermometer to probe the
temperature of the field. This simple tool has also proven to
be ideal for probing quantum fields with ubiquitous appli-
cations within quantum field theory, including measuring
Hawking radiation [1,12] and the Unruh effect [1,13–19],
measuring entanglement in quantum field theory [20–25],
accessing the correlation function of quantum fields [26,27],
and the implementation of numerous quantum information
protocols [28–32]. Moreover, there are many regimes where
particle detectors can be used to model physical probes
which can be implemented in a laboratory, such as atoms
interacting with the electromagnetic field [23,33,34], and
nucleons interacting with the neutrino field [35,36], among
others [37–39]. In particular, the UDW model can also be
used to describe the proposals of measuring the circular
Unruh effect [2,3].
By considering particle detectors coupled to a massless

scalar field in 3þ 1 spacetime dimensions, we compare the
case where the detector undergoes uniform acceleration
together with circular motion interacting with the vacuum
and the case where the detector undergoes circular motion
and interacts with a thermal field at the Unruh temperature.
We explore different regimes of both cases, and compare
them in Sec. V. Overall, we find that any kind of circular
motion around the trajectory is in principle enough to
distinguish the uniform acceleration from a thermal bath,
as the temperature experienced in each case always differs.
Nevertheless, we find regimes such that the two cases

become almost indistinguishable, such as for a small
circular trajectory radius, and for angular velocities smaller
than the energy gap of the detector. Overall, through
analytical techniques we study the transition rate of the
detectors, and present a general comparison of the two
cases in many limiting regimes.
The paper is organized as follows. In Sec. II, we review

the UDWmodel, presenting the well-known duality between
uniform acceleration and a static detector in a thermal bath.
In Sec. III we consider a UDW detector undergoing circular
motion and uniform acceleration in an orthogonal direction.
In Sec. IV we consider a detector undergoing circular motion
while in a thermal bath. In Sec. V we compare the two cases,
and show under which conditions they are distinguishable.
The conclusions of our work can be found in Sec. VI. Other
than in Eq. (1), we use units where c ¼ ℏ ¼ kB ¼ 1.
In asymptotic formulas, fðxÞ ¼ OðgðxÞÞ denotes that
fðxÞ=gðxÞ remains bounded in the limit considered, fðxÞ ¼
oðgðxÞÞ denotes that fðxÞ=gðxÞ tends to zero in the limit
considered, and fðxÞ ∼ gðxÞ denotes that fðxÞ=gðxÞ tends to
one in the limit considered.

II. UDW DETECTOR MODEL AND
TEMPERATURE

In this section, we review the two-level pointlike UDW
particle detector model. This model consists of a qubit
undergoing a timelike trajectory zðτÞ in a background
spacetime, which we assume to be 3þ 1 Minkowski
spacetime. The Hilbert space of the detector HD ≃ C2 is
spanned by the orthonormal basis fj0i; j1ig. The internal
dynamics of the qubit are described by a Hamiltonian ĤD

whose action onHD is HDj0i ¼ 0 and ĤDj1i ¼ Ej1i. This
describes a two-level system with an energy gap jEj. For
E > 0, j0i is the ground state and j1i is the excited state.
For E < 0, the roles are reversed.
We consider the case where the particle detector is

coupled to a massless, real scalar quantum field ϕ̂ðxÞ. In
the Hilbert space representation associated to the trans-
lation-invariant Minkowski vacuum j0i, the field can be
written in terms of plane-wave modes ukðxÞ as

ϕ̂ðxÞ ¼
Z
R3

d3kðukðxÞâk þ u�kðxÞâ†kÞ; ð2Þ

ukðxÞ ¼
1

ð2πÞ32
eik·xffiffiffiffiffiffiffiffi
2jkjp ; ð3Þ

where k ¼ ðjkj; kÞ, x ¼ ðt; xÞ is an inertial coordinate
system, and k · x ¼ ημνkμxν, with the Minkowski metric
ημν ¼ diagð−1; 1; 1; 1Þ. The operators âk and â†k are the
annihilation and creation operators, which satisfy the
canonical commutation relations

½âkâ†k0 � ¼ δð3Þðk − k0Þ: ð4Þ
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The Hilbert space associated to this representation can then
be constructed by repeatedly acting on the vacuum state j0i
with the creation operators â†k.
The interaction between the qubit and the field is

described by a linear coupling of the detector’s monopole
moment μ̂ ¼ σ̂þ þ σ̂− with the field amplitude ϕ̂ðxÞ. Here
σ̂þ and σ̂− are the raising and lowering operators in HD. In
the interaction picture, the interaction Hamiltonian can be
written as

ĤIðτÞ ¼ λχðτÞμ̂ðτÞϕ̂ðzðτÞÞ; ð5Þ

where λ is a dimensionless coupling constant and χðτÞ is the
switching function, which specifies how the interaction is
turned on and off. The time-evolved monopole moment
μ̂ðτÞ in the interaction picture is given by

μ̂ðτÞ ¼ eiEτσ̂þ þ e−iEτσ̂−: ð6Þ

With this simple formulation, one can model absorption
and emission by the detector within a time frame defined
by the support of the switching function χðτÞ. For
instance, if a detector starts in its ground state and
transitions to its excited state after interaction with the
quantum field, we say that the detector has clicked and
registered a particle. It is in this sense that this model is
referred to as a particle detector.
A relevant quantity that can be used to characterize the

interaction of a particle detector with the field is its leading-
order transition probability, once one traces over the field
degrees of freedom. Considering the transition from j0i to
j1i, the sign of E specifies whether this is an excitation
(E > 0) or deexcitation (E < 0). This transition probability
is given by

PðEÞ¼ λ2
Z
R2

dτdτ0χðτÞχðτ0Þe−iEðτ−τ0ÞWρ̂ðzðτÞ;zðτ0ÞÞ; ð7Þ

where Wρ̂ðx; x0Þ ¼ trðρ̂ ϕ̂ðxÞϕ̂ðx0ÞÞ is the two-point func-
tion (or Wightman function) of the field in the state ρ̂. It
should be understood as the integral kernel of a bidistri-
bution. Explicitly, for a massless field in the Minkowski
vacuum, we have

W0ðx; x0Þ ¼ h0jϕ̂ðxÞϕ̂ðx0Þj0i ¼ 1

4π2σεðx; x0Þ
; ð8Þ

σεðx; x0Þ ¼ −ðt − t0 − iεÞ2 þ ðx − x0Þ2; ð9Þ

where the limit ε → 0þ is taken after integration. As a
simple example, consider an inertial detector with a
Gaussian switching function of the form

χGðτÞ ¼ e−πτ
2=2T2

: ð10Þ

Note that this expression is conveniently normalized (see
the Appendix) and T can be used to control the time of the
switching of the interaction. In this case, one can show [25]
that the leading-order transition probability of the detector
is given by

PGðEÞ ¼
λ2

4π

�
e−E

2T2=π − ETerfc

�
ETffiffiffi
π

p
��

; ð11Þ

where erfc denotes the complementary error function [40].
From (7), it is clear that the transition probabilities of

the detector depend on the specific shape of the switching
function χðτÞ. This is because the interaction Hamiltonian
(5) is explicitly time dependent due to the switching on and
off of the interaction of the detector with the field. One way
of obtaining a result that is independent of the switching is
to consider the case where the interaction is always turned
on [that is, χðτÞ ¼ 1]. This case can be obtained by
adiabatically scaling the switching function: keeping its
maximum value constant, but pushing the switch-on and
switch-off to the infinitely far past and future, respectively.
However, in this case, perturbation theory fails to hold

because the integral of Eq. (7) grows linearly with the time
duration of the interaction. The way to handle this issue is
to consider the detector’s transition rate F ðEÞ, which can
be defined as

F ðEÞ ¼ lim
T→∞

1

λ2
PðEÞ
T

; ð12Þ

where T is a suitable time parameter that controls the time
duration of the interaction and we have divided by the
coupling constant for convenience. Intuitively, the transi-
tion rate can be thought of as the number of transitions of an
ensemble of detector per unit time [41]. For instance, using
the Gaussian switching of Eq. (10), we can compute the
transition rate

F ðEÞ ¼ lim
T→∞

PGðEÞ
T

¼ −
E
2π

Θð−EÞ; ð13Þ

where ΘðxÞ denotes the Heaviside theta function [40].
The result above can be easily obtained using the fact that
lima→∞erfcðaxÞ ¼ 2Θð−xÞ. Hence, if a detector starts in
the ground state (E > 0) while interacting with the
Minkowski vacuum, it will not emit any particles. On
the other hand, if the detector starts in the excited state
(E < 0), it will emit particles at a rate proportional to its
energy gap E.
It must be mentioned that there is nothing particular in

choosing a Gaussian switching function to obtain the limit of
the transition rate of the detector, and any other switching
function might have been chosen for this calculation with a
suitable rescaling of the time parameter T. For more details
regarding this discussion, we refer the reader to the
Appendix. In this paper, the Gaussian transition probability
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will be a convenient choice when we study the response of a
detector in the small-gap limit.
A particular class of trajectories amenable to analytic

exploration is that of stationary trajectories, the integral
curves of Killing vector fields. If the field is prepared in a
stationary state, the field’s Wightman function can be
written as a function of the difference in proper time along
the trajectory,

WðzðτÞ; zðτ0ÞÞ ¼ Wðzðτ − τ0Þ; zð0ÞÞ≡Wðτ − τ0Þ: ð14Þ

That is, the pullback of the Wightman function to the
detector’s world line can be written as the distribution
Wðτ − τ0Þ. A full classification of the stationary trajectories
in Minkowski spacetime, with the field in the Minkowski
vacuum, was analyzed in [42,43]. In these cases, it is
possible to rewrite the detector’s transition rate as a single
integral. In order to see this, we consider again the
switching function of Eq. (10), and assume the detector’s
trajectory and the field’s initial state to be stationary. In this
case, we can write the transition probability as

PðEÞ ¼ λ2
Z
R2

dτdτ0e−πτ2=2T2

e−πτ
02=2T2

× e−iEðτ−τ0ÞWðτ − τ0Þ: ð15Þ

We then perform a change of variables u ¼ τ − τ0 and
v ¼ ðτ þ τ0Þ=2, such that τ2 þ τ02 ¼ u2=2þ 2v2. This
decouples the integrals over u and v. Performing the
integral over v gives a factor of T, so that we are left with
a single integral over u,

PðEÞ ¼ λ2
Z
R2

dudve−πu
2=4T2

e−πv
2=T2

e−iEuWðuÞ

¼ λ2T
Z
R
due−πu

2=4T2

e−iEuWðuÞ: ð16Þ

After relabeling u to τ, one can express the transition rate as
the limit of a single integral which corresponds to the
Fourier transform of the function WðτÞ,

F ðEÞ ¼ lim
T→∞

Z
R
dτ e−πτ

2=4T2

e−iEτWðτÞ;

¼
Z
R
dτ e−iEτWðτÞ: ð17Þ

We remind the reader that the notation in (17) suppresses
the −iε regularization that defines the Wightman function.
In the case of an inertial detector interacting with the
Minkowski vacuum, this integral reads [6]

F 0ðEÞ ¼ −
E
2π

Θð−EÞ: ð18Þ

We stress that this result is not particular to the specific
choice of Gaussian switching, as may be shown by the
techniques of [44], and we again refer the reader to the
general argument in the Appendix.
A noteworthy example is that of a uniformly linearly

accelerated detector with constant proper acceleration a,
from which originates the Unruh effect [1]. This trajectory
is the orbit of a boost Killing vector of Minkowski
spacetime, and is thus stationary. In this case, the pullback
of the Wightman function to the trajectory, WaðτÞ, can be
written as

WaðτÞ ¼ −
1

4π2
1

4
a2 sinh

2ða
2
ðτ − iεÞÞ : ð19Þ

The response function is given by

F aðEÞ ¼
E
2π

1

e2πE=a − 1
; ð20Þ

which satisfies

F að−EÞ
F aðEÞ

¼ e2πE=a; ð21Þ

which is Einstein’s detailed balance condition [7] in the
Unruh temperature TU ¼ a=ð2πÞ.
The case of a uniformly linearly accelerated detector is

indeed completely dual to the case of a static detector in the
Minkowski vacuum interacting with a thermal bath of
temperature a=ð2πÞ: if the field is initially at a Kubo-
Martin-Schwinger (KMS) state of inverse temperature β
with respect to the inertial notion of time translation
associated with the detector’s motion, the pullback of
the Wightman function can be written as [15]

WβðτÞ ¼ −
1

4β2sinh2ðπβ ðτ − iεÞÞ ; ð22Þ

which is identical to (19) for β ¼ 2π=a. This firmly
establishes the duality between a detector in linearly accel-
erated motion with acceleration a in the vacuum and a static
detector in a thermal bath of temperature a=ð2πÞ, for a
massless quantum field in 3þ 1 spacetime dimensions.
Three comments are in order.
First, when the field has mass, or when the spacetime

dimension differs from (3þ 1), or when the field has a
nonzero spin, or when the coupling to the field is nonlinear,
the vacuum response functions in uniform linear acceler-
ation and the inertial response function in a static thermal
bath need no longer be identical, but the uniform linear
acceleration response function still satisfies the KMS
property (21) [15], as follows from the KMS property
of the Minkowski vacuum when written in terms of
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excitations on the Rindler vacuum. This is a consequence of
the Bisognano-Wichmann theorem, which characterizes the
behavior of the Minkowski-vacuum correlation functions
under boosts [45,46].
Second, while the above considerations hold for the

transition rates, they imply that under the Markovian
approximation the detector’s asymptotic final state is also
thermal. In a slightly generalized setting, suppose that the
transition rate of a detector in stationary motion satisfies a
generalized version of Einstein’s detailed balance,

F ð−EÞ
F ðEÞ ¼ eβðEÞE; ð23Þ

where βðEÞ is interpreted as a generalized, energy-
dependent inverse temperature. Then, in the Markovian
approximation, the detector’s asymptotic final state is [47]

ρ̂D ¼ 1

1þ e−βðEÞE

�
1 0

0 e−βðEÞE

�
: ð24Þ

If βðEÞ is not constant, this final state can be interpreted as a
nonequilibrium state of effective energy-dependent temper-
ature 1=βðEÞ.
Third, while the Unruh temperature in uniform linear

acceleration is universal, independent of the details of the
field, the energy-dependent inverse temperature βðEÞ in a
general stationary motion, defined by (23), may also depend
on the characteristics of the field. From now on we specialize
to a massless scalar field in 3þ 1 spacetime dimensions.
A trajectory of both theoretical and experimental interest

is that of uniform circular motion. Recent experimental
proposals [2,3] suggest using this motion for the exper-
imental realization of an analogue of the Unruh effect, due
to its greater experimental implementability. In particular,
circular motion remains bounded within a finite size for an
arbitrarily long interaction time. It is well documented,
however, that circular motion does not produce a truly
thermal response [4,6], though the effective temperature
may be approximated as thermal throughout most of its
parameter space. Furthermore, investigations into the
inclusion of an initial thermal state [48] reveal that
acceleration dependence still remains.
In this paper, we consider a related question: how similar

are the thermal baths provided by the Unruh effect and an
initial thermal state for a detector in uniform circular
motion? That is, we consider circular motion in a 3þ 1
thermal bath at rest with respect to the trajectory and
compare it to a detector in circular motion in the xy plane
but accelerated parallel to the z axis, which has been termed
hypertor [42] motion.

III. HYPERTOR MOTION

In this section, we describe a detector undergoing
hypertor motion in Minkowski spacetime [42]. This motion

consists of uniform acceleration in one direction combined
with circular motion in the plane orthogonal to it. Without
loss of generality, we assume the acceleration to be along
the z axis and the circular motion to be within the xy axis
in inertial coordinates. With these choices the detector’s
trajectory is parametrized by proper time τ as

zðτÞ ¼
�
1

a
sinhðaγτÞ; R cosðΩγτÞ;

R sinðΩγτÞ; 1
a
coshðaγτÞ

�
; ð25Þ

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − R2Ω2

p ; ð26Þ

where a > 0 is the proper acceleration of the center of
the circular motion, and R > 0 and Ω > 0 are the radius
and angular velocity of the circular motion, as measured
in the frame of the uniformly accelerated center, with
RΩ < 1. γ can be interpreted as a redshift factor between
the circular motion and the uniformly accelerated tra-
jectory in its center.
Note that in order to ensure that the trajectory is timelike,

we must have RΩ < 1. This trajectory is the composition of
uniformly linearly accelerated motion and uniform circular
motion; as such, it is the orbit of the combination of a boost
Killing vector and a rotational Killing vector. Hence, the
trajectory is stationary.
The pullback of the Wightman function along the

trajectory can be written as

WHðτÞ ¼ −
1

4π2
1

4
a2 sinh

2ðγa
2
ðτ − iεÞÞ − 4R2sin2ðγΩ

2
ðτ − iεÞÞ ;

ð27Þ

where we use the subscript H to label the hypertor motion.
The detector’s transition rate can then be written as

FHðEÞ ¼
Z
R
dτ e−iEτWHðτÞ

¼ −
1

4π2

Z
R
dτ e−iEτ

×
1

4
a2 sinh

2ðγa
2
ðτ − iεÞÞ − 4R2sin2ðγΩ

2
ðτ − iεÞÞ :

ð28Þ

As we have seen in Eq. (24), the integral above yields the
detector’s final state and its effective temperature after
interaction with the field for a sufficiently long time [44].
However, the integral in Eq. (28) cannot be evaluated in
terms of known functions. Therefore, we must analyze it
in limiting regimes to get an analytic grasp of the
detector’s behavior.
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A. Small-gap limit

We consider first the limit of a small energy gap, E → 0 with all other parameters fixed. We find a power series
expansion in E to all orders which displays nontrivial behavior. To perform a small-E expansion, we follow the method
detailed in [6,49], which regulates the integral by adding and subtracting the singular vacuum term

WHðτÞ ∼ −
1

4π2ðτ − iεÞ2 : ð29Þ

This results in

FHðEÞ ¼ −
1

4π2

Z
R
dτ cosðEτÞ

 
1

4
a2 sinh

2ðγaτ
2
Þ − 4R2sin2ðγΩτ

2
Þ −

1

τ2

!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðaÞ

−
1

4π2

Z
R
dτ e−iEτ

1

ðτ − iεÞ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðbÞ

: ð30Þ

By grouping the addition and subtraction as in (30), the
integral splits into a regular part ðaÞ and a distributional
contribution ðbÞ. One should note that the small-τ behavior
in ðaÞ is divergence free, and hence this integral is well
defined and the limit ε → 0þ can be taken. Hence, integral
ðaÞ is even in τ, which allows us to replace expðiEτÞ by
cosðEτÞ. Integral ðbÞ still requires the regulating −iε and
corresponds to the distributional behavior of the Wightman
function. In particular, it is the inertial transition rate
in Minkowski spacetime. An application of the residue
theorem on integral ðbÞ results in F 0ðEÞ, given by Eq. (18).
This allows us to write

FHðEÞ ¼ F 0ðEÞ þ F corr
H ðEÞ; ð31Þ

where F 0ðEÞ is given in (18) and

F corr
H ðEÞ ¼ −

1

4π2

Z
R
dτ cosðEτÞ

×

 
1

4
a2 sinh

2ðγaτ
2
Þ − 4R2sin2ðγΩτ

2
Þ −

1

τ2

!
: ð32Þ

We would like to find a power series of the response
function in E. However, the integrand is not yet sufficiently
regular to do this. To begin, we may use a dominated
convergence argument to take the limit E → 0 under the
integral to give the leading-order contribution,

Γ0≔ lim
E→0

F corr
H ðEÞ

¼−
1

4π2

Z
R
dτ

 
1

4
a2 sinh

2ðγaτ
2
Þ−4R2sin2ðγΩτ

2
Þ−

1

τ2

!
: ð33Þ

Adding and subtracting Γ0 to F corr
H ðEÞ [Eq. (32)] and

factoring out 1
τ2
yields

FHðEÞ ¼ Γ0 −
1

4π2

Z
R
dτ

�
cosðEτÞ − 1

τ2

�

×

 
τ2

4
a2 sinh

2ðγaτ
2
Þ − 4R2sin2ðγΩτ

2
Þ − 1

!
: ð34Þ

We may split this into two well-defined integrals by
expanding the second pair of parentheses. The integral
arising from the −1 term admits an elementary expression
after a change of variables and integration by parts results in
a simple sinc integral,

1

4π2

Z
R
dτ

cosðEτÞ − 1

τ2
¼ −

jEj
4π2

Z
R
dσ

sinð2σÞ
σ

ð35Þ

¼ −
jEj
4π

: ð36Þ

This result can be combined with the inertial contribution
F 0ðEÞ, giving −E=4π, so that the full transition rate can
now be cast as

F corr
H ðEÞ¼Γ0−

E
4π

−
1

4π2

Z
R
dτ

cosðEτÞ−1
4
a2 sinh

2ðγaτ
2
Þ−4R2sin2ðγΩτ

2
Þ:

ð37Þ

The remaining integral in Eq. (37) exhibits exponential
decay due to the hyperbolic sine function in the denom-
inator. Assuming jEj < γa, we may hence Maclaurin
expand the cosine and interchange the sum and the integral,
obtaining

Z
R
dτ

cosðEτÞ−1
4
a2 sinh

2ðγaτ
2
Þ−4R2sin2ðγΩτ

2
Þ

¼
X∞
n¼1

ð−1ÞnE2n

ð2nÞ!
Z
R
dτ

τ2n

4
a2 sinh

2ðγaτ
2
Þ−4R2sin2ðγΩτ

2
Þ: ð38Þ
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We then define the following countable family of integrals
with dimensions of E1−2n:

Γn ¼ −
1

4π2

Z
R
dτ

τ2n

4
a2 sinh

2ðγaτ
2
Þ − 4R2sin2ðγΩτ

2
Þ ; ð39Þ

which gives us a series expansion for FHðEÞ,

FHðEÞ ¼ Γ0 −
E
4π

þ
X∞
n¼1

ð−1Þn
ð2nÞ! ΓnE2n; ð40Þ

convergent for jEj < γa. We can then directly compute an
effective temperature in this limit by inverting (23),

T ¼ E

ln
�
F ð−EÞ
F ðEÞ

� : ð41Þ

Using the expansion (40), we then obtain the following
small-gap limit expansion for the hypertor effective
temperature:

TH ¼ 2πΓ0 þ
�
2πΓ1 −

1

24πΓ0

�
E2 þOðjEj4Þ: ð42Þ

B. Interpretation

We may also write Eq. (40) by means of a generating
function, which is related to the case of a detector under-
going hypertor motion with Gaussian switching. The
transition probability in this case reads

PHðEÞ¼ λ2T
Z
R
dτe−πτ

2=4T2

e−iEτWHðτÞ

¼−
λ2T
4π2

Z
R
dτe−πτ

2=2T2

e−iEτ

×
1

4
a2 sinh

2ðγa
2
ðτ− iεÞÞ−4R2sin2ðγΩ

2
ðτ− iεÞÞ : ð43Þ

We can rewrite PHðEÞ in terms of a regular integral by
adding and subtracting the vacuum transition rate multi-
plied by the appropriate dimensional factors, resulting in

PHðEÞ ¼ −
λ2T
4π2

Z
R
dτ cosðEτÞ

 
e−πτ

2=2T2

4
a2 sinh

2ðγaτ
2
Þ − 4R2sin2ðγΩτ

2
Þ −

1

τ2

!
− λ2T

Z
R
dτ

e−iEτ

4π2ðτ − iεÞ2 ð44Þ

¼ −
λ2T
4π2

Z
R
dτ cosðEτÞ

 
e−πτ

2=2T2

4
a2 sinh

2ðγaτ
2
Þ − 4R2sin2ðγΩτ

2
Þ −

1

τ2

!
−
λ2ET
2π

Θð−EÞ; ð45Þ

where we have again defined a regular integral added to the vacuum contribution, which can be easily evaluated.

Defining g ¼ π=2T2, we can differentiate with respect to
g to obtain the coefficients Γn [Eq. (39)]. Specifically, we
define the time-dependent transition rate FHðE; gÞ as

FHðE; gÞ ¼
PHðEÞ
λ2T

¼ −
1

4π2

Z
R
dτ cosðEτÞ

×

 
e−gτ

2

4
a2 sinh

2ðγaτ
2
Þ − 4R2sin2ðγΩτ

2
Þ −

1

τ2

!

−
E
2π

Θð−EÞ: ð46Þ

Differentiation with respect to g will bring down factors of
τ2 and yield regular integrals, so that for n ≥ 1, we have

dnFH

dgn

����
g¼0;E¼0

¼ 1

4π2

Z
R
dτ

ð−1Þnτ2n
4
a2 sinh

2ðγaτ
2
Þ−4R2sin2ðγΩτ

2
Þ ð47Þ

¼ ð−1ÞnΓn: ð48Þ

Notice that evaluation at g ¼ 0 corresponds to T → ∞. We
can, therefore, use the finite time transition rate in the limit
of long interactions to write FHðEÞ in terms of derivatives
of FHðE; gÞ with respect to g as

FHðEÞ ∼ FHð0; 0Þ −
E
4π

þ
X∞
n¼1

E2n

ð2nÞ!F
ðnÞ
H ð0; 0Þ: ð49Þ

The expression above is again the Taylor series given
by (40); however the coefficients—which are unique
whenever the Taylor series exists—are exactly given in
terms of the transition probability for a detector in hypertor
motion with Gaussian switching. In particular, these coef-
ficients are given by derivatives with respect to the inverse of
the interaction time, whose evaluation at g ¼ 0 links the
behaviors of long interaction times (g → 0þ ⇔ T → ∞)
with that of small energy gaps.

C. Small-radius limit

In this subsection we consider the limit of small R,
keeping all other parameters fixed. Intuitively, this
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trajectory corresponds to a small circular deviation from
uniform accelerated motion. As expected, we recover the
usual Unruh effect to leading order, with corrections due to
the circular motion at second order.
In studying the behavior of FHðEÞ, it will be practical to

work with the dimensionless quantities

ρ¼aR; α¼a=Ω; z¼Ωγτ=2; ϖ¼ 2E
γΩ

; ð50Þ

so that Eτ ¼ ϖz, aγτ=2 ¼ αz, RΩ ¼ ρ=α, and the small-
radius limit is the limit of small ρ. In these variables, we
then define

wHðzÞ ≔ WHð2z=γΩÞ

¼ α2Ω2

16π2ðρ2sin2ðz − iεÞ − sinh2ðαðz − iεÞÞÞ : ð51Þ

This leads to the following transition rate:

FHðEÞ ¼
2

γΩ

Z
R
dz e−iϖzwHðzÞ

¼ α2Ω
8π2γ

Z
R
dz e−iϖz ð52Þ

1

ρ2sin2ðz − iεÞ − sinh2ðαðz − iεÞÞ : ð53Þ

As before, we isolate the distributional behavior of FHðEÞ
and split it into the inertial and correction contributions.
The inertial term is again given by Eq. (18) with the
correction taking the following form:

F corr
H ðEÞ ¼ −

γΩ
4π2

Z
∞

0

dz cosðϖzÞ

×

�
α2 − ρ2

sinh2ðαzÞ − ρ2sin2ðzÞ −
1

z2

�
: ð54Þ

The timelike condition RΩ < 1 corresponds in these
variables to ρ < α. A dominated convergence argument
allows us to take the limit ρ → 0 under the integral, leaving
the leading-order contribution

lim
ρ→0

F corr
H ðEÞ ¼ −

γΩ
4π2

Z
∞

0

dz cosðϖzÞ

×

�
α2

sinh2ðαzÞ −
1

z2

�
: ð55Þ

We look now at the subleading contributions, which can be
conveniently rewritten as

F corr
H ðEÞ− lim

ρ→0
F corr

H ðEÞ

¼ −ρ2
γΩ
4π2

Z
∞

0

dz cosðϖzÞ
�
α2sin2ðzÞ
sinh2ðαzÞ− 1

�
sinh2ðαzÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðaÞ

1

1− ρ2 sin2ðzÞ
sinh2ðαzÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

ðbÞ

:

ð56Þ

Function ðaÞ is independent of ρ and is a regular, integrable
function of z. Function ðbÞ can be expanded to the first n
terms as a geometric series with a remainder term. The
remainder term is given by

ρ2
Z

∞

0

dz cosðϖzÞ
�
α2sin2ðzÞ
sinh2ðαzÞ − 1

�
sinh2ðαzÞ

�
ρ2

sin2ðzÞ
sinh2ðαzÞ

�
nþ1

×
1

1 − ρ2 sin2ðzÞ
sinh2ðαzÞ

: ð57Þ

We can bound ð1 − ρ2sin2ðzÞ=sinh2ðαzÞÞ−1 above by
ð1 − ρ2=α2Þ−1. The remaining integral in this bound then
converges due to the exponential suppression at infinity and
regularity at zero. Hence, the remainder term is order ρ2nþ4.
We are interested in the small-ρ limit so we can assume
ρ < 1 and the remainder, therefore, tends to zero as n → ∞.
This justifies the following expansion in small ρ under
the integral:

F corr
H ðEÞ¼−

γΩ
4π2

Z
∞

0

dz cosðϖzÞ
�

α2

sinh2ðαzÞ−
1

z2

�

þγΩρ2

4π2

Z
∞

0

dz cosðϖzÞ
�

1

sinh2ðαzÞ−
α2sin2ðzÞ
sinh4ðαzÞ

�
þOðρ4Þ: ð58Þ

Both integrals in Eq. (58) admit elementary closed forms.
We perform these integrals and revert to dimensionful
quantities, which yields the leading-order corrections in
F ðEÞ for small radii,

FHðEÞ ¼
E
2π

1

e2πE=a − 1

þ aR2

24πγ

�
½γ2a2 þ ðE− γΩÞ2�g

�
2ðE− γΩÞ

γa

�

− 2½3γ2Ω2 þ γa2 þE2�g
�
E
γa

�

þ ½γ2a2 þ ðEþ γΩÞ2�g
�
2ðEþ γΩÞ

γa

��
þOðR4Þ;

ð59Þ

where gðuÞ ¼ u cothðπuÞ. To leading order, we recover
the characteristic thermal response of the Unruh effect.
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The subleading term is more complicated; however, since
the function gðuÞ is even, this subleading term is then an
even function of E.

D. Large-gap limit

We consider in this section the large detector gap limit
(large ϖ), with all other parameters fixed. Given the usual
split of the response function into its inertial and correction
contributions, we need only focus on the latter. We analyze
this using the form in Eq. (54),

F corr
H ðEÞ ¼ Ωγ

8π2

Z
R
dz cosðϖzÞ

×

�
1

z2
þ α2 − ρ2

ρ2sin2ðzÞ − sinh2ðαzÞ
�
: ð60Þ

In (60), we first replace cosðϖzÞ by expðijϖjzÞ, by the
evenness of the integrand. We then deform the integration
contour from the real axis to a contour C that passes the pole
at z ¼ 0 in the upper half-plane, on (say) a semicircle so
small that the contour deformation crosses no singularities.
The residue theorem informs us that the integralR
C expðijϖjzÞz−2dz vanishes, leaving us with

F corr
H ðEÞ ¼ Ωγ

8π2

Z
C
dz eijϖjz α2 − ρ2

ρ2sin2ðzÞ − sinh2ðαzÞ : ð61Þ

A contour integration argument then says that the leading
contribution to (61) at large jϖj comes from the pole in the
upper half-plane that is closest to the real axis. We need to
identify this pole.
We consider the first purely imaginary pole of the

integrand, z ¼ iμ with μ > 0. Such a pole would satisfy

sin2ðαμÞ − ρ2 sinh2ðμÞ ¼ 0: ð62Þ

Given μ, α, ρ > 0, this simplifies to

sinðαμÞ ¼ ρ sinhðμÞ: ð63Þ

Due to the ordering α > ρ, this has at least one nonzero
solution, the smallest of which we take to define μ. One
may then question whether there are any poles off of the
imaginary axis with a positive imaginary part less than or
equal to μ. In order to address this question, it is possible to
check by considering z ¼ xþ iY as a function of x with
x∈Rnf0g and 0 < Y ≤ μ fixed. We have confirmed that

the smallest pole with a positive imaginary part is indeed
given by z ¼ iμ.
An application of the residue theorem then gives the

leading contribution to F corrðEÞ in the large energy gap
limit as

F corr
H ðEÞ ∼ αa

4πγ

e−μjϖj

ρ2 sinhð2μÞ − α sinð2αμÞ ; as jϖj → ∞:

ð64Þ

One may consider then the effective temperature
derived from this response. As is typical with large-gap
expansions [6], the leading contribution to the effective
temperature is given by the coefficient of the exponent that
multiplies jEj. Recalling that μjϖj ¼ 2μ

Ωγ jEj, we obtain

TH ¼ γΩ
2μ

þ oð1Þ; as jEj → ∞: ð65Þ

IV. CIRCULAR MOTION IN A THERMAL BATH

In this section, we summarize our results for a similar
analysis of a UDW detector in a 3þ 1 thermal bath
undergoing circular motion. We assume the circular motion
to have no drift in the rest frame of the thermal bath. In this
case, the system is time-translation invariant along the
trajectory [48]. We analyze the same limits as for the
hypertor motion, except for the small-radius limit, whose
analysis we defer until Sec. V.
The circular motion trajectory in Minkowski spacetime

can be parametrized by proper time as

zðτÞ ¼ ðγτ; R cosðΩγτÞ; R sinðΩγτÞ; 0Þ; ð66Þ

which is the integral curve of the combination of a
rotational Killing vector field and a time-translation vector
field of Minkowski spacetime. In Eq. (66), R represents the
radius trajectory as witnessed by an observer undergoing
inertial motion in the center of the circular trajectory, andΩ
is the angular velocity measured by the same observer. The
gamma factor is then again given by (26).
We consider a particle detector undergoing this motion in

Minkowski spacetime while interacting with a quantum
scalar field initially prepared in a thermal state at temper-
ature T. We define the parameter a ¼ 2πT, so that the
pullback of the Wightman function and the associated
response function are written as

WTBðτÞ ¼ −
1

4π2

a sinh
�
2aR sin

�
γΩ
2
τ
��

4R sin
�
γΩ
2
τ
�n

coshðaγðτ − iεÞÞ − cosh
�
2aR sin

�
γΩ
2
ðτ − iεÞ

��o ; ð67Þ
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FTBðEÞ ¼
Z
R
dτ e−iEτWTBðτÞ: ð68Þ

We define the value of fðτÞ ≔ sinhð2aR sinðγΩτ=2ÞÞ=
sinðγΩτ=2Þ at all zeros of sinðγΩτ=2Þ to be the value of
the limit limτ→0 fðτÞ ¼ 2aR, rendering the Wightman
function (67) well defined. The parameter a is in principle
a simple rescaling of the temperature T, but defined such
that a particle undergoing uniform linear acceleration a
would experience a thermal bath at the temperature T.
In particular, we have

lim
R→0

WTBðτÞ ¼ −
1

4π2
1

4
a2 sinh

2ða
2
ðτ − iεÞÞ : ð69Þ

This is the correlation function seen by a uniformly
accelerated observer with proper acceleration a [see
Eq. (19)], or equivalently, by a static observer in a thermal
bath [Eq. (22)].
As in the case of hypertor motion discussed in Sec. III,

the integral defining the detector’s response cannot be
evaluated in terms of elementary functions, and we thus
explore Eq. (68) in limiting regimes. The techniques used
in this section are very similar to the ones used in Sec. III,
or have been studied in past literature [6,12], so we omit

most of the calculation details in this section. We also
remark that we postpone discussing the limit of a small
orbital radius to Sec. V.

A. Small-gap limit

The short-distance behavior of the Wightman function in
a thermal bath is also of Hadamard form,

WTBðτÞ ∼ −
1

4π2ðτ − iεÞ2 ; as τ → 0: ð70Þ

We again utilize the techniques of [49], as in Sec. III A, to
isolate the distributional contribution arising from the
short-distance behavior (70) and obtain a small-E expan-
sion of the response function akin to (40). Furthermore,
the term coshðaγðτ − iεÞÞ forces exponential convergence
of the integral coefficients in the expansion. As such, we
obtain

FTBðEÞ ∼ Γ̃0 −
E
4π

þ
X∞
n¼1

ð−1Þn
ð2nÞ! Γ̃nE2n; ð71Þ

where Γ̃0 and Γ̃n are analogous to the hypertor small energy
gap expansion coefficients Γ0 [Eq. (33)] and Γn [Eq. (39)],

Γ̃0 ¼ −
1

4π2

Z
R
dτ

�
a sinhð2aR sinðΩγτ=2ÞÞ

4R sinðγΩτ=2ÞfcoshðaγτÞ − coshð2aR sinðγΩτ=2ÞÞg −
1

τ2

�
; ð72Þ

Γ̃n ¼ −
1

4π2

Z
R
dτ τ2n

�
a sinhð2aR sinðΩγτ=2ÞÞ

4R sinðγΩτ=2ÞfcoshðaγτÞ − coshð2aR sinðγΩτ=2ÞÞg
�
: ð73Þ

One may note the same order E term present in both
Eqs. (40) and (71). The remaining contributions are given
by the Γ̃n terms, wherein any deviations between FTBðEÞ
and FHðEÞ may arise.
We can immediately write down the small-gap expansion

for the effective temperature for circular motion in a
thermal bath,

TTB ¼ 2πΓ̃0 þ
�
2πΓ̃1 −

1

24πΓ̃0

�
E2 þOðjEj4Þ: ð74Þ

B. Large-gap limit

The limit of large energy gap for circular motion in a
thermal bath has already been analyzed in [12]; hence,
we report the relevant findings briefly for later comparison.
It is again practical to work with the dimensionless
quantities of Eq. (50) as per Secs. III C and III D, and
we define

wTBðzÞ ¼ WTBð2z=γΩÞ

¼ α2Ω2 cscðzÞ sinhð2ρ sin zÞ
16π2ρðcoshð2ρ sin zÞ − coshð2αzÞÞ ; ð75Þ

such that the correction to the inertial motion transition rate
is given by

F corr
TB ðEÞ¼ γΩ

8π2

Z
R
dz cosðϖzÞ

×

�
1

z2
þ ðα2−ρ2ÞcscðzÞsinhð2ρsinzÞ
ρðcoshð2ρsinzÞ−coshð2αzÞÞ

�
: ð76Þ

We now consider the limit jEj → ∞ (ϖ → ∞) with all
other parameters fixed. Performing the extension to the
complex plane detailed in [50], one finds the leading
contribution to the correction response in (76) is given
by the nonzero pole with the smallest positive imaginary
part. However, the singularity structure is more compli-
cated here than in the case of hypertor motion due to the
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presence of a critical temperature value Tcrit, characterizing
a change in the position of this pole. Defining the critical
parameter acrit ¼ 2πTcrit, acrit is obtained as a solution to
the transcendental equation

RΩ ¼ 2Racrit
π

arcsinh

�
π

2Racrit

�
: ð77Þ

The pole with the smallest positive imaginary part is given
by z ¼ iμ− for a > acrit and by z ¼ iμþ for a < acrit. It was
shown [12] that the poles are the solutions to the following
transcendental equations:

μþ
RΩ

¼ sinh μþ;
1

2RT
¼ μ−

RΩ
þ sinh μ−: ð78Þ

In the limit of large energy gaps, we have

F corr
TB ðEÞ ∼ 1

8πRγ
e−jϖjμ�

sinh μ�ðRΩ cosh μ� ∓ 1Þ ;

as jEj → ∞; ð79Þ
where the choice of μ� is determined by whether a > acrit
or a < acrit. The resulting effective temperature experi-
enced by the detector is then given by the coefficient in the
exponential, jϖjμ� ¼ 2μ�

γΩ jEj. That is,

TTB ¼ γΩ
2μ�

þ oð1Þ; as jEj → ∞: ð80Þ

V. THERMAL BATH VS UNIFORM
ACCELERATION

In this section, we compare the case of a UDW detector
undergoing hypertor motion in the vacuum with the case
of circular motion in a thermal bath. We contrast the two
motions in the limiting regimes explored in Secs. III and IV
and provide numerical plots to cover a wide range of the
parameter space.

A. Small-gap limit

We begin our comparison with the case of small energy
gaps, as studied in Secs. III A and IVA. Given that the
integral expressions for the response functions in the two
cases were amenable to the same techniques, one notes that
the expansions in Eqs. (40) and (71) have the same form,
albeit with different coefficients. The small energy gap
behavior of the transition rate is determined by the behavior
of the integrals Γ0 (33) and Γ̃0 (72). These coefficients also
determine the leading-order behavior of the temperatures of
the detectors [Eqs. (42) and (74)] in this regime. As such,
we now direct our attention towards comparing Γ0 and Γ̃0.
We investigate these differences numerically. In

Fig. 1(a), we use the orbital radius as a characteristic
length scale and plot RΓ0 and RΓ̃0 as functions of the

dimensionless variables Ra and RΩ. For trajectories with
low circular motion speeds, the two coefficients match.
This is expected as this limit approaches the case of either a
uniformly linearly accelerated detector, or a static detector
in a thermal bath, the known duality due to the Unruh
effect. Furthermore, the two coefficients also match in the
limit of small accelerations/low initial thermal state temper-
atures. This is also expected as both scenarios reduce to
uniform circular motion interacting with the Minkowski
vacuum in 3þ 1 Minkowski spacetime. We find that the
leading-order contribution to FHðEÞ (TH) is always larger
than the leading-order contribution to FTBðEÞ (TTB). The
discrepancy between the two cases grows as RΩ → 1, in
which cases both coefficients diverge.
Overall, one sees that particle detectors with small energy

gaps would be able to distinguish between circular motion
interacting with a field initially prepared in a thermal state
at temperature a=2π and a hypertor trajectory interacting
with the Minkowski vacuum. The detectors are enabled to
distinguish the two cases more clearly in the case where both
a and the angular velocity Ω are large compared to 1=R. In
Fig. 1(b), we plot the normalized relative difference between
Γ0 and Γ̃0. This highlights the regions of parameter space
where the two coefficients, and hence two motions, are most
dissimilar. For small accelerations/low initial state temper-
atures, there is a region where the two coefficients differ by
less than 10%. Furthermore, for low speeds RΩ≲ 0.1, one
may notice how similar the two motions are.

B. Small-radius limit

In this subsection, we compare the experience of UDW
detectors undergoing hypertor motion and circular motion
in a thermal bath in the limit of small orbital radii. As
established, the short-distance behaviors of the two trajec-
tories are identical and hence the difference in their
Wightman functions is itself a regular function. We, there-
fore, utilize this in comparing the transition rates of the two
motions. We write the difference in transition rates as

ΔF ðEÞ ¼ FHðEÞ − FTBðEÞ

¼
Z
R
dτ e−iEτðWHðτÞ −WTBðτÞÞ: ð81Þ

Should we be able to compute (81), we can then write down
a closed form FTBðEÞ ¼ FHðEÞ − ΔF ðEÞ in the limit of
small R, using the results of (59).
For simplicity, we again use the dimensionless variables

(50) and write the difference in the transition as

ΔF ðEÞ ¼ γΩ
8π2

Z
∞

0

dz cosðϖzÞ
�

α2 − ρ2

ρ2sin2ðzÞ − sinh2ðαzÞ

−
ðα2 − ρ2Þ cscðzÞ sinhð2ρ sin zÞ
ρðcoshð2ρ sin zÞ − coshð2αzÞÞ

�
: ð82Þ
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Each of the integrals above has a single singularity at z ¼ 0
over the real line, given by (29) and (70). As such, these
cancel each other out, leaving a regular function at z ¼ 0.
Moreover, the exponential decay provided by sinh2ðαzÞ
and coshð2αzÞ in each term respectively is enough to bound
the remainder term from Taylor’s theorem as in Sec. III C so
that we can perform a small-ρ expansion inside the integral.
Indeed, we find that

α2 − ρ2

ρ2sin2ðzÞ − sinh2ðαzÞ −
ðα2 − ρ2Þ cscðzÞ sinhð2ρ sin zÞ
ρðcoshð2ρ sin zÞ − coshð2αzÞÞ

¼ 2α2ρ2

3

sin2ðαzÞ
sinh2ðzÞ þOðρ4Þ: ð83Þ

Plugging this result into Eq. (81), the leading-order
behavior of ΔF ðEÞ is given by

ΔF ðEÞ ¼ γΩα2ρ2

12π

Z
∞

0

cosðϖzÞ sin2ðzÞ
sinh2ðαzÞ þOðρ4Þ; ð84Þ

which has an elementary form, which is given to leading
order in R in dimensionful variables as

ΔF ðEÞ ¼ a3R2

48π

�
g

�
Eþ Ω

a

�
þ g

�
E −Ω
a

�
− 2g

�
E
a

��
þOðR4Þ; ð85Þ

where gðuÞ ¼ u cothðπuÞ. One may show that
gðuþ vÞ þ gðu − vÞ − 2gðuÞ > 0, and one sees that in this
regime the transition rate for the hypertor motion is larger
than that for the circular motion in a thermal bath.
Furthermore, since the difference is OðR2Þ, the leading-
order behavior of each motion in the small-R limit is
identical, which recovers the Unruh effect.
In Fig. 2, we plot the adimensionalized leading-order

coefficient of the difference (81). From Fig. 2(a), one sees
clearly that for jEj > jΩj, the leading-order behavior of
the detectors is quantitatively similar. On the other hand,
for jEj ≲ jΩj, there is an appreciable difference between
the two motions. This is characteristically similar to the
comparison of inertial and circular motions in a 2þ 1
thermal bath in [48], where a detector probing above the
frequency of the circular motion would not be able to
distinguish between inertial and circular motion. In
Fig. 2(b), we plot the behavior of the leading-order term
for a fixed angular velocity Ω. This highlights the
property that probing below the frequency of the circular
motion enables a detector to better distinguish between
the two motions.
The difference in transition rates (81) also enables us to

compute the leading-order difference in effective temper-
atures. Given the results of Sec. III C, both response
functions are of the form F ðEÞ ¼ F aðEÞ þ R2δF ðEÞ,
with F aðEÞ given by Eq. (20). Furthermore, ΔF ð−EÞ ¼
ΔF ðEÞ due to the evenness of gðuÞ, together with the result
of FHðEÞ from Sec. III C. Therefore, δF ð−EÞ ¼ δF ðEÞ.

FIG. 1. Comparison of the leading-order coefficients in the expansion of F ðEÞ for detectors undergoing hypertor motion (Γ0) and
circular motion in a thermal bath of temperature a=2π (Γ̃0), where a is the uniform acceleration parameter of the hypertor. (a) RΓ0 and
RΓ̃0 as a function of Ra and RΩwith plotting range 0 ≤ RΩ ≤ 0.91 and 0 ≤ Ra ≤ 10. (b) The normalized relative difference between Γ0

and Γ̃0 as a function of Ra and RΩ with plotting range 0 ≤ RΩ ≤ 0.86 and 0 ≤ Ra ≤ 10. The white region represents when the
normalized relative difference is greater than one.
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Considering a response function of the form F ðEÞ ¼
F aðEÞ þ R2δF ðEÞ, the effective temperature can then be
expanded as a series in R,

T ¼ E

ln
�
F að−EÞþR2δF ðEÞ
F aðEÞþR2δF ðEÞ

� ð86Þ

¼ TU þ R2δF ðEÞ
�

1

F aðEÞ
−

1

F að−EÞ
�

TU

ln
�
F að−EÞ
F aðEÞ

�
þOðR3Þ; ð87Þ

where TU ¼ a=2π is the Unruh temperature and F aðEÞ is
the corresponding transition rate [Eq. (23)]. One may note
that the correction is positive, since F að−EÞ ≥ F aðEÞ
for E > 0.
We can also perform this expansion for the difference in

temperatures, ΔT ¼ TH − TTB. The small-radius expan-
sion of the temperature difference can then be written as

ΔT ¼ ΔF ðEÞ
�

1

F aðEÞ
−

1

F að−EÞ
�

TU

ln
�
F að−EÞ
F aðEÞ

�þOðR3Þ:

ð88Þ

We remark that this expression does not depend on the sign of
E since ΔF ðEÞ, given by (84), is even and the combination

ð1=F aðEÞ−1=F að−EÞÞðlnðF að−EÞ
F aðEÞ ÞÞ

−1 is even.

Thus, the temperature difference experienced by the
detectors in the small-radius limit is proportional to both the

Unruh temperature TU ¼ a=2π and the difference in the
transition rate of the detectors. Notice that because ΔF ðEÞ
is always positive, the hypertor transition rate is always
larger than the circular motion one in the small-radius limit;
then the temperature experienced by a detector undergoing
hypertor motion will always be larger than in circular
motion for small radius.

C. Large-gap limit

We now turn our attention to the large energy gap
regime to compare the two motions. In this section, we first
perform the large-gap expansions as studied in Secs. III D
and IV B and then ask how the leading-order term in this
expansion looks in two further regimes. We show that the
resulting detector responses are indistinguishable to leading
order in the limits of small Ra and small RΩ.
Both the circular motion in a thermal bath and hypertor

motion large-gap behaviors depend on the roots of tran-
scendental equations. We present these in full for com-
pleteness. For the hypertor motion, the pole with the
smallest positive imaginary part is given by z ¼ iμ where
μ is the first nonzero solution to

sin

�
Ra
v

μ

�
¼ Ra sinhðμÞ; ð89Þ

wherev ¼ RΩ. In the case of a detector in circularmotion in a
thermal bath at temperature T, the leading behavior depends
on whether T > Tcrit orT < Tcrit. This can be summarized as

μþ ¼ v sinhðμþÞ; T < Tcrit; ð90Þ

FIG. 2. Leading-order correction coefficient to the transition rate difference in Eq. (81). (a) Density plot of the leading-order
coefficient with plotting ranges −10 ≤ E=a ≤ 10, −10 ≤ Ω=a ≤ 10. (b) Horizontal slices from (a) for fixed angular velocities with
plotting range −5 ≤ E=a ≤ 5.
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v ¼ 2RTμ− þ 2RTv sinhðμ−Þ; T > Tcrit; ð91Þ

1

4RTcrit
¼ sinh

�
v

4RTcrit

�
: ð92Þ

We consider the limits of small acceleration/low initial
thermal state temperature and small velocity. In this case,
one expects the two motions to tend to 3þ 1 circular motion
in theMinkowski vacuum. In the case of small velocities, one
expects the hypertor motion and circular motion through a
3þ 1 thermal bath to tend to an accelerated trajectory and a
static detector in a 3þ 1 thermal bath respectively, being
equivalent due to the Unruh effect.

1. Limit of small acceleration parameter

We consider first the limit of small parameter a,
representing either small perpendicular acceleration, or a
low initial temperature for the thermal state. If we consider
the defining equation for μ [Eq. (89)] in the pointwise limit
of a → 0 and look for a nonzero, positive solution, we find
that (89) is equivalent to

μ ¼ v sinhðμÞ: ð93Þ

This has three solutions for 0 < v < 1 but only one such
that μ > 0. Hence, we find a unique solution and one may
note that Eq. (93) is identical to Eq. (90).
In order to further compare the two cases, we can rewrite

the hypertor correction to inertial motion by using the
double-angle formulas for sin and sinh,

F corr
H ðEÞ ∼ a2

4πγΩ
e−2jEjμ=ðγΩÞ

ρ2 sinhð2μÞ − α sinð2αμÞ ð94Þ

¼ a2

8πγΩ
e−2jEjμ=ðγΩÞ

ρ2 sinhðμÞcoshðμÞ−αsinðαμÞcosðαμÞ :

ð95Þ

Since the solution to (89) is bounded as a → 0, we also
have that aμ → 0 in this limit; hence, we can use a
small-angle approximation, α sinðαμÞ cosðαμÞ ≈ α2μ. This
approximation and the defining equation (93) lead to
α sinðαμÞ cosðαμÞ ≈ α2RΩ sinhðμÞ. This remark along with
the definition α ¼ a=Ω allow the final factorization of the
response rate as

F corr
H ðEÞ ∼ 1

8πγR
e−2jEjμ=ðγΩÞ

sinh μðRΩ cosh μ − 1Þ : ð96Þ

This is simply the response rate for a detector in circular
motion in a 3þ 1 thermal bath (79) with μþ ↦ μ.
Additionally, the effective temperatures agree to leading
order owing to the fact that μ → μþ as a → 0. Hence, in the

limit of small accelerations/small initial thermal state
temperatures, we reconcile the circular motion in a 3þ 1
thermal bath with ambient temperature T < Tcrit.

2. Limit of small circular velocity

We now consider the limit of small velocities within the
large-gap regime. Considering first the circular motion in a
thermal bath, one may estimate Eq. (92) by noting that
as v → 0, the nonzero root to the equation x ¼ sinhðvxÞ
grows. Using this fact, the exponentially growing part of
the hyperbolic sine function is the dominant contribution
and one can solve for Tcrit, giving

Tcrit ∼ −
v

4RW−1
	
− v

2


 ; ð97Þ

where W−1ðxÞ is the lower branch of the Lambert W
function [40]. W−1ðxÞ diverges to −∞ as x → 0−, and
hence Tcrit → 0þ in this limit. As such, we need only
consider the behavior of μ− for a general T.
A graphical argument shows that the first nonzero root of

Eq. (91) tends to zero in the limit v → 0 and one may
employ a small-argument expansion. We assume that the
root is of the form μ− ¼ a1vþ a2v2 þ a3v3 þOðv4Þ.
Under this ansatz, one finds

μ− ¼ 1

2RT
ðv − v2 þ v3Þ þOðv4Þ: ð98Þ

For completion, we note that similar arguments used to
derive (97) show that

μþ ∼ −W−1

�
−
v
2

�
: ð99Þ

By considering the large-gap detailed balance effective
temperature (80) and (99), one finds that the temperature
tends to zero, for T < Tcrit, as one would expect. However,
for T > Tcrit, one finds

TTB ¼ γΩRT
vð1 − vþ v2Þ þOðv3Þ ð100Þ

¼ T

�
1þ vþ 1

2
v2
�
þOðv3Þ: ð101Þ

We now turn our attention to the hypertor motion and
to finding an expansion for the root of Eq. (89).
Let z ¼ π − Ra

v μ. Equation (89) then reduces to

sinðzÞ ¼ Ra sinh

�
v
Ra

ðπ − zÞ
�
; ð102Þ
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which we may expand in small arguments. Using the ansatz
z ¼ a1vþ a2v2 þOðv3Þ, one finds that a1 ¼ −a2 ¼ π and
we can write down an expansion for the root,

μ ¼ v
Raπ

ð1 − vþ v2Þ þOðv4Þ: ð103Þ

Combining this with the large-gap detailed balance effec-
tive temperature (64), one finds

TH ¼ γΩRaπ
vð1 − vþ v2Þ þOðv3Þ ð104Þ

¼ a
2π

�
1þ vþ 1

2
v2
�
þOðv3Þ: ð105Þ

The leading-order contribution can be identified as the
Unruh temperature TU. One may reconcile the effective
temperature of the circular motion in a thermal bath (101)
and the effective temperature experienced by the detector
in hypertor motion (105) via the Unruh temperature
T ¼ a=2π. Remarkably, the two agree to the first three
orders.

3. Numerical results

In Fig. 3, we plot the effective temperatures for the two
motions as functions of the dimensionless variables Ra and
RΩ: in Fig. 3(a), we plot the effective temperature for the
hypertor motion; in Fig. 3(b) we plot the effective temper-
ature for circular motion in a 3þ 1 thermal bath at
temperature T ¼ a=2π. The red line in Fig. 3(b) corre-
sponds to the line of critical temperature (92), across which
the leading-order behavior of the large-gap limit changes.

All plots are adimensionalized with respect to the natural
length scale R.

VI. CONCLUSIONS

Motivated by the duality between the experience of a
static observer in a thermal bath and a linearly accelerated
observer, we have analyzed the effect of composing circular
motion with these two situations. In particular, we consid-
ered a UDW detector undergoing hypertor motion (circular
motion in the plane orthogonal to linear acceleration),
interacting with a quantum scalar field in the Minkowski
vacuum and compared it with a UDW detector undergoing
circular motion, interacting with a quantum scalar field
prepared in a thermal state. We worked in the limit of weak
interaction and long interaction time and neglected the
detector’s backaction on the field.
We quantified the experience of the detector in terms of

the detector’s transition probability, transition rate, and the
effective temperature, which related the excitation and
deexcitation rates.
We found that, in general, this duality is broken over

much of the parameter space by the addition of the circular
motion. Specifically, we found analytic expansions for the
transition rate and effective temperature of the two motions
in three regimes: small energy gap, small orbital radius, and
large energy gap. In all three regimes, we found that we
could reconcile the two motions when the circular motion
parameters were small, or if the acceleration parameter/
initial thermal state temperature was small. On the other
hand, the two situations can be drastically different.
In particular, in the regimes of small energy gap and
small radius, the effective temperature experienced by the
detector in hypertor motion is always higher than that

FIG. 3. Effective temperatures experienced by UDW detectors in (a) hypertor motion and (b) circular motion in a 3þ 1 thermal bath in
the large-gap limit as functions of dimensionless variables Ra and RΩ. (a) Effective temperature experienced by UDW detector in
hypertor motion interacting with the Minkowski vacuum. The plotting range is 0 ≤ Ra ≤ 4.8, 0 ≤ RΩ ≤ 0.91. (b) Effective temperature
experienced by the UDW detector in circular motion interacting with a scalar field initially prepared in a thermal state. The plotting
range is 0 ≤ Ra ≤ 4.8, 0 ≤ RΩ ≤ 0.91. A red line is shown at parameter values satisfying T ¼ Tcrit where Tcrit ¼ acrit=2π.
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experienced by a detector undergoing circular motion in a
3þ 1 thermal bath at temperature T ¼ a=2π.
In the limit of small orbital radii for the circular motion,

we found that the orbital frequency of the circular motion
plays a key role in distinguishing between the two
motions. In this regime, a detector in hypertor motion
with acceleration parameter a or in circular motion in a
thermal bath of temperature T ¼ a=2π would only be able
to distinguish between the two cases if it were to probe
below this resonant frequency, jEj < jΩj. This relates to
previous results of [48], where similar resonance effects
were discussed.
We remark that our results on the effective temperature

appear to bear no relation to the Tolman scaling, which
states that the local temperature in a thermal equilibrium
state is proportional to 1=

ffiffiffiffiffiffiffiffiffiffi−g00
p

in the coordinates adapted
to the notion of stationarity with respect to which the
temperature is defined [51–53]. For a corotating detector in
a rotating thermal ensemble, the detector’s response does
scale by the Tolman factor, an example being a corotating
detector in the Hartle-Hawking state on the rotating
Bañados-Teitelboim-Zanelli black hole, considered in [54].
In our system, however, the rotation is just in the detector
but not in the ensemble, and there is no reason to expect the
response to be related to the Tolman factor.
We also recall that our analysis operated within linear

perturbation theory in the coupling between the detector
and the field, and to this order the detector’s response
requires no renormalization. We are not aware of a relation
between the energy dependence in our results and the
energy dependence in the running coupling constants that
appear in the renormalization of scattering amplitudes in
perturbative quantum field theory.
In summary, while a particle detector interacting with a

massless scalar field in 3þ 1 Minkowski spacetime would
be unable to distinguish between a thermal bath of temper-
ature T ¼ a=2π and uniform acceleration a, we found that
circular motion breaks this duality. In particular, any small
circularity added to these two situations enables a particle
detector to tell the difference between a thermal bath and
linear acceleration temperature across most of the param-
eter space.
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APPENDIX: TRANSITION RATES
AND PROBABILITIES

In this appendix we discuss the relationship between the
transition rate and the transition probability of a UDW
detector interacting with a scalar field, using the UDW
model described in Sec. II. Specifically, we are interested in
comparing the following three definitions of the transition
rate found in the literature:

F 1ðEÞ ¼
Z
R
dτ e−iEτWðτÞ;

F 2ðEÞ ¼ lim
T→∞

PðEÞ
λ2T

;

F 3ðEÞ ¼
1

λ2
lim
T→∞

dPðEÞ
dT

; ðA1Þ

where WðτÞ is the Wightman function pulled back to a
stationary trajectory (14), PðEÞ is the transition probability
(7), and T is a time parameter that controls the interac-
tion time.
Wework with the interaction Hamiltonian of Eq. (5) with

the switching function χðτÞ, which we assume can be
written as

χðτÞ ¼ βðτ=TÞ; ðA2Þ
where βðuÞ is a real function determining the shape of the
switching and the parameter T determines the interaction
time. We, furthermore, assume that βð0Þ ¼ 1 so that in the
limit of long interaction times T → ∞, we recover the
infinite time switching function χðτÞ ¼ 1.
Though we consider the model of Sec. II, the results of

this appendix are valid for a more general class of quantum
field theories and spacetimes. We, however, focus our
attention to the case of a detector coupled to a quantum
scalar field in an arbitrary spacetime. The key assumption
for our results is that the state of the field is stationary with
respect to time translations along the detector trajectory, so
that the Wightman function is also stationary (14). Under
these assumptions, the transition probability is written as

PðEÞ ¼ λ2
Z
R2

dτ dτ0χðτÞχðτ0Þe−iEðτ−τ0ÞWðτ − τ0Þ: ðA3Þ

Wewrite the pullback of the Wightman function in terms of
its Fourier transform as

Wðτ − τ0Þ ¼ 1

2π

Z
R
dω eiωðτ−τ0ÞŴðωÞ: ðA4Þ
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One should note that due to the singular behavior of the
Wightman function at τ ¼ 0, the Fourier transform should
be understood in a distributional sense. We then rewrite the
transition probability (A3) as

PðEÞ ¼ λ2

2π

Z
R
dωŴðωÞ

�Z
R
dτ e−iðE−ωÞτχðτÞ

�

×

�Z
R
dτ0 eiðE−ωÞτ0χðτ0Þ

�
ðA5Þ

¼ λ2

2π

Z
R
dω ŴðωÞjχ̂ðE − ωÞj2; ðA6Þ

where χ̂ðωÞ is the Fourier transform of χðτÞ. This may be
written as

χ̂ðωÞ ¼
Z
R
dτ e−iωτχðτÞ ¼ T

Z
R
du e−iωTuβðuÞ ¼ Tβ̂ðωTÞ:

ðA7Þ

Using this form of χ̂, we perform the change of integration
variable v ¼ ðE − ωÞT in (A6), such that

PðEÞ ¼ λ2

2π
T
Z
R
dv ŴðE − v=TÞjβ̂ðvÞj2: ðA8Þ

The transition rate F 2ðEÞ [Eq. (A1)] can then be recast as

F ðEÞ ¼ lim
T→∞

PðEÞ
λ2T

¼ ŴðEÞ × 1

2π

Z
R
dvjβ̂ðvÞj2: ðA9Þ

On the other hand, a second common notion of transition
rate is F 3ðEÞ [Eq. (A1)], where a derivative is taken with

respect to the time parameter T. This can be directly
computed using (A8) as

dPðEÞ
dT

¼ λ2

2π

Z
R
dv ŴðE − v=TÞjβ̂ðvÞj2

þ 1

T
λ2

2π

Z
R
dv Ŵ0ðE − v=TÞjβ̂ðvÞj2: ðA10Þ

Under the assumption that the derivative of ŴðωÞ is
sufficiently regular, as is the case for theWightman functions
considered in this paper, we take the limit T → ∞ and
recover

F 3ðEÞ ¼
1

λ2
lim
T→∞

dPðEÞ
dT

¼ ŴðEÞ × 1

2π

Z
R
dvjβ̂ðvÞj2 ¼ F 2ðEÞ; ðA11Þ

demonstrating the equivalence of the definitions F 2ðEÞ and
F 3ðEÞ in (A1).
Finally, we note that the definition ofF 1ðEÞ [Eq. (A1)] is

given by F 1ðEÞ ¼ ŴðEÞ. In order to reconcile all three
definitions, the switching function must be normalized
such that

Z
R
dvjβ̂ðvÞj2 ¼ 2π: ðA12Þ

In this case, all three definitions of the transition rate
agree. This, hence, justifies our choice of switching
function discussed in Sec. II, which satisfies both this
condition (A12) and limT→∞χðτ;TÞ ¼ 1.
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