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The recent increasing interest in detecting gravitational waves (GWs) by lunar seismic measurement
urges us to have a clear understanding of the response of the moon to passing GWs. In this paper, we clarify
the relationship between two seemingly different response functions which have been derived previously
using two different methods, one taking the field-theory approach and the other using the tidal force
induced by GWs. We revisit their derivation and prove, by both analytical arguments and numerical
calculations, that the two response functions are equivalent. Their apparent difference can be attributed
to the choice of different coordinates. Using the correct response function, we calculate the sensitivities
(to GWs) of several designed lunar seismometers, and find that the sensitivity curves between 10−3 and
0.1 Hz are much flatter than the previous calculations based on normal-mode model. Our results will help
clarify the scientific objectives of lunar GW observation, as well as provide important constraints on the
design of lunar GW detectors.
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I. INTRODUCTION

The detection of gravitational waves (GWs) in the
frequency window of 10–102 Hz [1] as well as nano-Hz
[2–5] encourages the efforts to detect GWs in other
frequency bands. Several projects plan on using interfer-
ometers to detect millihertz (mHz) GWs, including the
Laser Interferometer Space Antenna (LISA [6]), TianQin
[7], and Taiji [8]. There are also discussions and designs of
interferometers to probe deci-Hertz (0.1 Hz, or deci-Hz)
GWs [9], such as the DECIGO [10] and TVLBAI [11].
An alternative approach is to take advantage of the

quietness of the moon and use it as a resonant GW detector
[12]. However, detecting the response of the moon to
passing GWs requires a redesign of lunar seismometers, so
as to achieve particularly high sensitivities. The recent
studies based on several designs suggest that the sensitivity
to GWs is the best around deci-Hz, which will allow us to
detect merging white dwarf binaries, intermediate-mass
black hole binaries (IMBHBs), and supermassive black hole
binaries (SMBHBs) out to cosmological distances, as well as
the GW background produced in the early universe [13,14].
One essential element in studying the lunar response

to GW is the calculation of the force density imposed by
GW on an elastic body. The theory was first laid down by
Dyson ([15], hereafter Dy69). He started from the field

theory and, by introducing a coupling term between GW
and the elastic body, derived an external-force density

f⃗ ¼ −∇ · ðμhÞ;
where μ is the shear modulus and h refers to the three-
dimensional spatial components of the GW tensor. Using
this equation, Dyson studied the response of an infinite
half-space to a train of passing GW. Later, Ben-Menahem
applied the same force density to a more realistic lunar
model, a radially heterogeneous elastic sphere, and
derived an analytical response solution ([16], hereafter
BM83). A modern version of the derivation can be found
in Ref. [17] (hereafter Ma19). These formulas derived in
Dy69 and Ma19 form the basis for many later calculations
of the lunar or Earth response to GWs [18–21]. They have
also heavily influenced the scientific objectives of
more recent lunar GW projects, including the Lunar
GW Antenna (LGWA [13,22]).
An ambiguity, however, appears when one takes another

viewpoint to calculate the lunar response function. In the
early studies of ground-based bar detectors [23–27], it was
common to write the force density due to GW in the form of

f⃗ ¼ 1

2
ρ
d2h
dt2

· r⃗;

where ρ is the mass density and r⃗ is the position vector. This
formula is usually called the “tidal acceleration formula,”*Corresponding author: xian.chen@pku.edu.cn
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and has been adopted by many textbooks (e.g., [28,29]).
It was also used in the recent science studies of lunar
seismometer projects [14]. The apparent difference of this
equation with respect to the previous one naturally raises
the question about which force density should be used in
the calculation of the lunar response.
This ambiguity has been noticed in several earlier papers.

In his attempt to develop a fully general-relativistic treat-
ment of the lunar response [30], Dozmorov noticed the
difference between the two force densities [31]. He
attributed the difference to two kinds of shear waves,
one propagating at the speed of light and the other at the
speed of seismic wave. However, he did not give further
explanation to the cause or the relationship between these
two waves. A recent review article [32] (hereafter Ha19)
also discusses the physical meanings of the Dyson force
and the tidal force by comparing the surface displacement
computed with Newtonian mechanics and the displacement
measured by an inertial sensor. It argues that the two
displacements are equivalent, which hints that the two
displacements are connected by a change of the coordinate
system, but a quantitative proof is still lacking. Probably
because of the inconclusiveness of the previous discus-
sions, later works sometimes considered both types of
forces and presented two response functions.
Inspired by these previous discussions, we decide to

revisit the relevant theories and try to resolve the apparent
inconsistency caused by the aforementioned two kinds of
force densities. The paper is organized as follows. In Sec. II,
we review the dynamical equations of an elastic body which
is subject to the Dyson force or the tidal force, where we
focus on clarifying the physical difference between the
coordinate systems in which the equations are derived.
We then derive two response functions, corresponding to
the above two kinds of forces, and show that they can be
unified into one analytical formula. In Sec. III, we apply our
response functions to a homogeneous isotropic sphere and a
real lunar model, to show that in both cases the numerical
results agree with the analytical relationship. We also
discuss the observability of GWs based on the appropriate
response function. Finally, in Sec. IV, we summarize our
results and discuss their implications for future lunar GW
observation. Throughout the paper we will adopt the
International System of Units and the Minkowski metric
ημν ¼ diagð−1; 1; 1; 1Þ, unless otherwise mentioned. Latin
alphabets represent three spatial indices, and Greek alpha-
bets represent spacetime indices.

II. THEORY

This section reviews the dynamical equation of an elastic
system in a GW field with a flat spacetime background.
Two sets of equations have been derived in the literature
due to different viewpoints, one based on the transverse-
traceless (TT) coordinate and the other in the lab frame. We
will first review the derivation of the equations, then clarify

their mathematical relation in the example of a radially
heterogeneous elastic sphere.

A. Equations in the TT coordinate

When dealing with free particles moving in a GW field,
it is normally convenient to use the TT coordinate. In this
coordinate system, which we denote by the subscript A,
the line element reads

ds2 ¼ ðημν þ hTTμν ÞdxμAdxνA: ð1Þ
Hereafter, for simplicity, we will omit the superscript TT of
the GW tensor hμν. The corresponding geodesic equation of
a free, slowly moving particle is

d2xiA
dt2

¼ 0; ð2Þ

where i ¼ 1, 2, 3 denotes the three spatial directions. In this
equation, hμν does not appear, verifying the convenience of
using the TT coordinate. If, in addition, an electromagnetic
(EM) force fiEM;A is imposed on this particle, the equations
of motion become

m
d2xiA
dt2

¼ fiEM;A; ð3Þ

where m is the mass of the particle. Note that fiEM;A should
be expressed by the quantities in the TT coordinate.
Unlike a test particle, an elastic body consists of different

parts, and their positions are better described by a dis-
placement field, ξ⃗ðt; x⃗Þ, which quantifies the displacement
of each part from the equilibrium position, x⃗. Without
GWs and external forces, the evolution of the body is
governed by

ρ
∂
2ξi

∂t2
¼ ∂σij

∂xj
; ð4Þ

where σij is the stress tensor for a locally homogeneous and
isotropic medium. The stress tensor can be calculated with

σij ¼ λδij
∂ξk

∂xk
þ μ

�
∂ξi

∂xj
þ ∂ξj

∂xi

�
; ð5Þ

where λ and μ are two Lamé constants, and μ is also called
the “shear modulus.” When GW is taken into account,
Eq. (4) needs to be revised in two aspects (noted on p. 10 of
Ha19). First, the meanings of ξ⃗ and x⃗ depend on the choice
of coordinate system. In particular, when the TT coordinate
is considered, ξ⃗ and x⃗ do not directly give the proper
distance or proper length, but differ from them by a small
quantity of the order of OðhÞ. Second, even when all the
displacement vanishes, i.e., ξ⃗ðt; x⃗Þ ¼ 0 in TT coordinate,
a shear force can still be induced by the presence of GWs,
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because GWs change the proper distance between different
parts of the elastic body.
To account for these effects, a term should be added on

the rhs of Eq. (4). As a result, Eq. (4), expressed in TT
coordinate, becomes

ρ
∂
2ξiA
∂t2

¼ ∂

∂xjA
ðσijA − μhijÞ: ð6Þ

This equation first appeared in Dy69, which started from a
field-theory approach, by writing down the interaction
Lagrangian between GW and elastic body. Compared to
Eq. (4), the additional μhij term comes from the shear force
induced by GWs. Equation (6) also looks similar to Eq. (3).
In fact, the rhs of Eq. (6) calculates precisely the total EM
force f⃗EM;A per unit volume that is driving the elastic body
away from the geodesic.
In the case of lunar GW detection, the GWwavelength is

usually much longer than the size of the moon. Therefore,
the gradient of hij over the entire body of the moon is small.
We can approximate the last equation with

ρ
∂
2ξiA
∂t2

¼ ∂σijA
∂xjA

−
∂μ

∂xjA
hij: ð6aÞ

B. Equations in the lab coordinate

Another coordinate system which is commonly used in
textbooks and papers to describe the influence of GW is the
“lab coordinate.” It is also known as the “proper coordi-
nate” because the spatial components are defined using the
proper distance. The line element in this coordinate is

ds2¼ημνdx
μ
Bdx

ν
BþOð1Þ×ðRμlνmxlBx

m
B ÞdxμBdxνBþ���; ð7Þ

where Rμlνm is the Riemann curvature tensor, and we have
used the subscript B to denote this coordinate. The factor of
Oð1Þ can be found in textbooks (e.g., Ref. [28]).
Meanwhile, we have omitted the terms due to inertial
acceleration and rotation of the lab frame because these
effects due to the orbital motion and rotation of the moon
appear at much lower frequencies than mHz. Given this
simplification, the leading terms of the metrics in the
coordinate systems A and B are exactly the same. In this
way, the coordinates of the equilibrium positions have the
same values, no matter which coordinate we choose.
In the lab coordinate B, the geodesic equation of a free,

slow-moving particle can be written as

d2xiB
dt2

¼ 1

2

d2hij
dt2

xjB: ð8Þ

The rhs is normally interpreted as a tidal force induced
by GWs. Note that the components of the GW tensor in
this equation can be made to appear identical to that in
Eq. (6a) in the linear order, because there are sufficient

residual freedom in two gauge choices [28], even though
these two formulas are derived in different coordinate
bases. With an additional EM force, f⃗EM;B, the equation
of motion becomes

m
d2xiB
dt2

¼ fiEM;B þ 1

2
m
d2hij
dt2

xjB: ð9Þ

One can compare it with Eq. (3) to see the consequence of
choosing different coordinates.
To use Eq. (9) on elastic bodies, we notice that the first

term on the rhs can be readily replaced by Eqs. (4) and (5),
because they are already constructed using the proper
distance. The second term does not depend on the property
of an elastic body, and hence remains in the equation.
Therefore, we derive

ρ
∂
2ξiB
∂t2

¼ ∂σijB
∂xjB

þ 1

2
ρ
d2hij
dt2

xjB: ð10Þ

Equations (6a) and (10) clearly show the difference
caused by different coordinates. However, both equations
describe the exact same dynamics. To see this equivalence,
it is important to understand that the equilibrium positions,
defined as zero-displacement position ξA=B ¼ 0, are physi-
cally different, even though numerically they may appear
the same. More specifically, in coordinate B (lab frame) the
equilibrium position maintains the same proper distance
from the origin of the coordinate system. However, in
coordinate A (TT frame), the equilibrium position changes
its proper distance from the origin, while it is the coordinate
distance (i.e., ΔxiA) that is kept constant.
Because of this difference, the equilibrium point in

coordinate B is accelerating with respect to the equilibrium
point in A. The acceleration is ðd2hij=dt2Þxjeq=2 when

measured in coordinate B, where xjeq is the coordinate of
the equilibrium point. Notice that the values of xjeq in
coordinate A and B differ by a small term of the order of
OðhÞ. Since the displacement fields ξ⃗A and ξ⃗B are defined
relative to their respective equilibrium points, and by the
rule of addition of acceleration, we have

∂
2ξiB
∂t2

¼ ∂
2ξiA
∂t2

þ 1

2

d2hij
dt2

xjeq þOðh2Þ: ð11Þ

The last term Oðh2Þ comes from a higher-order correction
of the tidal force.
Finally, by combining Eqs. (6a), (10), and (11), we find

that

∂σijA
∂xjA

−
∂μ

∂xjA
hij ¼ ∂σijB

∂xjB
þ ρ

2

d2hij
dt2

ðxjB − xjeqÞ

¼ ∂σijB
∂xjB

þOðh2Þ: ð12Þ
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This equation can be considered as a projection of the same
EM force onto two different sets of base vectors. In the
following, we will omit the last term of the order of Oðh2Þ.

C. Analytical solutions for a radially heterogeneous
elastic sphere

A radially heterogeneous elastic sphere is a good first-
order approximation of the real structure of the moon. Its
surface response to GWs was first calculated analytically in
BM83 using Eq. (6a), and later in Ma19 in more detail.
Here we mainly follow the convention in Ma19 unless
mentioned otherwise.
In Ma19, GW is described by a plane wave:

h ¼ Rfh0ϵijeiðωgt−k⃗g·r⃗Þg; ð13Þ

where h0 is the GW amplitude, ωg is the GW angular

frequency, and k⃗g ¼ ð0; 0;ωg=cÞ is the wave vector, which
we assume to be pointing in the z direction, and

ϵij ¼

2
64
1 1 0

1 −1 0

0 0 0

3
75 ð14Þ

is the polarization tensor. This is identical to the e ¼ λ ¼
ν ¼ 0 case in Ma19. Notice that it is a special case in which
the GW is linearly polarized. If it is in other polarization
states, an Oð1Þ modification should be made to the
polarization-dependent part of the result [i.e., fm in
Eq. (15)]. We then neglect the k⃗g · r⃗ term in Eq. (13)
because ωgR=c ≪ 1, where R is the radius of the sphere.
Given the above GW, the analytical solution to

Eq. (6a) is

ξ⃗Ak ðθ;φ; tÞ ¼ h0s⃗kðθ;φÞℜfḡnðtÞgfmαA2n; ð15Þ

where k ¼ nlm, jmj ≤ l, and for GWs only the spheroidal
modes of l ¼ 2 are excited [16,27]. The term s⃗k is the
displacement eigenfunction of the spherical modes:

s⃗kðθ;φÞ ¼ U2nðRÞY2mðθ;φÞêr
þ 1ffiffiffi

6
p V2nðRÞ∂θY2mðθ;φÞêθ

þ 1ffiffiffi
6

p V2nðRÞðsin θÞ−1∂φY2mðθ;φÞêφ: ð16Þ

The spherical coordinates here, θ and φ, mark the position
on the surface of the sphere. The function ḡn is called the
source-time function, and it can be calculated with

ḡnðtÞ ¼
eiωgt

ω2
n − ω2

g þ iωnωg=Qn
: ð17Þ

Note that our ḡn is slightly different from those in BM83
and Ma19 because of our choice of normalization, and we
have verified it with our numerical calculations. The
dependence on the wave vector k⃗g and polarization of
GW is contained in

fm ¼ fmðe ¼ λ ¼ ν ¼ 0Þ

¼ 4

ffiffiffiffiffi
π

15

r
× ðδm;2 þ δm;−2Þ: ð18Þ

Finally, αA2n depends on the radial structure of the sphere,

αA2n ¼ −

R
Rþ
0

∂μ
∂r ðU2nðrÞ þ 3ffiffi

6
p V2nðrÞÞr2drR

R
0 ðU2

2nðrÞ þ V2
2nðrÞÞρðrÞr2dr

¼
μðRÞR2ðU2nðRÞ þ 3ffiffi

6
p V2nðRÞÞR

R
0 ðU2

2nðrÞ þ V2
2nðrÞÞρðrÞr2dr

−

R
R
0

∂μ
∂r ðU2nðrÞ þ 3ffiffi

6
p V2nðrÞÞr2drR

R
0 ðU2

2nðrÞ þ V2
2nðrÞÞρðrÞr2dr

: ð19Þ

The upper-integration limit Rþ in the first line means that
the integration should be taken until the outer side of the
surface. Notice that α2n can be negative but it is real as
long as U2nðrÞ and V2nðrÞ are real. The denominator in
Eq. (19) comes from the normalization of U2

2n þ V2
2n

in Ma19.
To derive the solution to Eq. (10), we find that the

difference between Eqs. (6a) and (10) lies in the expression
of the force density. Therefore, we can get the solution
ξ⃗Bk ðθ;φ; tÞ by replacing ∂μ=∂r in Eq. (19) with ρrω2

g=2, the
tidal-force density in the frequency domain. Then we have

αB2n ¼ −
ω2
g

2

R
R
0 ðU2nðrÞ þ 3ffiffi

6
p V2nðrÞÞρðrÞr3drR

R
0 ðU2

2nðrÞ þ V2
2nðrÞÞρðrÞr2dr

: ð20Þ

Notice that this equation no longer contains the first term in
Eq. (19), because the term comes from a discontinuity of
the gradient of shear modulus at the surface. When the
tidal-force density is involved, an integration over the
surface does not lead to such a term.

D. Relation between the two analytical solutions

The solutions ξ⃗Ak and ξ⃗Bk derived above should, according
to Eq. (11), satisfy the following relationship,

ξ⃗A ¼ ξ⃗B −
1

2
h · R⃗; ð21Þ

where R⃗¼Rðsinθcosφ;sinθsinφ;cosθÞ, and ξ⃗≡P
n;m ξ⃗k.

In what follows, it is more instructive to write ξ⃗ in terms
of its three spatial components,
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ξ⃗ðθ;φ; tÞ ¼ h0 cos ðωgtÞ
�
Tr

X
m

fmY2mðθ;φÞêr

þ Th

X
m

fm∂θY2mðθ;φÞêθ

þ Th

X
m

fm
∂φY2mðθ;φÞ

sin θ
êφ

�
; ð22Þ

where we define the radial and horizontal response func-
tions, respectively, as

Tr ≡
X
n

U2nα2nRfḡnðtÞe−iωgtg ð23Þ

and

Th ≡
X
n

V2nffiffiffi
6

p α2nRfḡnðtÞe−iωgtg: ð24Þ

We also find that (see Appendix-(A) for a proof)

1

2
êr · h · R⃗ ¼ R

2
h0 cos ðωgtÞ

X
m

Y2mðθ;φÞfm;

1

2
êθ · h · R⃗ ¼ R

4
h0 cos ðωgtÞ

X
m

∂θY2mðθ;φÞfm;

1

2
êφ · h · R⃗ ¼ R

4
h0 cos ðωgtÞ

X
m

∂φY2mðθ;φÞ
sin θ

fm: ð25Þ

Using the above equations, we can eliminate the
common factors of Eq. (21). Finally, we find that

TA
r ¼ TB

r −
1

2
R

TA
h ¼ TB

h −
1

4
R: ð26Þ

Notice that we have already used the following equation
which comes from the definition of ḡnðtÞ, except for a small
resonant frequency region jωg − ωnj < ωn=Qn:

RfḡnðtÞe−iωgtg cos ðωgtÞ ¼ RfḡnðtÞg: ð27Þ

We also clarify here that the different factors 1=2 and 1=4 in
Eq. (26) come from the different factors on the rhs of
Eq. (25), reflecting the behaviors of spherical harmonics.
We will verify Eq. (26) in the next section by numerical
calculations.
Several previous works tend to take TB as the response

function (e.g., [13,14]) and use it to infer the detectability
of GWs. Here we would like to point out that TB is not
directly proportional to the readout of a seismometer, and
hence should be used with caution. The reason is given in
the next section.

III. NUMERICAL TEST AND APPLICATION

In this section, we first calculate the response functions
for a simplified model, a homogeneous isotropic sphere, to
verify our theory. Then we employ a more realistic lunar
model to derive more realistic response functions. Based on
these results, we discuss the implication for lunar GW
detection. In the calculation, we use the MINEOS software
package [33] to calculate the spheroidal eigenfunctions
U2nðrÞ and V2nðrÞ. We note that our V2n is a factor of

ffiffiffi
6

p
smaller than that given by MINEOS because of a different
normalization, according to the annotation in MINEOS.

A. Homogeneous isotropic sphere

We first consider a homogeneous isotropic sphere, with
the radius R ¼ 1000 km, density ρ ¼ 300 kg · m−3, com-
pressive wave speed vp ¼ 8 km · s−1, shear wave speed
vs ¼ 4 km · s−1, and quality factorQ ¼ 1000. These values
qualitatively reflect the “averaged” properties of the moon.
We choose two different numbers of layers in MINEOS,
NL ¼ 200 and 2000. All the eigenfunctions for the first 400
normal modes (i.e., 0 ≤ n ≤ 400) are calculated.
The resulting radial response functions are shown in

Fig. 1. The plot shows that Eq. (26) works better at

FIG. 1. Radial response functions TrðfÞ of a homogeneous
isotropic sphere calculated using different numbers of layers NL.
Notice that both axes are in log10 scale. The results corresponding
to the Dyson force (TA

r ) and tidal force (TB
r − 0.5R) are shown in

the same plot, for easier comparison.
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lower frequencies, and also better when larger number of
layers are used in the calculation. The improvement with
respect to the number of layers can be understood as
follows. When more layers are included, those eigenfunc-
tions U2nðrÞ and V2nðrÞ with larger n can be more
accurately calculated. Since larger n corresponds to higher
eigenfrequencies ωn, the response function at higher
frequency also becomes more accurate. The mismatch at
high frequency (> 10−0.3 Hz) in the lower panel is mainly
caused by our truncation of normal modes at n ¼ 400.
We also get similar results for the horizontal response
function Th, which is not shown here.

B. Real lunar model

Figure 2 shows the structure of our realistic lunar model.
It was compiled from several published works [34–36]
so that we could prepare a full input file for MINEOS.
The model only has a homogeneous core, and has a low-
velocity zone (LVZ) outside the core [37]. To increase the
accuracy at high frequencies, we generate 28501 layers by
interpolating with the original model data. The original and
interpolated model files can be found in [38].
The most uncertain part is the Q value of the lunar core.

We have run tests by changingQcore between 200 and 5000.
The results do not show characteristic difference, so the
exact value of Q should not affect the main conclusions of
this work. We choose Qcore ¼ 1000 in our model.
The radial and horizontal response functions derived

for the interpolated model are shown in Fig. 3, panels (a)
and (b). We have truncated the normal modes at n ¼ 400.
The value of the eigenfrequencies ωn, quality factors Qn,
and response functions TA

r=hðfÞ can be found in [38].

At the frequencies lower than 10−0.6 Hz, we see a good
agreement between the results derived from the Dyson
force and the tidal force, which proves the validity of
Eq. (26). The disagreement at higher frequencies, again,
is caused by the artificial truncation of normal modes in
the calculation.

To compare with the response functions presented in
earlier works, we also plot in Fig. 3(c) our TB

r and TB
h , but

without subtracting, respectively, 0.5R and 0.25R. The
results recover those “old” response functions (e.g., pre-
sented in Fig. 1 of Ref. [13]). Comparing these old response
functions with those new ones in Figs. 3(a) and 3(b), we
find the difference at high frequencies, especially around
0.1 Hz, which was previously considered to be the sweet
spot of a lunar GW detector.

C. Observables and detectability

To evaluate the detectability of GWs by future lunar
seismology projects, we must first understand what is

FIG. 2. Realistic lunar model used in this paper. The units are
chosen so that three curves can be plotted using one x axis.

FIG. 3. Response functions for the realistic lunar model.
(a) Radial response functions TrðfÞ derived from the Dyson
force (A) and tidal force (B). (b) Horizontal response functions
ThðfÞ for the two forces. (c) Old response functions TB

r and TB
h ,

which are derived following the method given in [13].
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observable. We emphasize here that it is the acceleration
∂
2ξiA=∂t

2, not ∂2ξiB=∂t
2, that is a direct observable for a

seismometer. Generally speaking, the former is measuring
the local acceleration caused by EM forces, while the latter
also counts for the tidal acceleration with respect to the
center of the moon. The local acceleration is a quantity that
an accelerometer, such as that installed in a lunar seis-
mometer or gravimeter, can directly measure. The latter
tidal acceleration, however, is not in simple proportion to
the readout of the accelerometer. For example, consider two
nearby test particles freely floating in a vacuum. When
GWs pass by, the proper length between the two particles
will vary, which induces a tidal acceleration. But, each
particle actually follows its own geodesic motion (i.e., in
free fall), so by the equivalence principle any small-sized
instrumentation, such as an accelerometer, attached to
either particle will give zero readout.
Given the sensitivity of a lunar seismometer, nf (in unit

of m · s−2=
ffiffiffiffiffiffi
Hz

p
), we can now use our response functions

derived in coordinate A to estimate the minimal detectable
characteristic strain of GW,

hn;r=h ¼
nf

ð2πfÞ3=2TA
r=h

; ð28Þ

where the subscript r=h means radial or horizontal direc-
tions. For example, we consider two recently proposed
lunar GW detectors, one based on the cryomagnetic design
from the LGWA project [13] (hereafter “LGWA cryomag-
netic”) and the other operating at the moon surface temper-
ature proposed by Beijing Normal University [14]
(hereafter “BNU”). The resulting sensitivities of the instru-
ments to GWs (i.e., hn;r=h) are shown in Fig. 4. Most
importantly, because of the updated response curves, our
sensitivity curves are flat at f < 0.1 Hz, while those in the
previous works show a V-shape centered at 0.1–1 Hz.
To understand the effect of the new response curves on

GW observation, we also plot in Fig. 4 the characteristic
strains of several IMBHBs and SMBHBs at different

distances. For simplicity, the two black holes in the
binary are considered to be equal, and the total mass is
m ¼ 2 × 106, 2 × 105, or 2 × 104M⊙. We consider only
circular orbits, so the characteristic strain can be calculated
with

hcðfÞ ¼ 2fh̃ðfÞ; ð29Þ

where h̃ðfÞ is the Fourier transformation of the public
PhenomA template [39]. The luminosity distance DL is
chosen to be 1, 0.1, and 0.02 Gpc, respectively, for the three
total masses given above. It is a bit arbitrary, chosen for
demonstration only. In any case, the characteristic strain is
inversely proportional to DL.
The signal-to-noise ratio (SNR) of a GW source is

calculated according to the standard definition,

SNR2 ¼
Z

dðln fÞ h
2
c

h2n
: ð30Þ

Given the IMBHBs and SMBHBs specified above, the
SNRs are 28.6,39.7, and 29.8 for LGWA cryomagnetic,
and 0.42,0.86, and 1.02 for BNU. Although the SNRs for
LGWA cryomagnetic are relatively high, the corresponding
luminosity distances are significantly lower than the
previous estimations [13,14] because here the response
functions are updated using our own calculations. The
lower DL stresses the importance of improving the design
of lunar seismometers to further suppress the instru-
ment noise.

IV. SUMMARY AND CONCLUSIONS

In this paper, we have revisited the theory of calculating
the lunar response to GWs. We clarified an ambiguity
which exists in the literature about two response functions
derived from two viewpoints, one based on the Dyson force
[Eq. (6a)] and the other from the ordinary tidal force
[Eq. (10)]. We showed that the apparent difference between
the two functions is caused by the choice of different
coordinates.
Based on this understanding, we derived a concise

and clear relationship between the two functions [see
Eq. (26)]. We verified this analytical relationship by
comparing the numerical response functions calculated
using, respectively, the Dyson and tidal forces (see
Fig. 3). A good agreement was found at lower frequen-
cies. The deviation at higher frequencies can be attributed
to (i) a truncation of the normal modes above a certain
high value of n in our calculation and (ii) a limitation
on the number of layers that we implemented in the
lunar model.
The new response functions have a big impact on the

detectability of GW sources by future lunar seismometers.
As Fig. 4 has shown, the sensitivity to GWs given the
current design of detectors flattens out between 10−3 and

FIG. 4. GW characteristic strains for different instruments
(thin lines) as well as representative astrophysical binary
sources (thick lines).
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0.1 Hz, making the detection of deci-Hertz GWs more
challenging than previously thought. In particular, to
detect IMBHBs and SMBHBs, which are important
sources in the deci-Hertz GW band, it is essential to
achieve in the 10−3–0.1-Hz frequency band a sensitivity
better than that of the cryomagntic detector design by the
LGWA project. We believe our results will help shape up
the scientific objectives of lunar GW observation, as well
as provide important constraints on the design of lunar
GW detectors.
Finally, we would like to point out that our response

functions are derived based on the current normal-mode
formulation of the dynamical equation of an elastic system
in a GW field. There are important aspects of the lunar
seismic response that are not captured by the current
normal-mode model according to the data from the
Apollo seismic observations [13,40]. Further studies on
the lunar structure and lunar seismic response are urgently
needed.
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APPENDIX: DETAILED DERIVATIONS
OF EQ. (25)

Using the definitions of three base vectors:

êr ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ
êθ ¼ ðcos θ cosφ; cos θ sinφ;− sin θÞ
êφ ¼ ð− sinφ; cosφ; 0Þ; ðA1Þ

we have

êr · ϵ · êr ¼ sin2 θðsin 2φþ cos 2φÞ
êθ · ϵ · êr ¼ sin θ cos θðsin 2φþ cos 2φÞ
êφ · ϵ · êr ¼ sin θð− sin 2φþ cos 2φÞ: ðA2Þ

According to Ma19, the definition of the real spherical
harmonics leads to the following results:

Y2;2ðθ;φÞ ¼
1

4

ffiffiffiffiffi
15

π

r
sin2 θ sin 2φ

Y2;−2ðθ;φÞ ¼
1

4

ffiffiffiffiffi
15

π

r
sin2 θ cos 2φ: ðA3Þ

Considering the definition of fm, we have

X
m

Y2mðθ;φÞfm ¼ sin2 θðsin 2φþ cos 2φÞ
X
m

∂θY2mðθ;φÞfm ¼ sin 2θðsin 2φþ cos 2φÞ

X
m

∂φY2mðθ;φÞ
sin θ

fm ¼ 2 sin θð− sin 2φþ cos 2φÞ: ðA4Þ

Thus, Eq. (25) has been proven by combining the above
results.
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