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Higher-order scalar-tensor theories having an instantaneous mode do not develop the Ostrogradsky
instability even if a seemingly dangerous mode is present. Such theories satisfy only partially the degeneracy
conditions that are usually imposed to remove the dangerous mode completely, and are dubbed as unitary
degenerate higher-order scalar-tensor (U-DHOST) theories. We study weak gravitational fields sourced by
nonrelativistic matter distributions in U-DHOST theories. In contrast to the case of totally degenerate
theories where nonlinear derivative interactions are crucial for exhibiting the Vainshtein mechanism and its
partial breaking, we show that in generic U-DHOST theories the linear analysis is sufficient for weak
gravitational fields. We identify the subset of U-DHOST theories in which solar system tests are evaded and
gravitational waves propagate at the speed of light. Such theories can however be tested with cosmological
observations. We also point out that there is a particular case of U-DHOST theories where nonlinear
derivative interactions play an important role as in totally degenerate theories. In that case, it is found,
however, that the Vainshtein mechanism does not operate and gravitational forces are modified.
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I. INTRODUCTION

The great interest in the mysterious mechanism for
driving the accelerated expansion of the present Universe
has been stimulating the study of modified gravity over
the years. Adding a scalar degree of freedom on top of the
tensorial (gravitational-wave) degrees of freedom is
the simplest way of modifying general relativity. Since the
rediscovery [1,2] of the Horndeski theory [3], a consid-
erable effort has been devoted to attempts to generalize
scalar-tensor theories of gravity without evoking the
dangerous Ostrogradsky ghosts (see, e.g., Refs. [4,5] for
a review). The Horndeski theory is the most general
scalar-tensor theory with second-order field equations,
and hence trivially evades the Ostrogradsky ghosts. A
naive expectation is that extending the Horndeski theory to
higher-derivative field equations would inevitably lead to
Ostrogradsky ghosts. However, one still has healthy scalar-
tensor theories with only one scalar and two tensorial
degrees of freedom if the system is degenerate. The first
example that exploits this loophole is obtained by applying
a derivative-dependent disformal transformation to the
Horndeski theory [6]. Rewriting the Horndeski action by
the use of the Arnowitt-Deser-Misner (ADM) formulation
and then liberating the coefficient of each term from
the Horndeski tuning, one can arrive at a degenerate
theory relatively easily [7]. Systematic constructions and
classifications of degenerate higher-order scalar-tensor
(DHOST) theories are presented in Refs. [8–10]. More

recently, novel higher-order scalar-tensor theories were
derived by applying to the Horndeski theory a generalized
disformal transformation containing yet higher deriva-
tives [11–13]. The consistency of matter couplings in the
theories generated via generalized disformal transformation
is nontrivial and has been investigated in Refs. [14–16].
In DHOST theories, a set of conditions are imposed

among the otherwise arbitrary functions in the Lagrangian
to make the system degenerate and thus remove would-be
dangerous Ostrogradsky modes. The point here is that the
degeneracy conditions are introduced so that the system is
degenerate irrespective of the choice of time slicing.
Recently, a further generalization of higher-order scalar-
tensor theories has been proposed in which the degeneracy
conditions are satisfied only when the scalar degree of
freedom is homogeneous on constant time hypersurfaces,
i.e. in the unitary gauge [17]. Such relaxed versions of
degenerate theories are dubbed as unitary degenerate higher-
order scalar-tensor (U-DHOST) theories. In U-DHOST
theories, an apparent additional degree of freedom appears
away from the unitary gauge. However, this degree of
freedom turns out to be an instantaneous mode (a non-
propagating “shadowy mode” in the terminology of
Refs. [17,18]) satisfying an elliptic equation on spatial
hypersurfaces rather than a hyperbolic equation. Its configu-
ration is therefore completely determined by boundary
conditions and hence a shadowy mode is harmless.
Interestingly, U-DHOST theories can resolve the strong
coupling problem of stealth solutions in DHOST theo-
ries [19]. Furthermore, U-DHOST theories have been used
to reformulate the action for DHOST theories in Ref. [20].
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The purpose of the present paper is to study a phenom-
enological aspect of such higher-order scalar-tensor theo-
ries satisfying the degeneracy conditions only partially (i.e.
only in the unitary gauge) and having an instantaneous
mode. More specifically, we study weak gravitational fields
produced by a nonrelativistic source in U-DHOST theories
and highlight the difference from the case of totally
degenerate theories. In Horndeski and DHOST theories,
nonlinear derivative interaction terms play a crucial role in
determining a weak-field configuration. In the (quadratic)
Horndeski theory, the scalar degree of freedom is screened
and the standard behavior of gravity is recovered in the
vicinity of a source due to this nonlinear effect [21–23],
which is called the Vainshtein mechanism. In generic
(quadratic) DHOST theories, while screening is complete
in the exterior region of a source, a partial breaking of the
Vainshtein mechanism occurs and gravitational forces are
modified in the matter interior [24–26]. There is a particular
subset of DHOST theories in which the breaking of
screening occurs in a different way [27,28]. In this paper,
we extend these previous works to U-DHOST theories.
The paper is organized as follows. In the next section, we

briefly review U-DHOST theories. Then, in Sec. III, we
derive the effective action governing weak gravitational
fields in U-DHOST theories. We introduce so-called
effective field theory (EFT) parameters, emphasizing
how the degeneracy conditions in DHOST theories are
relaxed in U-DHOST theories in terms of the EFT
parameters. In Sec. IV, we consider generic U-DHOST
theories and show that a linear analysis is sufficient for
weak gravitational fields as opposed to the case of fully
degenerate theories in which nonlinear derivative inter-
actions play an important role. On the basis of the linear
analysis, we identify a subset of U-DHOST theories that
evades experimental tests. However, the analysis performed
in Sec. IV is not valid if the functions in the Lagrangian
satisfy a certain relation. This special case is investigated in
some detail in Sec. V. We draw our conclusions in Sec. VI.

II. QUADRATIC U-DHOST THEORIES

Using the notations ϕμ ¼ ∇μϕ and ϕμν ¼ ∇μ∇νϕ for
derivatives of the scalar field ϕ, the action for quadratic
U-DHOST theories [17] is written as

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
PþQ□ϕþfRþ

X5
I¼1

AILI þLm

�
; ð1Þ

with

L1≔ϕμνϕ
μν; L2 ≔ ð□ϕÞ2; L3≔□ϕϕμϕμνϕ

ν;

L4≔ϕμϕμνϕ
νλϕλ; L5≔ ðϕμϕμνϕ

νÞ2; ð2Þ

where P, Q, and f are arbitrary functions of ϕ and
X ≔ −gμνϕμϕν=2, and R is the Ricci scalar. The five

coefficients A1;…; A5 are also functions of ϕ and X,
and they are expressed in terms of f and four arbitrary
functions a1;…; a4 of ϕ and X as

A1 ¼ a1−
f
2X

; A2¼ a2þ
f
2X

;

A3 ¼
f

2X2
−
fX
X

þ2a1a3þ2

�
3a3þ

1

2X

�
a2;

A4 ¼ a4þ
fX
2X

−
f

2X2
þa1

X
;

A5 ¼
a4
2X

−
fX
4X2

þa1

�
1

4X2
þ3a23þ

a3
X

�
þa2

�
3a3þ

1

2X

�
2

:

ð3Þ

Therefore, five of the six functions (f; A1;…; A5) are
independent. We include the Lagrangian for minimally
coupled matter Lm. In this paper, this is taken to be
nonrelativistic matter.
U-DHOST theories are degenerate only in the unitary

gauge and do not satisfy all the degeneracy conditions
imposed on totally degenerate theories. In the following
cases, the above action reduces to that of DHOST theo-
ries [8]. The class Ia degeneracy conditions are satisfied if

a1 ¼ −a2 ≠ 0; ð4Þ

a4 ¼ 2a3

�
1

X
− a3

�
f þ

�
1

2X
− 4a3

�
fX; ð5Þ

where fX ≔ ∂f=∂X (and in what follows we will use the
same notation for the other functions). In this class, only a2,
a3, and f are arbitrary. The class Ia theories are generated
from the Horndeski theory by performing a disformal
transformation [29]. The class IIa degeneracy conditions
are satisfied if

a3 ¼
f − 2XfX

2Xf
; ð6Þ

a4 ¼
f2 − 3XffX þ 4X2f2X

2X2f
: ð7Þ

In this case, a1ð≠ 0Þ, a2ð≠ −a1Þ, and fð≠ 0Þ are arbitrary.
The class IIa theories are disformally disconnected from the
Horndeski theory [29], and cosmological solutions in this
class of theories exhibit instabilities either in the scalar or
tensor sector [30,31]. In this paper, we are interested in the
phenomenology of U-DHOST theories, and hence do not
impose the above additional conditions that force the
system to degenerate in any gauge.
We will expand the action (1) in perturbations around a

cosmological background with ϕ ¼ ϕ0ðtÞ. For such an
analysis, it is convenient to introduce the effective Planck
mass M defined by
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M2 ≔ 4Xa1 ð8Þ

and the dimensionless parameters αT , αH, β1, β3, αL, αV1,
and αV2 (the so-called EFT of dark energy parameters)
defined by1

M2αT ¼ 2ðf−2Xa1Þ; M2αH ¼ 2ðf−2XfX −2Xa1Þ;
M2β1≔ 4X2ða1þ3a2Þa3; M2β2≔ 48X3ða1þ3a2Þa23;
M2β3≔−4XðfX −2Xa4Þ;
M2αL ≔−6Xða1þa2Þ; M2αV1≔ 8Xða1þXa1XÞ;
M2αV2≔−8Xða2þXa2XÞ; ð9Þ

where the right-hand side quantities are evaluated at ϕ ¼
ϕ0ðtÞ and hence these parameters are functions of time. We
will assume that the dimensionless EFT parameters are of
order Oð1Þ (or smaller) when they are nonvanishing. Note
that β2 can be expressed in terms of the other parameters as
β2 ¼ −6β21=ð1þ αLÞ. See Appendix A for some details on
how the EFT parameters are defined.
The degeneracy conditions in class Ia DHOST theories

impose

αL ¼ 0; αV1 ¼ αV2;

β3 ¼ −2β1½2ð1þ αHÞ þ ð1þ αTÞβ1�; ð10Þ

while those in class IIa DHOST theories read

αL ≠ 0; β1¼−
ð1þαLÞð1þαHÞ

1þαT
; β3¼

2ð1þαHÞ2
1þαT

:

ð11Þ

In U-DHOST theories, we need to require none of these
conditions, and hence all the EFT parameters are in
principle arbitrary (except for β2, which is subject to the
aforementioned relation).
One might be interested in theories in which the

propagation speed of gravitational waves, cGW, is equal
to that of light. The gravitational-wave sector has nothing to
do with the degeneracy conditions, and it is easy to see that
c2GW ¼ f=ð2Xa1Þ. In terms of the EFT parameters, the
conditions under which cGW ¼ 1 read

αT ¼ 0; αH ¼ −αV1: ð12Þ

Note, on the other hand, that there is a subtlety when
applying the LIGO bound on the speed of gravitational
waves to modified gravity as an alternative to dark
energy [33].

III. EFFECTIVE ACTION FOR WEAK
GRAVITATIONAL FIELDS

We now derive the action governing weak gravita-
tional fields around a cosmological background in
U-DHOST theories. The metric in the Newtonian gauge
is written as

ds2 ¼ −½1þ 2Φðt; x⃗Þ�dt2 þ a2ðtÞ½1 − 2Ψðt; x⃗Þ�dx⃗2; ð13Þ

and the scalar field is given by

ϕ ¼ ϕ0ðtÞ þ πðt; x⃗Þ: ð14Þ

We expand the action (1) in perturbations, keeping
nonlinear terms with possibly large spatial gradients ∇
on scales much smaller than the Hubble horizon scale. To
do so, it is convenient to assign a small bookkeeping
parameter ε to the perturbations Φ, Ψ, and π. Keeping the
terms containing at least two spatial derivatives, the
perturbative expansion of the Lagrangian for quadratic
U-DHOST theories yields

L ∼∇2ε2; ∇4ε2;

∇2ε3; ∇4ε3;

∇2ε4; ∇4ε4; ∇6ε4;

∇2ε5; ∇4ε5; ∇6ε5;

∇2ε6; ∇4ε6; ∇6ε6; ∇8ε6;

∇2ε7; ∇4ε7; ∇6ε7; ∇8ε7;

∇2ε8; ∇4ε8; ∇6ε8; ∇8ε8; ∇10ε8;

∇2ε9;…; ð15Þ

where the first line gives linear terms in the field
equations and the other lines show nonlinearities.
(From the structure of the Lagrangian of quadratic
U-DHOST theories we see that there appears no term
of the form ∇2ðn−1Þεn with n ≥ 5.) Among those nonlinear
terms, the underlined two terms contain the largest
numbers of spatial derivatives per field and we assume
that they can be as large as the terms in the first line. It can
then be seen that all the other nonlinear terms are smaller.
The situation here is essentially the same as that in
Horndeski and DHOST theories. The only new ingredient
in U-DHOST theories is the term in the first line that
scales as ∼∇4ε2.
We thus keep the terms that scale as ∇2ε2, ∇4ε2, ∇4ε3,

and ∇6ε4 in the perturbative expansion, and obtain
1The parameters αV1 and αV2 here are different from those

introduced in Ref. [32].
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Leff ¼
M2a
2

�
ðc1Φþ c2Ψþ c3πÞ∇2π þ c4Ψ∇2Φþ c5Ψ∇2Ψþ c6Φ∇2Φþ ðc7Ψ̇þ c8Φ̇þ c9π̈Þ∇2π þ c10

a2
ð∇2πÞ2

þ b1
a2

LGal
3 þ b̃1

a2
πð∇2πÞ2 þ 1

a2
ðb2Φþ b3ΨÞEGal

3 þ 1

a2
ðb̃2Φþ b̃3ΨÞEþ

3

þ 1

a2
ðb4∇iΨþ b5∇iΦþ b6∇iπ̇Þ∇jπ∇i∇jπ þ b̃6

a2
π̇ð∇2πÞ2

þ 1

a4
ðd1LGal

4 þ d̃1L̃4 þ d2∇iπ∇jπ∇i∇kπ∇j∇kπÞ
�
− a3Φρ; ð16Þ

where

EGal
3 ≔ ð∇2πÞ2 −∇i∇jπ∇i∇jπ; Eþ

3 ≔ ð∇2πÞ2 þ∇i∇jπ∇i∇jπ;

LGal
3 ≔ −

1

2
ð∇πÞ2∇2π; LGal

4 ≔ −
1

2
ð∇πÞ2EGal

3 ; L̃4 ≔ −
1

2
ð∇πÞ2Eþ

3 ; ð17Þ

and ρ ¼ ρðt; x⃗Þ is the nonrelativistic matter overdensity.2

Here, a dot denotes differentiation with respect to t. The
explicit expressions for the coefficients c1; c2;… in terms
of the EFT parameters are given in Appendix B. The
coefficients c10, b̃i, and d̃1 vanish in the case of class Ia
totally degenerate theories. We have only one term that
scales as ∼∇4ε2, c10ð∇2πÞ2, and all the other terms scale as
∼∇2ðn−1Þεn with n ¼ 2, 3, and 4. The latter terms are
essential in the Vainshtein regime in Horndeski and
DHOST theories, while, as we will see, the former term
plays a crucial role in U-DHOST theories with αL ≠ 0.
We assume thatM is of order of the Planck massMPl. We

also assume that ϕ̇0 ¼ OðMH0Þ, where H0 is the Hubble
parameter today. This is a natural assumption given that ϕ
is supposed to be a dark energy field. It then follows from
the explicit expressions that the orders of magnitude for the
coefficients are given as in Table I.

IV. LINEAR REGIME IN THEORIES
WITH a1 + a2 ≠ 0

Let us first consider static gravitational fields in the linear
regime in theories with a1 þ a2 ≠ 0 (and hence αL ≠ 0) by
dropping all the nonlinear interaction terms in Eq. (16). The
linear equations of motion read

c1∇2π þ c4∇2Ψþ 2c6∇2Φ ¼ 2

M2
ρ; ð18Þ

c2∇2π þ c4∇2Φþ 2c5∇2Ψ ¼ 0; ð19Þ

c1∇2Φþ c2∇2Ψþ 2c3∇2π þ 2c10∇4π ¼ 0; ð20Þ

where we set a ¼ 1. After simple algebra we have

½−c1c2c4 þ c21c5 þ c22c6 þ c3ðc24 − 4c5c6Þ

þ ðc24 − 4c5c6Þc10∇2�∇2

0
B@

Φ
Ψ
π

1
CA

¼

0
B@

c22 − 4c5ðc3 þ c10∇2Þ
−c1c2 þ 2c4ðc3 þ c10∇2Þ

2c1c5 − c2c4

1
CA ρ

M2
: ð21Þ

It can be seen from the orders of magnitude of the
coefficients that

TABLE I. Orders of magnitude for various quantities.

Quantity Order

ϕ̇0 MPlH0

M MPl
αT , αH, αL, αV1, αV2, β1, β3 1

c1, c2 M−1

c3 M−2

c4, c5, c6 1
c7, c8 M−1H−1

0

c9, c10 M−2H−2
0

b1, b̃1 M−3H−2
0

b2, b̃2, b3, b̃3, b4, b5 M−2H−2
0

b6, b̃6 M−3H−3
0

d1, d̃1, d2 M−4H−4
0

2It may therefore be appropriate to write this quantity as
δρðt; x⃗Þ.
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−c1c2c4þc21c5þc22c6þc3ðc24−4c5c6Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼OðM−2Þ

þðc24−4c5c6Þc10∇2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼αL×OðM−2H−2

0
∇2Þ

≃ðc24−4c5c6Þc10∇2 ð22Þ

on subhorizon scales satisfying αL∇2 ≫ H2
0. Similarly, we

have

c22 − 4c5ðc3 þ c10∇2Þ ≃ −4c5c10∇2; ð23Þ

−c1c2 þ 2c4ðc3 þ c10∇2Þ ≃ 2c4c10∇2: ð24Þ

Using the expressions for the coefficients in terms of the
EFT parameters, we thus obtain

∇2Φ ≃ 4πGðαL≠0Þ
N ρ; ð25Þ

Ψ ≃
�
1þ αH
1þ αT

�
Φ; ð26Þ

αL∇4π ≃
�
c1ð1þ αTÞ þ c2ð1þ αHÞ
2ð1þ αHÞ2 − ð1þ αTÞβ3

�
3Xρ
2M2

; ð27Þ

where

8πGðαL≠0Þ
N ≔

�
2ð1þ αTÞ

2ð1þ αHÞ2 − ð1þ αTÞβ3

�
1

M2
: ð28Þ

That π obeys the fourth-order differential equation with
respect to the spatial coordinates signals the presence of
the instantaneous mode. Noting that c1 ∼ c2 ¼ OðM−1Þ,
we have

αL
∇2π

M
∼

X
M2∇2

·∇2Φ ∼
H2

0

∇2
·∇2Φ ≪ ∇2Φ; ð29Þ

and we can thus check that the fluctuation of the scalar field
is suppressed compared to the gravitational potential. As far
as the metric perturbations Φ and Ψ on small scales are
concerned, we do not need the explicit expressions for c1,
c2, and c3 in order to give a prediction.
The above expressions themselves are not particularly

new, as they were already obtained in Ref. [31]. However,
Ref. [31] focuses on the case of totally degenerate
theories and it is argued that if the class IIa degeneracy
conditions are satisfied then the effective gravitational
coupling GðαL≠0Þ

N diverges, as seen from Eq. (11). In

contrast, in U-DHOST theories, GðαL≠0Þ
N is finite and the

standard Newtonian behavior of gravity is reproduced
thanks to the breaking of the degeneracy conditions.
Note, however, that we still have Ψ ≠ Φ in general,
and the parametrized post-Newtonian parameter γ ¼
Ψ=Φ is given by γ ¼ ð1þ αHÞ=ð1þ αTÞ, which must
satisfy jγ − 1j≲ 10−5 according to the experimental con-
straints in the Solar System [34]. Therefore, only the

subset of theories satisfying jαH − αT j≲ 10−5 is phenom-
enologically acceptable.
As opposed to the Vainshtein regime in Horndeski and

DHOST theories, the linear study is sufficient in the present
analysis of U-DHOST theories with αL ≠ 0. For example,
one could have nonlinear terms of order Oðb1ð∇2πÞ2Þ and
Oðd1ð∇2πÞ3Þ in the π-equation of motion (20). However, it
is easy to see that the former and latter terms are suppressed
respectively by ðH2

0=∇2ÞΦ and ðH2
0=∇2ÞΦ2 compared to

the linear terms. Thus, the linear result here is not inter-
vened by the nonlinear derivative interaction terms that are
relevant to the Vainshtein mechanism in Horndeski and
DHOST theories. In other words, the Vainshtein mecha-
nism does not work to make Ψ ¼ Φ, and as a result αT and
αH are indeed constrained by the experiments in the Solar
System as stated above.
Even if one sticks to theories with cGW ¼ 1 and no

deviations from the standard GR result in the Solar
System,3 a large theory space is still allowed. In terms
of the functions in the Lagrangian, the condition αH ¼
αT ¼ 0 implies

f ¼ fðϕÞ; a1 ¼
fðϕÞ
2X

; ð30Þ

but a2, a3, and a4 are free as long as a2 ≠ −a1.
So far we have considered static gravitational fields, but

the result can be extended straightforwardly to allow for
time dependence. Reviving the scale factor, it is easy to see
that even in a time-dependent setup one has

∇2Φ
a2

¼
�
1þ αT
1þ αH

�∇2Ψ
a2

¼ 4πGðαL≠0Þ
N ρðt; x⃗Þ: ð31Þ

This result is valid in the limit ∇2 ≫ a2H2
0 and can be used

for studying the evolution of cosmological density pertur-
bations at deep subhorizon scales. Note, however, that there
must be deviations from GR on large scales even in theories
with αT ¼ αH (in addition to a possible time dependence of

GðαL≠0Þ
N ), as seen from Eq. (21). Cosmological tests of such

theories would therefore be intriguing.

V. VAINSHTEIN REGIME IN THEORIES
WITH a1 + a2 = 0

A. Modified gravitational forces

Let us now turn to the case where one of the class Ia
degeneracy conditions is satisfied, a1 þ a2 ¼ 0, but
another condition (5) is not satisfied. In this case, we have
αL ¼ αV1 − αV2 ¼ 0, and hence the higher-derivative term

3Note, however, that here we have only evaluated the para-
metrized post-Newtonian parameter γ. It would be interesting
to calculate all the parametrized post-Newtonian parameters in
U-DHOST theories [35].
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with the coefficient c10 which played an essential role in the
previous section vanishes.4 Upon substituting αL ¼
αV1 − αV2 ¼ 0, the apparent form of the Lagrangian
(16) is identical to that obtained in quadratic DHOST
theories [25,26], with all the terms being of order
Oð∇2ðn−1ÞεnÞ, which implies that the nonlinear derivative
interaction terms are no longer negligible. The difference
from the previous analysis of totally degenerate theories is
that in U-DHOST theories β3 is an independent parameter
that is free of the degeneracy conditions (10). As we will
see below, this drastically modifies the gravitational forces
around a source in contrast to the case of the Horndeski and
DHOST theories.
We focus on the nonlinear Vainshtein regime in which

we have

∇2Φ
a2

∼
∇2Ψ
a2

∼
ð∇2πÞ2
a4X

∼
ρ

M2
≫

∇2π

Ma2
: ð32Þ

One can estimate that this approximation is valid on scales
smaller than the Vainshtein radius ðrSH−2

0 Þ1=3, where rS is
the Schwarzschild radius of the gravitational source. We
consider a static and spherically symmetric setup in the
Vainshtein regime. Setting again a ¼ 1 and using r ¼ jx⃗j,
the equations of motion take the form

dJ Φ

dr
¼ dJ Ψ

dr
¼ dJ π

dr
¼ 0; ð33Þ

where

J Φ ≔ −ðαH − αV þ 4β1ÞrðΠ0Þ2 − ð2β1 þ β3Þr2Π0Π00

− β3r2Φ0 þ 2ð1þ αHÞr2Ψ0 −
MðrÞ
4πM2

; ð34Þ

J Ψ ≔ αTrðΠ0Þ2 þ 2αHr2Π0Π00 þ 2ð1þ αHÞr2Φ0

− 2ð1þ αTÞr2Ψ0; ð35Þ

J π ≔ 2ð−αHþαV −2β1þβ3ÞrΠ0Φ0 þ ð2β1þβ3Þr2Π0Φ00

þ2ðαT −2αHÞrΠ0Ψ0−2αHr2Π0Ψ00

þ ðαH−αT −αV þ4β1ÞðΠ0Þ3
þð4β1þβ3Þ½rΠ0Π000 þ rðΠ00Þ2þ2Π0Π00�rΠ0; ð36Þ

and we introduced αV ≔ αV1 ¼ αV2, Π ≔ π=
ffiffiffiffiffiffi
2X

p
, and the

enclosed mass inside a sphere of radius r:

MðrÞ ≔ 4π

Z
r

0

ρðxÞx2dx: ð37Þ

Here a prime stands for differentiation with respect
to r. Regularity at r ¼ 0 fixes the integration constants,
leading to

J Φ ¼ J Ψ ¼ J π ¼ 0: ð38Þ

To make the difference from DHOST theories explicit,
we introduce the new parameter ξð≠ 0Þ defined by

β3 ¼ −2β1½2ð1þ αHÞ þ ð1þ αTÞβ1� þ ξ; ð39Þ

which characterizes the breaking of one of the degeneracy
conditions (10). Hereafter we consider the theories with
cGW ¼ 1 by setting

αT ¼ 0; αV ¼ −αH: ð40Þ

This is the phenomenologically most interesting case.
Moreover, with this restriction, we have less complicated
equations while we do not lose the essential physics of
U-DHOST theories. From J Φ ¼ 0 and J Ψ ¼ 0, we obtain

½2ð1þαHþβ1Þ2−ξ�r2Φ0

¼ M
4πM2

þ2ðαHþ2β1ÞrX

−
1

2
½2ðαHþβ1Þð1þαHþβ1Þ−ξ�r2X 0; ð41Þ

½2ð1þ αH þ β1Þ2 − ξ�r2Ψ0

¼ ð1þ αHÞ
M

4πM2
þ 2ð1þ αHÞðαH þ 2β1ÞrX

−
1

2
½2β1ð1þ αH þ β1Þ − ξ�r2X 0; ð42Þ

where X ≔ ðΠ0Þ2ð≥ 0Þ. Equivalently, one can write

X ¼ −
M=8πM2

ðαH þ 2β1Þr

þ r
αHðαH þ 2β1Þ

��
ðαH þ β1Þð1þ αH þ β1Þ −

ξ

2

�
Ψ0

−
�
β1ð1þ αH þ β1Þ −

ξ

2

�
Φ0
	
; ð43Þ

X 0 ¼ 2

αH
½Ψ0 − ð1þ αHÞΦ0�: ð44Þ

These equations can be used to eliminateΦ0,Ψ0,Φ00, andΨ00
from J π , yielding

J π ∝ Π0½ξr2X 00 þ 2ξrX 0

þ 4ðαH þ 2β1Þð1 − αH − 3β1ÞX − S� ¼ 0; ð45Þ

where

4In principle, one can consider a background satisfying
αL ¼ 0 and αV1 ≠ αV2 by carefully tuning the model so that
a1ðϕ̇2

0=2Þ ¼ a2ðϕ̇2
0=2Þ and a1Xðϕ̇2

0=2Þ ≠ a2Xðϕ̇2
0=2Þ. We do not

study this case.
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S ≔ 4ðαH þ 2β1Þ
M

4πM2r

þ ½2ðαH þ β1Þð1þ αH þ β1Þ − ξ� M0

4πM2
: ð46Þ

Wediscard the solutionΠ0 ¼ 0, because this branch does not
satisfy (32) and hence is not the solution we are looking for
in the nonlinear regime. We therefore consider the branch in
which the expression inside the square brackets in Eq. (45)
vanishes:

ξr2X 00 þ2ξrX 0 þ4ðαHþ2β1Þð1−αH−3β1ÞX ¼S: ð47Þ

Now the particular nature of U-DHOST theories is manifest.
If ξ ¼ 0, this reduces to an algebraic equation giving the
Vainshtein solution obtained in the previous studies of
DHOST theories [24–26]. If ξ ≠ 0, Eq. (47) is a differential
equation signaling the presence of an instantaneous mode.
One can obtain the general solution to Eq. (47).

Substituting then the solution to Eqs. (41) and (42), one
can express Φ0 and Ψ0 in terms ofM. However, to contrast
our result with the previous one in DHOST theories
[25,26], it is more convenient to proceed in a different
way and derive a single third-order differential equation
for the potential Φ. This can be done as follows. Using

Eq. (41), its derivative, and Eq. (47), one can express X and
X 0 in terms of Φ0 and Φ00: X ¼ ð…ÞΦ0 þ ð…ÞΦ00,
X 0 ¼ ð…ÞΦ0 þ ð…ÞΦ00. Equating the derivative of the
former to the latter, we obtain the following third-order
equation for Φ:

Ξ�σ00 þ
σ

r2
¼ Ξ1G

ðαL¼0Þ
N M00; ð48Þ

where

σ ≔ r2Φ0 −GðαL¼0Þ
N M; ð49Þ

and

8πGðαL¼0Þ
N ≔

1

M2ð1 − αH − 3β1Þ
; ð50Þ

Ξ� ≔
ξ

4ð1 − αH − 3β1ÞðαH þ 2β1Þ
; ð51Þ

Ξ1 ≔ −
ðαH þ β1Þ2
2ðαH þ 2β1Þ

− Ξ�ðαH þ 3β1Þ: ð52Þ

We then eliminate X and X 0 from Eq. (42) to get

Ψ0 ¼ GðαL¼0Þ
N M
r2

þ αH
GðαL¼0Þ

N M0

r
−
β1ðαH þ β1Þ
2ðαH þ 2β1Þ

GðαL¼0Þ
N M00 −

Ξ�
Ξ1

�
ðαH þ 3β1Þ

σ

r2
þ αH

σ0

r
−
β1ðαH þ β1Þ
2ðαH þ 2β1Þ

σ00
�
: ð53Þ

In the case of ξ ¼ 0, Eqs. (48) and (53) reproduce the result obtained in Refs. [25,26].
The general solution to Eq. (48) is obtained as

σ¼ Ξ1G
ðαL¼0Þ
N

Ξ�ðnþ−n−Þ
�
rnþ

Z
r

R0

xn−M00ðxÞdx− rn−
Z

r

R0

xnþM00ðxÞdx
�
þC1G

ðαL¼0Þ
N M0

�
r
R0

�
nþ þC2G

ðαL¼0Þ
N M0

�
r
R0

�
n−
; ð54Þ

where

n� ≔
1

2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4=Ξ�

p
Þ; ð55Þ

and C1 and C2 are integration constants. In the first line, the
lower bounds of the integrals are arbitrary, but for con-
venience, we set them to be the radius of the spherical
object R0. SinceM00 ¼ 0 for r > R0, the first line vanishes
in the region exterior to the object. In the second line, we
introduced R0 and the total massM0 ≔ MðR0Þ so that the
integration constants C1 and C2 are dimensionless. Note that
1 − 4=Ξ� can be negative, and in that case

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4=Ξ�

p
in

the equations here and hereafter should be replaced by
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1 − 4=Ξ�j
p

.

In the following analysis, we assume that αH, β1, and ξ
are small numbers of OðϵÞ. It then follows that Ξ� ¼ Oð1Þ
and Ξ1 ¼ OðϵÞ. This assumption is used to estimate
the corrections to the standard result in general relativity.
If σ is suppressed by a factor of order OðϵÞ, so is

Ψ0 − GðαL¼0Þ
N M=r2, and the deviation from general rela-

tivity is expected to be small.
In the region exterior to the spherical object, we have

M00 ¼ 0, and hence

Φ0 ¼ GðαL¼0Þ
N M0

r2
½1þ ΔΦðrÞ�; ð56Þ

Ψ0 ¼ GðαL¼0Þ
N M0

r2
½1þ ΔΨðrÞ�; ð57Þ
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where

ΔΦðrÞ ≔ C1

�
r
R0

�
nþ þ C2

�
r
R0

�
n−
; ð58Þ

ΔΨðrÞ ≔ C̃1

�
r
R0

�
nþ þ C̃2

�
r
R0

�
n−
; ð59Þ

with

C̃1¼−
Ξ�
Ξ1

�
ð1þnþÞαHþ3β1þ

1

Ξ�

β1ðαHþβ1Þ
2ðαHþ2β1Þ

�
C1; ð60Þ

C̃2¼−
Ξ�
Ξ1

�
ð1þn−ÞαHþ3β1þ

1

Ξ�

β1ðαHþβ1Þ
2ðαHþ2β1Þ

�
C2: ð61Þ

Substituting Eqs. (56) and (57) to Eq. (43), we obtain

X ¼ 2GðαL¼0Þ
N M0

r

�
1 −

2β1ð1þ αH þ β1Þ − ξ

4αHðαH þ 2β1Þ
ΔΦ

þ 2ðαH þ β1Þð1þ αH þ β1Þ − ξ

4αHðαH þ 2β1Þ
ΔΨ

�
: ð62Þ

To see the difference from the result in the Horndeski and
DHOST theories, i.e., the deviation from the standard
(post-)Newtonian behavior, it is necessary to determine
the integration constants C1 and C2. For this purpose, let us
turn to discuss the boundary conditions.
In the vicinity of the center, we haveM ≃ ð4π=3Þρð0Þr3,

and hence it follows from Eq. (54) that

σ≃
�

Ξ1

1þ6Ξ�

�
·8πGðαL¼0Þ

N ρð0Þr3þD1G
ðαL¼0Þ
N M0

�
r
R0

�
nþ

þD2G
ðαL¼0Þ
N M0

�
r
R0

�
n−
; ð63Þ

with

D1 ≔ C1 −
Ξ1

Ξ�ðnþ − n−Þ
Rnþ
0

M0

Z
R0

0

xn−M00ðxÞdx; ð64Þ

D2 ≔ C2 þ
Ξ1

Ξ�ðnþ − n−Þ
Rn−
0

M0

Z
R0

0

xnþM00ðxÞdx: ð65Þ

Let us consider the following three cases: (i) 0<Ξ�< 4

(n� ¼ ð1=2Þð1� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1−4=Ξ�j

p Þ); (ii) Ξ� < −1=6 or Ξ� > 4

(1=2 < nþ < 3, −2 < n− < 1=2); and (iii) −1=6 < Ξ� < 0
(nþ > 3, n− < −2). At the center, we impose that the
curvature tensors do not diverge. Since the curvature
tensors ⊃ Φ00;Ψ00 ∼ σ=r3, this amounts to requiring that
D1rnþ−3 andD2rn−−3 do not diverge as r → 0. Therefore, in
all the above cases one can fix the integration constant C2 as

D2 ¼ 0 ⇒ C2 ¼ −
Ξ1

Ξ�ðnþ − n−Þ
Rn−
0

M0

Z
R0

0

xnþM00ðxÞdx:

ð66Þ

Furthermore, in cases (i) and (ii), one can fix C1 as

D1 ¼ 0 ⇒ C1 ¼
Ξ1

Ξ�ðnþ − n−Þ
Rnþ
0

M0

Z
R0

0

xn−M00ðxÞdx:

ð67Þ

The precise values of the integration constants depend on
the detailed information of the density profile. However,
one can roughly estimate their size as C1;2 ¼ OðϵÞ, and
hence the correction terms ΔΦ and ΔΨ are suppressed by ϵ
if the EFT parameters are as small as OðϵÞ.
Having determined the integration constants C1;2 in cases

(i) and (ii), we now see that in case (i) the gravitational
potentials have the correction terms showing an oscillatory
behavior. The correction terms grow as

ΔΦ;ΔΨ ∼OðϵÞ ×
ffiffiffiffiffiffi
r
R0

r
cos

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − 4=Ξ�j

p
ln r

�
;

OðϵÞ ×
ffiffiffiffiffiffi
r
R0

r
sin

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1 − 4=Ξ�j

p
ln r

�
; ð68Þ

and would eventually dominate over the Newtonian term.
What is more problematic is that these oscillatory correc-
tions appear as Oðϵ−1Þ × ΔΦ, Oðϵ−1Þ × ΔΨ in Eq. (62) and
thus the second and third terms easily make X negative.
Recalling that X ¼ ðΠ0Þ2 must be non-negative, case (i) is
not acceptable [except for the case where the parameters are
fine-tuned so that the coefficients of the second and third
terms in Eq. (62) vanish].
In case (ii), the correction terms in Eqs. (56) and (57)

grow as ∼rnþ with 1=2 < nþ < 3 and dominate immedi-
ately over the standard Newtonian forces. Therefore, this
case is also dangerous.
In contrast, in case (iii), Φ00 and Ψ00 do not diverge at the

center even if D1 ≠ 0. Instead, one can set C1 ¼ 0 so that
the correction terms fall off as ∼rn− with n− < −2.
Therefore, there are small corrections to the gravitational
forces and they remain small:

ΔΦ ∼ ϵ

�
r
R0

�
n−

n− < −2: ð69Þ

For a quasicircular orbit, this modification causes the
anomalous perihelion advance per orbit

δφ ¼ πr½r2ðΔΦ=rÞ0�0 ¼ OðΔΦÞ: ð70Þ

For Mercury we have δφ ∼ ϵ × 102n− , while the observa-
tional error of the advance of Mercury’s perihelion is given
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by σδφ∼10−10 [36], leading to the bound ϵ × 102n− ≲ 10−10

(note that the power n− depends on the parameters). Using
Moon we obtain a similar bound.
In the interior region, the additional corrections come

from nonvanishing M0 and M00, as seen from Eqs. (53)
and (54). Note that, for given M ¼ MðrÞ, these
corrections appear in a different way from the case of

DHOST theories (Ξ� ¼ 0), because in the DHOST case
we simply obtain σ ¼ Ξ1G

ðαL¼0Þ
N M00r2 without solving

the second-order differential equation for σ. In the
simple case of constant matter density where MðrÞ ¼
M0ðr=R0Þ3 for r ≤ R0, it follows from Eq. (54) that
the correction to the Newtonian force in the interior
region is given by

Φ0 −
GðαL¼0Þ

N M
r2

¼ 6Ξ1

GðαL¼0Þ
N M
r2

�
1

1þ 6Ξ�
−

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − Ξ�

p ð5 ffiffiffiffiffiffiffiffiffi
−Ξ�

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − Ξ�

p Þ
�

r
R0

�
nþ−3

�
: ð71Þ

Here, we presented only the result of case (iii) (−1=6 < Ξ� < 0, nþ > 3, n− < −2) since the correction in the exterior
region remains small only in this case, as we have seen above. For completeness, we present the exterior solution explicitly,

Φ0 −
GðαL¼0Þ

N M0

r2
¼ −

GðαL¼0Þ
N M0

r2
·

12Ξ1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − Ξ�

p ð5 ffiffiffiffiffiffiffiffiffi
−Ξ�

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − Ξ�

p Þ
�

r
R0

�
n−
: ð72Þ

Note that Φ0 is continuous across r ¼ R0.

VI. CONCLUSIONS

Higher-order scalar-tensor theories in general have
unstable Ostrogradsky modes due to the higher-derivative
nature of the field equations. To evade this instability, the
degeneracy conditions are imposed among functions in the
Lagrangian so that the kinetic matrix is degenerate in any
gauge. The dangerous Ostrogradsky mode is thus removed
in such (totally) DHOST theories [8–10]. Recently, it was
noticed that one can have healthy higher-order scalar-tensor
theories even if the degeneracy conditions are satisfied
only in the unitary gauge and are thus broken partially.
A seemingly dangerous mode then appears, but it is an
instantaneous mode obeying an elliptic equation on space-
like hypersurfaces, and hence the system is free from
instabilities under appropriate boundary conditions. Such
theories are called U-DHOST theories, whose action is
given by Eq. (1) with Eqs. (2) and (3).
In this paper, we have studied weak gravitational fields

produced by a nonrelativistic source in U-DHOST theories.
We have paid particular attention to the role of nonlinear
derivative interactions that are essential for the Vainshtein
screening mechanism in the Horndeski theory [21–23] and
its breaking in theories beyond Horndeski [24–28].
First, we have considered the generic U-DHOST theories

satisfying A1 þ A2 ¼ a1 þ a2 ≠ 0, characterized by αL ≠ 0
in terms of the so-called EFT parameters. In sharp contrast
to the case of totally degenerate theories, we have found
that nonlinear terms can never be important and the linear
analysis is sufficient in the weak-field regime of U-DHOST
theories. Since the Vainshtein screening mechanism does
not come to help at all, we need to tune to some extent the
form of the Lagrangian in order to pass solar-system tests.

We have identified the subset of U-DHOST theories
evading the experimental tests, which is characterized by
f ¼ fðϕÞ, a1 ¼ f=2X ≠ −a2, with the other functions of ϕ
and X being free [see Eqs. (1)–(3) for the more explicit
form of the action]. Note that, thanks to the detuning of the
degeneracy conditions, U-DHOST theories are free from
the pathology of the diverging Newton constant and
unavoidable gradient instabilities pointed out in totally
degenerate theories with αL ≠ 0 [31].
Our results show that there exists a large family of

healthy, viable scalar-tensor theories in the U-DHOST
class. Then, it would be interesting to explore cosmologies
of U-DHOST theories and test them against cosmological
observations such as the cosmic microwave background,
using, for example, the Boltzmann solver developed for
higher-order scalar-tensor theories in Refs. [37–39]. This is
left for further study.
We have also investigated the special case where

αL ∝ A1 þ A2 ¼ a1 þ a2 ¼ 0, but the remaining one of
the degeneracy conditions is still violated. In this case, the
nonlinear derivative interactions play a key role in deter-
mining the behavior of weak gravitational fields as in the
Vainshtein regime of totally degenerate theories.
Technically, the problem essentially reduces to solving
an algebraic equation for the first derivative of the fluc-
tuation of the scalar field, π0, in the case of totally
degenerate theories. In contrast, we need to solve a
differential equation for π0 in U-DHOST theories (with
αL ¼ 0). As a result, we have found that the Vainshtein
screening mechanism does not work well both inside and
outside a matter object, giving rise to modifications of
gravitational forces. The detail of modifications depends on
the density profile of matter as well as the theory param-
eters in a complicated way, and in some cases the
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modifications are too large at large distances from the
source, invalidating the models.
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APPENDIX A: THE NONLINEAR EFFECTIVE
ACTION AND THE EFT PARAMETERS

Writing the metric as ds2 ¼ −N2dt2 þ γijðdx2þ
NidtÞðdxj þ NjdtÞ, one can express the U-DHOST action
(1) in the unitary gauge in terms of the ADM variables as

S ¼
Z

dtd3x
ffiffiffi
γ

p
N

�
P̃þ Q̃K þ ðf þ 2XA1ÞKj

iK
i
j − ðf − 2XA2ÞK2 þ fRð3Þ

þ 2ϕ̇0

N
ð−fX þ A2 − XA3ÞKV þ ½A1 þ A2 − 2XðA3 þ A4Þ þ 4X2A5�V2 þ 4Xð−fX − A1 þ XA4Þaiai

	
; ðA1Þ

where X ≔ ϕ̇2
0=ð2N2Þ, Kij is the extrinsic curvature of

spatial hypersurfaces, Rð3Þ is the three-dimensional Ricci
scalar,

V ≔
1

N
∂t

�
ϕ̇0

N

�
þ ϕ̇0

N
Ni

N
∂iN; ðA2Þ

and ai ≔ ∂iN=N. Here we defined the functions P̃ and Q̃ of
t and N as

P̃ ≔ Pþ
ffiffiffiffi
X

p Z
X Qϕðϕ; yÞffiffiffi

y
p dy;

Q̃ ≔ −signðϕ̇0Þ
Z

X ffiffiffiffiffi
2y

p
Qyðϕ; yÞdy −

2ϕ̇0

N
fϕ: ðA3Þ

In deriving the above expression we used the fact that for
any function F of ϕ0 and X the following combination is a
total divergence:

ffiffiffi
γ

p
N

�
ðF þ 2XFXÞV þ ϕ̇0

N
FK þ 2XFϕ

�
: ðA4Þ

The above action is then expanded around a flat FLRW
background in terms of the perturbation of the lapse
function, δN ¼ N − 1, and the perturbation of the extrinsic
curvature, δKj

i ¼ Kj
i −Hδji . We obtain the action of the

form

S ¼
Z

dtd3x
ffiffiffi
γ

p M2

2

�
ð1þ δNÞ

�
δKj

iδK
i
j −

�
1þ 2

3
αL

�
δK2

�
þ ð1þ αTÞRð3Þ þ 4HαBδNδK þ ð1þ αHÞδNRð3Þ

þ 4β1δKδV þ β2δV2 þ β3aiai − αV1δNδKj
iδK

i
j þ αV2δNδK2 þH2αKδN2 þ…

	
; ðA5Þ

where δV ≔ Ṅ=N − ðNi=NÞ∂iN and the ellipses represent
the terms that are irrelevant for weak fields in the
quasistatic regime (the last term H2αKδN2 is also irrel-
evant for that case). The EFT parameters introduced in the
main text are defined as the coefficients in the above
effective action.
Let us comment on the stability of linear perturbations in

U-DHOST theories. The quadratic action for scalar per-
turbations around a cosmological background can be
derived from Eq. (A5). It is known that the scalar
perturbations are unstable in fully degenerate theories with
αL ≠ 0 in the case where tensor perturbations are stable,
M2 > 0, 1þ αT > 0 [30,31]. This is not always the case if
the degeneracy conditions are relaxed.

It is convenient to introduce ζ̃ defined as

ζ̃ ≔ ζ − β1δN; ðA6Þ

where ζ is the usual curvature perturbation, γij ¼
a2ðtÞe2ζδij. Ignoring the effect of matter fields, the quad-
ratic action for ζ̃ on subhorizon scales can be written as [31]

S ¼
Z

dtd3x
a3M2

2

�
6ð1þ αLÞ

αL
ð∂tζ̃Þ2 −

B̃
a2

ð∂ζ̃Þ2
�
; ðA7Þ

where αL ≠ 0 has been assumed and
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B̃≔
2ð1þαLÞ2½2ð1þαHÞ2− ð1þαTÞβ3�

4ð1þαLÞð1þαHÞβ1þ2ð1þαTÞβ21þð1þαLÞ2β3
:

ðA8Þ

Note that B̃ neither vanishes nor diverges if one relaxes the
degeneracy condition on β3. To avoid ghost and gradient
instabilities on subhorizon scales we need to require that

1þ αL
αL

> 0; B̃ > 0: ðA9Þ

The stability conditions for superhorizon perturbations are
much more complicated and can be found in Appendix D
of Ref. [31].

APPENDIX B: THE COEFFICIENTS IN THE
EFFECTIVE LAGRANGIAN

The coefficients in the effective Lagrangian (16) are
given explicitly by

c1 ≔ −
2

ϕ̇0

fH½2αB − 2αH þ 2αL þ β3ð1þ αMÞ� þ β̇3g;

c2 ≔
4

ϕ̇0

fH½αM þ αHð1þ αMÞ − αT � þ α̇Hg;

c3 ≔ −
1

4X
fH2½4αBð1þ αMÞ − 4ðαH þ αM þ αHαM − αTÞ þ ð1þ αMÞ2β3�

þ Ḣð4þ 4αB − 4αH þ 8αL þ β3 þ αMβ3Þ þH½4α̇B − 4α̇H þ β3α̇M þ 2ð1þ αMÞβ̇3� þ β̈3g

þ ½Hð1þ αMÞð4β1 þ β3Þ þ 4β̇1 þ β̇3�
ϕ̈0

2ϕ̇0X
− ð4β1 þ β3Þ

ϕ̈2
0

4X2
−
ρ̄þ p̄
2M2X

;

c4 ≔ 4ð1þ αHÞ; c5 ≔ −2ð1þ αTÞ; c6 ≔ −β3;

c7 ≔
4

ϕ̇0

ðαH − αLÞ; c8 ≔ −
2

ϕ̇0

ð2β1 þ β3Þ; c9 ≔
1

2X
ð4β1 þ β3Þ; c10 ≔ −

αL
3X

;

b1 ≔
1

6Xϕ̇0

fH½12αB − 3αHðαM þ 3Þ þ 4αLð2αM − 3Þ þ 3αMðαV1 − 8β1 − 2Þ þ 9αT − 3αV1�

− 3α̇H þ 8α̇L þ 3ðα̇V1 − 8β̇1Þg þ ½3ð4β1 þ β3Þ − 8αL�
ϕ̈0

6X2
;

b̃1 ≔ −
1

3M2ϕ̇0X

d
dt
ðM2αLÞ −

ϕ̈0

4X2
ðαV1 − αV2Þ; b2 ≔

1

2X

�
−αH − 4β1 þ

1

2
ðαV1 þ αV2Þ þ

5

3
αL

�
;

b̃2 ≔ −
1

4X
ð2αL þ αV1 − αV2Þ; b3 ≔

1

2X

�
αT −

5

3
αL

�
; b̃3 ≔ −

αL
6X

;

b4 ≔ −
2

X

�
αH −

αL
3

�
; b5 ≔

1

X

�
2β1 þ β3 −

4

3
αL

�
; b6 ≔ −

1

ϕ̇0X

�
4β1 þ β3 −

4

3
αL

�
;

b̃6 ≔
1

2ϕ̇0X

�
4

3
αL þ αV1 − αV2

�
; d1 ≔ −

1

2X
ðb2 þ b3Þ −

αL
6X2

;

d̃1 ≔
1

8X2

�
4

3
αL þ αV1 − αV2

�
; d2 ≔

1

4X2

�
4β1 þ β3 −

4

3
αL

�
; ðB1Þ

where αT , αH, β1, β3, αL, αV1, and αV2 are the EFT parameters defined in Eq. (9), αM and αB are given by

M2HαM ¼ d
dt
M2; ðB2Þ

M2HαB ¼ ð3fX þ 2XfXX þ A1 − 2A2 − 2XA2X þ 3XA3 þ 2X2A3X − 2XA4 þ 4X2A5Þϕ̇0ϕ̈0

− 2HðfX þ 2A1 þ 2XA1X þ 3A2 þ 6XA2X þ 3XA3ÞX þ ðfϕ þ 2XfϕX þ XQXÞϕ̇0; ðB3Þ
H ≔ ȧ=a, and we used the homogeneous part of the field equations to simplify the expression for c3 and express it in terms
of the background energy density ρ̄ and pressure p̄.
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