
Gravitational waves from extreme-mass-ratio inspirals
in the semiclassical gravity spacetime

Tieguang Zi* and Peng-Cheng Li †

School of Physics and Optoelectronics, South China University of Technology,
Guangzhou 510641, People’s Republic of China

(Received 18 November 2023; accepted 6 March 2024; published 28 March 2024)

Recently, Fernandes discovered analytic stationary and axially symmetric black hole solutions within
semiclassical gravity, driven by the trace anomaly. The study unveils some distinctive features of these
solutions. In this paper, we compute the gravitational waves emitted from the extreme-mass-ratio inspiral
(EMRI) around these quantum-corrected rotating black holes using the kludge approximate method. First, we
derive the orbital energy, angular momentum, and fundamental frequencies for orbits on the equatorial plane.
We find that, for the gravitational radiation described by quadrupole formulas, the contribution from the trace
anomaly only appears at higher-order terms in the energy flux when compared with the standard Kerr case.
Therefore, we can compute the EMRI waveforms from the quantum-corrected rotating black hole using the
Kerr fluxes. We assess the differences between the EMRI waveforms from rotating black holes with and
without the trace anomaly by calculating the dephasing and mismatch. Our results demonstrate that space-
borne gravitational wave detectors can distinguish the EMRI waveform from the quantum-corrected black
holes with a fractional coupling constant of ∼10−3 within one year observation. Finally, we compute the
constraint on the coupling constant using the Fisher information matrix method and find that the potential
constraint on the coupling constant by LISA can be within the error ∼10−4 in suitable scenarios.
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I. INTRODUCTION

The continuously rising occurrences of gravitational
wave (GW) events resulting from the coalescence of
compact binaries have been extensively reported [1–4].
Various issues have been explored using the GW datasets,
encompassing tests of general relativity (GR) and its
extensions [5,6], investigations into cosmic histories [7],
examinations of dark matter [8,9], and more [10,11]. With
advancements in current and future detector technologies in
the realm of detectability, it becomes possible to explore
novel astrophysical effects in the vicinity of dark and
mysterious sources in the deep Universe [12]. This progress
also enables investigations into the nature of classical
and quantized horizons [13–16]. Particularly, according
to the Kerr hypothesis in the context of GR [17], these
GW detections may help us to verify whether the massive
compact objects are Kerr black holes (BHs) or not [18–20].
Besides, the presence of quantized signal of horizon is
possible to be explored using the GW echoes observed by
space-based GW detectors [13,16].
The no-hair theorem in the framework of GR supports

that the BHs can be described by Kerr-Newmann solution

without any charge [21,22]. This, however, can be evaded
in the alternatives of GR (see reviews [22–24]). In those
extension theories, BHs can carry extra nontrivial scalar,
vector, or tenser hairs, which possess a more complex
multipolar structure compared with the stationary and
axisymmetric Kerr BH. Additionally, after considering
the exotic matter, the no-hair theorem can be circumvented,
where the axisymmetry structure of spacetime is broken
[25–27]. The evitable cases of the no-hair theorem can
result from the astrophysical environments, which are
physical beyond GR and quantum corrections. Among
the violation schemes, the semiclassical approach to GR, as
an interesting and useful means to find BH solutions,
includes the quantum effect of matter field and the classical
spacetime geometry [28]. One popular trace anomaly
method essentially is a one-loop quantum correction effect
in the invariant classical theory, which breaks the conformal
symmetry [29,30]. This could result in a stress-energy
tensor of quantum fields with a nontrivial trace, which is
related only with the curvature of spacetime, making it a
feasible way to study the quantum phenomenon in the
gravitational fields [31–34]. More recently, analytic, sta-
tionary, and axisymmetric spinning BH solutions have been
obtained by considering the presence of the trace anomaly,
which owns the nonspherically symmetric event horizon
and violates the Kerr bound [35]. Unlike the mass of Kerr
BH that is independent of the other spatial coordinates,
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the quantum-corrected BH (QCBH) solution has a mass
function, that is

Mðr; θÞ ¼ 2M

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8αrξM

Σ3

q ; ð1Þ

where M is the Arnowitt-Deser-Misner mass of the BH,
Σ ¼ r2 þ a2 cos2 θ and ξ ¼ r2 − 3a2 cos2 θ with a spin
parameter a, and α is the coupling constant of the trace
anomaly. In the context of this new discovered QCBH,
there are several works to study the different effects of the
trace anomaly, including the validity of the weak cosmic
censorship conjecture [36], the computation of BH shad-
ows [37], and the study of the nonrotating and rotating
cases with a cosmological constant [38]. In this paper, we
plan to study the detectability of the trace anomaly of the
QCBH using the observations of the extreme-mass-ratio
inspirals (EMRIs) and put constraint on the coupling
constant α with the future space-borne GW observatories,
such as LISA [39], TianQin [40], and Taiji [41].
An EMRI is the dynamic process of inspiral, wherein a

stellar-mass compact object (CO) with mass μ orbits around
the massive black hole (MBH) with massM at the core of a
galaxy. During this process, the orbits slowly dampen due
to the radiated GWs until reaching the last stable orbit. The
low frequency GW signal emitted from such binaries
exactly lies in the mHz band of LISA, which is expected
to be one of the key target sources [42,43]. In addition,
the EMRI systems carry a tiny mass ratios ϵ ¼ μ=M∈
½10−7; 10−4�, which implies that the CO accumulates
Oð1=ϵÞ ∼ 104–107 in the strong field regime until it is
captured by the MBH. After matched filtering the phase in
the LISA data stream with the waveform templates [44,45],
EMRI detections allow us to accurately measure the
parameters of sources or test the Kerr nature of the
MBH [18,20,46,47]. From the point of view of astrophys-
ics, it is possible to probe the astrophysical environment
[48–56]. Besides, from the viewpoint of detecting the
nature of horizons, there have been some works to study
the differences of the presence or absence of horizon in the
EMRI waveforms [57–59], which also considered several
effects, such as tidal heating [60,61], tidal deformability
[62–64], and area quantization [65,66]. Based on the above
mentioned literature, it is feasible to probe the astrophysical
effects near the horizon using the EMRI observations. Thus
we intend to compute the EMRI waveform from the
QCBHs and analyze the distinction of QCBHs from
Kerr BHs by computing the dephasing and mismatch, then
obtain the constraint on the deviation parameter α of
QCBHs with Fisher information matrix (FIM) method.
This paper is organized as follows. In Sec. II, the

calculation recipe of EMRI waveform in the spacetime
of the QCBH is presented, which includes the review of
the spacetime background and geodesics in Sec. II A, the

evolution method to compute EMRI inspiral trajectories in
Sec. II B, waveform formula and analysis method of GW
data in Sec. II C. We show the results of waveform
comparison and the constraints using the EMRI observa-
tions of LISA in Sec. III. Finally, we give a brief summary
in Sec. IV. The geometric units G ¼ c ¼ 1 throughout this
paper are utilized.

II. METHOD

A. Background and geodesics

The stationary and axisymmetric BH solutions have been
obtained by solving the semiclassical Einstein equations
with the type-A trace anomaly. The solutions are called as
QCBHs, whose line element is written in the following
form in ingoing Kerr coordinates [35]:

ds2 ¼ −
�
1 −

2rMðr; θÞ
Σ

�
ðdv − asin2θdφÞ2

þ 2ðdv − asin2θdφÞðdr − asin2θdφÞ
þ Σðdθ2 þ sin2θdφ2Þ: ð2Þ

Note that this metric is of the form of the one in the
principled-parametrized approach that implements locality
and regularity [67–69]. We would like to work in the more
familiar Boyer-Lindquist coordinates. However, due to the
fact that the spacetime is noncircular, the usual coordinate
transformation between the ingoing Kerr coordinates and
the Boyer-Lindquist coordinates in the Kerr case cannot be
applied here, since curvature singularities that lie on the
horizon would be introduced. Fortunately, if we are
restricted to the equatorial plane, then the transformation
between the ingoing Kerr coordinates and the Boyer-
Lindquist coordinates would be valid. That is, we have
the proper coordinate transformation that respects non-
circularity is given by

dt ¼ dv −
r2 þ a2

r2 þ a2 − 2Mðr; π=2Þr dr; ð3Þ

dφ ¼ dϕ −
a

r2 þ a2 − 2Mðr; π=2Þr dr; ð4Þ

where the coordinates t; r; θ;ϕ are the standard coordinate
system in the Boyer-Lindquist form.1 Then the metric of
QCBH can be written as

ds2 ¼ Σ
Δ
dr2 þ 1

Σ
½ðr2 þ a2Þdϕ − adt�2

−
Δ
Σ
ðadϕ − dtÞ2 ð5Þ

1This conclusion is obtained by the helpful comments of
anonymous referee.
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with Δ ¼ r2 − 2rMðr; π=2Þ þ a2. One can find that if we
restrict ourselves to the equatorial plane, then the above
metric would have a simple connection with the Kerr metric
by replacing the mass in the Kerr metric with the mass
function (1). When the parameter α ¼ 0, the solution
returns to the classical Kerr BH.
In this paper, we focus on the orbits and waveform of

EMRIs, thus the timelike geodesics of the QCBH would
be presented. First, we introduce some basics about the
geodesics. For a point particle, the Hamiltonian can be
written as

H ¼ 1

2
gμνpμpν ¼ −

1

2
m2; ð6Þ

where pμ and m is the momentum and rest mass of the
particle, respectively. Since the spacetime (5) is stationary
and axisymmetric, the particle along the geodesic has two
conserved quantities, i.e., the energy and z component of
the angular momentum,

E
m

¼ −ðgttṫþ gtψ ψ̇Þ;
Lz

m
¼ gtψ ṫþ gψψ ψ̇ ; ð7Þ

where the dot denotes differentiation with respect to proper
time τ. We can get two first-order decoupled differential
equations about the t and ψ momenta in light of equa-
tions (7), the following form is written as

ṫ ¼ Egψψ þ Lzgtψ
mðg2tψ − gttgψψ Þ

; ψ̇ ¼ Egtψ þ Lzgtt
mðgψψgtt − g2tψ Þ

: ð8Þ

In this paper we focus on the equatorial orbits, the
coordinate θ becomes θ ¼ π=2 and θ̇ ¼ 0. According to
the Eq. (6), we can obtain the equations of the r and
simplify Eq. (8)

r2
dr
dτ

¼ �
ffiffiffiffiffiffi
Vr

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 − Δ½m2r2 þ ðLz − aEÞ2�

q
; ð9Þ

r2
dϕ
dτ

¼ Vϕ ¼ aT
Δ

þ Lz − aE; ð10Þ

r2
dt
dτ

¼ Vt ¼
ðr2 þ a2ÞT

Δ
þ Lz − aE; ð11Þ

θðτÞ ¼ π=2; ð12Þ

where T ¼ Eðr2 þ a2Þ − aLz. Since we will discuss the
bound orbits, whose energy satisfies 0 < E < 1. The
bound orbits are described by the energy E, angular
momentum Lz, semilatus rectum p, and eccentricity e.
For the equatorial eccentric orbit, there exists two turning
points, which are the periastron rp and the apastron ra,

rp ¼ p
1þ e

; ra ¼
p

1 − e
: ð13Þ

The radial potential Vr satisfies VrðraÞ ¼ 0 and
VrðrpÞ ¼ 0; with this condition, we can get the expressions
E and x by defining x ¼ Lz − aE. Since the full expres-
sions of E and x are lengthy, we just put them in the
ancillary Mathematica file in Ref. [70]. Using the param-
eters p and e, the radial coordinate can be written as

rðχÞ ¼ p
1þ e cos χ

; ð14Þ

where χ is a monotonic parameter that varies from 0 to 2π,
it equals to 0 at r ¼ rp and the parameter χ ¼ π at r ¼ ra.
According to the parametrization method (14), the geodesic
equations can be transformed as

dr
dτ

¼
ffiffiffiffiffiffiffi
Vrχ

p
p3=2Pα

; ð15Þ

dt
dτ

¼ axð1þ e cosχÞ2
p2

þ ð1þ e cosχÞ2ðp2 þ a2ð1þ e cosχÞ2Þ
a2p2ð1þ e cosχÞ2 þp3ðp− 4Mð1þ e cosχÞ=PαÞ

×

�
Ep2

ð1þ e cosχÞ2 − ax

�
; ð16Þ

dϕ
dτ

¼ ð1þ e cos χÞ2ðaEpP2
α þ ðp − 4M þ pðP2 − 1Þx

− 4exM cos χÞÞ=ðpða2e2P2
αcos2ðχÞ

þ 2e cos χða2P2
α − 2MpÞ þ a2P2

α

þ pð−4M þ pðP2
α − 1Þ þ pÞÞÞ; ð17Þ

where

Vrχ ¼−2aEpðP2
α−1ÞxðecosðχÞþ1Þ2

−2aEpxðecosðχÞþ1Þ2−pðP2
α−1ÞðaecosðχÞþaÞ2

−pðaecosðχÞþaÞ2þ4Mp2ðecosðχÞþ1Þ
þ4Mx2ðecosðχÞþ1Þ3−pðP2

α−1ÞðexcosðχÞþxÞ2
−pðexcosðχÞþxÞ2þE2p3ðP2

α−1ÞþE2p3

−p3ðP2
α−1Þ−p3 ð18Þ

with Pα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8αMðe cosðχÞþ1Þ3

p3

qr
. In terms of

Eqs. (17), (15), (16) and using the relation dr=dχ ¼
ep sinðχÞ

ðe cosðχÞþ1Þ2, we can obtain

dt
dχ

¼ dt
dτ

�
dr
dτ

�
−1 dr

dχ
; ð19Þ
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dϕ
dχ

¼ dϕ
dτ

�
dr
dτ

�
−1 dr

dχ
; ð20Þ

then the radial period is given by Tr ¼
R
2π
0

dt
dχ, similarly the

azimuthal period isΔϕ ¼ R
2π
0

dϕ
dχ . In terms of the two orbital

periods, the radial frequency Ωr, and azimuthal frequency
Ωϕ can be written as

Ωr ¼
2π

Tr
; Ωϕ ¼ Δϕ

Tr
: ð21Þ

Thus the total orbital frequency ω is equal to linear
combination of radial frequency Ωr and azimuthal fre-
quency Ωϕ, which is related with the orbital phase Φ by

ωðtÞ ¼ dΦ
dt

: ð22Þ

B. Adiabatic evolution

The dynamic of EMRI orbits are dominated by the
dissipation of energy and angular momentum due to
gravitational wave emission. Under the conditions of
adiabatic approximation, the inspiraling orbits of secondary
object can be obtained by the evolution of geodesics in the
QCBH spacetime, and the insprial will be cut off near the
last stable orbit. The change rate of the orbital energy and
angular momentum ðĖ; L̇zÞ can be given by the balance law

Ė ¼ −ĖGW; L̇z ¼ −L̇z
GW; ð23Þ

where the ðĖ; L̇zÞGW are GW fluxes resulted from the loss
of EMRI orbits. The fluxes ðĖ; L̇zÞGW modified by the
parameter α of QCBH can be neglected, it is because that
the contribution of the parameter α appears at the higher
order ∼Oð1=pÞ4 in the frame of the weak field approxi-
mation. To illustrate this point, we argue that the energy
fluxes differences between the Kerr and QCBH cases
are put in Appendix A. Therefore, the fluxes ðĖ; L̇zÞGW
are approximately described by fluxes of Kerr BH [71], the
detailed expression is placed in Appendix A.
The evolutions of orbital semilatus rectum and eccen-

tricity are given by the following equations [72]:

ṗ ¼ H−1
�
−
dE
de

L̇z þ
dLz

de
Ė

�
; ð24Þ

ė ¼ H−1
�
dE
dp

L̇z −
dLz

dp
Ė

�
; ð25Þ

where the dot denotes the time derivative and
H−1 ¼ dE

dp
dLz
de − dE

de
dLz
dp .

To quantitatively assess the effect of the additional
parameter α on the EMRI observations by LISA, we evolve

the orbital frequencies in the spacetime of Kerr BH and
QCBH, where the latter is affected by the quantum correc-
tions. For a given time t, the dephasing can be defined by the
integral of the difference of orbital frequencies

δΨr;ϕðtÞ ¼
Z

t

0

2ðΩα≠0
r;ϕ −Ωα¼0

r;ϕ Þdt; ð26Þ

where Ωα
r;ϕ are the orbital frequencies in Eq. (21).

C. Waveform

With the evolution of Eqs. (24) and (25) at hand, we can
simulate the inspiral trajectories with and without the effect
of the trace anomaly using numerical method. The EMRI
orbits obtained from Eqs. (24) and (25) allow to calculate
EMRI signal [73,74], and the spacetime perturbation far
from the source is written as in the transverse-traceless
gauge

hTTij ¼ 2

D

�
PilPjm −

1

2
PijPlm

�̈
Ilm; ð27Þ

where D is the luminosity distance from source to detector,
Pij ¼ δij − ninj is the projection operator, ni is the unit
vector directing from detector to source, and δij is the
Kronecker delta. The quantity ̈Ilm is the second time
derivative of mass quadrupole moment, which is given
by Iij ¼ μriðtÞrjðtÞ. The GW polarization modes can be
simplified in terms of Eq. (27) as

hþðtÞ ¼ A cos ð2ΦðtÞ þ 2ξÞð1þ cos2 ιÞ; ð28Þ

h×ðtÞ ¼ −2A sin ð2ΦðtÞ þ 2ξÞ cos2 ι; ð29Þ

where A ¼ 2μðMωðtÞÞ3=2=D, ι is the inclination angle
between the orbital angular moment and line of sight and ξ
is the latitudinal angle. Under the low-frequency approxi-
mate condition, the GW strain measured by detector can be
given by

hðtÞ ¼
ffiffiffi
3

p

2
½hþðtÞFþðtÞ þ h×ðtÞF×ðtÞ�; ð30Þ

where the interferometer pattern function Fþ;×ðtÞ can be
determined by four angles, which describe the source
orientation ðθs;ϕsÞ and the direction of MBH spin
ðθk;ϕkÞ in the ecliptic coordinate [75,76].
The dephasing provide a preliminary criterion of the

QCBH, a more accurate assessment is to compute the
mismatch between two waveforms from EMRI with and
without the additional parameter α. The mismatch is
defined by

M ¼ 1 −OðhajhbÞ; ð31Þ
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where the overlap OðhajhbÞ is given by inner product

OðhajhbÞ ¼
hhajhbiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhajhaihhbjhbi

p ; ð32Þ

with the noise-weighted inner product hhajhbi is defined by

hhajhbi ¼ 2

Z
∞

0

df
h�aðfÞhbðfÞ þ haðfÞh�bðfÞ

SnðfÞ
; ð33Þ

here the tilde and star stand for the Fourier transform and
complex conjugation, respectively, and the noise power
spectral density SnðfÞ of space-borne GW detector, such as
LISA [39]. When two waveforms keep equivalent, the
overlap is one and the mismatch is vanishing. A rule of
thumb formula regarding waveforms resolution has been
proposed, in which the detector would distinguish two
waveforms if their mismatch satisfiesM≥D=ð2ρ2Þ [77,78],
where D is the number of the intrinsic parameters for the
EMRI system and ρ is signal-to-noise ratio (SNR) of EMRI
signal. For the EMRI with QCBH, the number of intrinsic
parameters is 7. Assuming that the minimum SNR is 20
detected by LISA [46], so the threshold value of mismatch
distinguished by LISA should be M ≃ 0.01.
In order to evaluate capability of measuring source

parameters with LISA, we conduct the parameter estima-
tion for EMRI source using FIMmethod [79]. The FIM can
be defined by

Γab ¼
�
∂h
∂λa

���� ∂h
∂λb

�
; ð34Þ

where λa, a ¼ 1; 2;…, are the parameters appearing in the
waveform and the inner product ðjÞ is defined by Eq. (33).
For the EMRI signal with higher SNR, the variance-
covariance matrix can be approximately written as

Σab ≡ hΔλaΔλbi ¼ ðΓ−1Þab: ð35Þ

The uncertainty of the ath parameter λ is obtained as

δλa ¼ Σ1=2
aa : ð36Þ

It is remarkable that the FIM in the linear signal approxi-
mation is applicable [80]. The numerical stability of the
inverse FIM is discussed in Appendix B.

III. RESULTS

We plan to show the comparison of the EMRI wave-
forms from the quantum-corrected Kerr and standard Kerr
BHs, and quantify the difference by computing the dephas-
ing and mismatch among these waveforms. Furthermore,
we will assess the detectability of such modified EMRI
signal with the LISA observations in terms of FIM method.

A. Waveform and mismatch

First, we show the comparison of time domain EMRI
waveforms in the cases with and without the quantum
correction in Fig. 1. Here, we consider the observation time
for a CO inspiraling into the MBH is one year, and the other
parameters are set to m ¼ 30M⊙, M ¼ 106M⊙ a ¼ 0.9,
α ¼ ð0.01; 0.1Þ, p0 ¼ 12, and e0 ¼ 0.5. As shown in
Fig. 1, one can see that the two EMRI waveforms are
indistinguishable at the initial stage. However, their dis-
tinction becomes prominent after six months of observa-
tion. Moreover, we can see that a larger coupling constant α
leads to a more significant difference between the two kinds
of waveform.
To study the effects from various parameters on the

detection capability of LISA for the EMRIs from the
QCBHs, we plot the phase difference as a function of
observation time by computing the Eq. (26). Following
Refs. [53,61], the threshold value of dephasing is roughly
taken as δΨmin

r;ϕ ¼ 1 rad, above which the two kinds of
signal can be resolved by LISA. The azimuthal and radial
dephasing as a function of observation time are plotted
in Fig. 2, where the deviation parameter of QCBH with
spin a ¼ 0.9 takes values as α ¼ ð0.0001; 0.001; 0.01; 0.1;
0.2; 0.3Þ. As shown in Fig. 2, the azimuthal and radial
dephasing are growing when the deviation parameters α are
increasing. To evaluate the impact of orbital eccentricity on
the dephasing, we plot several examples of the initial orbital
eccentricities e0 ¼ ð0.1; 0.3; 0.5; 0.7; 0.9Þ in Fig. 3, where
the other parameters of QCBH are set as a ¼ 0.9,
α ¼ 0.001, and p0 ¼ 12. From Figs. 2 and 3, one can
see that the deviation parameter has a more significant
influence on the dephasing than the orbital eccentricity.
Note that the horizontal black dashed line represents
the threshold value of dephasing in the Figs. 2 and 3, so
the region above this line means the EMRI waveforms
with the quantum correction can be distinguished
by LISA.
To quantitatively evaluate the effect of the trace anomaly

on the EMRI waveform, the mismatch as a function of
observation time is plotted in Fig. 4 with a ¼ 0.9 and
p0 ¼ 12. The left panel shows the mismatch with various
values of the eccentricity and a fixed α ¼ 0.01, while the
right panel shows the mismatch with various values of
deviation parameter and a fixed eccentricity e0 ¼ 0.5. In
both panels the length of waveform is fixed as one year.
From the left panel of the figure, one can see that it is
possible to distinguish the quantum-corrected waveforms
as the orbital eccentrics is bigger. And the distinction
between the two kinds of waveform is more evident when
the initial orbital eccentricity is bigger. From the right
panel, the mismatch between waveforms emitted from the
different EMRI systems is sensitive to the deviation
parameters, and LISA has the potential to distinguish the
quantum-corrected waveform with the deviation parameter
as small as α ¼ 0.003.
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Figure 5 shows the mismatch as a function of mass and
spin of the MBH with the deviation parameter α ¼ 0.01
and the initial orbital parameters p0 ¼ 12 and e0 ¼ 0.5,
considering the one year observation of the EMRI signal.

The horizontal black dashed line is the threshold value
of the mismatch M ¼ 0.01. From this figure, we can find
that the mismatch is more sensitive to the spin of the MBH
than to its mass. When the spin of the MBH satisfies

FIG. 2. Azimuthal (left) and radial (right) dephasings as functions of the observation time, where the spin of MBH a ¼ 0.9 and the
deviation parameter α ¼ ð0.0001; 0.001; 0.01; 0.1; 0.2; 0.3Þ. The initial orbital semilatus rectum and eccentricity are set to p0 ¼ 12 and
e0 ¼ 0.5. The horizontal black dashed line in the figures denotes the threshold for phase that can be distinguished by LISA.

FIG. 1. Comparison between the polarizations hþ of three EMRI waveforms from the standard Kerr and the quantum-corrected Kerr
BHs with derivation parameter α ¼ ð0.01; 0.1Þ. The BH spin and the initial orbital parameters are chosen to a ¼ 0.9, p0 ¼ 12 and
e0 ¼ 0.5. The left panel of top figures is the initial stage of the time domain waveforms and the right panel of top figures denotes the time
domain waveforms after six months. The bottom of figure is the full time domain waveforms of hþ, where the inspiral time of the CO is
set as one year.
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a≳ 0.79, the EMRI waveform with the presence of the
trace anomaly can be distinguished by LISA.

B. Constraint on the trace anomaly

In this subsection, we perform the parameter estimation
for the deviation parameter α using the FIM method. By
setting the central values of the α to a given value, we can
obtain the constraint on the strength of trace anomaly by
LISA. In general, the inspiral is truncated at the last stable
orbit of the MBH [81]. In this work, by choosing the initial
values of the orbital parameters appropriately, we can fix
the length of the waveform to one year and keep the
inspiral way from the cutoff. The initial orbital parameters
are set as p0 ¼ 12 and e0 ¼ 0.5, and the deviation
parameter of the MBH is fixed as α ¼ 0.001. Here we
only focus on the effects from the mass and spin of the

MBH and let other parameters fixed, since the former ones
are more significant.
We plot the parameter estimation uncertainty Δα

as a function of spin and mass of the MBH in Fig. 6.
It is found that the uncertainty of the deviation parameter
Δα decreases with the spin parameter when the mass of
the MBH is fixed. In particular, if the spin of the MBH is
small, then the uncertainty could exceed the threshold 1,
which means α cannot be constrained with EMRI signals
in this case. However, the parameter estimation accuracy
gets improved quickly with the increase of the spin of the
MBH. So the MBH with the largest spin has the best
constraint on α. We can find that when the spin parameter
a > 0.8 and the mass of the MBH take values around
106M⊙, the constraint on the deviation parameter can
reach the level of ∼10−4 for a one year observation
by LISA.

FIG. 3. Azimuthal (left) and radial (right) dephasings as functions of the observation time are plotted, where the spin of MBH a ¼ 0.9
and the deviation parameter α ¼ 0.01. The initial orbital semilatus rectum and eccentricity are p0 ¼ 12 and e0 ¼ ð0.1; 0.3; 0.5; 0.7; 0.9Þ.
As before, the horizontal black dashed line in the figures denotes the threshold for phase that can be distinguished by LISA.

FIG. 4. Mismatch between waveforms emitted from EMRI systems with and without the trace anomaly as a function of observation
time are plotted, where the length of waveform is set as one year and a ¼ 0.9. The left panel depicts several cases of eccentricities
e0 ¼ ð0.1; 0.3; 0.5; 0.7; 0.9Þ with α ¼ 0.01 and p0 ¼ 12, and the right panel shows the examples of different deviation parameters
α ¼ ð0.0001; 0.0005; 0.001; 0.003; 0.005; 0.01; 0.05Þ with e0 ¼ 0.5 and p0 ¼ 12. The horizontal black dashed line denotes the
minimum value distinguished by LISA.
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IV. CONCLUSION

In this paper, we computed the gravitational waves
emitted from the extreme mass ratio inspirals around
rotating BHs in semiclassical gravity sourced by the trace
anomaly using the kludge approximate method. We first
derived the orbital energy, angular momentum, and
fundamental orbital frequencies for orbits on the equato-
rial plane. We found that, for the gravitational radiation
described by quadrupole formulas, the contribution from
the trace anomaly only appears at higher order terms in the
energy flux comparing with the standard Kerr case.
Therefore, we evaluated the hybrid orbital evolution
equations using the energy flux of Kerr BH, then com-
puted the EMRI waveform with the quadruple formula
[73,82]. Moreover, we assessed the differences of phase of

the waveforms with and without the trace anomaly by
computing the dephasing. Our results indicated that the
dephasing is more significant for the larger values of the
initial eccentricity e0 and the deviation parameter α. By
computing mismatches of the two kinds of waveform, we
found that QCBH with a≳ 0.79 can be distinguished from
the Kerr BH. According to the parameter estimation of
quantum-corrected parameter α, the constraints on the
parameter α are seriously subjected with the spins of
QCBH. In particular, LISA can determine the parameter α
within a fractional error of ∼10−4 for the higher spinning
QCBH, and EMRI sources with the lower spinning QCBH
could not be measurable, especially the more mas-
sive QCBH.
It is interesting to perform the study using the

complete perturbation theory for the QCBHs, which
can provide more accurate EMRI waveforms for the
evaluation of the detection ability of the trace anomaly.
However, since the horizon of the QCBH is nonspherical,
one can expect that the scheme would be much difficult
than the Kerr case.
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APPENDIX A: ENERGY FLUX

In this section we introduce the quadrupole formulas of
energy flux derived by Peters and Mathews [83,84], where
the energy flux can be written as

Ė ¼ 1

5m

�
d3Iij
dt3

d3Iij

dt3
−
d3Iii
dt3

d3Ijj
dt3

�
; ðA1Þ

with the quadrupole moment tensor of mass Iij, which can
be given by

Iij ¼ mxixj; ðA2Þ

where xi is the position vector between the smaller object
and MBH. Under the weak field approximate condition, we
can obtain the formulas of quadrupole moment tensor Qij

and energy flux Ė via the intricate algebraical computation.
To illustrate the modification effect of the deviation
parameter α on the EMRI energy flux, we plot the
logarithmic differences of the energy fluxes from the

FIG. 5. Mismatch as a function of mass and spin of the QCBH
with a deviation parameter α ¼ 0.01 is plotted, where the
horizontal black dashed line is the threshold value of mismatch
Mmin ¼ 0.01. The other orbital parameters are set as p0 ¼ 12
and e0 ¼ 0.5.

FIG. 6. Constraint on the deviation parameter Δα as a function
of mass and spin of the MBH with α ¼ 0.01 is plotted, where the
black dashed line denotes the threshold value of the measurement
error Δαmax ¼ 1.0. The initial orbital parameters are set as
p0 ¼ 12 and e0 ¼ 0.5.
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QCBH and Kerr BH in Fig. 7, the symbols Ėα and Ėα¼0

denote the energy flux of QCBH and Kerr BH. From the
Fig. 7, one can see that the correction from QCBH on
EMRI fluxes can be ignored comparing to the case of the
Kerr BH. This is because the contribution of the deviation
parameter α appears at higher order of the weak-field
expansion of Eq. (1), that is

Mðr; θÞ ¼ M þ 2M2α

r3
þO

�
1

r5

�
: ðA3Þ

Therefore, the evolution of orbital parameter in the QCBH
spacetime can be approximately addressed with the fluxes
of Kerr BH, we adopt the analytic fluxes of energy and
angular moment developed by Gair and Glampedakis in
Ref. [71]. The fluxes can be read with our symbol as
follows:

Ė ¼ −
32

5

μ2

M2

�
M
p

�
5

ð1 − e2Þ3=2
�
g1ðeÞ − q

�
M
p

�
3=2

g2ðeÞ

−
�
M
p

�
g3ðeÞ þ π

�
M
p

�
3=2

g4ðeÞ

−
�
M
p

�
2

g5ðeÞ þ q2
�
M
p

�
2

g6ðeÞ

− π

�
M
p

�
5=2

g7ðeÞ þ q

�
M
p

�
5=2

g8ðeÞ
�
; ðA4Þ

L̇z ¼ −
32

5

μ2

M

�
M
p

�
7=2

ð1 − e2Þ3=2
�
g9ðeÞ

− q

�
M
p

�
3=2

g10ðeÞ −
�
M
p

�
g11ðeÞ

þ π

�
M
p

�
3=2

g12ðeÞ −
�
M
p

�
2

g13ðeÞ

þ q2
�
M
p

�
2

g14ðeÞ − π

�
M
p

�
5=2

g15ðeÞ

þ q

�
M
p

�
5=2

g16ðeÞ
�
; ðA5Þ

where the e-dependent coefficients are

g1ðeÞ ¼ 1þ 73

24
e2 þ 37

96
e4;

g2ðeÞ ¼
73

12
þ 823

24
e2 þ 949

32
e4 þ 491

192
e6;

g3ðeÞ ¼
1247

336
þ 9181

672
e2;

g4ðeÞ ¼ 4þ 1375

48
e2;

g5ðeÞ ¼
44711

9072
þ 172157

2592
e2;

g6ðeÞ ¼
33

16
þ 359

32
e2;

g7ðeÞ ¼
8191

672
þ 44531

336
e2;

g8ðeÞ ¼
3749

336
−
5143

168
e2;

g9ðeÞ ¼ 1þ 7

8
e2;

g10ðeÞ ¼
61

12
þ 119

8
e2 þ 183

32
e4;

g11ðeÞ ¼
1247

336
þ 425

336
e2;

g12ðeÞ ¼ 4þ 97

8
e2;

g13ðeÞ ¼
44711

9072
þ 302893

6048
e2;

g14ðeÞ ¼
33

16
þ 95

16
e2;

g15ðeÞ ¼
8191

672
þ 48361

1344
e2;

g16ðeÞ ¼
417

56
−
37241

672
e2: ðA6Þ

FIG. 7. The logarithm of difference values of energy fluxes for
the QCBH and Kerr BH as a function of the initial orbital semi-
latus rectum for several cases of quantum-corrected parameters
α ¼ ð0.0001; 0.001; 0.01; 0.1Þ are plotted. The other orbital
parameters are set as a ¼ 0.9 and e0 ¼ 0.5.
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APPENDIX B: STABILITY OF THE
FISHER MATRIX

In this appendix, following the method in Refs. [64,85],
we compute the stability of the covariance matrix with the
EMRI waveforms. This can be achieved as follows: first,
we compute small perturbations of components of Fisher
matrices, and then see the behavior of covariance matrices.
The stability can be characterized quantitatively by the
following equation:

δstability ≡maxij

�ððΓþ FÞ−1 − Γ−1Þij
ðΓ−1Þij

�
; ðB1Þ

where Fij is the deviation matrix, the elements are a
uniform distribution U∈ ½a; b�. To assess the stability of
FIM with the EMRI signal modified by QCBH, we list the
results of stability δstabilityin Table I.
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