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We consider a scenario where the scalaron of fðRÞ models is related to the volume modulus of string
compactifications leaving only one scalar degree of freedom at low energy. The coefficient of the leading
curvature squared contribution to the low-energy effective action of gravity determines the mass of the
scalaron. We impose that this mass is small enough to allow for the scalaron to drive Starobinski’s inflation.
After inflation, the renormalization group evolution of the couplings of the fðRÞ theory, viewed as a scalar-
tensor theory, provides the link with the infrared regime. We consider a scenario where the corrections to
the mass of the scalaron are large and reduce it below the electron mass in the infrared, so that the scalaron
plays a central role in the low-energy dynamics of the Universe. In particular this leads to a connection
between the scalaron mass and the measured vacuum energy provided its renormalization group running at
energies higher than the electron mass never drops below the present day value of the dark energy.
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I. INTRODUCTION

The dark sector of the Universe, comprising both dark
matter and dark energy, is as elusive as ever [1,2]. One
interesting possibility would be that the dark energy sector
could have a complete gravitational origin [3,4]. Usually,
this is understood in such a way that gravity, i.e., Einstein’s
general relativity, should be modified and for instance
become massive [5]. This is fraught with conceptual
difficulties [6]. On the other hand, a less trodden path
could be that gravity is simply modified by the presence of
small corrections to the Einstein-Hilbert action whose role
would be to modify the quantum nature of the vacuum.
We introduce a scenario whereby the leading Ricci scalar
squared R2 corrections dominate at low energy as long as
the compactification scale is large enough and the non-
perturbative effects involved in the moduli stabilisation
occur at low enough energy compared to the compactifi-
cation scale. This circumvents the problem of hierarchy
between the R2 and the higher-order terms noticed in [7]
and give a valid description of the dynamics of the Universe
from the inflation scale down to the infrared (IR). This is
the approach we will follow in this paper where we will
argue that string compactifications of physical relevance
should enrich the gravitational sector of the theory with
such fðRÞ corrections [8–10].
Our starting point is the gravitational action of string

theory in ten dimensions. Irrespective of the details of
the mechanism, dimensions must be reduced from ten to
four and in this process the universal volume modulus
representing the typical size of the compactification mani-
fold appears [11]. After compactification, the low-energy

gravitational action contains terms involving the Riemann
tensor of the four-dimensional Universe and the volume
modulus. The volume modulus has no potential and
therefore appears as a very dangerous massless field whose
coupling to matter would exceed the bounds from gravi-
tational physics in the Solar System, e.g., the Cassini
bound on the Yukawa coupling of such a light scalar to
fermions [12]. In this paper, we will not try to generate
the nontrivial scalar potentials which could lead to the
screening of the volume modulus in the Solar System [13].
We will simply assume that the volume modulus is
stabilized [14] and acquires a given mass which is large
enough to evade tests of short-range interactions such as
provided by the Eöt-Wash experiment [15]. Once stabi-
lized, we find that the gravitational effective action in four
dimensions becomes a fðRÞ model where the scalaron
field [16,17] is then identified with the volume modulus. To
do so we restrict ourselves to ghost-free effective actions
and assume that the ghost fields [18] induced by higher
derivative operators in the gravitational field have a mass
which is rejected at the cutoff scale of the model, i.e., the
compactification scale. This leaves a well-ordered fðRÞ
action where, in the small curvature regime below the string
and compactification scales, the Ricci scalar squared R2

term dominates.
Written as a scalar-tensor theory depending on the

scalaron, and imposing the existence of a supersymmetric
origin for this low-energy action, we find the most general
Kähler potentials and superpotentials which are compatible
with the Ricci scalar squared R2 structure. They involve a
two-parameter family of Kähler potentials including the
familiar no-scale case and a fully determined and unique
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superpotential. Of course, this theory is determined in the
ultraviolet (UV) at the compactification scale. It has all the
features to generate primordial inflation like in the original
Starobinski scenario [7,16,17]. Here inflation is determined
by the coefficient cUV of the Ricci scalar squared R2

correction in the UV. From the compactification point of
view, this is a bottom-up constraint as no preferred value of
cUV originates from the compactification. Notice that here
inflation appears as a consequence of both the volume
modulus stabilization and the fact that it happens in a
regime where all the higher-order corrections involving
higher powers of the curvature are negligible.
We then use a renormalization group approach to tie up

the regime described above after the end of inflation and
the low-energy regime of the theory. In this Wilsonian
approach, the Lagrangian of the theory is determined in
particular by the vacuum energy and the coefficient c of the
R2 term which evolve with the scale as particles are
integrated out. In a given energy range μ corresponding
to a given temperature T of the Universe, the Wilsonian
action and its coefficients depend on μ. We take as the
initial point of the renormalization group evolution at the
reheat temperature and integrate out particles as μ is
decreased toward low energies. We analyze the renormal-
ization group evolution of the Ricci scalar squared R2

theory down to the IR limit at energies well below the
masses of all massive particles present in the Universe. We
identify this long-distance limit as the vacuum energy
which engenders dark energy. The scalaron mass parameter
at a given scale μ is given by the inverse of the square of the
coefficient of the R2. We assume following [9] that the
scalaron mass in the IR is lower than the electron mass and
therefore plays a role in the dynamics of the vacuum at
low energy. Unfortunately the mass of the scalaron in the
IR is not determined completely as it depends on the UV
properties of the model. The dynamics can only be closed
by imposing reasonable assumptions on the IR properties
of the theory. In particular, following the reasoning of [19],
we will require that the cosmological constant ρΛðμÞ at the
energy scale μ should be large enough that any bound
structure in the Universe with such an energy scale, e.g., a
gas cloud with a temperature μ ≃ T, does not collapse
within the age of the Universe. This is guaranteed as long as
ρΛðμÞ≳ −ρΛ, where ρΛ is the dark energy of the Universe.
Using these constraints for μ ≃me at the electron mass
corresponding to the x-ray emitting gas in a galaxy cluster,
we found in [9] that the mass of the scalaron is tightly
bounded once the Eöt-Wash experiment bound from
gravity tests is taken into account. This almost determines
the value of cIR in the IR and therefore using the re-
normalization group evolution the cosmological constant at
the end of inflation. This set of phenomenological con-
straints provides a bottom-up approach to the physics
from the compactification of string theory down to four
dimensions. If the scalaron had very large mass in the IR,

i.e., larger than the electron mass, then no such constraints
would stand. We also notice that the interval of masses for
the scalaron in the IR is compatible with scenarios where
the scalaron plays the role of dark matter [20].
This paper is arranged as follows. In Sec. II, we consider

the compactification from ten dimensions to four dimen-
sions and the identification of the volume modulus with
the scalaron. In Sec. III, we impose that the low-energy
effective action describing the Ricci scalar squared R2

theory comes from a supergravity model and determines
the Kähler potential and the superpotential. We find that the
Kähler potential is a two-parameter deformation of the no-
scale model describing the volume modulus at tree level.
Finally, in Sec. IV we describe the renormalization evo-
lution of the Ricci scalar squaredR2 model down to the IR.
We conclude with Sec. V. We give an explicit example of
potential for the volume modulus in an Appendix. We also
discuss the renormalization group and the thermodynamic
decoupling of scalarons in two appendixes.

II. THE VOLUME MODULUS AS SCALARON

In this section we present a scenario where the Ricci
scalar squared R2 model leading to Starobinski’s inflation
is induced from the compactification of extra dimensions
such as the reduction from ten dimensions to four dimen-
sions of string theory. For this we first detail in Sec. II A
how, in the so-called supergravity frame, the volume
modulus does not have a kinetic term. We then use this
in Sec. II D for the scalaron with the universal volume
modulus. We discuss volume stabilization in Sec. II C and
show in Sec. II E that higher derivative corrections induced
by string theory are negligible. We discuss in Sec. IV C the
validity of the quadratic approximation used to derive the
Starobinski model during inflation where the excursion of
the volume modulus is large [21].

A. Dimensional reduction

We consider a 4þ d space-time and compactify on a d
manifold of vanishing Ricci scalar [22]. We will consider
first the case of the Einstein-Hilbert action

S4þd ¼ Mdþ2
2þd

Z
d4þdx

ffiffiffiffiffiffiffiffiffiffiffiffi
−g4þd

q
R4þd; ð2:1Þ

where R4þd is the Ricci scalar of the metric g4þd. We
consider a metric of the form

g4þd
ab ¼ g4μνdxμdxν þ σ2ðxÞgdijdxidxj: ð2:2Þ

Defining the volume of the compactification as

V0 ¼
Z

ddx
ffiffiffiffiffi
gd

q
; ð2:3Þ
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we find after dimensional reduction the effective action

S4 ¼ Mdþ2
2þdV0

Z
d4x

ffiffiffiffiffiffiffiffi
−g4

q
σd
�
R4 þ dðd − 1Þð∂ ln σÞ2�:

ð2:4Þ
We can go to the Einstein frame by defining

g4μν ¼ σ−dgEμν; ð2:5Þ

leading to

S4 ¼ Mdþ2
2þdV0

Z
d4x

ffiffiffiffiffiffiffiffi
−gE

p �
RE −

dðdþ 2Þ
2

ð∂ ln σÞ2
�
:

ð2:6Þ

This action can be transformed into

S4 ¼ Mdþ2
2þdV0

Z
d4x

ffiffiffiffiffiffi
−g

p
σ−2αR; ð2:7Þ

where

gEμν ¼ σ−2αgμν ð2:8Þ

with

α ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðdþ 2Þ

3

r
: ð2:9Þ

In the rest of the paper, we identify the volume modulus as

V ¼ σ−2α; ð2:10Þ

which has no kinetic terms. When d ¼ 6 we have α ¼ −2
and

V ¼
�
V
V0

�2
3

; ð2:11Þ

where V is the volume of the extra dimensions.
Defining m2

Pl ¼ 2Mdþ2
2þdV0, we can identify the action

(2.7) with the supergravity action in the supergravity frame,
following Chap. 31 of [23]:

S4 ¼
m2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
fðT; T̄ÞRþ 6fTT̄∂μT∂

μT̄
�
; ð2:12Þ

where fðT; T̄Þ ¼ e−KðT;T̄Þ=3m2
Pl is the Kähler potential

K ¼ −3m2
Pl ln

T þ T̄
mPl

: ð2:13Þ

Notice that fTT̄ ¼ 0 as fðT; T̄Þ ¼ TþT̄
mPl

is linear in the
modulus T such that

V ¼ V0

�
T þ T̄
mPl

�3
2

: ð2:14Þ

We couple matter to the Jordan frame metric gμν. When
matter is supersymmetric defined by the superfield C, the
scalar part reads

S4 ¼
m2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
fðT; T̄ÞRþ 6fTT̄∂μT∂

μT̄

þ 6fCC̄∂μC∂
μC̄
�
; ð2:15Þ

where fCC̄ ¼ − 1
3m2

Pl
leading to

fðT; T̄Þ ¼ T þ T̄
mPl

−
jCj2
3m2

Pl

ð2:16Þ

corresponding to

KðT; T̄Þ ¼ −3m2
Pl ln

�
T þ T̄
mPl

−
jCj2
m2

Pl

�
: ð2:17Þ

Notice that in the supergravity frame defined by the metric
gμν, the matter fields C are canonically normalized corre-
sponding to the Jordan frame for matter. In the Einstein
frame, the action reads

S4 ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p �
m2

Pl

2
RE − Ki|̄∂μϕ

i
∂
μϕ̄|̄

�
; ð2:18Þ

where ϕi ¼ ðT; CÞ. The Kähler potential (2.17) is the one
we use in this work.
The crucial ingredient that we will use in the following is

that there exists a frame, here identified as the supergravity
frame, where the volume modulus has no kinetic terms.
This is not special to the volume indeed. Indeed, using a
Weyl transformation one can always remove the kinetic
terms of one field at the price of having a nontrivial
rescaling of the metric. What is special about the volume
modulus is that this Weyl transformation coincides with the
change of metric which transforms the Einstein frame
where the kinetic terms are nonvanishing to the Jordan
frame where the kinetic terms vanish and the volume
modulus decouples from matter; see (2.15) where the C
field does not couple to the volume modulus. Had it been
otherwise, the construction presented below would be
altered and integrating out the volume modulus leading
to the identification with a fðRÞ theory would have been
impossible.

B. The volume modulus and f ðRÞ theories
We are interested in the low-energy dynamics of the

volume modulus obtained, for instance, after the compac-
tification of the ten-dimensional effective field theory of
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type-IIA string theory down to four dimensions on a
Calabi-Yau manifold of Hodge numbers h1;1 and h2;1.
This leads to h1;1 hypermultiplets and h2;1 þ 1 vector
multiplets. The hypermultiplets always contain the volume
modulus; see for instance [24]. We will assume that the
multimodulus dynamics reduces, after integrating out all
the extra scalars, to a system involving the volume modulus
only. The reason for this hypothesis, as will be clear below,
is that the volume modulus has the correct dimensionless
coupling to matter fields β ¼ 1=

ffiffiffi
6

p
; see [7,8] for instance.

The effective dynamics of the volume modulus are then
assumed to be determined by a scalar potential VvacðVÞ
determined by nonperturbative effects. As shown in the
previous section there is a frame where the volume modulus
has no kinetic term. This frame is not the same as the string
or Einstein frame but a Jordan frame where matter couples
to the metric gμν; see the previous section for details
about the different frames. After dimensional reduction,
the action reads

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p M2
Pl

2

�
VvacðVÞ þ VR

�þ Smatterðgμν;ψÞ;

ð2:19Þ

where V is the volume modulus and Smatterðgμν;ψÞ is the
matter action. As mentioned above the field V has no
intrinsic dynamics as no kinetic terms are present in the
Jordan frame of Sec. II A.
Let assume that there exists a function fðχÞ of an

auxiliary field χ such that

χ ¼ −
dVvacðVÞ

dV
; V0fðχÞ ¼ VvacðVÞ − V

dVvacðVÞ
dV

ð2:20Þ

with V0 a given constant. Hence, the function V0fðχÞ is the
Legendre transform of the potential VvacðVÞ. Under the
assumption that f00ðχÞ ≠ 0 one can identify the volume
modulus as

V
V0

¼ f0ðχÞ: ð2:21Þ

The gravitational part of the action (2.19) becomes

Sg ¼
m2

Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
fðχÞ − χf0ðχÞ þ f0ðχÞR�; ð2:22Þ

where the four-dimensional Planck mass depends now
on V0 as

m2
Pl ¼ V0M2

Pl: ð2:23Þ

One can then integrate out the χ field as it has no dynamics
and is a simple auxiliary field. An extremum of the
resulting action exists provided f00ðχÞ ≠ 0 which gives

χ ¼ R; ð2:24Þ
and as a result one obtains that the action (2.19) is a fðRÞ
theory in the Jordan frame

S ¼ m2
Pl

2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Smatterðgμν;ψÞ: ð2:25Þ

We then have, under the assumption (2.20), that the volume
modulus dependence in (2.19) is equivalent to a fðRÞ
theory.

C. Volume stabilization

The effective potential VvacðVÞ follows from nonpertur-
bative effects which involve an intricate interplay with the
dynamics of other moduli [7,21]. In the large volume limit
corresponding to V → ∞ the potential in the Einstein frame
vanishes corresponding to the absence of cosmological
constant in ten dimensions. Here we will assume that the
volume modulus is stabilized at a finite value V0 in the
supergravity frame such that locally in the vicinity of
the minimum1

VvacðVÞ ¼ −Vvac −
m2

2
ðV − V0Þ2: ð2:26Þ

This is only valid close to the minimum. For large
deviations from the minimum, correction terms must be
considered first and eventually, in the large volume limit,
this expression becomes not valid any more and should be
replaced by a function such that the potential in the Einstein
frame VEðVÞ ¼ VvacðVÞ=V2 converges to zero for large V.
This regime is not the one we are interested in as we focus
on the domain around the stabilized value V0 and will give
sufficient conditions on the expansion of VvacðVÞ in its
vicinity to guarantee that Starobinski’s inflation is under
control.
Using (2.21), we obtain χ ¼ m2ðV − V0Þ and V0fðχÞ ¼

−Vvac
m2

2
ðV2 − V2

0Þ leading to a fðRÞ action in the Jordan
frame

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
Vvac

V0

þm2
Pl

2
Rþ δc0R2

�
þ Smatterðg;ψÞ; ð2:27Þ

1The potential in the Einstein frame VEðVÞ ¼ V2
0VvacðVÞ=V2

has a local minimum for V ¼ V0 − 2Vvac=ðm2V0Þ which is close
to V0 in the realistic cases discussed in Sec. IV. During inflation
the Einstein potential is nearly constant and the end of inflation
occurs around the local minimum. For an explicit example
inspired from string theory, see Appendix A.
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and the coefficient of the induced R2 is given by

δc0 ¼
m2

Pl

4m2V0

; ð2:28Þ

depending on the mass term for the volume modulus.
Hence, we find that a theory of the R2 type follows from
stabilizing the volume modulus and restricting its scalar
potential to a simple quadratic term. Moreover, the curva-
ture of the scalar potential around the stabilized value V0

determines the coefficient of the R2 term.

D. The volume modulus as a scalaron

After having stabilized the volume modulus, the action
in (2.27) is an fðRÞ action with

fðRÞ ¼ −2ΛþRþ R2

2m2V0

; ð2:29Þ

where Λ ¼ Vvac=ðV0m2
PlÞ. Performing the usual change of

frame (see [4] for a review)

gEμν ¼
V
V0

gμν ¼ f0ðRÞgμν;
V
V0

≔ exp ð−2βφÞ;

β ¼ 1ffiffiffi
6

p ; ð2:30Þ

one gets in the Einstein frame

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gE

p m2
Pl

2

�
RE −

1

2
∂μφ∂

μφ − VðφÞ
�

þ Smatter

�
e2βφgEμν;ψ

� ð2:31Þ

with

VðϕÞ ¼ Rf0ðRÞ − fðRÞ
ðf0ðRÞÞ2 : ð2:32Þ

We see in this frame that the matter fields ψ have the
universal coupling to the volume through the scaling factor
e2βϕ=mPl with the strength controlled by β ¼ 1=

ffiffiffi
6

p
.

The relation in (2.30) relates the volume V to the scalaron
φ. Under scale transformations xμ → xμ=λ, the scalaron
field transforms as φ → φ − 3=β ln λ; i.e., φ is the Gold-
stone boson associated to the breaking of scale invariance.
As a result the evolution of φ from −∞ to ∞ gives a
“reading” in time of the renormalization group evolution
from the ultraviolet to the infrared. In [25] a cosmon field
was considered from the volume using (2.30). The differ-
ence here is that the scalar field is the scalaron from a fðRÞ
theory.

E. The curvature expansion

The action in (2.19) is part of the low-energy effective
action after compactification and can receive higher deriva-
tive corrections. We now review the derivative expansion of
the compactification to four dimensions of the gravitational
sector of ten-dimensional string theory. The discussion is
given in the Jordan frame which is obtained by the Weyl
scaling from the string or Einstein frame as discussed
in Sec. II A.
The curvature squared models are part of a four-

dimensional string theory low-energy effective action which
has a derivative expansion of the type in the Jordan frame

Seff4d ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
V0Rþ c0V0R2

�

þ δShigher4d þ Smatterðgμν;ψÞ; ð2:33Þ
where the higher derivative contribution is given by

δShigh4d ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
M2

Plα3
R2

M2

×

 
l̃26Rþ V0

l4
s

l̃46

X
p≥3

αpþ1

α3
ðl2

sRÞp−1
!
: ð2:34Þ

Here we have assumed that the volume modulus is fixed at
its value V0. The R2 couplings are modulus dependent and
in the large volume limit are dominated by the volume
compactification (see [26,27] for instance for a discussion
of R2 terms from string theory). These expressions are
symbolic, and R represents either the Riemann tensor, the
Ricci tensor or the Ricci scalar. We now briefly review the
analysis of these higher derivative corrections as given in
Appendix A of [10] and Sec. 5.1 of [8] (which we follow
for the notations), where it is argued that the higher
derivative corrections to the Einstein-Hilbert action are
suppressed in the large volume expansion.
The dimensionless coefficient c0 of the scalarR2 term is

given by

c0 ¼ α3
M2

Pl

M2
; ð2:35Þ

where the mass scales M2
Pl and M2 depend on the string

coupling constant gs, the string scale ls and the compacti-
fication scale l6:

M2
Pl ≃

l66
g2sl8

s

�
1þ

X
n≥3

αn
l2n
s

l̃2n6

�
; M ¼ l̃26

l3
s
; ð2:36Þ

and the volume-dependent curvature scale

l̃6 ¼ V1=6
0 l6; ð2:37Þ
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which controls the typical averaged value of the ten-
dimensional curvature R over the compactification mani-
fold M6:

Z
M6

d6x
V6

ffiffiffiffiffiffi
−g

p
Rn ∼ l̃−2n6 : ð2:38Þ

A condition for the curvature expansion to make sense is
that l̃6 ≫ ls, where ls is the string scale. The higher-order
terms in the curvature expansion depend on the couplings

dp ≃
X

n≥maxðpþ1;3Þ
αn

�
ls

l̃6

�
2ðn−p−1Þ

; ð2:39Þ

and the series are dominated by the first term in the regime
l̃6 ≫ ls. This gives

d0 ≃ α3

�
ls

l̃6

�
4

; d1 ≃ α3

�
ls

l̃6

�
2

; p ≥ 2∶ dp ≃ αpþ1:

ð2:40Þ

This immediately gives us indications that the R2

models are a valid description of the physics at low energy
up to the string scale Ms ¼ 1=ls as long as curvature is
small in string units, i.e., l2

sR ≪ 1. This suppresses all the
higher curvature terms and leaves only the dimension-four
R2 terms and the dimension-six R3 corrections as relevant
at low energy. At the four derivative order, the Riemann
tensor square terms can be traded for a combination of the
Ricci scalar square and the Ricci tensor square ðRμνÞ2 using
the standard Gauss-Bonnet identity in four dimensions. The
ðRμνÞ2 term induces a massive ghost spin-2 state, with a
mass determined by the coefficient of the coupling in the
effective action [18]. The coefficients of these terms are
affected by the metric field redefinition gμν → gμν þ
αRμν þ βRgμν so that the coefficient of the R2 is shifted
by ðαþ 3βÞ=3 and the R2

μν term by α [28,29]. By consid-
ering the dynamics of supersymmetry breaking involving
the volume modulus as in Sec. 5.2.2 of [8], we can consider
a situation where β ≫ α and that the coefficient of the R2

μν

term is such that the mass of the massive spin 2 is at the
order of the UV cutoff of the theory. In fact, we require that
the only physical compactifications are the ones which lead
to the absence of ghosts or such that the ghosts are rejected
at the UV cutoff scale of the theory. As a result, the
remaining higher derivative corrections in (2.33) are the
powers of the Ricci scalar R.
The R2 model only applies up to the curvature scale

R ≤ l̃−26 , which is typically much greater than practical
curvature scales. This suppresses the dimension-six cubic
R3 corrections compared to the quadratic one, and we can
focus on the R2 action in (2.33):

Seff4d ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

Pl

2
½VvacðVÞ þ VR� þ c0V0R2

�
þ Smatterðgμν;ψÞ: ð2:41Þ

We can now apply the analysis of Sec. II B this time starting
with the action (2.41). The resulting fðRÞ action in (2.27)
after stabilization of the volume becomes

Seff4d ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
m2

Pl

2
Rþ �c0V0 þ δc0

�
R2

�
þ Smatterðg;ψÞ: ð2:42Þ

The coefficient of the R2 is given by the c0 coefficient
in (2.35) from the compactification of the string-induced
corrections and the corrections induced from the volume
stabilization in (2.28):

c0V0 þ δc0 ¼
α3M2

Pl

M2
V0 þ

m2
Pl

4m2V0

¼ m2
Pl

2

�
α3
M2

þ 1

2m2V0

�
:

ð2:43Þ

Notice that both terms are large as m ≪ mPl and the
compactification scale is such that l̃6 ≫ ls. We can then
just apply the formalism of Sec. II D in the Jordan frame
with this time the function

fðRÞ ¼ Rþ
�

1

2m2V0

þ α3
M2

�
R2: ð2:44Þ

This allows us to identify the volume modulus as

V ¼ V0 þ
�

1

m2
þ 2α3V0

M2

�
R: ð2:45Þ

This relation is not surprising as the volume modulus has
no dynamics in the original Jordan frame and can therefore
be integrated out exactly. As the volume modulus mixes
with the Ricci scalar of the string compactification, this
implies that the volume modulus is stabilized up to fluc-
tuations which are parametrized by the Ricci scalar. As the
Ricci scalar is also related to the scalaron, we find that the
volume modulus and the scalaron become one and only one
field. We can also identify the scalaron used in the Weyl
transformation to the Einstein frame as

V
V0

¼ e−2βφ: ð2:46Þ

The volume modulus deviates from its stabilized value by
an amount which is parametrized by the scalaron. In the
regime where the curvature is small compared to the large
scale M, we find that such a deviation is small and the
scalaron has a small excursion in Planck units.
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In the following, we will reverse engineer the construc-
tion and obtain the low-energy N ¼ 1 supergravity descrip-
tion for a scalar field whose coupling to matter is given by
β ¼ 1=

ffiffiffi
6

p
. This will determine the Kähler potential of the

associated chiral superfield. By imposing that the scalar
potential is the one of the Starobinski model, we will
determine the superpotential. The Kähler potential that we
obtain is the one of the volume modulus with deformations
parametrized by two parameters only. In a sense, this
confirms that the effective N ¼ 1 supergravity description
of Starobinski’s model is related to the volume modulus
and that its effective dynamics are determined by a super-
potential whose shape is uniquely determined. Finding
explicit string theory models whose behavior mimics these
results is a challenge left for future work.

III. SUPERSYMMETRY

A. The volume modulus and its Kähler potential

So far we have not taken into account one crucial
ingredient: supersymmetry. The compactifications that
we consider should result in a supergravity theory in four
dimensions. Written in terms of a modulus superfield T, its
Kähler potential and its superpotential WðT; T̄Þ, the result-
ing N ¼ 1 supergravity theory should be such that the
matter fermions ψ associated to another superfield C have a
coupling given by β ¼ 1=

ffiffiffi
6

p
. The archetypical example of

this type of behavior is given by the Kähler potential

KðT; T̄Þ ¼ −3m2
Pl ln

�
T þ T̄
mPl

−
CC̄
3m2

Pl

�

≃ −3m2
Pl ln

T þ T̄
mPl

þmPl
CC̄

T þ T̄
: ð3:1Þ

As we will recall below, this gives rise to the expected
β ¼ 1ffiffi

6
p coupling. Moreover, a constant superpotential

W ¼ W0 ð3:2Þ

gives rise to a vanishing scalar potential for the volume
modulus.
In the following, we will generalize the Kähler potential

and superpotential by imposing that the coupling to matter
is determined by β and that the scalar potential follows from
the R2 theory as expressed in the Einstein frame via the
scalaron.

B. From supergravity to the scalaron

We define the scalaron field as the canonically normal-
ized real part of T, the universal Kähler modulus determin-
ing the volume of compactification; i.e., we require that

dφ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KTT̄ðT; TÞ

p dT
mPl

: ð3:3Þ

Notice the minus sign. Here the Kähler potential is left
unspecified and will be determined by requiring that matter
couples to the scalarons like in fðRÞ theories.
Let us consider matter fields C representing the super-

field associated to the Weyl fermions ψC. We assume that
the Kähler potential of these matter fields is in

K ⊃
CC̄

ðT þ T̄Þ : ð3:4Þ

In supergravity this implies that the kinetic terms for the
fermions are

i
∂ψ̄Cσ

μDμψC

ðT þ T̄Þ ; ð3:5Þ

which can be normalized according to

ψ ¼ ψC

ðT þ T̄Þ1=2 : ð3:6Þ

Now a mass term for the fermions depends on the super-
potential and the Kähler potential

L ⊃ eKðT;T̄Þ=2m2
Pl
∂W
∂C2

ψ2
C ð3:7Þ

corresponding to a Majorana mass term. Dirac mass terms
can be constructed by taking pairs of superfield coupled to
a Higgs field. In terms of the normalized fermions this
becomes

L ⊃ eKðT;T̄Þ=2m2
PlðT þ T̄Þ ∂W

∂C2
ψ2: ð3:8Þ

As the superpotential cannot depend on the modulus field T
at the perturbative level, this mass term can be written as

L ⊃ AðφÞmψ2; ð3:9Þ

where m ¼ ∂W
∂C2 is the modulus-independent mass and

AðφÞ ¼ eKðT;T̄Þ=2m2
PlðT þ T̄ÞjTðφÞ ð3:10Þ

is a factor dependent on the normalized field ϕ.

C. The Kähler potential from the f ðRÞ
matter coupling

We can try to find the Kähler potentials such that the
normalized real part of T, i.e., ReðTÞ ¼ mPlt, has a
coupling given by

AðφÞ ¼ eβφ ¼ e
KðT;T̄Þ
2m2

Pl ðT þ T̄ÞjTðφÞ: ð3:11Þ

We set KðT; T̄ÞjT¼T̄¼t ¼ kðtÞm2
Pl. We find from (3.3) that
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�
dφðtÞ
dt

�
2

¼ 1

2

d2kðtÞ
dt2

; ð3:12Þ

where we used that

d2kðtÞ
dt2

¼ 4KTT̄ðT; T̄ÞjT¼T̄¼t: ð3:13Þ

Imposing (3.11) gives the relation

kðtÞ ¼ 2βφðtÞ − 2 lnð2tÞ; ð3:14Þ

which leads to the differential equation

�
dφðtÞ
dt

�
2

¼ β
d2φðtÞ
dt2

þ 1

t2
: ð3:15Þ

We leave β indeterminate, and we will show how β is
uniquely determined to the value β ¼ 1=

ffiffiffi
6

p
. This equation

has for solutions for all values of a and b

φðtÞ ¼ aþ logð4Þ
2β

þ 1

2

	
−β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4

q 

lnðtÞ

− β ln
	
t
ffiffiffiffiffiffi
β2þ4

p
β − b



: ð3:16Þ

The Kähler potential reads (after redefining the arbitrary
constant a)

kðtÞ ¼ a −
	
2þ β2 − β

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 4

q 

logðtÞ

− 2β2 log
	
t
ffiffiffiffiffiffi
4þβ2

p
β − b



: ð3:17Þ

Requesting that kðtÞ ¼ −3 lnð2tÞ þOð1Þ for large t gives

2þ β2 þ β
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ β2

q
¼ 3; ð3:18Þ

whose unique solution is β ¼ 1=
ffiffiffi
6

p
. Hence, we have found

that the only coupling constant β in the identification
between the coupling of fermion fields in supergravity and
a scalaron coupling is the one compatible with the fðRÞ
structure.
The resulting Kähler potential is given by

kðtÞ ¼ a −
4

3
lnðtÞ − 1

3
lnðt5 − bÞ ¼ a − 3 ln tþ 1

3

X
n≥1

bn

t5n
:

ð3:19Þ

The associated scalaron solution reads

2βφðtÞ ¼ aþ logð4Þ þ 2

3
logðtÞ − 1

3
logðt5 − bÞ

¼ aþ logð4Þ − log tþ 1

3

X
n≥1

bn

t5n
: ð3:20Þ

When b < 0 we have that φðtÞ → −∞ for t → 0 and
t → þ∞ with φðt�Þ ¼ 0 for

64e3at2� ¼ t5� − b: ð3:21Þ

When b > 0 we must have t > b−1=5, and φðtÞ → þ∞ for
t → 1=b1=5 and t → þ∞.
In conclusion, the most general Kähler potential which is

compatible with the coupling to matter of fðRÞ models is a
modification of the no-scale models by a series of correc-
tions in 1=t5.

D. The scalaron potential and the reconstruction
of the superpotential

The R2 model is associated to a specific scalar potential
for the scalaron VðφÞ. This is then equivalent to having a
scalar potential VðφðtÞÞ using the mapping φðtÞ. In the
following we will focus on the theory

S ¼ m2
Pl

2

Z
d4xfðRÞ; ð3:22Þ

where we introduce an explicit cosmological constant

fðRÞ ¼ −2ΛþRþ cR2: ð3:23Þ

There the coefficient c is related to the coefficient c0 and
the correction δc0 discussed previously by

c0 þ δc0 ¼
m2

Plc
2

: ð3:24Þ

We have then the identification

e−2βφ ¼ 1þ 2cR ð3:25Þ

and finally the scalar potential

VðφÞ ¼ ð1 − e2βφÞ2
4c

þ 2Λe4βφ; ð3:26Þ

which becomes a function of t using (3.16):

VðtÞ ¼ ð32Λcþ 8Þt43e2a
ðt5 − bÞ23c −

4t
2
3ea

ðt5 − bÞ13cþ
1

2c
: ð3:27Þ

Interestingly, this potential has a minimum for the value

e2φmin ¼ 1

1þ 8cΛ
ð3:28Þ
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for which the potential energy becomes

VðφminÞ ¼
2Λ

1þ 8cΛ
: ð3:29Þ

When Λ > 0, this implies that supersymmetry is broken at
the minimum of the potential. We will concentrate on this
case below and therefore supersymmetry will always be
spontaneously broken in the supergravity models that we
will consider.
Let us recall that in N ¼ 1 supergravity and using Planck

units in the following equations (the Planck scale can be
easily reinstated by simple dimensional analysis), the scalar
potential reads

VðtÞ ¼ ekðtÞ
�
kTT̄ j∂TW þ ∂TkWj2 − 3jWj2�; ð3:30Þ

where kTT̄ ¼ 1=∂T∂T̄k. We have also kTT̄ ¼ k00
4
, where

k00 ¼ d2k
dt2 . In the following we will focus on a real super-

potential when T ¼ T̄ ¼ t is real, since we are focusing on
the volume dependence which is the real part of the T
modulus. We can always extend this by analytic continu-
ation (in an open subset of the complex plane C containing
the real line R) to an holomorphic superpotential wðTÞ
matching wðtÞ on the real line. Equation (3.30) becomes�
dWðtÞ
dt

þ 1

2

dkðtÞ
dt

WðtÞ
�

2

¼ k00ðtÞ
4

�
3WðtÞ2 þ e−kðtÞVðtÞ�:

ð3:31Þ

It is convenient to define the function

wðtÞ ¼ WðtÞekðtÞ
2 ; ð3:32Þ

which is nothing but wðtÞ ¼ eGðtÞ=2, where GðtÞ ¼ kðtÞ þ
ln jWðtÞj2 characterizes the full N ¼ 1 Lagrangian and
shows the underlying Kähler invariance kðTÞ → kðTÞþ
fðTÞ þ f̄ðT̄Þ, WðTÞ → e−fðTÞWðTÞ, where f is a holomor-
phic function of T. Using this function we have

�
dwðtÞ
dt

�
2

−
3

4
k00ðtÞwðtÞ2 ¼ k00ðtÞ

4
VðtÞ: ð3:33Þ

Given the function VðtÞ obtained from the fðRÞ theory,
we can solve this differential equation and find the most
general superpotential compatible with the R2 structure.

E. The superpotential associated to R2

As a sanity check, let us consider a no-scale model with
VðtÞ ¼ 0 and kðtÞ ¼ −3 ln t, i.e., b ¼ 0 in (3.19). From the
differential equation (3.31) we retrieve the familiar no-scale
model where WðtÞ ¼ w0 is a constant and another solution
WðtÞ ¼ w0t3 for which the potential also vanishes.
For the superpotential associated toR2 with kðtÞ given in

(3.19), and the potential (3.27), the differential equation has
the unique solution (this is unique up to an overall sign)

w�ðtÞ ¼
�1ffiffiffiffiffiffiffiffiffi
−6c

p
�
1 −

4ea

t
þ 32ð9Λcþ 1Þe2a

9t2
þ 128ð9Λcþ 1Þe3a

81t3

þ ð290304ðΛcÞ2 þ 50688Λcþ 2048Þe4a
729t4

þ ð−3151872ðΛcÞ2 − 313344Λcþ 4096Þe5a
6561t5

þ 1

t6

�ð213663744ðΛcÞ3 þ 78446592ðΛcÞ2 þ 7626752Λcþ 172032Þe6a
6561

−
4bea

3

�
þO

�
1

t7

��
: ð3:34Þ

The superpotential is obtained byW�ðtÞ ¼ w�ðtÞ expð−kðtÞ=2Þ. This is uniquely determined from the Kähler potential and
the fðRÞ functional.
Since kðtÞ ≃ −3 logðtÞ for large t we get a diverging expression at large volume for the superpotential. This large t

behavior can be removed using a Kähler transformation (see Chap. XXIII in [30]) KðT; T̄Þ → KðT; T̄Þ þ fðTÞ þ f̄ðT̄Þ and
WðT; T̄Þ → e−fðTÞWðT; T̄Þ with fðTÞ ¼ 3

4
logðT=mPlÞ þ logð�iÞ. This shifts the Kähler potential to

KðT; T̄Þ ¼ m2
Pl

�
a −

4

3
log

�
T þ T̄
mPl

�
−
1

3
log

��
T þ T̄
mPl

�
5

− b

�
þ 3

4
log

�
TT̄
m2

Pl

��
ð3:35Þ

with

WðtÞ ¼ m3
Pl

e−
a
2ffiffiffiffiffi
6c

p
�
1 −

4ea

t
þ 32ð9Λcþ 1Þe2a

9t2
þ 128ð9Λcþ 1Þe3a

81t3
þ 512e4að567ðΛcÞ2 þ 99Λcþ 4Þ

729t4

þ 1

t5

�ð−6303744ðΛcÞ2 − 626688Λcþ 8192Þe5a
13122

−
b
6

�
þ � � �

�
: ð3:36Þ
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The Kähler potential is lacunar and the superpotential is an infinite series in 1=t where ReðTÞ ¼ mPlt. This is valid when
b ≠ 0 where the first correction in b appears at the t−5 order.
When b ¼ 0, the Kähler potential is kðtÞ ¼ a − 3 logðtÞ, the fðRÞ potential is

VðtÞjb¼0 ¼
ð32Λcþ 8Þe2a

t2c
−
4ea

tc
þ 1

2c
; ð3:37Þ

and the superpotential is given by

WðtÞjb¼0 ¼ m3
Pl

e−
a
2ffiffiffiffiffi
6c

p
 
1 −

4ea

t
þ 32ð9Λcþ 1Þe2a

9t2
þ 128ð9Λcþ 1Þe3a

81t3

þ ð290304ðΛcÞ2 þ 50688Λcþ 2048Þe4a
729t4

−
2048ð1539ðΛcÞ2 þ 153Λc − 2Þe5a

6561t5

þ ð213663744ðΛcÞ3 þ 78446592ðΛcÞ2 þ 7626752Λcþ 172032Þe6a
6561t6

þ � � �
!
: ð3:38Þ

We find an expansion in te−a where a is the constant of
integration in the Kähler potential. Actually shifting the
value of a amounts to redefining the Planck mass mPl.
We notice that the cosmological constant Λ and the

coefficient c of the R2 term appear in the combination Λc.
We now turn to the quantum evolution of c, from the
ultraviolet (the inflationary period) to the infrared regime
(the late time behavior). We will relate the evolution of c
along the renormalization group flow to the values of the
evolution of the cosmological constant.

IV. THE QUANTUM EVOLUTION OF c

The model that we have considered so far is valid in the
ultraviolet at high energy, i.e., at the compactification scale.
We will recall how inflation appears in this setting and then
link this behavior to the properties of the scalaron in the
infrared regime.

A. Starobinski inflation

The R2 model is a very good candidate for inflation.
During the inflationary regime the potential in dimension-
ful units, defined as V inflationðφÞ ¼ m2

PlVðφÞ=2, is

V inflationðφÞ ¼
m2

Pl

8c
ðe2βφ − 1Þ2 þ Λm2

Ple
4βφ: ð4:1Þ

Inflation takes place in a quasi–de Sitter region of field
space with φ → −∞ such that e2βφ ≪ 1. This is the large
volume regime where t → ∞. Notice that the cosmological
constant Λ plays no role in this regime. We have therefore

V inflationðφÞ ≃
m2

Pl

8c
ð1 − 2e2βφÞ: ð4:2Þ

The slow roll parameters are then

ϵ ¼ 1

2

�
V 0
inflation

V inflation

�
2

≃ 8β2e4βφ ð4:3Þ

and

η ¼ V 00
inflation

V inflation
≃ −8β2e2βφ: ð4:4Þ

Observable scales by the cosmic microwave background
(CMB) are N e-folding before the end of inflation where
ϵend ¼ 1. For these scales, the η parameter dominates
over ϵ:

ϵ⋆ ≪ jη⋆j; ð4:5Þ

and the spectral index is then given by

ns − 1 ¼ 2η⋆ ≃ −16β2e2βφ⋆ : ð4:6Þ

This determines φ⋆ as ns − 1 ≃ −0.0351 according to
Planck [31]. The number of e-foldings is aend=a⋆ ¼ eN ,
where a is the scale factor of the Universe with

N ¼
Z

φend

φ⋆

V inflation

V 0
inflation

dφ: ð4:7Þ

We find

N ≃
1

8β2
e−2βφ⋆ ; ð4:8Þ

and therefore

ns − 1 ¼ −
2

N
; ð4:9Þ

PHILIPPE BRAX and PIERRE VANHOVE PHYS. REV. D 109, 064088 (2024)

064088-10



which determines N ≃ 56 as ns − 1 ≃ −0.0351. At the end
of inflation we have

e−2βφend ¼ 2
ffiffiffi
2

p
β; ð4:10Þ

where ϵðφendÞ ¼ 1. Notice that the approximation φ → −∞
is not really valid toward the end of inflation. In principle
this means that numerics is required to evaluate when ϵ ¼ 1
and inflation stops. After the end of inflation the field
oscillates around zero and eventually reaches φ ≪ 1.

B. Validity of the curvature expansion

At the end of inflation, the field φ settles at the minimum
of the potential for φ ≪ 1 where it becomes massive with

m2
φ ¼ β2

c
þ 16β2Λ; ð4:11Þ

where the second term is negligible at the end of inflation.
The value of c at the end of inflation can be deduced from
the normalization of the CMB spectrum as

V inflationðφ⋆Þ3
m6

PlðV 0
inflationðφ⋆ÞÞ2

≃ 2 × 10−11 ð4:12Þ

evaluated at the value of φ⋆ determined in (4.6), which
implies that

cendm2
Pl ≃

5

8
× 1010β2N2: ð4:13Þ

This is the value of c at the end of inflation. This gives a
mass for mφ around 2 × 10−7mPl.
Now we can come back to the curvature expansion and

check that the expansion in powers of the Ricci scalar is
valid. The expansion is valid as long as l̃26R ≪ 1 and
l2sR ≪ 1. During inflation we have 2cR ≈ expð−2βφÞ and
during inflation

2
ffiffiffi
2

p
β ≤ e−2βφ ≤ 8β2N; ð4:14Þ

implying that

l̃26 ≪
c

4β2N
: ð4:15Þ

As c is given by (4.13) we find that

l̃6 ≤ m−1
Pl

ffiffiffiffiffiffiffi
5N
32

r
105; ð4:16Þ

implying that the compactification scale must be

l̃−16 ≥ 3.4 × 10−6mPl; ð4:17Þ

which is close to the grand unified theory scale. This
confirms that the curvature expansion in (2.34) is valid.

C. Validity of the quadratic expansion
for the scalar potential

We have shown that the quadratic terms around the
minimum value V0 of the nonperturbative scalar potential
VvacðVÞ as a function of the volume modulus V in (2.26) are
enough to generate the inflationary Starobinski potential.
One issue with this description is that the excursion of the
volume modulus (4.14) during inflation must be large and
could jeopardize the quadratic approximation. Using (2.11)
we have

V
V6

¼
�
V
V0

�
3=2

; ð4:18Þ

where V6 ¼ l6
6 is the stabilized volume of the compacti-

fication manifold. Using dimensional analysis, we can
write the nonperturbative potential as

VvacðVÞ ¼ M2FðM6VÞ ¼ M2F

�
M6V6

�
V
V0

�
3=2
�

¼ M2G

�
α
V
V0

�
; ð4:19Þ

where GðxÞ≡ Fðx3=2Þ is a nonperturbative function which
is assumed to vanish when V → ∞. Here we have used, in
the spirit of effective field theories, that the low-energy
dynamics of the volume modulus are determined by a
single nonperturbative scale M and the function GðxÞ.
We have introduced the dimensionless parameter α ¼
ðM6V6Þ2=3. Now the function −G is assumed to have
minimum for x ¼ α, so we can expand in Taylor series

VvacðVÞ ¼ M2GðαÞ þ g2
2
α2M2

�
V
V0

− 1

�
2

þM2
X
n≥3

gn
n!

αn
�
V
V0

− 1

�
n
; ð4:20Þ

where we assume that gn ¼ Oð1Þ. The first terms lead to
the quadratic Lagrangian (2.26) with

Vvac ¼ −M2GðαÞ; m2 ¼ −g2α2M2; ð4:21Þ

while the higher-order terms are negligible as long as

Ml6 ≪ ð8β2NÞ1=4 ð4:22Þ

corresponding to a small suppression of the nonperturbative
scale M compared to the compactification scale l−1

6 .
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D. Postinflationary era

After inflation which occurs at high energy, we follow a
Wilsonian approach, reviewed in [32–35] for instance, and
consider the effective action obtained by integrating out all
the momentum scales larger than a given scale μ, μ ≪ jpj
and much smaller than the compactification scale, to obtain
the Wilson effective action at leading order:

SW ¼ m2
Pl

2

Z
d4xfðR; μÞ; ð4:23Þ

the Wilsonian Lagrangian reads

fðRÞ ¼ −2ΛðμÞ þRþ cðμÞR2: ð4:24Þ

Having fixed the Planck mass m2
Pl, which is then indepen-

dent of μ and fixes the scales, the parameters in the Wilson
effective action SW are μ dependent. The dependence of the
Lagrangian parameters in (4.23) and (4.24) is given by the
renormalization group equation that we will present below
and review briefly in Appendix B. The initial values of the
renormalization group are taken at the end of inflation
corresponding to the reheat temperature Treh taken to be
larger than any physical masses of the particles in the
spectrum of the theory. During the cosmological evolution,
the change of the scalaron mass and couplings follow the
renormalization group flow with respect to the scale μ
which is cosmological time dependent, i.e., should be
adapted to describe each cosmological era.
Although the Wilson effective action depends on the

scale μ, the physical observables are independent of that
scale. In our case the scale-independent observables are the
energy density ρvac in (4.36) and the physical scalar mass
mφ obtained both in the IR corresponding to the limit
μ → 0. In particular, the physical scalaron mass sets the
range of the new scalar interaction to matter which can be
tested using experiments such as Eöt-Wash [15].
The couplings evolve each time a particle species of

mass m is integrated out [32], i.e., when μ ≤ m. In the
history of the Universe, particles in the thermal bath are
integrated out when the temperature falls below the mass
m. This allows us to estimate μ ∼ T. Let us review below
how the renormalization evolution of the vacuum energy
and the coupling c can be inferred. For explicit details on
the regularization procedure, see Appendix B. Let us
consider the quantum corrections to mφ. As φ couples to

fermions like βmψ

mPl
φψ̄ψ , the one-loop contribution to the

effective mass of φ is

δm̄2
φðμÞ ¼ −

β2m2
ψ

m2
Pl

Z
d4p
ð2πÞ4

1

p2 þm2
ψ
: ð4:25Þ

The divergent integral has to be renormalized. Using
dimensional regularization and the decoupling scheme

where the effects of the corrections are only nonvanishing
at the renormalization scale μ ≥ mψ , we have

δm̄2
φðμÞ ¼ −

β2m4
ψ

16π2m2
Pl

ln
μ2

m2
ψ
θðμ −mψ Þ; ð4:26Þ

where we have introduced the Heaviside function θðxÞ ¼ 1
for x > 0 and 0 otherwise. This implies that the quantum
corrections reduce the mass of the scalar when μ decreases
and, therefore, increase the value of cðμÞ from (4.11). In
fact the scalaron couples to both massive scalars and
massive vector bosons, implying that the correction to
the mass at one-loop order is given by the supertrace

δm̄2
φðμÞ ¼ −

β2

16π2m2
Pl

Str
�
M4 ln

μ2

M2
θðμ −MÞ

�
; ð4:27Þ

whereM is the mass matrix of all the massive particles with
a mass less than μ. This corresponds to a renormalization
group equation (see Appendix B for a physical discussion
about the regularization method):

dm̄2
φðμÞ

d ln μ
¼ −

β2

8π2m2
Pl

StrðM4Þθðμ −MÞ: ð4:28Þ

Using the renormalization group equation for the cosmo-
logical constant

dΛðμÞ
d ln μ

¼ −
1

32π2m2
Pl

StrðM4Þθðμ −MÞ; ð4:29Þ

where again only particles with a mass less than μ
contribute. Combining these expressions using (4.11) we
get the renormalization group equation for cðμÞ−1 with
β ¼ 1=

ffiffiffi
6

p
:

dcðμÞ−1
d ln μ

¼ 7

16π2m2
Pl

StrðM4Þ≡ −14
dΛðμÞ
d ln μ

: ð4:30Þ

This implies that

c−1IR ¼ c−1end þ 7ðΛend − ΛIRÞ − 14
X
i

Λi; ð4:31Þ

where we have introduced the sum over the jumps of the
cosmological jumps when a phase transition happens
corresponding to a jump of the value of the cosmological
constant by Λi. This can be complemented with the
evolution of the cosmological constant to the deep IR
where μ is much lower than all the particle masses and give

ΛIR ¼ Λend þ
X
i

Λi; ð4:32Þ

where ΛIR is the cosmological constant obtained after
integrating out all the quantum fluctuations and sending

PHILIPPE BRAX and PIERRE VANHOVE PHYS. REV. D 109, 064088 (2024)

064088-12



μ → 0 in the Wilson effective action. This corresponds to
the cosmological constant in the full 1PI effective action of
the theory. We then obtain our final relation

c−1IR ¼ c−1end − 7ðΛend − ΛIRÞ: ð4:33Þ

We have used 1þ 1
β2
¼ 7. Notice that a positive cosmo-

logical constant at the end of inflation would naturally lead
to a smaller value of c in the IR, i.e., an increase in the
Lagrangian effective mass of the scalaron. We remark,
as well, that the influence of the higher derivative terms
that arise from the nonrenormalizability of the theory are
negligible in the IR. As the cosmological constant Λend at
the end of inflation is not directly determined by the
experimental data, i.e., the dynamics of the Starobinski
model is not influenced by the cosmological constant
which only plays a role toward the end of inflation, we
cannot calculate cIR by following the renormalization
group evolution from the UV to the IR. We have to resort
in Sec. IV E to low-energy stability arguments to bound the
value of cIR.
Finally let us comment on supersymmetry breaking in

these models. Supersymmetry is broken dynamically dur-
ing inflation, and then from the end of inflation onward
once the scalaron settles at its minimum, the vacuum energy
corresponding to the minimum of the scalar potential
becomes

Vmin ¼
Λm2

Pl

1þ 8Λc
ð4:34Þ

which evolves with the renormalization flow. In the IR, this
coincides with

Vmin ≃ ΛIRm2
Pl ð4:35Þ

as we will see below that cIRΛIR ≪ 1. Hence, at low energy
supersymmetry is spontaneously broken, although extremely
softly, by the small vacuum energy of the Universe.

E. Low-energy stability

The value of c in the IR cannot be directly deduced from
its value at the end of inflation without a detailed knowl-
edge of high-energy physics and all the phase transitions
between inflation and the present Universe.
On the other hand, the value of c in the infrared regime

can be bounded by phenomenological stability argu-
ments [9]. We will assume that the scalaron becomes light
in the IR with the physical mass mφ, given by the value of
effective mass m̄φðμÞ for μ ¼ 0, which is directly related to
cIR by the relation in (4.11). In practice, we will take the
mass of the scalaron much smaller than the electron and
neutrino masses. In this model the scalaron at low energy
is assumed to be the lightest massive particle in the
Universe. Defining ρΛ ¼ Λm2

Pl=2, the renormalization

group evolution in the deep IR below all particle masses
gives

ρvac ¼ ρΛðmeÞ þ
m4

φ

64π2
ln
m2

e

m2
φ
− 2
X3
f¼1

m4
f

64π2
ln
m2

e

m2
f

; ð4:36Þ

where the observational value of the vacuum energy is
simply ρvac ≃ 2.7 × 10−11 eV4. The vacuum energy at the
energy of the electron mass has been denoted by ρΛðmeÞ.
This encapsulates our lack of knowledge of the physics at
scales larger than me. The neutrinos also contribute at low
energy, and we have for the two possible hierarchies of
neutrino masses. For both ordering the neutrino contribu-
tion is bounded (see Sec. V of [9]):

2 × 104ρvac ≤
X3
f¼1

m4
f

64π2
log

�
m2

e

m2
f

�
≤ 2 × 105ρvac: ð4:37Þ

This is obviously a large contribution which exemplifies the
nature of the cosmological constant problem even at low
energy.
Let us now invoke the stability argument of [9]. The

vacuum energy ρΛðμÞ cannot be too negative; otherwise,
any bound structure in the Universe whose constituents
have a typical energy μ would collapse faster than the age
of the Universe. We will therefore impose that ρΛðμÞ ≥ −ρΛ
to guarantee the stability of the Universe.
The x-ray emitting gas of a galaxy cluster has a typical

temperature of TX ∼ 1 keV. These systems typically
appeared at a redshift z≳ 0.1 and already have a lifetime
of the order of the age of the Universe. At these energies,
the vacuum energy corresponds ρΛðmeÞ and the absence of
collapse of the clusters over the age of the Universe implies
that ρΛðmeÞ ≳ −ρvac. This implies that [31,36–40]

mφ ≲ m̄ν ¼
�
m4

1 þm4
2 þm4

3

�1
4 ≃ 0.1 eV: ð4:38Þ

Similarly, the scalaron could appear as contributing to a
fifth force in gravitational experiments [18]:

VðrÞ ¼ −
GNM
r

�
1þ 1

3
e−mφr

�
: ð4:39Þ

The absence of evidence for short-range forces in the
Eöt-Wash experiment [15,41,42] provides an upper bound
on the range of scalar forces d ≤ 52 μm corresponding to
the strong lower bound

mφ ≳ 3.8 × 10−3 eV: ð4:40Þ

We have thus an interval of masses for the nearly massless
scalaron. This is a fairly narrow interval provided the
scalaron is less massive than the electron mass. This implies
in particular
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ΛIRc2IR ≃ 8πGN; ð4:41Þ

a relation that can be tested by low-energy laboratory
experiments [8,9]. Notice that this would also give directly
the value of the cosmological constant at the end of
Starobinski’s inflation:

cendΛend ¼
1

7
ð4:42Þ

as the other contributions to (4.33) are negligible. This
determines the product Λc which appears in the super-
potential (3.38) leading to Starobinski’s inflation. Numeri-
cally using (4.13) we have Λend ≃ 8

35
× 10−10β−2N−2m2

Pl.
This determines the energy scale of the cosmological
constant during inflation:

Einf ≡ ðΛendm2
PlÞ

1
4 ≃
�
8 × 10−10

35β2N2

�1
4

mPl ≃ 9 × 1014 GeV

ð4:43Þ

corresponding to a sub-Planckian regime of the effective
field theory after compactification with a cosmological
constant Einf close to the grand unified scale.
From a UV point of view, this value only reinforces the

fact that the physics at high energy seems to be largely
constrained by the physics at low energy. This is the case of
the mass of the scalaron during inflation which is con-
strained by the CMB data. Here we found that the physics
of the vacuum in the IR, i.e., the vacuum stability combined
with gravitational tests, determines indirectly the value
of the cosmological constant in the UV. Of course, our
analysis does not provide any explanation for this value
from a top-bottom point of view.
Finally, let us mention that the narrow interval of mass

3.8 × 10−3 eV≲mφ ≲ 0.1 eV is compatible with the value
mφ ≃ 4.4 × 10−3 eV for which the scalaron could be at the
origin of the observed dark matter abundance [20,43–45].
In this scenario, the coupling of the scalaron to the Higgs
field, coming from the coupling to matter that we have
discussed at length, implies that, at low energy compared to
the inflation scale, the vacuum expectation value of the
scalaron φ is displaced from the origin by an amount
depending on the electroweak scale v ∼ 250 GeV.2 As the
electroweak transition begins, the scalaron starts oscillating
with a decreasing amplitude, eventually converging to the
origin. This misalignment mechanism is similar to what
happens for axions and leads an abundance of dark matter
which fits the observed value for mφ ≃ 4.4 × 10−3 eV [45].

Combining both scenarios, this would lead to a possible
signal in gravitational experiments below a distance
d≲ 45 μm. The possibility of testing the existence of a
new interaction mediated by the scalaron whose existence
could play a role in both dark energy and dark matter is
certainly worth pursuing.

V. CONCLUSION

The dark sector of the Universe and in particular dark
energy could be the result of the gravitational dynamics of
the Universe. This could follow from massive gravity for
instance or scalar theories which would mimic the behavior
of the cosmological constant in the late time limit. Another
possibility which has been mostly overlooked is that the
dark energy could result from the IR limit of the vacuum
energy of a theory whose spectrum would include at least
one light degree of freedom coming from the gravitational
sector of the model. This would influence the renormaliza-
tion group evolution of the vacuum energy and could
combine its effect to the contributions of the neutrinos to
generate the right amount of dark energy. In this article, we
consider such a scenario where the light field is the volume
modulus of string compactifications whose effective field
theory at low energy is a fðRÞ model of the Ricci scalar
squared R2 type. This is true once the volume modulus is
stabilized and as long as the curvature of the Universe is
lower than the string and compactification scales. Using the
reasonable assumption that the vacuum energy in the IR is
never too negative to imply the collapse of structures in
the Universe, we find that the mass of the scalaron in the IR
is tied to the measured cosmological constant in a way
which could be testable with future tests of gravity in the
submillimeter range. En route, we describe how the
scalaron’s, i.e., the volume modulus’, effective field theory
after compactification can be described as a N ¼ 1 super-
gravity with a two-parameter family of Kähler potentials,
including the familiar no-scale models, and a unique
superpotential that we determine its series expansion in
the large volume limit. The link between the UV where the
scalaron can lead to inflation like in the original Starobinski
model and the vacuum properties in the IR is provided by
the renormalization group evolution of the scalaron mass
and the vacuum energy (a similar approach has been
considered in [46]). In particular, if the scalaron both is
responsible from inflation in the UVand participates in the
dynamics of dark energy in the form of vacuum energy
in the IR, then the scalaron effective field theory after
compactification is almost uniquely determined; i.e., infla-
tion determines the mass of the scalaron and dark energy
the cosmological constant in the UV. Of course this bottom-
up approach only provides a set of likely constraints on the
set of possibilities for these couplings after compactifica-
tions. No dynamical principle determines their values,
which are simply fixed by observations.

2For more generic initial conditions after inflation taking into
account the quantum fluctuations of the scalaron during inflation,
the whole interval up to mφ ≃ 0.1 eV could accommodate dark
matter.
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APPENDIX A: AN EXPLICIT EXAMPLE

Our analysis can be exemplified using the effective
potential for the volume modulus described in [7]:

VEðVÞ ¼ V−2
�
U − αðln VÞ3=2�þ γV−x ðA1Þ

in the Einstein frame. Here we have 0 < x < 2. In the
supergravity frame, this corresponds to the effective
potential

VvacðVÞ ¼ V−2
0

�
U − αðlnVÞ32�þ γV−2

0 V2−x; ðA2Þ

where V0 is the minimum of VvacðVÞ determined by

3

2
αðlnV0Þ12 ¼ ð2 − xÞγV2−x

0 : ðA3Þ

The effective potential can then be written as

VvacðVÞ ¼ γV−x
0

�
2ð2 − xÞ
3ðlnV0Þ12

�
U
α
− ðlnVÞ32

�
þ
�
V
V0

�
2−x
�
:

ðA4Þ

In the Einstein frame the potential is given by

VEðVÞ ¼
�
V0

V

�
2

VvacðVÞ: ðA5Þ

Let us assume that during inflation when the observable
scales in the cosmic microwave background leave the
horizon the volume V ≈ V⋆ is such that x ln V⋆

V0
≪ 1.

During inflation, the Einstein frame potential reduces to

VEðφÞ ≈ γ

�
1 − 2

�
lnV⋆

lnV0

�
1=2 V0

V⋆
e2βφ

�
; ðA6Þ

where V=V0 ¼ e−2βϕ. Notice that in that regime the
potential in the supergravity frame is simply

VvacðVÞ ≈ VvacðV�Þ þ γ

�
2

�
lnV⋆

lnV0

�1
2

−
lnV⋆

lnV0

V2
0

V⋆
2

þ
�
V
V0

−
�
lnV⋆

lnV0

�1
2 V0

V⋆

�
2
�
; ðA7Þ

which is a quadratic potential with an effective minimum
that is not situated at V0.
We deduce that

η ¼ −8β2
�
lnV⋆

lnV0

�
1=2 V0

V⋆
e2βφ⋆ ðA8Þ

and approximately the number of e-foldings:

N ¼ 1

8β2

�
lnV0

lnV⋆

�
1=2 V⋆

V0

e−2βφ⋆ ; ðA9Þ

which determines ns − 1 ¼ − 2
N. Notice that the integral

determining N is dominated by the behavior of the
integrand close to ϕ⋆ where the approximation to the
potential is accurate. Consistency implies that

V⋆

V0

¼ e−2βφ⋆ ¼ 8β2
�
lnV⋆

lnV0

�
1=2 V0

V⋆
N; ðA10Þ

which determines V⋆=V0.
Toward the end of inflation V differs from V⋆. On the

other hand, the potential in the supergravity frame is again
quadratic around the true minimum V0. The distortion to
the quadratic shape affects only the evolution of the volume
modulus between these two epochs of inflation. This
will hardly change the relation between the number of
e-foldings N and the spectral index ns as N is essentially
determined by the shape of the potential around V⋆. In
conclusion, the potential in the supergravity frame is well
approximated by a quadratic form around V⋆ during the
creation of the observable structures and the inflationary
potential by the Starobinski potential.

APPENDIX B: THE RENORMALIZATION
GROUP

In the main text, we discuss the evolution of the mass of
the scalaron under the renormalization group between high
and low energies. In particle physics, the renormalization
scale is usually identified with the typical energy of a given
collision. In the cosmological context that we have con-
sidered, the interpretation of the scale μ needs to be
discussed more precisely. As we are considering the re-
normalization group in the decoupling subtraction scheme
(see for instance [32] or the recent textbook [35] for the
methods reviewed here for the decoupling substraction
scheme), the scale μ corresponds to the largest momentum
scale for virtual particles running in loops. Particles
contribute to the running of the coupling constant as long
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as they have not been integrated out, i.e., as long as μ is
larger than their mass. When the scale μ goes through the
threshold at the mass m, the particle is removed from the
particle content of the model while a threshold correction is
added to the coupling constant. In cosmology, we use this
Wilsonian setting in the context of particles such as the
ones in the standard model with a typical momentum given
by the temperature of the plasma T. At each epoch in the
history of the Universe, particles are integrated when the
temperature falls below their masses. This allows us to
identify μ ∼ T.
Let us illustrate the decoupling substraction scheme in

the simple case of a massive scalar of mass m. The vacuum
energy is given by

ρ ¼ 1

2

Z
d3p
ð2πÞ3 ωp; ðB1Þ

where ωp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
. This can be written as

ρ ¼
Z

dEd3p
ð2πÞ4

p⃗2 þm2

E2 þ p⃗2 þm2
: ðB2Þ

It is convenient to introduce the Euclidean vector
pE ¼ ðE; p⃗Þ and from rotation invariance we have

Z
d4pE

ð2πÞ4
p⃗2

p⃗2
E þm2

¼ 3

4

Z
d4pE

ð2πÞ4
p⃗2
E

p⃗2
E þm2

: ðB3Þ

Using the ’t Hooft–Weltmann regularization procedure [47]R
d4pEpn

E ¼ 0, n ≠ −4, we find that the vacuum energy is
related to the Feynman propagator at coinciding points:

ρ ¼ m2

4
GFð0Þ; GFð0Þ ¼

Z
d4pE

ð2πÞ4
1

p⃗2
E þm2

: ðB4Þ

We can now calculate

GFð0Þ ¼
S3

ð2πÞ4
Z

∞

0

dpE
p3
E

p2
E þm2

; ðB5Þ

where S3 ¼ 2π2 and finally

GFð0Þ ¼
m2

8π2

Z
dx

x3

x2 þ 1
: ðB6Þ

Making x3 ¼ xðx2 þ 1Þ − x and
R
dx x ¼ 0 in dimensional

regularization, we get

GFð0Þ ¼ −
m2

8π2

Z
dx

x
x2 þ 1

: ðB7Þ

We now regularize the divergence by applying a cutoff at a

scale xmax ¼ μ2

m2 corresponding to a Lorentz invariant cutoff

in pE ≤ μ; i.e., we only integrate over the quantum
fluctuations with momenta up to μ. We therefore find

ρðμÞ ¼ −
m4

64π2
ln

�
1þ μ2

m2

�
: ðB8Þ

Two regimes are particularly important:

μ ≫ m; ρðμÞ ≃ m4

64π2
ln
m2

μ2
;

μ ≪ m; ρ ≃ 0: ðB9Þ
Hence the particle only participates in the vacuum energy
when μ≳m as we advocated. This corresponds to the
renormalization group equation

dρðμÞ
d ln μ

¼ −
m4

32π2
θðμ −mÞ ðB10Þ

that we have used in the main text. With this we can write
the Wilson effective action. When μ < m, the scalar is
integrated out and the effective action contains only the
vacuum energy

SW ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
ρvac; ðB11Þ

where ρvac is the vacuum energy when all the fluctuations
have been integrated out, i.e., μ → 0, and Sw can be
identified with the 1PI effective action for vanishing
external sources. When μ > m the Wilsonian action is

SW ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−ρvac −

m4

64π2
ln
m2

μ2
−
ð∂ϕÞ2
2

−
m2

2
ϕ2

�
:

ðB12Þ

This result generalizes to the cases in the main text where the
renormalization group allows one to evolve both ρðμÞ and
cðμÞwhenmassive particles are integrated out. This allows us
to evaluate the vacuum energy at the end of inflation from the
IR vacuum energy and all the contributions from massive
particles which are integrated out when the temperature
crosses T ¼ m. This is the main point used in the paper.
Although the running of the coupling constant that we

used is only between the end of inflation down to low
energy, the effective action can also be used during inflation
as the physical modes have physical momenta outside the
horizon corresponding to k ≤ Hinf associated to a scale μ at
the Hubble scale. Integrating out the modes inside the
horizon with k > H is at the heart of the stochastic
description of inflation pioneered by Starobinski [48].
Finally for the nonrelativistic protons of the ionized hydro-
gen gas in a galaxy cluster with momenta kp ∼

ffiffiffiffiffiffiffiffiffiffi
mpT

p
the

scale is then μ ∼ kp ∼me when T ≃ 1 keV corresponding
to the vacuum energy ρðmeÞ as used in the main text.
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APPENDIX C: THERMODYNAMICAL
DECOUPLING OF THE SCALARON

The scalaron could in principle be in thermal equilibrium
with the particles in the thermal bath and acquire a large
momentum of order T. This could happen via the inter-
action of the scalaron with the thermal bath from the
coupling

L2 ¼ −
β2

2

mΨ

m2
Pl

φ2Ψ̄Ψ; ðC1Þ

where Ψ is a massive particle when the Universe has the
temperature T. This would lead to chemical equilibrium
where scalarons would be created by annihilation of pairs
of fermions. Considering the radiation era where Ψ is
relativistic, the cross section for φþ φ → Ψþ Ψ̄,

ðC2Þ

is of order σ ≃ β4
m2

Ψ
m4

Pl
and the interaction rate which could

maintain thermal equilibrium is, for the relativistic particles
Ψ, given by Γ ∼ gT3σ, where g is the number of relativistic
species. The chemical equilibrium is maintained as long as
the reaction rate is larger than the Hubble rate and no

cosmological dilution takes place, i.e., Γ > H ∼
ffiffi
g

p
T2

mPl
cor-

responding to the bound

T ≳ Tdec ¼
1ffiffiffi
g

p
β4

m3
Pl

m2
Ψ

ðC3Þ

with a decoupling temperature typically larger than the
Planck scale. As a result, the scalaron is never in thermal
equilibrium with the thermal bath.
Elastic processes could also raise the typical momentum

of scalarons to a value of order T. This follows from the
Yukawa coupling

Lyuk ¼ −
βmΨ

mPl
φΨ̄Ψ ðC4Þ

allowing for the kinetic reaction φþ Ψ → φþ Ψ mediated
by Ψ:

ðC5Þ

This could take scalarons with initially low momenta
such as kexðTÞ and by momentum transfer of order T leads
to momenta for the scalarons of order k ∼ T. The inter-

action rate Γ ¼ gβ4
m4

Ψ
m4

Pl
T is very small, implying that there

is far less than one interaction per Hubble time. As a result,
the scalarons never receive a momentum transfer of order T.
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