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The concept of horizon brightened acceleration radiation (HBAR) has brought to us a distinct
mechanism of particle production in curved spacetime. In this manuscript we examine the HBAR
phenomena for a braneworld black hole (BBH) which emerges as an effective theory in our (3þ 1)
dimensional universe due to the higher dimensional gravitational effects. Despite being somewhat similar
to the Reissner-Nordström solution in general relativity, the BBH is unique with respect to its charge term
which is rather the tidal charge. In this background, we study the transition probability of the atom due to
the atom-field interaction and the associated HBAR entropy. Both the quantities acquire modifications over
the standard Schwarzschild results and turn out to be the function of the tidal charge. This modifications
appear solely due to the bulk gravitational effects as induced on the 3-brane. Studying the Wien’s
displacement, we observe an important feature that the wavelengths of HBAR corresponding to the
Schwarzschild and the BBH, deviate from each other depending on their masses. This deviation is found to
be more pronounced for the mass values slightly greater or comparable to the Planck mass.
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I. INTRODUCTION

In recent times some observational setups have been
hypothesized to detect the thermal radiation due to the
black holes and Unruh-Fulling (UF) effect [1,2]. These are
designed in order to probe the curved/flat spacetime by
studying the interaction of an atomic detector and quantum
fields. Since the work by Scully et al. [1], this alternative
mechanism, which implements the techniques from quan-
tum optics to study the acceleration radiation in curved/flat
spacetime, earned significant attraction. It was shown in [1]
that the transition probability for an accelerated atomic
detector, interacting with single mode of photon within a
high quality factor microwave cavity can be significantly
increased than that of the standard transition probability
in UF effect. Their work is conceptualized by the virtual
processes which we frequently encounter in quantum field
theory such as Lamb shift, Raman scattering, etc. In terms
of atom-field interaction, a two level atom makes a
transition to its excited state with the simultaneous emission

of a virtual photon. Subsequently, the atom promptly comes
back to its ground state by absorbing the emitted photon.
It was shown that the UF effect can be perceived by
interrupting a virtual process as a result of which the
emitted virtual photon turns into the real photon [1]. Later,
this alternative technique has been implemented in case of a
black hole spacetime where the two levels atomic detectors
are freely falling in the black hole spacetime while passing
through a cavity [2]. The cavity is placed near the event
horizon of the black hole in order to restrict the exposure of
the detector from the Hawking radiated particles. A mode
selector is designed which selects one cavity mode tra-
versing in the direction opposite to that of the infalling
atoms. This generates a relative acceleration between the
atom and the field mode. This relative acceleration is the
sole ingredient for the occurrence of acceleration radiation
in the black hole spacetime. In particular due to the
acceleration the atom gets away from its original point
of virtual emission and triggers a nonzero probability of not
absorbing the emitted photon. This transforms a virtual
photon into a real one in the final state of the system [1,2].
Subsequently, these radiated photons get detected by an
asymptotic observer and the transition probability for
the atoms along with the temperature and the entropy
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associated with this radiation can be examined. This kind of
radiation which originates out of a different mechanism
than the Hawking radiation, is known as horizon brightened
acceleration radiation (HBAR) and the associated entropy
is named as the HBAR entropy. It is worth to be mentioned
that the atom acquires acceleration by extracting energy
from some external force agency which drives the center
of mass motion of the atom [1,2]. This mechanism has
revealed many interesting findings which can be found in
the following Refs. [2–10]. Note that until now all the
literature on HBAR are developed in the background of
four dimensional black hole spacetime emerging from
Einstein’s general relativity (GR). Therefore it is an
immediate question to ask that what would be the fate
of the HBAR phenomena in the context of the alternative
theories of gravity. Undoubtedly, extra dimensional theo-
ries are a few of the very important frameworks in the genre
of alternative theories of gravity. Studying this HBAR
phenomena in the context of the extra dimensional black
hole spacetime would be a new entrant.
Within the domain of gravitational physics extra dimen-

sional models are competent to explain some of the
observational phenomena such as the late time accelerated
expansion of the universe, galaxy rotation curve, which
otherwise successful Einstein’s theory of GR cannot fully
decode [11–13]. In general, extra dimensional models are
described in D > 4 dimensional spacetime, where D is the
dimension of the higher dimensional spacetime and our
(3þ 1) dimensional Universe emerges as a hypersurface
of this bulk higher dimensional spacetime, known as the
visible/ TeV brane. Writing the bulk gravitational field
equations, the (3þ 1) dimensional effective Einstein’s
equation can be derived on the visible brane while
projecting the bulk quantities on to the brane. Among
the large variety of extra dimensional theories the non-
compact geometry of extra dimension is of particular
interest and these models are significant in exploring the
cosmological aspects. One of these kind of theories is the
5-dimensional Randall-Sundrum (RS) warped geometry
model, abbreviated as RS2 [14]. From the functional
perspective this model consists of single positive tension
brane resembling our universe, while the negative tension
brane is located at an infinite distance, resulting in a non-
compact large extra dimensional scenario. For a literature
survey on the RS2 model and some of its implications, we
refer our readers to the following literature [15–18]. In the
background of RS2 model, Dadhich et al. have shown that
an exact static and spherically symmetric black hole
solution can be obtained on the visible brane which almost
coincides with the Reissner-Nordström (RN) solution [19].
However, the charge of the (3þ 1) dimensional effective
black hole spacetime is not electric charge by nature, rather
it is tidal charge originating from the bulk curvature effect.
The appearance of the tidal charge in (3þ 1) dimensional
effective theory is solely due to the gravitational effects in

five spacetime dimensions, where such tidal correction
term emerges in addition to the Schwarzschild potential.
In this manuscript we name this black hole as BBH.
Remarkably, this tidal charge appears in the linear order
of the BBH metric and thus its negative value can be
considered as an independent case. Rather it is a new
possibility which we never encounter in the RN solution
of GR. Therefore this black hole spacetime on the visible
brane brings out two distinctive features than the black hole
solutions in GR such as: (1) it resembles with the RN black
hole solution with a gravitational charge instead of an
electric charge of the black hole and (2) the gravitational
charge could be a negative charge which is never possible
for a standard RN metric. Several literature based on the
BBH can be found in [20–25].
These interesting features of BBH has led us to explore

the phenomena of HBAR in this background. We consider
the BBH solution as obtained in [19] and study the
transition probability of the atoms due to the atom-field
interaction and the corresponding HBAR entropy emerging
due to acceleration radiation of the atom. We summarize
our findings as follows
(1) We compute the transition probability while allow-

ing up to the quadratic order of the tidal charge. This
leads to the modified transition probability where the
modifications become proportional to the quadratic
power of the tidal charge. This outcome signifies that
the transition rate is indifferent to the sign of the tidal
charge.

(2) HBAR entropy exhibits a similar area-entropy rela-
tion as one obtains for the standard black hole
solutions. However it acquires modifications which
are dependent on the tidal charge of the BBH.

(3) Implementing the theory of Wien displacement, we
present a comparative study between the wave-
lengths of the emitted radiation which correspond
to the maximum transition probability in both the
standard Schwarzschild and BBH spacetime. The
wavelength corresponding to the standard Schwarzs-
child spacetime depends on the parameters such as
the mass of the black hole (M) and the 4 dimensional
Planck mass (Mp). Whereas the same for the BBH
turns out to be the function of M;Mp; q; M̃p, where
q; M̃p denote the tidal charge and five dimensional
Planck mass respectively.

(4) The tidal charge (q) can be constrained by Eq. (9).
We obey this condition throughout the phenomeno-
logical exploration of the model.

(5) Exploring the parameter space of the wavelengths,
we get certain amount of deviations in their values,
notably in the region where the mass of the black
hole (M) is slightly greater or equal to the Planck
mass ðMpÞ.

(6) We also examine the variation of the wavelengths
with respect to the tidal charge where the plot for
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standard Schwarzschild black hole shows no alter-
ation. However, a decreasing pattern in the wave-
length of the emitted radiation with increasing tidal
charge can be noted for the BBH.

These alterations in the HBAR radiation spectrum, entropy
and incoming wavelength of the emitted radiation are due
to the effective description of the bulk gravitational degrees
of freedom on the (3þ 1) dimensional brane. For the first
time, our study reveals the fate of HBAR radiation in the
background of an extra dimensional theory.

A. Black hole solution on the brane

In extra dimensional scenario the bulk gravitational
equations are considered to be higher dimensional
Einstein’s field equations. Therefore, the lower dimensional
effective theory can be extracted from the higher dimen-
sional Einstein’s equations while taking the projections of
the bulk equations and parameters on to the brane. In this
section, we briefly discuss the construction of a black hole
solution on the visible brane due to the higher dimensional
curvature effect as described in [19]. The authors of [19]
have implemented a “geometrical approach” to perceive
the five dimensional RS2 model, the technique of which
has been introduced by Shiromizu et al. in [26]. The
projection of the bulk metric g̃AB on the brane turns out to
be gAB ¼ g̃AB − nAnB, where gAB depict the induced brane
metric and nA is the normal to the brane. According to the
proposition in [26], upon using the bulk gravitational
equation, the Gauss-Codazzi equation which yields the
projection of five dimensional Riemann curvature tensor
on the visible brane and Z2 symmetry of the extra dimen-
sion, one obtains the effective gravitational equations
on the brane. The branes are located at the orbifold fixed
points and the visible brane (our universe) is at χ ¼ 0,
where χ symbolizes the extra dimensional coordinate.
Therefore, the (3þ 1)-dimensional gravitational field equa-
tion becomes [19],

Gμν ¼ −Λgμν þ κ2Tμν þ κ̃4Sμν − Eμν ð1Þ

where Gμν, gμν denote the effective Einstein tensor and
metric on the visible brane and λ denotes the brane tension.
In the above equation κ2 ¼ 8π

M2
p
and κ̃2 ¼ 8π

M̃3
p
. Here, Λ is the

induced cosmological constant on the brane. These set of
bulk and brane parameters are associated with each other as
below,

Mp ¼
ffiffiffiffiffiffi
3

4π

r �
M̃3

pffiffiffi
λ

p
�
; Λ ¼ 4π

M̃3
p

�
Λ̃þ

�
4π

3M̃3
p

�
λ2
�
: ð2Þ

In the above equation Λ̃ denotes the bulk cosmological con-
stant. In the RS2 scenario, M̃p can be considered to be much
smaller than Mp. Tμν is the net energy-momentum tensor
on the brane and Sμν is the squared energy-momentum

tensor which carries the effect of the bulk on the matter
fields residing on the visible brane [19]. For the present
purpose, we intend to derive the bulk solution of the
gravitational equations which demands Sμν ¼ Tμν ¼ 0.

Moreover considering Λ̃ ¼ − 4πλ2

3M̃3
p
, one can produce zero

cosmological constant on the brane, that is Λ ¼ 0. Thus,
Eq. (1) becomes,

Rμν ¼ −Eμν; R ¼ 0 ¼ Eμ
μ ð3Þ

where Rμν is the induced Ricci tensor and Eμν is the
projection of the bulk Weyl tensor on the visible brane. This
Eμν can be written as,

Eμν ¼ð5Þ Cμaνbnanb: ð4Þ

Equation (3) dictates that the induced Weyl curvature term
can be portrayed as the source term on the brane represent-
ing the effects of nonlocal gravitational degrees of freedom
in the bulk. Exploiting Weyl symmetry one can write that
Eμν is symmetric and traceless. For a vacuum solution on
the visible brane one gets,

∇μEμν ¼ 0; ð5Þ

due to the Binachi identity, where ∇μ is the covariant
derivative defined with respect to the metric on the visible
brane. Equation ∇μEμν ¼ 0 and Eq. (3) form a set of closed
equations which upon solving yields the geometry of the
visible brane. For a detailed discussion, we refer our
readers to [19,27].
For the solutions of these equations, it was shown that

the spherically symmetric and static solution can be
achieved on the visible brane by decomposing Eμν in the
form of irreducible representation in terms of four velocity
uμ. This produces two equations such as for the effective
energy density on the brane [UðrÞ] and the anisotropic
stress [PðrÞ]. Here r symbolizes the radial distance. Note
that Eμν is antisymmetric and tracefree. Thus, it exhibits
similar algebraic properties as the energy momentum tensor
of the electromagnetic field [19,28]. This implies that the
effective bulk Weyl term on the visible brane has a corres-
pondence with the electromagnetic energy-momentum

tensor in GR, that is −Eμν ↔ TðemÞ
μν . Similarly the con-

servation equation for the energy momentum tensor in GR
corresponds to Eq. (5) in the context of braneworld
scenario. This has led the authors of [19] to consider a
(3þ 1)-dimensional effective theory on the visible brane
where a tidal correction term resembling the RN correction
term, appears along with the Schwarzschild potential in the
metric. This correction term can be depicted as,

Φ ¼ −
M
M2

pr
þ Q
2r2

: ð6Þ
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Choosing the equation of state as U þ P
2
¼ 0, one obtains

the solution for conservation equation [Eq. (5)] as, U ¼
ðκκ̃Þ4 Q

r4. This solution is compatible to Eq. (6) and it can be
confirmed that Eq. (6) and the solution for U satisfy Eq. (3).
The spacetime metric corresponding to these solutions
turns out to be as follows,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2
�
dθ2 þ sin2θdϕ2

� ð7Þ

where, fðrÞ ¼ 1 − 2M
M2

pr
þ Q

r2. The charge Q can be redefined

in terms of a dimensionless charge q as q ¼ QM̃2
p. Thus,

the lapse function fðrÞ in terms of the new dimensionless
charge q can be redefined as fðrÞ ¼ 1 − 2M

M2
pr
þ q

M̃2
pr2
. Below

we briefly mention the properties of such a BBH.
(i) Note that in Eq. (7), the tidal charge correction term

is linear in q which is different than that of the RN
solution in GR. Therefore, the features of this BBH
will depend on the sign of q. For the radius of the
horizon, the (3þ 1)-dimensional standard RN sol-
utions emerge when q ≥ 0 as below,

r� ¼ M
M2

p

"
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

qM4
p

M2M̃2
p

s #
: ð8Þ

Similar to the RN black hole in GR, these two
horizons fall within the Schwarzschild radius
rs ¼ 2M

M2
p
, that is r− ≤ rþ ≤ rs.

(ii) Some distinctive features can be perceived for the
case q < 0. This predicts the existence of one
horizon, however, located outside rs. This can be
depicted as follows

rþ ¼ M
M2

p

"
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

qM4
p

M2M̃2
p

s #
: ð9Þ

In GR we never encounter such possibilities. This
enlarged radius of the horizon implies a larger
Bekenstein-Hawking entropy and reduction in the
temperature of the BBH than the Schwarzschild
case. Therefore, q < 0 case suggests that the bulk
gravitational effects assist to create a stronger
gravitational field on the visible brane. On the other
hand as the q > 0 case for the BBH exactly matches
with the RN black hole in GR, this suppresses the
strength of the gravitational field on the visible
brane. A more detailed discussion can be found
in [19,28] (Secs. 4 and 5).

B. Trajectory of a freely falling atomic detector
in the BBH

In this section, we study the trajectory of a freely falling
atomic detector in the background of a BBHwith the metric

ansatz given in Eq. (7). The set of equations which yields
the trajectory of the detector are as follows,

dt
dr

¼ −
1

fðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fðrÞp ;

dt
dτ

¼ 1

fðrÞ ; ð10aÞ

dτ
dr

¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − fðrÞp : ð10bÞ

We take the induced tidal charge Q to be a small quantity
and allow upto its quadratic order [OðQ2Þ] in our analysis.
Expanding 1

fðrÞ up to the quadratic order in Q, we obtain,

1

fðrÞ ≈
�
1−

2M
M2

pr

�
−1
"
1−

Q

r
�
r− 2M

M2
p

�þ Q2

r2
�
r− 2M

M2
p

�
2

#
ð11aÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− fðrÞp ≈Mp

ffiffiffiffiffiffiffi
r
2M

r "
1þQM2

p

4rM
þ 3Q2M4

p

32M2r2

#
: ð11bÞ

Integrating Eqs. (10a) and (10b), one gets,

tðrÞ ¼ −
2
ffiffiffi
2

p
M1=2r1=2

Mp
−
Mp

3

ffiffiffiffiffi
2

M

r
r3=2

þ 2M
M2

p
ln

					 1þMp
ffiffiffiffiffi
r
2M

p
1 −Mp

ffiffiffiffiffi
r
2M

p 					þ QM5
pr3=2

ð2MÞ32�2M −M2
pr
�

þ 7
ffiffiffi
2

p
Q2M3

p

16ðrMÞ3=2
�
1 −

2M
M2

pr

�
−2
�
1 −

5M2
pr

14M

�

þM6
pQ2

8M3
ln

					 1þMp
ffiffiffiffiffi
r
2M

p
1 −Mp

ffiffiffiffiffi
r
2M

p 					þ const: ð12Þ

τðrÞ ¼ −
Mpr3=2

3

ffiffiffiffiffi
2

M

r
−
QM3

pr1=2

ð2MÞ3=2 þ 3Q2M5
pr−1=2

16
ffiffiffi
2

p
M5=2

þ const: ð13Þ

Defining,

dr�
dr

¼ 1

fðrÞ ; ð14Þ

we obtain,

r�ðrÞ ¼ rþ 2M
M2

p
ln

				M2
pr

2M
− 1

				þQ

�
r −

2M
M2

pr

�
−1

þM6
pQ2

8M3
ln

				1 − 2M
M2

pr

				þM6
pQ2

4M2

M2
pr − 3M

ðM2
pr − 2MÞ2

þ const: ð15Þ

DAS, SEN, and GANGOPADHYAY PHYS. REV. D 109, 064087 (2024)

064087-4



These set of equations is depicting the trajectory of the
freely falling atomic detector as a function of radial dis-
tance (r) in the BBH spacetime. At this stage we introduce
the dimensionless forms of the parameters ðr; τ; t; Q;ω; νÞ
using rþ as the unit of distance [2]. We consider c ¼ 1, and
write down the parameters as follows,

r ¼ rþrdl; t ¼ rþtdl; τ ¼ rþτdl; ð16aÞ

Q ¼ r2þQdl ω ¼ ωdl

rþ
ν ¼ νdl

rþ
g2dl ¼ g2r2þ:

ð16bÞ

Here all the parameters with the subscript dl symbolize the
dimensionless form. Using this parametrization, Eqs. (12),
(13), and (15) become,

tdlðrdlÞ ¼ −2r1=2dl −
2r3=2dl

3
þ �1þQdl þQ2

dl

�
× ln

				 ffiffiffiffiffiffi
rdl

p þ 1ffiffiffiffiffiffi
rdl

p − 1

				 − 2Qdl
ffiffiffiffiffiffi
rdl

p þQdlr
3=2
dl

3

−
Q2

dlr
1=2
dl ðrdl − 1Þ

4
þ Q2

dlr
1=2
dl

4ðrdl − 1Þ

−
7Q2

dlr
1=2
dl

4ðrdl − 1Þ þ
3Q2

dlr
3=2
dl

2ðrdl − 1Þ ð17Þ

τdlðrdlÞ ¼ −
2r3=2dl

3
þQdl

 
r3=2dl

3
− r1=2dl

!

þQ2
dl

 
3r1=2dl

2
þ 3r−1=2dl

4
−
r3=2dl

4

!
; ð18Þ

rdl� ðrdlÞ ¼ rdl þ ð1þQdl þQ2
dlÞ ln jrdl − 1j −Qdl

−
Q2

dl

2
−Q2

dl ln rdl: ð19Þ

We further obtain,

ðrdl� − tdlÞðrdlÞ ¼ rdl þ 2r1=2dl þ 2r3=2dl

3

þ 2ð1þQdl þQ2
dlÞ ln j

ffiffiffiffiffiffi
rdl

p
− 1j

−Qdl

 
1 − 2r1=2dl þ r3=2dl

3

!

−
Q2

dl

2

 
1þ 2 ln rdl þ

7
ffiffiffiffiffiffi
rdl

p
2

−
r3=2dl

2

!
:

ð20Þ

These equations describe the trajectory of the atomic
detector as a function of rdl in the background of the BBH.

II. ACCELERATION RADIATION FROM THE
FREELY FALLING ATOMS IN THE BBH

SPACETIME

In this section we follow the procedure developed
in [1,2] and consider the Klein Gordon equation for a
massless scalar photon with wave function Ψ as,

1ffiffiffiffiffiffi−gp ∂μ

� ffiffiffiffiffiffi
−g

p
gμν∂ν

�
Ψ ¼ 0: ð21Þ

Imposing the s-wave approximation in the above equation
one obtains,

1

TðtÞ
d2T
dt2

−
fðrÞ
r2RðrÞ

d
dr

�
r2fðrÞ dRðrÞ

dr

�
¼ 0; ð22Þ

where using the method of separation of variables we write,
Ψðt; rÞ ¼ TðtÞRðrÞ. Subsequently, one can write the gen-
eral solution for the Eq. (22) as follows,

Ψνðt; rÞ ¼ exp

�
−iνtþ iν

Z
dr
fðrÞ

�
: ð23Þ

Here, ν depicts the frequency of the photon field as detected
by the asymptotic observer. We now turn our attention to
examine the transition probability of the freely falling
detector while interacting with the field mode.
The interaction Hamiltonian for the system reads

ĤIðτÞ ¼ ℏG


b̂νΨν þ H:c:

�

σ̂e−iωτ þ H:c:

�
; ð24Þ

which leads one to obtain the transition probability as
follows,

Pexc ¼ g2
				Z dτ eiνtðrÞ−iνr�ðrÞeiωτðrÞ

				2: ð25Þ

We recast Eq. (25) in terms of the dimensionless parameters
as follows,

Pexc ¼ g2dl

				Z 1

rdl¼∞

dτdl
drdl

drdl e−iνdlðr
dl� −tdlÞeiωdlτdl

				2; ð26Þ

where,

dτdl
drdl

¼ −r1=2dl þQdl

2

h
r1=2dl − r−1=2dl

i
þ 3Q2

dl

8

h
2r−1=2dl − r−3=2dl − r1=2dl

i
: ð27Þ

Changing the variable r3=2dl ¼ y in the above equations we
obtain,
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τdlðyÞ ¼ −
2y
3
þQdl

�
y
3
− y1=3

�
þQ2

dl

�
3y1=3

2
þ 3y−1=3

4
−
y
4

�
; ð28Þ

ðrdl� − tdlÞðyÞ ¼ y2=3 þ 2 ln jy1=3 − 1j þ 2y1=3 þ 2y
3

−Qdl

�
1 − 2 ln jy1=3 − 1j − 2y1=3 þ y

3

�
−
Q2

dl

2

�
1 − 4 ln j1 − y−1=3j þ 7y1=3

2
−
y
2

�
;

ð29Þ

dτdl
drdl

ðyÞ ¼ ty1=3 þQdl

2

�
y1=3 − y−1=3

�
þ 3Q2

dl

8

�
2y−1=3 − y−1 − y1=3

�
: ð30Þ

We write the transition probability in terms of y in
Appendix A.
To perform the integration, we change the integration

variable y ¼ 1þ 3x
2ωdl

, where we take ωdl ≫ 1, and keep up

to Oð x
ωdl
Þ2 in subsequent analysis. Note that within the

logarithmic terms we keep up to the cubic order of the
same. Thus, the above equations turn out to be

τdlðxÞ ¼ −
2

3
−

x
ωdl

þQdl

�
x2

4ω2
dl

−
2

3

�
þ 2Q2

dl; ð31Þ

ðrdl� − tdlÞðxÞ ¼
11

3
þ 2x
ωdl

−
x2

6ω2
dl

þ 2 ln

�
x

2ωdl

�
−
Qdl

2

�
x
ωdl

−
x2

6ω2
dl

− 4 ln

�
x

2ωdl

�
−
4

3

�
− 2Q2

dl

�
1 − ln

�
x

2ωdl

�
þ 5x
4ωdl

−
85x2

96ω2
dl

�
;

ð32Þ

dτdl
drdl

ðxÞ ¼ −
�
1þ x

2ωdl
−

x2

4ω2
dl

�
þQdl

2

�
x
ωdl

−
3x2

4ω2
dl

�
−
3Q2

dl

8

x2

ω2
dl

: ð33Þ

In terms of these new parametrization, we get the excitation
probability as follows,

Pexc ¼
g2dl
ω2
dl

				 Z ∞

0

dx

�
1 −

Qdlx
2ωdl

þ 5Qdlx2

8ω2
dl

þ 3Q2
dlx

2

8ω2
dl

�
× e−iνdlϕðxÞExp

�
iωdl

�
−
2

3
−

x
ωdl

þQdlx2

4ω2
dl

−
2Qdl

3
þ 2Q2

dl

�				2: ð34Þ

Here,

ϕðxÞ ¼ 11

3
þ 2x
ωdl

−
x2

6ω2
dl

þ 2 ln
x

2ωdl

þQdl

�
2 ln

x
2ωdl

−
x

2ωdl
þ 2

3
þ x2

12ω2
dl

�
þQ2

dl

�
2 ln

x
2ωdl

−
5x
2ωdl

− 2þ 85x2

48ω2
dl

�
: ð35Þ

Upon simplification one gets,

Pexc ¼
g2dl
ω2
dl

				 Z ∞

0

dx

�
1 −

Qdlx
2ωdl

þ 5Qdlx2

8ω2
dl

þ 3Q2
dlx

2

8ω2
dl

�
×

�
e−2ieνdl ln x−ixþiQdlx

2

4ωdl

�
Exp

�
−
2iνdlx
ωdl

�
1 −

Qdl

4

−
5Q2

dl

4

�
þ iνdlx2

6ω2
dl

�
1 −

Qdl

2
−
85Q2

dl

8

��				2 ð36Þ

where, fνdl ¼ νdlð1þQdl þQ2
dlÞ. One can also write

Eq. (36) as follows,

Pexc ¼
g2dl
ω2
dl

				 Z ∞

0

dx ð1 − Axþ Bx2Þx−2ieνdle−ip1xþip2x2
				2;
ð37Þ

where,

A ¼ Qdl

2ωdl
; B ¼ ð5þ 3QdlÞQdl

8ω2
dl

; ð38aÞ

p1 ¼ 1þ 2νdl
ωdl

�
1 −

Qdl

4
−
5Q2

dl

4

�
and ð38bÞ

p2 ¼
Qdl

4ωdl
þ νdl
6ω2

dl

�
1 −

Qdl

2
−
85Q2

dl

8

�
: ð38cÞ

The exact integration of Eq. (37) yields hypergeometric
function which is quite complex to tackle. Thus, we
approximate eip2x2 ∼ ð1þ ip2x2Þ, where it is considered
that p2x2 < 1 for any value of x.
This approximation is legitimate as ω2

dl ≫ 1 appears in
the denominator of p2 while a small parameter such as Qdl
appears in the numerator. Therefore, their ratio turns out to
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be a small quantity and one can proceed with the leading
order approximation. Therefore, the transition probability
becomes,

Pexc ¼
g2dl
ω2
dl

				Z ∞

0

dxð1−AxþBx2Þð1þ ip2x2Þx−2ieνdle−ip1x

				2
¼ g2dl
ω2
dl

jIj2: ð39Þ

We compute the above integral in Appendix B which leads
us to the form of the transition probability as follows

Pexc ¼
4πg2dlνdl

ω2
dlð1þ 2νdl

ωdl
Þ2
�
1þQdl þ 3Q2

dl

�
1þ 4νdl

3ωdl

��
×

1

e4πνdlð1þQdlþQ2
dlÞ − 1

: ð40Þ

At this stage we transform all the dimensionless parameters
to their respective dimensionful counterpart and write the
transition probability as below,

Pexc ¼
4πg2νrþ

ω2
�
1þ 2ν

ω

�
2

1þ Q
r2þ
þ �3þ 4ν

ω

� Q2

r4þ

e
4πνrþ

�
1þ Q

r2þ
þQ2

r4þ

�
− 1

: ð41Þ

In Eq. (41) we use,

r2þ ¼ 4M2

M4
p

�
1 −

QM4
p

4M2
−
Q2M8

p

16M4

�
2

ð42Þ

which leads to the following equations where we keep up to
the quadratic order in Q.

Q
r2þ

¼ QM4
p

4M2

�
1 −

QM4
p

4M2
−
Q2M8

p

16M4

�−2

≈
QM4

p

4M2
þQ2M8

p

8M4
ð43Þ

and
Q2

r4þ
≈
Q2M8

p

16M4
: ð44Þ

Using these approximations, the excitation probability in
Eq. (41) takes the form

Pexc ≈
4πg2ν

ω2ð1þ 2ν
ωÞ2
�
2M
M2

p
þ 3Q2M6

p

8M3

�
1þ 4ν

3ω

��
×

1

e
8πMν
M2
p

�
1þQ2M8

p

16M4

�
− 1

: ð45Þ

The final form of the transition probability depicts a
dependence on the parameter Q2 which is an induced

gravitational charge due to the extra dimensional space-
time. A further simplification leads us to obtain,

Pexc ≈
4πg2ν

ω2ð1þ 2ν
ωÞ2
�
2M
M2

p
þ 3Q2M6

p

8M3

�
1

e
8πMν
M2
p

�
1þQ2M8

p

16M4

�
− 1

:

ð46Þ
It can be realized from the above equation that when ν ≫ 1
the transition probability becomes exponentially sup-
pressed resulting no acceleration radiation. However, the
atomic frequency ω can be much greater than 1. Therefore,
for the occurrence of acceleration radiation it is legitimate
to consider ν ≪ ω. This leads us to the transition proba-
bility as follows,

Pexc ≈
4πg2ν
ω2

�
2M
M2

p
þ 3Q2M6

p

8M3

�
1

e
8πMν
M2
p

�
1þQ2M8

p

16M4

�
− 1

: ð47Þ

Proceeding similarly as above the absorption probability
for the atom can be written as,

Pabs ≈
4πg2ν
ω2

�
2M
M2

p
þ 3Q2M6

p

8M3

�
1

1 − e
−8πMν

M2
p

�
1þQ2M8

p

16M4

� : ð48Þ

III. HBAR ENTROPY OF THE BBH

In this section,we aim to find the rate of change of entropy
corresponding to the acceleration radiation in the back-
ground of the BBH spacetime. We follow the trick from
quantum optics as used in [1,2], where obtaining the density
matrix of the field is the first concern. Thus, we write the
microscopic change in the field density matrix as, δρi due to
a single atom. Consequently, the macroscopic change in the
same due to theΔN number of atoms can bewritten as [1,2],

Δρ ¼
X
i

δρi ¼ ΔN δρ ¼ κΔtδρ ð49Þ

⇒
Δρ
Δt

¼ κδρ ð50Þ

Here κ depicts the rate at which the atoms fall into the event
horizon of the black hole. Using the Lindblad master
equation for the density matrix one obtains,

ρ̇n;n ¼ −Γabs½nρn;n − ðnþ 1Þρnþ1;nþ1�
− Γexc½ðnþ 1Þρn;n − nρn−1;n−1�; ð51Þ

where,Γexc;Γabs symbolize emission and absorption rates of
the photons in the cavity by the atom and these rates are
defined as, Γexc=abs ¼ κPexc=abs.
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The steady state solution for the density matrix of the
field becomes,

ρSn;n ¼
�
Γexc

Γabs

�
n
�
1 −

Γexc

Γabs

�
: ð52Þ

This is the equation of motion for the density matrix of the
emitted photon fields due to the HBAR. In [1,2] and the
present manuscript, one can realize that there is a change in
the mathematical treatment in this section. In the earlier
sections the system is studied with respect to the accel-
eration radiation, transition probability of the atom, etc.
However, in this section the mathematical treatment is
performed in terms of the density matrix of the field (ρ), its
equation of motion, etc. Once the density matrix of the field
is obtained, one can conveniently derive the Von Neumann
entropy for the system.
Due to the real photon production the time rate of change

of entropy becomes,

Ṡρ ¼ −kB
X
n;ν

ρ̇n;n lnðρn;nÞ: ð53Þ

Using the steady state solution of the density matrix, the
above equation can approximately be written as,

Ṡρ ≈ −kB
X
n;ν

ρ̇n;n ln
�
ρSn;n
�
: ð54Þ

Furthermore using Eq. (52) in Eq. (54) we obtain,

Ṡρ ¼ −kB
X
n;ν

ρ̇n;n

"
n ln e

−8πMν
M2
p

�
1þQ2M8

p

16M4

�

þ ln

 
1 − e

−8πMν
M2
p

�
1þQ2M8

p

16M4

�!#
ð55Þ

≈ kB
X
n;ν

nρ̇n;n

�
8πMν

M2
p

�
1þQ2M8

p

16M4

��

¼ 8πMkB
M2

p

�
1þQ2M8

p

16M4

�X
ν

ṅνν: ð56Þ

Here, ˙̄nν depicts flux of the produced photons in the cavity.
The area of the black hole can be written as ABH ¼ 4πr2þ.
One can now write the rate of change of the black hole mass
as below,

ṀBH ¼ Ṁphoton þ Ṁatom: ð57Þ

The area of the black hole can be written as,

ABH ¼ 4πr2þ ¼ 4π

�
2MBH

M2
p

�
2
�
1 −

QM4
p

4M2
BH

−
Q2M8

p

16M4
BH

�
2

≈
16π

M4
p

�
M2

BH −
QM4

p

2
−

Q2M8
p

16M2
BH

�
: ð58Þ

Thus, differentiating ABH with respect to time we obtain,

ȦBH ¼ 32πMBH
˙MBH

M4
p

�
1þ Q2M8

p

16M4
BH

�
: ð59Þ

Further, we obtain,

ȦBH

ABH
¼ 2ṀBH

MBH

�
1þ Q2M8

p

16M4
BH

��
1 −

QM4
p

2M2
BH

−
Q2M8

p

16M4
BH

�−1

≈
2ṀBH

MBH

�
1þ QM4

p

2M2
BH

þ 3Q2M8
p

8M4
BH

�
: ð60Þ

Therefore, one can write,

ȦBH ¼ 2ṀBH

MBH

�
Ṁphoton þ Ṁatom

��
1þ QM4

p

2M2
BH

þ 3Q2M8
p

8M4
BH

�
ð61Þ

and recast Eq. (61) as follows,

ȦBH ¼ Ȧphoton þ Ȧatom: ð62Þ

Note that here,

ȦphotonðatomÞ ¼
2ABHṀphotonðatomÞ

MBH

�
1þ QM4

p

2M2
BH

þ 3Q2M8
p

8M4
BH

�
≃
2ṀphotonðatomÞ

MBH

16πM2
BH

M4
p

�
1−

QM4
p

2M2
BH

−
Q2M8

p

16M4
BH

�
×

�
1þ QM4

p

2M2
BH

þ 3Q2M8
p

8M4
BH

�
≃
32πṀphotonðatomÞMBH

M4
p

�
1þ Q2M8

p

16M4
BH

�
: ð63Þ

Equation (62) represents that the rate of change in the area
of the black hole is a summation of the rate of change in the
area due to the photon emission and atomic cloud near the
black hole. At this stage we consider the change in the area
of the black hole only due to the photon emission and write
Eq. (56) as follows,

Ṡρ ¼
8πMkB
ℏM2

p

�
1þQ2M8

p

16M4

�X
ν

ℏṅνν

¼ 8πMkB
ℏM2

p

�
1þQ2M8

p

16M4

�
Ṁphotonc2; ð64Þ
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where
P

ν ℏ ˙̄nνν ¼ Ṁphotonc2 represents the power trans-
ported by the emitted photons. However, in our manuscript
we take c ¼ ℏ ¼ 1, which cast the above equation as
follows,

Ṡρ ¼
8πMkB
M2

p

�
1þQ2M8

p

16M4

�
Ṁphoton: ð65Þ

We replace Ṁphoton, ABH from Eqs. (58) and (63) respec-
tively in the above equation with the identification
MBH ¼ M and allowing up to the OðQ2Þ we obtain,

Ṡρ ≈
kBM2

pȦphoton

4
¼ kBȦphoton

4G
: ð66Þ

Equation (66) depicts the relation between the rate of
change of HBAR entropy and the area of a BBH.
A new feature can be observed in this regard. Unlike the

4 dimensional RN scenario, changing the sign of Q,
modifies the measure of the radius of the outer event
horizon for a BBH [note the discussion in the Sec. I A,
below Eq. (9)]. If q (¼ QM̃2

p) is positive then the radius of
the outer event horizon is smaller than the Schwarzschild
radius. Whereas for a negative value of q, rþ turns out to be
larger than the same. This implies that the two BBHs
carrying equal but opposite charges and same masses
possess different Bekenstein Hawking entropy. On con-
trary, under the same condition the rate of change of HBAR
entropy due to the outgoing photons comes out to be
identical for these two BBHs [see Eq. (66)]. Now for two
standard 4 dimensional RN black holes with equal and
opposite charges and same masses the HBAR and the
Bekenstein-Hawking entropy remain same. Thus it is
plausible to assert that when two black holes with identical
masses and equal but opposing charges, possess different
radii of the event horizon, exhibit same HBAR entropy but
different Bekenstein-Hawking entropy, can be classified as
the BBHs. This feature is unique to the BBHs and can never
be obtained for a standard 4 dimensional RN black hole.

IV. WIEN DISPLACEMENT DUE TO THE HBAR

In this section, we present a comparative study of the
HBAR in the background of a Schwarzschild black hole
and BBH via examining the possible changes in the Wein’s
displacement of the wavelengths of radiation.
For a standard Schwarzschild black hole the excitation

probability of the atom can be written as follows [2],

PexcðνÞjscdν ≈
4πg2rgν

ω2

�
1þ 2ν

ω

�
−2 dν

e4πrgν − 1
: ð67Þ

In Eq. (67), we use rg ¼ 2GM
c2 ¼ 2GM ¼ 2M

M2
p
and identify the

temperature of the thermal bath as Tsc ¼ M2
p

8πM from the

thermal distribution. At this stage we express Eq. (67) in
terms of the wavelength of the emitted photon (ν ¼ 1

λ).
Substituting ν ¼ 1

λ in the right-hand side of Eq. (67) and
expressing PexcðνÞdν as PðλÞjscdλ, we obtain

PexcðλÞjscdλ ¼
8πMg2ðωλ − 4Þ

λ4ω3M2
p

dλ

e
1

λTsc − 1
: ð68Þ

We aim to find the maximum excitation probability
(PexcðλÞjsc) with respect to the wavelength of the radia-
tion (λ). It is important to note that throughout our analysis
ν ≪ ω and hence ν

ω ≪ 1. Using ν ¼ 1
λ in the above inequal-

ity, we obtain ωλ ≫ 1. Therefore, PexcðλÞjscdλ in the above
approximation takes the form

PexcðλÞjscdλ ≃
8πMg2

λ3ω2M2
p

dλ

e
1

λTsc − 1
ð69Þ

We take the denominator zðλÞ ¼ ω2λ3M2
pðe1=ðλTscÞ − 1Þ. In

order to find the maximum of the transition probability,
zðλÞ must have a minimum value with respect to λ, which
yields

dzðλÞ
dλ

¼ 0 ⇒ 1 − e−1=ðλscTscÞ ¼ 1

3λscTsc
: ð70Þ

We replace λ ¼ λsc, which implies that at λsc, zðλÞ is at its
minimum. This further indicates that PexcðλÞjsc will be at its
maximum. For convenience, we take 1=ðλscTscÞ ¼ f and to
solve the transcendental equation as in Eq. (70) we plot
these two functions ð1 − e−fÞ and f

3
which yields the

intersection point of these two functions. Thus, we obtain,

f ¼ 1
λscTsc

¼ 2.82 and note that d2zðλÞ
dλ2 jλ¼λsc

> 0, which
establishes that PexcðλÞjsc is at its maximum value for
λ ¼ λsc. In addition the equation 1

λscTsc
¼ 2.82 ¼ constant

confirms the Wien’s displacement law. We run this same
analysis for the transition probability in the BBH space-
time. We recast the transition probability of Eq. (47) as
below,

PexcðνÞdν≈
8πg2νM
M2

pω
2

�
1−

4ν

ω

��
1þ3Q2M8

p

16M4

�
dν

eν=TBBH −1

⇒PexcðλÞdλ¼
8πg2Mð4−ωλÞ

λ4ω3M2
p

�
1þ3Q2M8

p

16M4

�
dλ

e1=ðλTBBHÞ−1
;

ð71Þ

where TBBH ≈ M2
p

8πM ð1 − Q2M8
p

16M4 Þ ¼ Tscð1 − Q2M8
p

16M4 Þ. Performing
the similar analysis as done for the Schwarzschild case, we
obtain, 1

λBBHTBBH
¼ 2.82. This leads us to write,
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λBBH ¼ 8πM
2.82M2

p

�
1 −

q2M8
p

16fMp
4M4

�
¼ 8πβ

2.82Mp

�
1 −

q2

16α4β4

�
: ð72Þ

In the above equation we write the black hole and the five
dimensional Planck mass parameters in terms of the four-
dimensional Planck mass as M ¼ βMp, M̃p ¼ αMp. As
M̃p ≪ Mp, α ≪ 1 and β ≥ 1. Similarly in case of the
Schwarzschild background one obtains λsc in terms of β as
follows,

λsc ¼
8πβ

2.82Mp
: ð73Þ

A. Analysis of the Wien’s displacement pattern

In this section, we analyse the variation of λscðBBHÞ with
respect to β and q, the dimensionless tidal charge of the
black hole. In Fig. 1, we consider two values for q, such as
3.5 × 10−6 and 3 × 10−6, while we keep α ¼ 10−3. The
chosen values for q is restricted by the conditions q <
4α2β2 from Eq. (72) and a more stringent one appears from
Eq. (9) as q < α2β2. Therefore, throughout this analysis we
choose the parameter space for q such that it complies with
the latter one. We list our analysis as below.

(i) For these choices of parameters λscðBBHÞ, both
become Oð10−19Þ GeV−1. Evidently, the wave-
lengths corresponding to the emitted photon fields
for both the black hole spacetimes are extremely
small and far beyond the observational capacity.

(ii) Although values for the λscðBBHÞ is small, it is
noteworthy that there are deviations in the values

of λsc and λBBH with respect to the variation in β. The
deviations are more evident for the smaller values
of β. This suggests that for the black hole masses
slightly greater or comparable to the Planck mass,
the HBAR from the BBH and Schwarzschild black
hole can be distinguished.

(iii) For the larger value of β the plots tentatively coin-
cide with the standard Schwarzschild outcome. This
dictates that for the BBHs with the masses larger
than the Planck mass, the Schwarzschild potential
2M=M2

p dominates over the tidal charge correction
term in the metric of the BBH [see Eq. (7)] which
eventually leads to the above outcome.

Subsequently, in Fig. 2, we consider β ¼ 2 and α ¼ 10−3,
while vary q from 10−6 to 3 × 10−6. We list our analysis
as below,

(i) Equations (9) and (72) dictate that q cannot be
increased arbitrarily. Thus obeying this constraint
we obtain Fig. 2 which showcase an attenuation in
the wavelengths with the increasing values of q. A
possible argument is that increase in the parameter q
implies an increment in the tidal effect, originating
from the induced gravitational field on the brane.
This increasing tidal effect leads to the squeezing of
the wavelength of the emitted photons, which may
alter the wavelengths of the emitted photons.

(ii) For smaller value of q, the two curves corresponding
to the standard Schwarzschild and BBH coincides.
The Schwarzschild term will gradually become
more dominating for decreasing tidal charge.

V. DISCUSSION

The phenomena of particle production in flat/ curved
spacetime is consistently progressing since its proposition
in the year 1973 [29–34]. A plethora of novel outcomes andFIG. 1. λscðBBHÞ vs β plot for Mp ∼ 1019 GeV.

FIG. 2. λscðBBHÞ vs q plot for Mp ∼ 1019 GeV.
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new techniques have been divulged in the studies of particle
production and as well for its detection. In recent times,
Scully et al. [1] have demonstrated that employing the
quantum optical technique an alternative mechanism can
be emanated which is based on the concept of virtual
transition. This mechanism is designed using the model
of cavity quantum electrodynamics and it reveals some
distinctive features of the particle production due to the
acceleration radiation in flat/ curved spacetime. In regard to
the curved spacetime, for example the black hole spacetime
we call this radiation process as HBAR. HBAR phenomena
is well explored within the framework of GR, whereas its
fate in the context of alternative theories of gravity have
been rarely investigated. Thus, in this work we study the
phenomena of HBAR in the background of a BBH
spacetime which emerges as the lower dimensional effec-
tive theory on the visible brane from a five dimensional
gravitational theory. We find the transition probability of
the atoms and the HBAR entropy while allowing up to the
quadratic power of the tidal charge. Our results depict that
the transition probability depends on the quadratic power of
the tidal charge and thus independent of the sign of the
charge. However, its dependence on the tidal charge reflects
the influence of bulk curvature effect in HBAR in the
background of a higher dimensional theory. As mentioned
in Sec. IVA, we perform a comparative study between the
behavior of the wavelengths λsc and λBBH of the radiated
photon fields, which corresponds to the maximum tran-
sition probability in the standard Schwarzschild and BBH
spacetimes respectively. For this analysis, we follow the
theory of Wien displacement. The values of λscðBBHÞ come
out to be extremely small (see Figs. 1 and 2) and currently
far beyond the observational scope. However, Fig. 1
dictates a theoretically alluring outcome that λsc and
λBBH differ from each other for a certain mass range of
the black hole, that is for,M slightly greater or equal toMp.

We hope that a thorough investigation of this mass range of
the black holes which can be categorized as the micro size
black holes may shed some light upon the gravitational
effects of the background spacetime and as well the accele-
ration radiation in such geometries. Figure 2 describes the
decreasing pattern of the λBBH with increasing tidal charge
of the black hole. This outcome also possesses theoretical
merit such as this attenuating feature of the wavelength may
arise due to the increasing tidal effect (as the tidal charge q
is increasing in the Fig. 2) which emerges due to the
projection of the bulk gravitational field on the (3þ 1)-
dimensional visible brane. As a future direction, we hope to
report soon the prominence of HBAR for other modified
theories of gravity such as the higher curvature gravity
theories.

APPENDIX A: SOME IMPORTANT EQUATIONS

In this appendix, we present some important equations
used in the main text. We start by considering,

y ¼ 1þ 3x
2ωdl

: ðA1Þ

Thus, we have (since 3x
2ωdl

< 1)

y1=3 ¼
�
1þ 3x

2ωdl

�
1=3

≈ 1þ x
2ωdl

−
x2

4ω2
dl

þ 5x3

24ω3
dl

ðA2Þ

y−1=3 ¼
�
1þ 3x

2ωdl

�
−1=3

≈1−
x

2ωdl
þ x2

2ω2
dl

−
7x3

12ω3
dl

ðA3Þ

y2=3 ¼
�
1þ 3x

2ωdl

�
2=3

≈ 1þ x
ωdl

−
x2

4ω2
dl

þ x3

6ω3
dl

ðA4Þ

Pexc ¼
4g2dl
9

				 Z ∞

y¼1

dyy−1=3
�
−y1=3 þQdl

2
fy1=3 − y−1=3g þ 3Q2

dl

8
f2y−1=3 − y−1 − y−1=3g

�
exp

�
−iνdl

�
y2=3 þ 2 lnðy1=3 − 1Þ

þ 2y1=3 þ 2y
3
þ 2Qdl lnðy1=3 − 1Þ −Qdl þ 2Qdly1=3 −

Qdly
3

þ 2Q2
dl lnð1 − y−1=3Þ −Q2

dl

2
−
7Q2

dly
1=3

4
þQ2

dly
4

�
× exp

�
iωdl

�
−
2y
3
þQdl

�
y
3
− y1=3

�
þQ2

dl

�
3y1=3

2
þ 3y−1=3

4
−
y
4

��				2 ðA5Þ

APPENDIX B: INTEGRATION OF EQ. (39)

From Eq. (39), we write,

I ¼
Z

∞

0

dx ð1 − Axþ Bx2Þð1þ ip2x2Þx−2ieνdle−ip1x ðB1Þ

We take, x ¼ x0
p1

which yields Eq. (B1) as below.

I ¼ ðp1Þ2ieνdl−1 Z ∞

0

dx0
�
1 −

Ax0

p1

þ Bx02

p2
1

�
ðx0Þ−2ieνdle−ix0

þ ip2ðp1Þ2ieνdl−3 Z ∞

0

dx0
�
1 −

Ax0

p1

þ Bx02

p2
1

�
× ðx0Þ2−2ieνdle−ix0 : ðB2Þ

Integrating term by term we obtain, Let us take,

HORIZON BRIGHTENED ACCELERATED RADIATION IN THE … PHYS. REV. D 109, 064087 (2024)

064087-11



T1 ¼
Z

∞

0

dx0 ðx0Þ−2ieνdle−ix0
¼ −2fνdle−πeνdlΓ½−2ifνdl�; ðB3Þ

T2 ¼ −
A
p1

Z
∞

0

dx0ðx0Þ1−2ieνdle−ix0
¼ −

2iA
p1

ffνdlð1 − 2ifνdlÞge−πeνdlΓ½−2ifνdl�; ðB4Þ

T3 ¼
B
p2
1

Z
∞

0

dx0ðx0Þ2−2ieνdle−ix0
¼ 4B

p2
1

ffνdlð1 − ifνdlÞð1 − 2ifνdlÞge−πeνdlΓ½−2ifνdl�; ðB5Þ

T4 ¼
Z

∞

0

dx0ðx0Þ2−2ieνdle−ix0
¼ 4ffνdlð1 − ifνdlÞð1 − 2ifνdlÞge−πeνdlΓ½−2ifνdl�; ðB6Þ

T5 ¼ −
A
p1

Z
∞

0

dx0ðx0Þ3−2ieνdle−ix0
¼ 4iA

p1

ffνdlð1 − ifνdlÞð1 − 2ifνdlÞð3 − 2ifνdlÞg
× e−πeνdlΓ½−2ifνdl�; ðB7Þ

T6 ¼
B
p2
1

Z
∞

0

dx0ðx0Þ4−2ieνdle−ix0
¼ −

8B
p2
1

ffνdlð1 − ifνdlÞð1 − 2ifνdlÞð2 − ifνdlÞð3 − 2ifνdlÞg
× e−πeνdlΓ½−2ifνdl�: ðB8Þ

Using νdl
ωdl

≪ 1 and allowing all expansions up to the

OðQ2
dlÞ, one obtains A

p1
∼ A and B

p2
1

∼ B. Thus we get,

T1 þ T2 þ T3 ¼
�
−
iνdl
ωdl

Qdlð1þQdlÞ − 2νdl

�
1þQdl

�
1þ νdl

ωdl

�
þQ2

dl

�
1þ 2νdl

ωdl

��
e−πeνdlΓ½−2ifνdl� ðB9Þ

and,

T4 þ T5 þ T6 ¼
�
4νdl

�
1þQdl

�
1þ 11νdl

2ωdl

�
þQ2

dl

�
1þ 11νdl

ωdl

�
− 8ν3dl

�
1þ 3Qdl

�
1þ νdl

3ωdl

�
þ 6Q2

dl

�
1þ 2νdl

3ωdl

�
þ 6iνdl

ωdl
Qdlð1þQdlÞ − 12iν2dl

�
1þ 2Qdl

�
1þ νdl

ωdl

�
þ 3Q2

dl

�
1þ 2νdl

ωdl

��
e−πeνdlΓ½−2ifνdl�: ðB10Þ

Equation (B2) yields,

jIj2 ¼ 1

p2
1

				�−2νdl þQdlνdl

�
νdl
ωdl

− 2

�
ð1þ 2QdlÞ


− i

�
2ν3dl
ωdl

Qdlð1þ 3QdlÞ
				2e−2πeνdl jΓ½−2ifνdl�j2

¼ 1

p2
1

jG − iHj2e−2πeνdl jΓ½−2ifνdl�j2�
¼ 1

p2
1

ðG2 þH2Þe−2πeνdl jΓ½−2ifνdl�j2
¼ 4ν2dl

p2
1

�
1þ 2Qdl

�
1 −

νdl
2ωdl

�
þ 5Q2

dl

�
1 −

3νdl
2ωdl

��
e−2πeνdl jΓ½−2ifνdl�j2: ðB11Þ

In the above equation, G ¼ −2νdl þQdlνdlðνdlωdl
− 2Þð1þ 2QdlÞ and H ¼ 2ν3dl

ωdl
Qdlð1þ 3QdlÞ. We also use, jΓ½−iz�j2 ¼

π
z SinhðπzÞ in the above equation where z ¼ 2fνdl. Thus we obtain,

jIj2 ¼ 4πν2dl
p2
1fνdl

�
1þ 2Qdl

�
1 −

νdl
2ωdl

�
þ 5Q2

dl

�
1 −

3νdl
2ωdl

��
1

e4πeνdl − 1
: ðB12Þ

In Eq. (B12), we explicitly use the form of p1 from Eq. (38c) and obtain the transition probability as,
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Pexc ¼
4πg2dlνdl

ω2
dl

�
1þ 2νdl

ωdl

�
2

�
1þ 2Qdl

�
1 −

νdl
2ωdl

�
þ 5Q2

dl

�
1 −

3νdl
2ωdl

��
ð1þQdl þQ2

dlÞ−1

×

�
1 −

Qdlνdl
2ωdl

ð1þ 5QdlÞ
�
1þ 2νdl

ωdl

�
−1
�
−2 1

e4πeνdl − 1
: ðB13Þ

We further approximate the above equation while allowing up to the linear order of νdl
ωdl

and quadratic order of Qdl.
This yields,

Pexc ¼
4πg2dlνdl

ω2
dl

�
1þ 2νdl

ωdl

�
2

�
1þQdl þ 3Q2

dl

�
1þ 4νdl

3ωdl

��
1

e4πeνdl − 1
: ðB14Þ
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