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Ultracold neutrons are great experimental tools to explore the gravitational interaction in the regime of
quantized states. From a theoretical perspective, starting from a Dirac equation in curved spacetime, we
applied a perturbative scheme to systematically derive the nonrelativistic Schrödinger equation that governs
the evolution of the neutron’s wave function in the Earth’s gravitational field. At the lowest order, this
procedure reproduces a Schrödinger system affected by a linear Newtonian potential, but corrections due to
both curvature and relativistic effects are present. Here, we argue that one should be very careful when
going one step further in the perturbative expansion. Proceeding methodically with the help of the Foldy-
Wouthuysen transformation and a formal post-Newtonian 1=c2 expansion, we derive the nonrelativistic
Hamiltonian for a generic static spacetime. By employing Fermi coordinates within this framework, we
calculate the next-to-leading-order corrections to the neutron’s energy spectrum. Finally, we evaluate them
for typical experimental configurations, such as that of qBounce, and note that, while the current precision
for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the
future or in alternative circumstances.
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I. INTRODUCTION

In the last decades, there has been a surging interest in a
wide variety of small-size and tabletop experiments explor-
ing the fundamental properties of the gravitational interac-
tion: starting from optical [1] and atom interferometry [2–4],
also with the inclusion of optical lattices [5,6], getting
to more exotic ideas, like Bose-Einstein condensate [7],
geonium atoms [8,9], and eventual gravitational wave
detectors [10].
A very interesting possibility is offered by ultracold

neutrons (UCN) [11], particles with such low energies and
velocities that their wavelength become larger than typical
atomic interspacing, and can therefore be stored much more
easily, since they get totally reflected by many materials.
Recently, UCNs have also been employed to investigate the
quantum nature of gravitational interaction. Remarkably,
experiments such as qBounce [12,13] and GRANIT [14,15]
have successfully observed gravitationally induced quantum
states [16–18]. As a result, experiment involving UCN
are becoming a standard option to probe fundamental
physics [19–21], in particular extensions of general relativity
(GR), like beyond-Riemannian models [22,23], Torsion

contributions [24], emergent gravity proposals [25–27],
and much more [28].
Within this framework, GR or Standard Model exten-

sions are usually described starting from a generalized
Dirac equation, depending on the theory under analysis,
embedded in the curved spacetime sourced by the Earth.
From there, one can obtain the corresponding nonrelativ-
istic Hamiltonian by taking the low-curvature and low-
velocity limit. Usually, the final result of this procedure can
be split into the GR contribution and additional terms
which parametrize the extension under consideration.
Contrary to the prevailing trend, our paper uniquely

concentrates on precisely the GR contribution. At leading
order, one expects to recover the Schrödinger equation
describing a particle in the Earth’s Newtonian potential,
which is the theoretical picture considered in the interpre-
tation of gravitational experiments with UCNs [29].
However, when going deeper into the perturbative expan-
sion, new terms get to influence the quantum dynamics and
since experiments like qBounce have already reached the
stunning sensibility of 10−17 eV, one should start asking
oneself to which extent will the trivial Newtonian picture
hold on. Then, while most of noninertial and rotational
effects are, in principle, already taken into account implic-
itly by the effective local acceleration value for the qBounce
setup, one of the pragmatic purposes of this work is exactly
to quantify the next-to-leading-order (NLO) corrections to
UCNs energy spectrum in the Earth’s gravitational field.
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To complete this task we have to go through several
technical steps which, despite the amount of work already
present in the literature, remain nontrivial. For example, the
aforementioned corrections get typically sorted out by the
powers of the inverse fermion mass 1=m. Nevertheless, if
not carefully considered, this choice can result in incon-
sistencies when dealing with the gravitational interaction
(whose source is the mass itself) [30], while still being
perfectly fine in the electromagnetic sector. Also for this
reason, we decided to adopt for our work the post-
Newtonian approach, in which perturbations are catego-
rized by their inverse c2 power. More details on that are
spread throughout the paper.
Therefore, the outline of this work is as follows: After a

small summary illustrating our conventions, in Sec. II, we
start from the Dirac equation in curved spacetime to evaluate
the respective Hamiltonian for a static spacetime and,
then, we take the low-curvature limit and introduce the
post-Newtonian expansion. In Sec. III we exploit the
Foldy-Wouthuysen (FW) transformation to perform
the nonrelativistic limit, while in Sec. IV, with the help of
Fermi coordinates, we take the perspective of an accelerated
laboratory frameon the surface of the Earth. Finally, in Sec.V
we derive the next-to-leading-order corrections to the neu-
tron’s spectrum and determine their magnitude for current
experiments, like qBounce. To avoid cluttering in the main
text with too many calculations, we include some details on
the more lengthy ones in the Appendix of this work.

A. Notation and conventions

Before we get into the calculations, let us set up the
notational conventions used along the paper; hereon,wewill
use Greek and Latin characters to label respectively space-
time and tangent space indices. As usual, the tetrad field eaμ
will be used to “translate” spacetime indices into tangent
space indices and vice versa. Let us also note that to avoid
confusion with the tetrads and their inverse, which are the
only objects that intrinsically mix the two types of indices,
wewill place the (upper or lower) tangent space index as the
first one appearing from left to right. Finally, wewill refer to
time components with “t” when dealing with spacetime
indices and with “0” in the tangent space, while spacetime
spatial components f1; 2; 3g will be labeled by lower case
letters fi; j; k;…g and tangent space spatial components by
capital letters fI; J; K;…g in the set f1; 2; 3g as well.
Since our final aim is to pursue a nonrelativistic

expansion within the approach of the post-Newtonian
approximation [31], we will not work in natural units to
still be able to keep track of powers of c.
For the Dirac matrices γa in flat spacetime we choose the

standard representation,

γ0¼
�
1 0

0 −1

�
; γI ¼

�
0 σI

−σI 0

�
; ð1Þ

with 1 representing a two by two identity matrix and σ the
usual Pauli’s matrices. From those we can define their
curved spacetime version

γμ ≡ eaμγa; ð2Þ

which satisfy the consistent curved spacetime Clifford
algebra,

fγμ; γνg ¼ 2gμν: ð3Þ

We further introduce σab and Σ matrices

σab ¼ 1

4
½γa;γb�; ΣI ¼

�
σI 0

0 σI

�
: ð4Þ

Finally, for the Minkowski metric we pick the mostly minus
convention ημν ¼ diagf1;−1;−1;−1g.

II. DIRAC HAMILTONIAN
IN CURVED SPACETIME

Let us start our analysis from the Dirac equation in
curved spacetime [32,33],

ðiℏγμDμ −mcÞψ ¼ 0; ð5Þ

with Dμ ¼ ∂μ þ Γμ representing the spinor covariant
derivative and the spinor connection Γμ [34]. The latter
is expressed through the inverse tetrads eaμ as

Γμ ¼
1

2
σabeaν∇μebν ¼

1

2
σabgνρeaν∇μebρ; ð6Þ

where

∇μebρ ¼ ∂μebρ þ f ρ
μ αgebα ð7Þ

is the usual GR covariant derivative constructed from the
Christoffel symbols f ρ

μ αg,

f ρ
μ αg ¼ 1

2
gρβð∂μgαβ þ ∂αgμβ − ∂βgμαÞ: ð8Þ

Multiplying Eq. (5) by ðgttÞ−1γt, we can manipulate it to
obtain a time-evolution equation,

H Dψ ¼ iℏ
∂ψ

∂t
; ð9Þ

where we used xt ¼ ct, and H D is then the Dirac-
Hamiltonian for a generic spacetime

H D ¼ mc2ðgttÞ−1γt − iℏcΓt − iℏcðgttÞ−1γtγiDi; ð10Þ
where repeated spatial indices are summed. Since the
inclusion of rotational effects goes beyond the scope of
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this paper, and keeping in mind a practical approximation
to the qBounce experimental setup, in the following wewill
limit ourselves to static spacetimes, effectively neglecting
the effects of Earth’s rotation. This choice coincides, for
example, with the one in [20,23] where the authors assume
the laboratory frame to be inertial. Then, the line element
ds2 ¼ gμνdxμdxν for a generic static spacetime is

ds2 ¼ V2ðcdtÞ2 þ gijdxidxj; ð11Þ

where V and gij are functions of the spatial coordinates.
Remembering that the tetrads must satisfy the condition
gμν ¼ ηabeaμebν, we conveniently choose their expressions
such that they do not mix time and spatial coordinates

e0i ¼ eIt ¼ 0; eIt ¼ e0i ¼ 0; ð12Þ

and that

e0t ¼ ðe0tÞ−1 ¼ V: ð13Þ

In this way, the Dirac matrices with the indices referring to
the curved spacetime coordinates read

γt ¼ eatγa ¼
1

V
γ0;

γi ¼ eaiγa ¼ eJiγJ: ð14Þ

With the above considerations, we can rewrite Eq. (10) for
the particular case of a static spacetime (11)

H D ¼ mc2Vγ0 − iℏcΓt − iℏcVγ0γJeJið∂i þ ΓiÞ;

which, using the explicit expression (A3) of Γt combined
with the one for Γi (see Appendix A), becomes

H D ¼mc2Vβ− iℏcαJeJi
�
V∂iþ

1

2
∂iVþVΓi

�
: ð15Þ

Here, we define the matrices β≡ γ0 and αi ≡ γ0γi. Note
that, in curved space, the Hamiltonian (15) is Hermitian
only with respect to the right scalar product measure [35]
including J ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−detðgijÞ
p

,

d3xJ ¼ d3x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðgijÞ

q
: ð16Þ

Equivalently, we can also implement Hermiticity through
the following redefinitions for the spinor and Hamiltonian
operator [36–38],

ψ̃ ¼ J
1
2ψ ;

H̃ D ¼ J
1
2H DJ−

1
2: ð17Þ

In this way, the Hamiltonian becomes

H̃ D¼mc2Vβ

− iℏcαJeJi
�
V∂iþ

1

2
∂iV−

1

2
VJ−1∂iJþVΓi

�
; ð18Þ

which is now Hermitian respect to the flat measure. From
here on we will drop the “tilde” notation for the sake of
simplicity.

A. Low-curvature limit
and post-Newtonian expansion

At this point, we are ready to take the low-curvature or
weak-gravity limit. The way we perform it is by realizing
a formal 1=c expansion of the geometrical objects around
flat spacetime quantities [8], in the same fashion as post-
Newtonian (PN) expansions

v≡ V − 1 ∼Oðc−2Þ;
hij ≡ gij − ηij ∼Oðc−2Þ;
εJ

i ≡ eJi − δJ
i ∼Oðc−2Þ;

ε̃Ij ≡ eIj − δIj ∼Oðc−2Þ; ð19Þ

with the perturbative objects defined above containing all
the corrections starting from the smallest 1=c2 order up to
the largest one allowed by the context of the expansion.
That also implies the following form of the Jacobian in (16)

J¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðηijþhijÞ

q
≃1−

1

2
hþOðc−4Þ; h≡X

i

hii:

ð20Þ

Note that the perturbation ε̃ and ε in (19) are respectively
related to the tetrad and inverse tetrad.
Replacing definitions (19) and (20) into the Hamiltonian

(18) and keeping everything up to order 1=c2, we have

H D ≃mc2β þmc2βv − iℏcαJ
�ð1þ vÞδJi þ εJ

i
�
∂i

− iℏcαJδJi
�
1

2
∂ivþ Γi þ

1

4
∂ih

�
; ð21Þ

where each perturbation term v, h or ε is intended to be
expanded up to highest possible order while keeping the
Hamiltonian at order 1=c2.
In practice, this approach is equivalent to the one used for

PN calculations [31,39], which have demonstrated to be
very powerful when dealing with gravitational systems.
By virtue of this analogy, we borrow some of the PN
vocabulary to classify corrections in a convenient way; in
particular, terms of order 1=cN in our scheme, will
correspond to N

2
PN corrections. Please see Table I for a
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correspondence between our formal expansion and the
standard PN notation.
In this sense, the Hamiltonian (21) must be interpreted as

the 1 PN-version of the complete expression (18). Thus,
apart from the 0 PN Newtonian contribution, it will also
include 0.5 PN and 1 PN corrections that are the focus of
this work. However, it is important to highlight that, even if
here “hybrid” 0.5 PN contributions are present due to the
structure of the Dirac Hamiltonian, in the rest of the paper
we will see that those are going to become additional 1 PN
perturbations after the nonrelativistic limit is taken.
From Eq. (21) we can also note that, at this stage of the

calculation, the distinction between capital and lowercase
spatial indices becomes irrelevant. In fact, the information
on the perturbations around the flat spacetime (up to the
relevant order) is already encoded in the v and ε objects.
Therefore, with a little abuse of notation, from now on

we will drop this distinction to avoid unnecessary complex-
ities in the reading,

αI → αi; δJ
i → δj

i; εJ
i→ εj

i; ε̃Ij→ ε̃ij: ð22Þ
This allows us to write the Hamiltonian (21) in the
following convenient way:

H D ≃mc2β þmc2βv

− iℏcαi
�
ð1þ vÞ∂i þ εi

j
∂j

þ 1

2
∂ivþ Γi þ

1

4
∂ih

�
: ð23Þ

B. Simplified expression for Γi

Starting from Eq. (A5) for Γi, we now want to expand it
and obtain its 1.5 PN expression, which is relevant for
Hamiltonian (23). Making use of the new notation (22), we
have the result,

Γi ≃
1

2
σklðηmnδk

m
∂iεl

n þ δk
mδl

n
∂nhimÞ

≃
1

2
σklð∂iεkl − ∂khilÞ; ð24Þ

where repeated spatial indices are summed up independ-
ently of their upper or lower position. Nevertheless, there
is another simplification that can be done in a few steps.

First of all, let us observe that, expanding up the tetrad
conditions eaμeaν ¼ δμν and gμν ¼ eaνeaνηab, we obtain,
respectively, the equations

ε̃ji ¼ −εij;

hij ¼ −ε̃ij − ε̃ji ¼ εi
j þ εj

i: ð25Þ
Thus, it is straightforward to see that we can always make
the following choice for the tetrads,

εi
j ¼ −ε̃ji ¼

1

2
hij; ð26Þ

so that the conditions (25) are fullfilled up to the relevant
1=c3 order. This way, the matrices representing the tetrad
tensors perturbations will be symmetric,

εi
j ¼ εj

i; ε̃ji ¼ ε̃ij: ð27Þ
On the other hand, the above relations imply that con-
tractions of the type σklεk

l vanish, because of the (anti)
symmetries of the involved objects. Therefore, we can
finally simplify the Γi to the expression,

Γi ≃ −
1

2
σkl∂khil: ð28Þ

In the rest of the paper, all the eventual ε̃ will be expressed
in terms of the inverse tetrad perturbation ε, by virtue of
their interconnection (25).

III. NONRELATIVISTIC LIMIT

We shall now proceed with the low-velocity or non-
relativistic limit jpj ≪ mc. In order to do that, we will apply
the FW transformation [40], a well-known procedure to
decouple Dirac spinors into its positive and negative energy
components. This is usually valid up to some order in m−1,
which would otherwise get mixed by the α matrices.
However, since we are working in the PN hierarchy of
perturbative corrections, we will keep using 1=c as our
formal expansion parameter. That also allows us to avoid
the inconsistencies raised in [30] when using the standard
FW transformation in the gravitational context.

A. Foldy-Wouthuysen transformation

The first step in the FW approach is to divide the
Hamiltonian (23) into the “even” (nonmixing) operator E
and the “odd” (mixing) operator Θ [41],

H D ¼ βmc2 þ E þ Θ; ð29Þ

with(
Θ¼−iℏcαi

�ð1þvÞ∂iþ εi
j
∂jþ 1

4
∂ið2vþhÞþΓi

�
;

E¼mc2βv:
ð30Þ

TABLE I. Correspondence table between our formal expansion
and the post-Newtonian one (also look at Fig. 1 in [63]).

1=c order PN equivalent

1 0 PN
c−1 0.5 PN
c−2 1 PN
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The even and odd operators satisfy the following (anti)
commutation relation,

½E; β� ¼ 0; fαi; βg ¼ 0 → fΘ; βg ¼ 0; ð31Þ

and we can easily see that, due to their expressions and the
relations (19), we have at lowest order

E ∼Oð1Þ; Θ ∼OðcÞ: ð32Þ

In our formalism, the typical unitary FW transformation
U ¼ eiS, with S Hermitian, is defined as

S ¼ −i
β

mc2
Θ ∼Oðc−1Þ: ð33Þ

Then, the following expansion is valid up to 1 PN order:

H FW ¼ eiSH De−iS

¼ H D þ i½S;H D�

þ i2

2!
½S; ½S;H D�� þ

i3

3!

�
S; ½S; ½S;H D��

�
þ i4

4!

�
S; ½S; ½S; ½S;H D��

�þOðc−3Þ: ð34Þ

Starting from these settings, after three consecutive FW
transformations, we end up with the Hamiltonian [42],

H FW ¼ βmc2 þ E þ βΘ2

2mc2

þ β

8m2c4
�½Θ; E�;Θ� − β

8m3c6
Θ4 þOðc−3Þ: ð35Þ

in which the matter and antimatter sectors have been
decoupled up to order 1=c3. Thus, each term in (35) must
be calculated up to the relevant order for our approxima-
tion. For example, to keep only terms at most 1 PN, we
should compute ½½Θ; E�;Θ� at least to order c2, and so on.
More details on the FW transformation are included in
Appendix B.
At this point, it is straightforward to obtain the non-

relativistic Hamiltonian HNR describing the fermion
dynamics by simply selecting the positive energy solutions
of H FW , and neglecting its constant mass term that would
only produce an overall shift to the energy spectrum. After
working out every single commutator in (35) and defining
the shifted spatial metric correction h̃ij,

h̃ij ≡ hij þ vδij; ð36Þ

the final result can be expressed in a surprisingly compact
and practical form

HNR ¼ mc2v −
ℏ4
∂
4
i

8m3c2

−
ℏ2

2m

�
∂
2
i þ h̃ij∂i∂j þ ∂ih̃ij∂j þ

1

4
∂i∂jh̃ij

þ i
2
ϵijkσk∂ih̃jl∂l þ

i
4
ϵijkσk∂i∂lh̃jl

�
; ð37Þ

with ϵijk being the Levi-Civita symbol. For the consistency
of the expression, v must be calculated here up to order
1=c4 while h̃ij up to 1=c2. This is one of the main results of
this paper due to its compactness and general validity for
static weak gravity scenarios. We summarize again the
considerations used to achieve it:

(i) g0i ¼ 0 (11);
(ii) v; hij; εji; ε̃ij ∼Oðc−2Þ (19);
(iii) εi

j ¼ εj
i (27).

B. Examples and comparison

In this section, we would like to consider a few
applications for Eq. (37) and some comparisons with the
literature.

1. Diagonal spacetime metrics

Let us start by considering the special case of a diagonal
static metric with the form

gμν ¼ diagfV2;−W2;−W2;−W2g: ð38Þ

When assuming the weak gravity limit in (19), we define
the additional perturbative quantity

w≡W − 1 ∼Oðc−2Þ: ð39Þ

Therefore, it will be sufficient to replace hij ¼ −2wδij in
Eq. (37) to obtain the relevant Hamiltonian expression for
this case, that becomes

HNR ¼ mc2v −
ℏ4
∂
4
i

8m3c2

−
ℏ2

2m

�
ð1þ v − 2wÞ∂2i þ ∂iðv − 2wÞ∂i

þ 1

4
∂
2
i ðv − 2wÞ þ i

2
ϵijkσk∂iðv − 2wÞ∂j

�
; ð40Þ

which corresponds to the result in [43].

2. Schwarzschild metric

A straightforward application of the previous formulae is
for the Schwarzschild spacetime. In fact, considering the
low-curvature limit in isotropic coordinates, we obtain the
following spacetime element:
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ds2 ¼
�
1þ 2ΦS

c2
þ 2Φ2

S

c4

�
ðcdtÞ2 −

�
1 −

2ΦS

c2

�
dx2; ð41Þ

with ΦS ≡ − GM
r the gravitational potential external to the

spherical mass source M, and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
the

coordinate distance from its center. In the temporal and
spatial components of the metric, we have kept terms up to
the relevant order for our case. This expression leads us to

v ¼ ΦS

c2
þ Φ2

S

2c4
; w ¼ −

ΦS

c2
; ð42Þ

which replaced into (40) gives back the nonrelativistic
Hamiltonian for the Schwarzschild metric,

HS ¼ mΦS

�
1þ ΦS

2c2

�
−

ℏ2

2m

�
1þ 3ΦS

c2

�
∂
2
i −

ℏ4
∂
4
i

8m3c2

þ 3ℏ2

8mc2
∂ · gþ 3ℏ2

2mc2
g · ∂þ 3iℏ2

4mc2
σ · ðg × ∂Þ; ð43Þ

where we defined the “Newtonian” gravitational acceler-
ation vector g as

gi ≡ −∂iΦS: ð44Þ

Expression (43) matches the results in [38,41,44], and
also [45] if we neglect the Darwin term ∝ p · g ∼ ∂

2ΦS,
which outside the source of the gravitational field does not
matter anyway.

3. Eddington-Robertson metric

Finally, we want to discuss here a particular case that
will also come in handy later in the paper; the Eddington-
Robertson (ER) parametrized post-Newtonianmetric [46,47],

ds2¼
�
1þ2ΦN

c2
þ2βΦ2

N

c4

�
ðcdtÞ2−

�
1−

2γΦN

c2

�
dx2; ð45Þ

where ΦN is the usual Newtonian potential for an extended
classical body with density ρðxÞ

ΦNðxÞ ¼ G
Z
Source

d3x0
ρðx0Þ

kx − x0k ; ð46Þ

while the parameters β and γ account for possible deviations
from GR (in which β ¼ γ ¼ 1), and should not be mistaken
with the above-presented Dirac matrices. We re-label these
parameters respectively as b (for β) and d (for γ) to avoid
confusion. The GR limit of (45) is the solution of Einstein
equation in a 1=c expansion for a static source. The ERmetric
is the simplest example of a metric in the general para-
meterized post-Newtonian (PPN) formalism, which provides
a general framework for testing metric theories of gravity in

the weak-field regime. For a more exhaustive discussion on
this topic, see [48].
Considering a spherically symmetric source and limiting

ourselves to its exterior, ΦN reduces to the Schwarzschild
expression ΦS ¼ − GM

r , yielding what we call the ER-
Schwarzschild (ERS) metric

ds2¼
�
1þ2ΦS

c2
þ2bΦ2

S

c4

�
ðcdtÞ2−

�
1−

2dΦS

c2

�
dx2; ð47Þ

which is trivially equivalent to (41) when b ¼ d ¼ 1 as
expected. Following the same procedure as before, the ERS
Hamiltonian reads,

HERS ¼ mΦS

�
1þ ð2b − 1Þ ΦS

2c2

�

−
ℏ2

2m

�
1þ ð1þ 2dÞΦS

c2

�
∂
2
i −

ℏ4
∂
4
i

8m3c2

þ ð1þ 2dÞ ℏ2

8mc2
∂ · gþ ð1þ 2dÞ ℏ2

2mc2
g · ∂

þ ð1þ 2dÞ iℏ2

4mc2
σ · ðg × ∂Þ; ð48Þ

from which we recover again (43) if b ¼ d ¼ 1.

IV. PROPER LABORATORY FRAME

Our final goal is to apply our derivation to experiments
and observations made in small laboratories on Earth’s
surface. For this purpose, (almost) global coordinates fxμg
like the Schwarschild ones are clearly not the most suitable
option, since they would lead to difficulties with the
definitions of time intervals and physical distances.
The most natural possibility, instead, is to work in the

proper reference frame of the laboratory, which can be done
exploiting Fermi coordinates (FC) [49–51] extended to the
case of accelerated motion [52] thanks to Fermi-Walker
transport [53]. In fact, the laboratory does not follow a
geodesic motion, since it is accelerated upwards by the
normal force exerted by the Earth’s surface itself.
Therefore, this should be the natural framework when
one is interested into local observations. This approach also
has the advantage to make coordinate time and lengths
coincides with their corresponding physical quantities,
avoiding any possible confusion and need for rescalings.

A. Fermi coordinates

The main philosophy of FC is to approximate a small
enough region of spacetime around the worldline ξμðxÞ of
an observer. This task is achieved by considering the
observer’s proper time τ and constructing an Euclidean
grid fXig comoving with the observer. For further details
on the geometric construction of FC see [54,55] and
references therein. In the following, objects evaluated on
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the observer’s worldline (i.e., Xi ¼ 0) are denoted when
possible by a bar over them: Ojξ ¼ Ō. Furthermore, since
here we are particularly interested in static observers, we
are free to align the Z-direction with the local acceleration a
along all the path of the worldline.
The consistency of this treatment is governed by a new

small parameter to be introduced in the picture, kXk=R ≪ 1,
with kXk representing the typical length scale of the experi-
ment and R symbolically defined by [56,57]

R ¼ min

�
kRμνρσk−1

2;
kRμνρσk
kRμνρσ;αk

;
c2

kak
�
; ð49Þ

where we used the semicolon in the Riemann tensor Rμνρσ;α

to indicate its covariant derivative.

B. Metric in Fermi coordinates

When mapped to our notational conventions, the general
form of the Fermi metric in the proper reference frame
experiencing an acceleration a is [57]

gFττ ¼
�
1þ a · X

c2

�
2

− R̄F
tltmX

lXm þOðkXk3Þ;

gFτi ¼ −
2

3
R̄F
tlimX

lXm þOðkXk3Þ

gFij ¼ −δij −
1

3
R̄F
ijlmX

lXm þOðkXk3Þ; ð50Þ

where R̄F
μναβ is the Riemann tensor in FC evaluated on the

observer’s worldline. Its Fermi expression, due to gauge
covariance, can be evaluated starting from the Riemann
tensor in some prior coordinates,

R̄F
μναβ ¼ R̄ρσκγΛ̄μ

ρΛ̄ν
σΛ̄α

κΛ̄β
γ;

with Rμναβ ¼ gμρRρ
ναβ; ð51Þ

where Λ̄ represents the coordinate transformation matrix
evaluated on the worldline and, by construction [51], it
coincides with the tetrad matrices.
Clearly, in our weak-gravity framework, the Riemann

tensor Rμναβ should be treated as anOðc−2Þ object, since its
leading contributions are at least linear in hij [58]. Note also
that, working in a static context, we will have R̄tlim ¼ 0

implying gFτi ¼ 0, as expected. There exists in the literature
a more general metric than (50) in which the effects of
laboratory’s rotation are also taken into account [59].
However, in this work we shall limit ourselves to (50)
for consistency.
Therefore, the relevant quantities to consider for the

calculation of (37) are

vF ¼ a · X
c2

−
1

2
R̄F
τlτmX

lXm;

hFij ¼ −
1

3
R̄F
iljmX

lXm: ð52Þ

Here R̄F
τlτm has to be calculated up to order 1=c4, starting

from Eq. (51)

R̄F
τlτmX

lXm ¼ð1þ2v̄ÞR̄tltmXlXmþ2εl
kRtktmXlXm; ð53Þ

while R̄F
iljm, at order 1=c

2, just coincides with its expression
in the prior coordinates system

R̄F
iljm ≃ R̄iljm: ð54Þ

C. Fermi Hamiltonian

Replacing (52) in the Hamiltonian (37), we can split it
into the sum of two contributions

HNR ¼ HN þHNLO; ð55Þ

with the Newtonian Hamiltonian HN defined as

HN ¼ ma · X −
ℏ2

2m
∂
2
i ¼ maZ −

ℏ2

2m
∂
2
i ; ð56Þ

while the NLO part, containing all 1PN and OðkXk2Þ
corrections, is

HNLO ¼ −
mc2

2
R̄F
tltmX

lXm −
ℏ4
∂
4
i

8m3c2

−
ℏ2

2m

�
h̃Fij∂i∂j þ ∂ih̃

F
ij∂j þ

1

4
∂i∂jh̃

F
ij

þ i
2
ϵijkσk∂ih̃

F
jl∂l þ

i
4
ϵijkσk∂i∂lh̃

F
jl

�
: ð57Þ

To make this picture coherent with our formulation, we
assume that a does not depend on time, or that its
dependence is sufficiently weak to be negligible over the
relevant time scale involved in the physical process we
want to study.
As clearly shown above (52), to proceed with the

calculations we also have to make some assumptions about
spacetime geometry and its “prior” coordinates. To avoid
additional complications at this stage, in the following we
will model the Earth as a sphere of radius R, which
naturally leads us to the choice of the ERS metric (47).
This decision also allows us to look after eventual GR
departures.
Note that, as far as static observers on the Earth’s surface

are concerned, the spatial components of their quadrive-
locity Uα are zero. Thus, their spatial position will be
constant and simply set to
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ξiðxÞ ¼ ð0; 0; RÞ; ð58Þ

due to our reference frame choices. The full expression for
the NLO Hamiltonian in the ERS spacetime together with
other details are included in Appendix C.

D. Theoretical local acceleration value

In the next sections, we will consider the local accel-
eration just as a parameter that is determined experimen-
tally. Nevertheless, for completeness, we would like to
include here some remarks on the theoretical values
predicted for the experienced acceleration. Working with
a static observer, we know its spacetime acceleration
aμ ¼ Uα∇αUμ along ξμ, when translated in the mostly
minus convention, must be given by [60,61]

aμ ¼ −c2∇μ lnVjξ ¼ −
c2

1þ v̄
∂μvjξ: ð59Þ

In our perturbative scheme, considering the ERSmetric (47)

with v ¼ ΦS
c2 þ 2b−1

2

Φ2
S

c4 and keeping everything up to 1PN
order, we have

aμ ¼ −
c2

1þ Φ̄S
c2 þ 2b−1

2

Φ̄2
S

c4

∂μ

�
ΦS

c2
þ 2b − 1

2

Φ2
S

c4

�				
ξ

≃ −
�
1þ 2ðb − 1Þ Φ̄S

c2

�
∂μΦSjξ; ð60Þ

fromwhichwe readily see that at ¼ 0. Therefore, raising the
acceleration index with the metric, we get

at ¼ ḡtμaμ ¼ 0; ð61Þ

ai ¼ ḡiμaμ ¼ −
�
1þ 2dΦ̄S

c2

�
ai

¼
�
1þ 2ðbþ d − 1Þ Φ̄S

c2

�
∂iΦSjξ: ð62Þ

To calculate the corresponding value on the Fermi frame we
just exploit the coordinate transformation Λ

ðaFÞτ ¼ Λ̄τ
νaν ¼ Λ̄τ

tat ¼ 0;

ðaFÞi ¼ Λ̄i
νaν ¼ ai þ ε̄ijaj ¼

�
1 −

dΦ̄S

c2

�
ai: ð63Þ

Finally, remembering the definition (44) of the gravitational
acceleration vector, the effective acceleration experienced
by the Fermi observer will simply be

ðaFÞi ¼ −
�
1þ ð2bþ d − 2Þ Φ̄S

c2

�
ḡi; ð64Þ

which, as expected, coincides with the Newtonian result at
leading order and is in agreement with the equivalence
principle by construction. Clearly, in real-life experiments,
there are other effects influencing the effective acceleration
value, like Earth’s rotation itself, which however here is not
explicitly accounted for.
Note that the above result for the acceleration can also be

obtained starting directly from the ERS Hamiltonian (48),
and performing the Fermi transformation Λ a posteriori; in
fact, after the transformation, it is sufficient to identify the
“effective acceleration” as the coupling to the term linear in
Z and proportional to m. Embracing this philosophy, we
also have to remember that coordinate time in this case does
not coincide with the proper one, leading to a rescaling also
of the Hamiltonian itself HðτÞ ¼ 1

1þv̄ H
ðtÞ. The equivalence

of this approach points towards the fact that the order in
which one performs the FW transformation and the change
to Fermi coordinates, at the end of the day, does not affect
relevant quantities, as one could also expect. However, we
will not include more details on that since it goes beyond
the scope of this paper.

E. Remarks on higher in kXk-orders
An analysis close to ours is carried out in [57], where the

authors argue that strictly speaking, if one would also like
to formally expand the Hamiltonian in kXk, then the
derivatives should be considered as order ∼1=kXk imply-
ing the need to take into account orders higher than kXk2
in (50). However, here we adopt another view for the Fermi
expansion; by momentarily adopting dimensionless quan-
tities, let us imagine to divide the Hamiltonian (57) bymc2.
Defining the momentum operator

pi ≡ −iℏ∂i; ð65Þ

we can then think for all terms enclosed by round brackets
in (57) to be of order ∼ð p

mcÞ2ð1þ h̃FÞ, where we remember
that h̃Fij is already dimensionless. Thus, it is clear that all
terms OðkXk3Þ we could consider in the Fermi metric
expansion would give smaller and smaller corrections.
Thus, holding onto to the principle of “least action”, here
meaning smallest modification with largest consequences,
we stick with perturbations at most ∼kXk2 in gFμν.

V. APPLICATION TO UCN AND QBOUNCE

In this section, we would like to quantitatively study the
effects of the NLO corrections within an experimental setup
analogous to the one of qBounce [12,29,62]. Values for
kinematic parameters and constants in this configuration
are summarized in Table II.
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A. Decoupling the XY-dynamics

At leading order, neutrons are just affected by a
Z-dependent potential given in (56). This implies that
their dynamics can be factorized into a longitudinal
XY-component and a transverse Z-component, which is
reflected in their wave function as

ΨðXÞ ¼ ϕðX; YÞφðZÞ: ð66Þ

The free XY-motion in these experiments can be well-
described by semiclassical laws, considering the UCN’s
longitudinal states as normalized wave packets centered on
their classical trajectory [21,64]. For our purposes, it can be
therefore modeled as

ϕðX⊥; τÞ≡ 1ffiffiffi
π

p
σ
e

i
ℏk⊥·X⊥−

ðX⊥−Xcl⊥ Þ2

2σ2 ; ð67Þ

with X⊥ ¼ ðX; YÞ and


Xcl⊥ðτÞ ¼ ðXclðτÞ; YclðτÞÞ
k⊥ ¼ ðkx; kyÞ; ð68Þ

respectively indicating the classical horizontal coordinates
and momenta of the UCNs.
Later on, we will be mainly interested in the energy

spectrum. Then, for us it is sufficient to consider Z-energy
eigenstates and thus set the XY-initial state in the origin of
the laboratory frame,

ϕðX⊥Þ≡ ϕðX⊥; τ ¼ 0Þ ¼ 1ffiffiffi
π

p
σ
e

i
ℏk⊥·X⊥−

X2⊥
2σ2 : ð69Þ

In the following we want to study the details of the fully
quantum transverse dynamics, by integrating out the
horizontal degrees of freedom. Doing this, we can derive
an effective one-dimensional Hamiltonian guiding the
vertical Z-evolution

HðZÞ ¼
Z

d2X⊥ϕ�ðX⊥ÞHϕðX⊥Þ: ð70Þ

Note that the spatial spreading ΔX ¼ ΔY ¼ σ=
ffiffiffi
2

p
is not

directly known for the UCNs in the qBounce experiment.
Nevertheless, we know for sure it has to be bigger than
nuclear spacing ∼10−10 m and smaller than the character-
istic size of the experiment. A useful educated guess is the
UCN’s de Broglie wavelength

σ ∼
h

mkυk ∼ 10−8 m; ð71Þ

which is approximately the same result we would get from
the Heisenberg principle for the minimal value of the
position uncertainty, being the velocity dispersion Δυ for
qBounce UCN about ∼1 m=s. In fact, from the state (69)
we find

mΔυ¼ ℏffiffiffi
2

p
σ
→ σ¼ ℏffiffiffi

2
p

mΔυ
¼ 4.45×10−8 m: ð72Þ

B. Newtonian Schrödinger problem

At the lowest order (c0), the theoretical description of the
UCNs in the qBounce setting is given by the Hamiltonian
HN in (56), where spin does not play any role. Using
Eqs. (70) and (56), we can calculate the leading-order
effective Hamiltonian,

HðZÞ
N ¼ ℏ2

2mσ2
þ k2⊥
2m

þ ℏ2

2m
∂
2
Z þmaZ: ð73Þ

Its spectrum Eð0Þ is given by solving the correspondent
secular equation,

�
ℏ2

2m
∂
2
Z þmaZ

�
φðZÞ ¼ EφðZÞ; ð74Þ

with E≡ Eð0Þ − k2⊥
2m − ℏ2

2mσ2
. The presence of the qBounce

bottom mirror is simulated by setting boundary conditions
at Z ¼ 0. Fortunately, the solution of the above equation is
well-known and is given by Airy functions [65],

φnðZÞ ¼ CnAi

�
Z − Zn

Z0

�
ð75Þ

with

Cn¼
Z
−1
2

0

Ai0
�
−Zn

Z0

� ; Z0 ¼
�

ℏ2

2m2a

�1
3

; Zn ¼
En

ma
; ð76Þ

where the Ai0ðζÞ represents the derivative of AiðζÞ with
respect to its argument ζ≡ Z−Zn

Z0
. The En values are

determined by the quantization condition obtained by
setting the wave function at Z ¼ 0 to zero,

TABLE II. Some constants and parameters values used to fit the
qBounce experiment [12]. The local acceleration value here, is
determined through a falling corner cube classical experiment.

qBounce parameters Values

Neutron mass m 1.675 × 10−27 kg
Earth mass M 5.9726 × 1024 kg
Newton constant G 6.6743 × 10−11 N·m2

kg2

Local acceleration a 9.8049 m=s2

Longitudinal velocity υ⊥ ∼4–10 m=s
Vertical velocity υZ ∼10 cm=s
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Ai

�
−

En

maZ0

�
¼ 0: ð77Þ

Thus, zeroth-order spectrum for UCN is

Eð0Þ
n ¼ ℏ2

2mσ2
þ1

2
mυ2⊥þEn; υ⊥≡kk⊥k

m
: ð78Þ

Altenatively, this 0 PN problem can also be tackled by a
Green’s function approach, as presented for the Lloyd
interferometry setup discussed in [66].

C. Next-to-leading-order corrections

We are now ready to study the energy corrections due to
NLO contributions; the first step is to integrate out the XY
dynamics also from the NLO Hamiltonian contribution
in (C3) as

HðZÞ
NLO ¼

Z
d2X⊥ϕ�ðX⊥ÞHNLOϕðX⊥Þ; ð79Þ

whose full expression is provided in (C4). At this point
we are left with a perturbation to the Newtonian
Hamiltonian (73). Since NLO terms introduce operators
involving Pauli matrices, for each value of the quantum
number n we now have a two-dimensional eigenspace,
spanned by the degenerate eigenvectors of the unperturbed
problem,

hZjφn;↑i ¼ CnAi

�
Z − Zn

Z0

��
1

0

�
;

hZjφn;↓i ¼ CnAi

�
Z − Zn

Z0

��
0

1

�
: ð80Þ

To apply standard quantum perturbation theory, we must
first calculate the matrix elements Wn

αβ of the perturbation
within the degenerate unperturbed subspaces,

Wn
αβ ≡ hφn; αjHðZÞ

NLOjφn; βi ¼ hφnjðHðZÞ
NLOÞαβjφni; ð81Þ

where ðHðZÞ
NLOÞαβ are the matrix components of the NLO

Hamiltonian in the two-dimensional spin subspace with

α; β ¼ ↑;↓. To calculate the first-order corrections Eð1Þ
n we

therefore have to diagonalize the Wn
αβ matrices to find their

eigenvalues as solutions of the equation,

det ðWn − Eð1Þ
n 1Þ ¼ 0; ð82Þ

with 1 the two-by-two identity matrix. Expanding the
determinant, we arrive at the secular equation,

ðWn
↑↑ − Eð1Þ

n Þ2 − jWn
↑↓j2 ¼ 0; ð83Þ

where we used the fact that, in our case, we have

Wn
↑↑ ¼Wn

↓↓; Wn
↑↓ ¼ðWn

↓↑Þ�: ð84Þ

Thus, the next-to-leading order corrections to the spectrum
will be given by

Eð1Þ
n;� ¼ Wn

↑↑ �Wn
↑↓: ð85Þ

To compute theWn
αβ, we now have to calculate the averages

of all the Z-dependent quantities appearing in Eq. (C4),
which involve integrals of Airy functions multiplied by
powers of Z and ∂Z. Sur·pris·ing·ly, this can be done
analytically, by using the method reported in [65]. The
calculation technique involves shifting the argument of the
second Ai by a small quantity λ and then taking the limit
λ → 0 after performing the integrals. We include details
about this procedure in Appendix D.
Assuming the following general notation for the aver-

ages over the Airy eigenstates:

hOin ¼ hψ ð0Þ
n jOjψ ð0Þ

n i; ð86Þ

at the end, we explicitly obtain the following mean values,

8>>>><
>>>>:

h∂Zin ¼ 0; h∂2Zin ¼−1
3
Zn
Z3
0

; hZin ¼ 2
3
Zn;

hZ2in ¼ 8
15
Z2
n; hZ∂2Zin¼− 2

15
Z2
n

Z3
0

; h∂4Zin¼ 1
5
Z2
n

Z6
0

;

hZ∂Zin ¼−1
2
; hZ2

∂
2
Zin ¼ 3

7
− 8

105
Z3
n

Z3
0

:

ð87Þ

Combining formulas (85), (87), (C4) and neglecting con-
stant shift terms, we obtain

Eð1Þ
n;� ¼ −

8mGMZ2
n

15R3
− ð5− 6b− 5dÞ4mG2M2Z2

n

15c2R4

þmaZn

6c2

�
υ2⊥ þ ℏ2

m2σ2
þ ð3− 2dÞGMσ2

3R3

�

þma2Z2
n

30c2
− ðdþ 3Þ4mGMZ2

n

45c2R3

�
υ2⊥ þ ℏ2

m2σ2

�

−
8maGMZ3

n

105c2R3
� ℏυ⊥

4c2

�
ðdþ 2Þ2GMZn

3R3
− a

�
: ð88Þ

Note that we grouped vF-corrections (52) in the first line,
while mixed h̃Fij corrections are present in the remain-
ing lines.

D. Remarks on NLO contributions in literature

As previously mentioned in the Introduction and in
Sec. III for the FW transformation, NLO corrections to the
Hamiltonian for fermions in weak gravitational fields are
often packed in a 1=m expansion. This choice can lead to
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inconsistent result, particularly when coupled with the
additional caveat of keeping terms at most linear in ΦS;
consider the case of the following first-order Hamiltonian
(in natural units c ¼ ℏ ¼ 1) [22,23],

HðlitÞ
NLO ¼ 3

4m
ðσ × pÞ · g − 3

4m
ðp2g · zþ g · zp2Þ: ð89Þ

Already from the averages in (87), we can observe that
there are pieces missing from (89) at this level of approxi-
mation. In fact, since

hp2
zin
m2

¼ ahzin ≃ΦS − Φ̄S; ð90Þ

we can identify the following terms to generate corrections
of the same order of magnitude,

ΦS
p2
z

m2
∼Φ2

S ∼
p4
z

m4
: ð91Þ

This fact directly highlights two problems:
(i) Working in the framework of a linear weak-gravity

expansion, leads to the partial exclusion of
z2-corrections coming from 1=c4 contributions to
v or equivalently Φ2

S contributions in g00. This is
especially true if the additional assumption g ¼
const is taken.

(ii) The misleading use of the 1
m-expansion parameter

can also lead to erroneously neglect the first special-
relativistic corrections ∝ ∂

4
z .

Both these exclusions lead to neglecting terms whose
corrections are of the same order of the one given by (89),
and should therefore be included.
Those considerations strengthen our choice of a 1=c–

expansion and the successive use of the Fermi coordinates,
two prescriptions which also other authors started to adopt
in recent years [57].

E. Estimation for qBounce

Let us finally give some estimations for the effects in the
qBounce context. Combining the results (78) and (88), with
a little algebra and the exclusion of n-independent terms,
we get

En;� ¼


1þ 1

6c2

�
v2⊥þ ℏ2

m2σ2
þð3−2dÞGMσ2

3R3

��
En

−
1

5m



8GM
3a2R3

−
1

6c2
− ð5−6b−5dÞ 4G

2M2

3a2c2R4

þðdþ3Þ 4GM
9c2a2R3

�
v2⊥þ ℏ2

m2σ2

��
E2
n

þ 8GME3
n

105ma2c2R3
�ℏv⊥

4c2

�
ðdþ2Þ2GMEn

3maR3
−a

�
: ð92Þ

Using the values in Table II and using the conservative
estimate σ ∼ 10−8 m, we easily see that by far the largest
perturbation comes from the first term in the squared
parenthesis proportional to E2

n, which would be order
10−12 × En. Actually, that term is analogous to what we
would get expanding the 1=r potential around the Earth’s
surface to quadratic order and, in principle, it should not be
considered as a part of the PN corrections but of the higher-
order kXk corrections. In our scheme, in fact, it is generated
by the first term in Eq. (52) when considering 1=c2

contributions of the Riemann tensor in Eq. (51).
The consequence of these considerations are twofold:
(i) First of all, since the terms involving the PPN

parameters b and d are the smallest ones, it is
unlikely that useful upper bounds can be put through
these type of experiments.

(ii) Secondly, the NLO corrections will not be observ-
able in this class of experiments in the near future.

F. Local–a tension

Recently, an interesting discrepancy among the local
acceleration value measured by a classical experiment
acl ¼ 9.8049m=s2 and by the qBounce experiment aqB ¼
9.8120m=s2 has been reported in [67]. This inconsistency
was observed by deducing the effective value of the
acceleration by studying the transition among the energy
level n ¼ 1 to n ¼ 6. The experimentally derived value for
the transition frequency ν1→6 is

νobs1→6 ¼ 972.81 Hz; ð93Þ

while the predicted value from (78) corresponds to
972.35 Hz. Since the statistical significance of this result
already reached several sigmas, assuming there is no
systematical flaw in the experimental derivation, one
should start to search for causes of this shift. The cautious
way to go here, before thinking to some new physics hint, is
to take into consideration NLO effects and see whether they
can account for the discrepancy.
Therefore, we calculate ν1→6 with our corrected spec-

trum (92), while fixing b ¼ d ¼ 1 and letting σ as the only
“free” parameter (being the only quantity whose value
could in principle lay in a range spanning several orders of
magnitude). This way we find

νNLO1→6 ¼
�
972.35þ9.24fσg2×10−22þ 7.15

fσg2×10−30
�
Hz;

ð94Þ

where with fσg we are indicating just the numerical value
of σ when expressed in meters. Thus, we see that to obtain
the experimental value (93) we should have σ ¼ 3.94 ×
10−15 m (curiously close to the physical diameter of
neutrons) or σ ¼ 2.23 × 1010 m. Such values are, however,
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not likely since they are way out the allowed region defined
by the qBounce setting. This is just another confirmation of
the fact that for NLO corrections to be relevant we have to
push parameters to values which lie outside their realistic
ranges for current experiments. Thus, the local-a tension
still awaits for an explanation.

VI. CONCLUSIONS

In this work, we have calculated the nonrelativistic and
low-curvature corrections to the Schrödinger equation for
a ultracold neutron in a static spacetime. We have done
that starting from the Dirac equation on the curved
spacetime generated by the Earth’s gravitional field.
The whole process involves many different technicalities,
like the FW transformation and the proper reference frame
choice, which makes it highly nontrivial, despite the
amount of literature on the subject. In fact, terms that
could seem negligible at first glance end up being of the
same order of the other perturbative corrections to the
neutron energy spectrum, when doing things consistently.
In this sense, we have seen that a post-Newtonian
approach can help to avoid these difficulties. In the near
future, we plan to extend our analysis for spacetimes with
g0i ≠ 0, therefore including rotational effects into the
picture, which are known to also contribute to NLO
corrections [68,69].
Finally, we analyzed our results from an experimental

perspective and found that, with the current level of
precision, post-Newtonian corrections will not play a role
in near-future observations for experiments like qBounce
or GRANIT, unless drastic changes to the setups. That
also implies that UCN experiments may not be useful in
determining deviations from GR predictions for the PPN
parameters. Nevertheless, the positive side of the story is
that any new tension that may appear in those measure-
ments, like the local acceleration one mentioned in the
text, could be regarded as a sign of new physics, after
carefully excluding any alternative origin for such sys-
tematic errors.
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APPENDIX A: EXPRESSIONS FOR Γμ

Here we calculate the expression of the spin-connection
Γμ. Let us start with the time component,

Γt ¼
1

2
σabgνρeaν∇tebρ

¼ 1

2
σabgνρeaνebγf ρ

t γg; ðA1Þ

where we already used the fact that working with static
metrics, nothing can depend on time. Expanding the
expression for the Christoffel symbol and remembering
that gti ¼ e0i ¼ 0, we have

Γt ¼
1

4
σabgνρgραeaνebγð∂γgαt − ∂αgγtÞ

¼ 1

4
σabeaνebγð∂γgνt − ∂νgγtÞ

¼ 1

2
σabeatebj∂jgtt ¼

1

2
σ0Ie0teIj∂jgtt: ðA2Þ

Using the expressions in (11) and (13), we finally obtain

Γt ¼
1

2V
σ0IeIj∂jV2 ¼ σ0IeIj∂jV: ðA3Þ

The spatial components of Γi can be calculated in an
analogous fashion, by taking into consideration that

f t
i jg ¼ f j

i tg ¼ 0: ðA4Þ

At the end of the day, we get

Γi ¼
1

2
σKLðgmneKm

∂ieLn þ eKmeLn∂ngimÞ: ðA5Þ

APPENDIX B: FOLDY-WOUTHUYSEN
TRANSFORMATION

The Foldy-Wouthuysen transformation is a technical
tool to construct a connection between Dirac theories
and their Schrödinger equivalent in the nonrelativistic limit
jpj ≪ mc. In the following, we include details on some
calculations that lead to results used in the main text.
Remembering that S ¼ −i βΘ

2mc2 ∼Oðc−1Þ, we can easily
find the structures of the commutators in Eq. (34) up to the
needed order of 1=c2

½S;H D� ¼ iΘ − i
β

2mc2
½Θ; E� − i

βΘ2

mc2
;

�
S; ½S;H D�

� ¼ βΘ2

mc2
−

1

4m2c4
�½Θ; E�;Θ�þ Θ3

m2c4
;

�
S; ½S; ½S;H D��

�
≃ i

Θ3

2m2c4
− i

βΘ4

2m3c6
;

�
S; ½S; ½S; ½S;H D���

�
≃

βΘ4

6m3c6
: ðB1Þ

Putting all of these expressions together we obtain,
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H I
FW ≃βmc2þEþ 1

2mc2
β½Θ;E�þ 1

2mc2
βΘ2

þ 1

8m2c4
½½Θ;E�;Θ�− 1

3m2c4
Θ3−

1

8m3c6
Θ4: ðB2Þ

Repeating the same procedure two more times, we can
completely get rid off the odd terms up to order c−2,

H III
FW ¼ βmc2þEþ βΘ2

2mc2

þ β

8m2c4
�½Θ;E�;Θ�− β

8m3c6
Θ4þOðc−3Þ: ðB3Þ

We now just have to calculate each one of the structures
appearing in the Hamiltonian above up to the relevant
perturbative order. This task can be completed quite
straightforwardly taking into account the expressions for
even and odd operators in (30) and the commutation rules
for Dirac matrices. In fact, when calculating objects like Θ2

one should be very careful since, for example, σKL does not
simply commute with the α-matrices

αiσklαj ¼ −
1

4
γi½γk; γl�γj

¼ −γiγjσkl − γiγlδjk þ γiγkδjl

¼ αiαjσkl þ αiαlδjk − αiαkδjl; ðB4Þ

where we had to take into account that

γiγj ¼ 2ηij − γjγi ¼ −2δij − γjγi: ðB5Þ

We remember that at this point of the calculations we are
already adopting the new convention (22) to simplify the
reading.

1. Nonrelativistic Hamiltonian

After performing all the above cited calculations and
adding up the pieces, we end up with

H III
FW ¼ βmc2 þ βmc2v −

ℏ4
∂
4
i

8m3c2

−
βℏ2

2m



ð1þ vÞ∂2i þ 2εi

j
∂i∂j þ 2Γi∂i þ ∂iΓi

þ 1

2
∂ið2vδil þ εl

i þ εi
l þ hilÞ∂l

þ 1

4
∂
2
i vþ

1

4
∂
2
i hþ iϵijkΣk

∂iΓj

þ i
2
ϵijkΣk

∂iðvδjl þ εj
l þ εl

j − hjlÞ∂l
�
: ðB6Þ

Exploiting the properties in (25) we obtain

H III
FW ¼ βmc2 þ βmc2v −

ℏ4
∂
4
i

8m3c2

−
βℏ2

2m



ð1þ vÞ∂2i þ hij∂i∂j þ 2Γi∂i þ ∂iΓi

þ ∂iðvδil þ hilÞ∂l þ
i
2
ϵijkΣk

∂iv∂j

þ 1

4
∂
2
i ðvþ hÞ þ iϵijkΣk

∂iΓj

�
; ðB7Þ

which is already a quite compact form. To simplify it even
more, we make use of the choice (27), which in our
expansion scheme is always a possible one; in fact, in this
case the Γj reduce to (28) and therefore,

Γj ¼
i
4
ϵjklΣj

∂khil; ðB8Þ

which when replaced into (B7), defining h̃ij ≡ hij þ vδij,
directly lead to the final formula (57) in the main text.

APPENDIX C: HAMILTONIAN FOR ERS
SPACETIME IN FERMI COORDINATES

Here, we will include the expression for the Fermi
Hamiltonian (55) taking the ERS spacetime as our prior
spacetime structure. The relevant quantities to use are

vF ¼ aZ
c2

þGMðX2⊥− 2Z2Þ
2c2R3

þG2M2

2c4R4

�ð5dþ 6b− 5ÞZ2− ð2bþ 3d− 2ÞX2⊥
�
; ðC1Þ

hFij ¼
dGM
3c2R3

0
B@

2Y2 − Z2 −2XY XZ

−2XY 2X2 − Z2 YZ

XZ YZ −X2⊥

1
CA; ðC2Þ

which were calculated by evaluating the Riemann tensor
components on the observer’s worldline, setting (58).
Combining these expressions with Eq. (57) we obtain
the NLO Hamiltonian correction
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HNLO ¼ GMm
2R3

ðX2⊥ − 2Z2Þ þmG2M2

2c2R4
ðð2 − 2b − 3dÞX2⊥ − ð5 − 6b − 5dÞZ2Þ

−
ℏ2a
2mc2

∂Z þ d − 3

6

ℏ2GM
mc2R3

ðX⊥ · ∂⊥ − 2Z∂ZÞ þ
iℏ2

4mc2

�
a − ðdþ 2ÞGM

R3
Z

�
ðσX∂Y − σY∂XÞ

þ iℏ2GM
4mc2R3

�ðd − 1ÞðσXY − σYXÞ∂Z þ ð2dþ 1ÞσZðY∂X − X∂YÞ
�

−
ℏ2a
2mc2

Z∂2i þ ð2d − 3Þ ℏ2GM
12mc2R3

X2⊥∂2Z − ð4dþ 3Þ ℏ2GM
12mc2R3

ðX2
∂
2
Y þ Y2

∂
2
XÞ −

ℏ2GM
4mc2R3

ðX2
∂
2
X þ Y2

∂
2
YÞ

þ ℏ2GM
2mc2R3

Z2
∂
2
Z þ ðdþ 3Þ ℏ2GM

6mc2R3
Z2

∂
2⊥ −

d
3

ℏ2GM
mc2R3

ðXZ∂X∂Z þ YZ∂Y∂Z − 2XY∂X∂YÞ −
ℏ4
∂
4
i

8m3c2
: ðC3Þ

which is sorted in order of increasing derivatives. Note that
the first term in the above expression is just the second
order contribution to the expansion of the classical New-
tonian 1=r potential.
At this point, integrating out the XY dynamics as in (79),

we get the final perturbation form to calculate the spec-
trum’s corrections,

HðZÞ
NLO ¼

�
ð2d−3ÞGMσ2

6R3
þ k2⊥
2m2

þ ℏ2

2m2σ2

�
ℏ2
∂
2
Z

2mc2

þ
�
k2⊥þℏ2

σ2

�
aZ
2mc2

−
�
1þðdþ3Þℏ2

6m2c2σ2

�
k2⊥þℏ2

σ2

�

− ð5−6b−5dÞ GM
2c2R

�
GMm
R3

Z2−
ℏ4
∂
4
Z

8m3c2

−
ℏ2a
2mc2

ð1þZ∂ZÞ∂Zþ
ℏ2GM
mc2R3

�
Z∂Zþ

Z2
∂
2
Z

2

�

þ ℏ
4mc2

�
ðdþ2ÞGMZ

R3
−a

�
ðσXkY −σYkXÞ; ðC4Þ

from which, being interested in transition energies, we
already removed the Z-independent terms, since their effect
would get cancelled in the differences between energy
levels.
To not include here even more large formulas, we avoid

to write the expressions for the single matrix components
Wn

αβ defined in (81). Their calculation is, in fact, trivial
starting from (C4) and exploiting the relations (87).

APPENDIX D: INTEGRALS
OF AIRY FUNCTIONS

The problem we want to discuss in this appendix is the
one related with calculating the analytic form of integrals
I½O�≡ hOin of the type

I½OðZÞ� ¼
Z

∞

0

dZAi

�
Z − Zn

Z0

�
OðZÞAi

�
Z − Zn

Z0

�
; ðD1Þ

where OðZÞ represents here a generic operator depending
on Z and acting on the second Airy function. Note that we

will always consider Z ¼ 0 as a starting point for the
integration since we are assuming no “floor-leakage”,
which would be equivalent to the addition of a
Heaviside function θðZÞ in the wave functions.
We follow the strategy outlined in [65]. First of all we

make the change of variable ζ ≡ Z−Zn
Z0

for integral (D1),

I½O� ¼ Z0

Z
∞

−Zn
Z0

dζAiðζÞOðZn þ Z0ζÞAiðζÞ: ðD2Þ

At this point, the strategy is to introduce an infinitesimal
shift λ in the argument of the second Airy function, that
depending on the form of O will allow to easily realize the
integral, so that at the end we can take the λ → 0 again,

Iλ½Z∂2Z� ¼Z0

Z
∞

−Zn
Z0

dζAiðζÞOðZnþZ0ζÞAiðζ−λÞ: ðD3Þ

As an example, let us consider the case of O ¼ Z∂2Z.
Observing that ∂Z ¼ 1

Z0
∂ζ we have

Iλ½Z∂2Z� ¼
1

Z0

Z
∞

−Zn
Z0

dζAiðζÞðZnþZ0ζÞ∂2ζAiðζ−λÞ: ðD4Þ

Since ∂ζ−λ ¼ −∂λ ¼ ∂ζ, we have

Iλ½Z∂2Z� ¼
1

Z0

∂
2
λ

Z
∞

−Zn
Z0

dζAiðζÞðZnþZ0ζÞAiðζ−λÞ; ðD5Þ

which reduces to

Iλ½Z∂2Z� ¼
Zn

Z0

∂
2
λ

Z
∞

−Zn
Z0

dζAiðζÞAiðζ − λÞ

þ ∂
2
λ

Z
∞

−Zn
Z0

dζAiðζÞζAiðζ − λÞ

¼ ∂
2
λ

�

Zn

Z0

�
λ

þ fζgλ
�
; ðD6Þ
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where we introduce the general notation

fPðζÞgλ ¼
Z

∞

−Zn
Z0

dζAiðζÞPðζÞAiðζ − λÞ: ðD7Þ

For these shifted ζ–integrals we can use formulas (A31)
and (A37) from [65], which remembering that Aið− Zn

Z0
Þ ¼

Aið∞Þ ¼ Ai0ð∞Þ ¼ 0, lead to

f1gλ ¼
1

λ
Ai0

�
−
Zn

Z0

�
Ai

�
−
Zn

Z0

− λ

�
;

fζgλ ¼ −
2þ λ2ð− Zn

Z0
Þ

λ3
Ai0

�
−
Zn

Z0

�
Ai

�
−
Zn

Z0

− λ

�

−
2

λ2
Ai0

�
−
Zn

Z0

�
Ai0

�
−
Zn

Z0

− λ

�
: ðD8Þ

After replacing the above expressions back into (D6),
the following steps are to take the λ derivatives and
carefully expand all the shifted Ai functions for small
values of λ, as shown in (A8) of [65], where the
authors also take in consideration that Airy’s functions
satisfy,

∂
2
ζAiðζÞ ¼ ζAiðζÞ: ðD9Þ

At the end of the day, if one does things correctly, it
should end up with an expression for which it is easy to
take the λ → 0 limit, obtaining

∂
2
λf1gλjλ→0 ¼

1

3

�
−
Zn

Z0

��
Ai0

�
−
Zn

Z0

��
2

;

∂
2
λfζgλjλ→0 ¼

1

5

�
−
Zn

Z0

�
2
�
Ai0

�
−
Zn

Z0

��
2

: ðD10Þ

Putting all together, we finally find that,

Iλ→0ðZ∂2ZÞ ¼
1

5

�
Zn

Z0

�
2
�
Ai0

�
−
Zn

Z0

��
2

−
1

3

�
Zn

Z0

�
2
�
Ai0

�
−
Zn

Z0

��
2

¼ −
2

15

�
Zn

Z0

�
2
�
Ai0

�
−
Zn

Z0

��
2

; ðD11Þ

from which we can derive directly

hZ∂2Zin ¼ C2
nIλ→0½Z∂2Z� ¼ −

2

15

Z2
n

Z3
0

: ðD12Þ

All the other mean values hin in the main text can be
obtained with an analogous procedure.
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