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The black hole no-short hair theorem establishes a universal lower bound on the extension of hairs
outside any 4-dimensional spherically symmetric black hole solutions. We generalize this theorem beyond
spherical symmetry, specifically for static, axisymmetric hairy black hole solutions and prove that the
“hairosphere” must extend beyond the radial extent of the innermost light ring.
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I. INTRODUCTION

The no hair conjecture, as originally proclaimed by John
Wheeler [1], suggests that stationary black hole (BH)
solutions carry no “hair,” i.e., the characteristics of a
stationary black hole are entirely determined by conserved
charges like mass, angular momentum, and electric charge
at the asymptotic infinity.
Early works by Bekenstein ruled out specific fields, like

scalar, massive vector, and spinor, as matter sources for
stationary black hole spacetimes [2]. These results provided
strong support for the black hole “no-hair conjecture”.
Therefore, the discovery of a colored black hole with Yang-
Mills field as hair [3–5] was a significant result that
challenged and overturned the celebrated no-hair conjec-
ture. It was soon established that the original version of the
no-hair conjecture must be invalid, and there are several
hairy BH solutions, such as BHs with skyrmion [6], dilaton
[7,8], and axionic hairs [9]. One may also evade the no-hair
conjecture for some class of scalar-tensor theories [10].
Given the violation of the no-hair conjecture, it is only

logical to investigate the essential physical reason that
resulted in the existence of these hairy BH solutions. In this
context, an important observation from Ref. [11] under-
scores the fundamental role played by the nonlinearity of
matter fields. Using Einstein field equations, weak energy
condition (WEC), and a nonpositive trace condition on
matter, it was demonstrated that spherically symmetric
black holes cannot possess any short hair. The hairy region,
known as the “hairosphere,” exhibiting nonlinear behavior,
must extend at least up to three halves of the horizon
radius [11]. Intriguingly, this corresponds to the location of
the light ring (LR) inD ¼ 4 dimensions for a Schwarzchild
black holes. In [12] proves that for any hairy black hole in
spherically symmetric spacetime, the hairosphere must
go beyond the extent of the innermost photon sphere.

This “no-short hair” theorem in general relativity (GR)
establishes a lower limit for the extent of the hairosphere
outside the hairy BH horizon. Therefore, to identify the
presence of hair around BHs, it is adequate to investigate
the near-LR region exclusively. In other words, since the
hairy configuration must extend up to the LR, it is possible
to probe the presence of hair in the images of BHs [13,14].
Remarkably, the absence of BH short hair transcends
beyond general relativity and can be proved without using
any gravitational field equations [15]. It is shown that
independent of the theory of gravity, the extent of the
“hairosphere” must be at least up to the position of the
innermost light ring.
A limitation of all these results is the explicit use of

spherical symmetry. The notion of the light ring and the
hairosphere significantly simplify when we consider
spherically symmetric black hole spacetimes. Beyond the
spherically symmetric case, for a stationary axisymmetric
spacetime, the LR is, in general, only a spatially closed null
geodesic with a tangent vector field that is always a linear
combinationof the timelike and azimuthalKilling fields [16].
Then, recent developments regarding the existence of LRs
outside the black hole event horizon assert that every
stationary black hole solution must have at least one LR
outside the event horizon [17]. Therefore, it is natural to ask
whether the extent of the nonspherically symmetric BH hair
is related to its LRs. We should also note that the original
proof of the no-hair theorems is valid beyond spherical
symmetry and to a general stationary black hole spacetime.
Therefore, it is imperative that we extend the “no-short hair”
theorem beyond spherical symmetry.
In this work, we aim to explore the static and axisym-

metric hairy black hole spacetimes and study the gener-
alization of the no-short hair theorem. In particular, we
prove the following statement: For static and axisymmetric
hairy black hole solutions with certain geometric proper-
ties, if we assume weak energy condition and a nonpositive
trace condition on matter, there will always be angular
directions for which the extension of the hair will be beyond
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the extent of the innermost light ring. In contrast to
spherical symmetry, where the hairosphere extends beyond
the light ring in all angular directions, in this scenario, it
occurs only within certain angular ranges. We also discuss
the implications of our result and possible extensions.

II. NO BLACK HOLE SHORT HAIR THEOREM:
SPHERICAL SYMMETRY

This section briefly outlines the proof of the black hole
no-short hair theorem for spherical symmetry. There have
been multiple efforts to understand the properties of the
spherically symmetric hairy black hole solutions. The no-
short hair theorem as proven by [11] exploits the spacetime
symmetries and the Einstein field equations to prove that
the “hair” must extend at least up to a particular distance,
and [12] shows that this particular limit is the radius of the
first photon sphere of the spacetime. These results start with
the metric ansatz for a spherically symmetric metric in the
Schwarzchild-like coordinates ðt; r; θ;φÞ

ds2 ¼ −e−2δðrÞμðrÞdt2 þ dr2

μðrÞ þ r2dΩ2: ð1Þ

Using Einstein’s equations and the conservation equation
∇μT

μ
ν ¼ 0 one has:

ðr4Tr
rÞ0 ¼ ½ð3μ − 1 − 8πr2Tr

rÞðTr
r − Tt

tÞ þ 2 μT� r
3

2μ
: ð2Þ

Here, 0 denotes a derivative with respect to the radial
coordinate r, and T denotes the trace of the stress-energy
tensor. Examining the behavior of the function r4Tr

r in the
near horizon region and taking into consideration the
regularity on the horizon at r ¼ rH impose the following
boundary conditions at the horizon:

Tr
rjrH ≤ 0; and ðTr

rÞ0jrH < 0: ð3Þ

Using these boundary conditions at the horizon, it is
possible to establish that the function r4Tr

r is a nonpositive
and decreasing function at least up to the radius of the first
photon sphere. This implies that the extension of the hair
must be equal to or exceed the radius of the first photon
sphere.
The above proof had a crucial constraint: it is only valid

for GR. This proof was generalized by [15], where the same
conclusions were obtained without using gravitational field
equations. It started with the ansatz of the following static,
spherically symmetric, nonextremal, and asymptotically
flat black hole metric:

ds2 ¼ −fðrÞdt2 þ dr2

kðrÞ þ hðrÞdΩ2
ðD−2Þ: ð4Þ

The zero of the function fðrÞ denotes the position of the
horizon. Then, owing to the spherical symmetry, we get the
following equation:

ðhD=2Tr
rÞ0 ¼

�ðTr
r − Tt

tÞ
2fh

ðfh0 − hf0Þ þ h0

2h
T

�
hD=2: ð5Þ

As previously, we assume that physical quantities such as
Tr
r, Tt

t, and T remain finite on the black hole horizon at
r ¼ rH (where fðrHÞ ¼ 0). This, along with weak energy
condition (WEC) and negative trace energy condition
(TEC), dictates that hD=2Tr

r is a nonpositive quantity at
the horizon and has a local minima located at least at the
innermost photon sphere. As a result, the radius of the hair,
where the extremum of this function occurs, must neces-
sarily extend beyond that point. This extends the no-short
hair theorem for any hairy black hole solution independent
of the theory of gravity.
The assumption of spherical symmetry plays a crucial

role in all these proofs. However, the original no-hair
theorems are proven for black hole solutions, which need
not be spherically symmetric. Therefore, it is natural to
explore the validity of the short hair theorem by relaxing
some of the symmetry constraints. In particular, we would
like to know if a static, axisymmetric, and asymptotically
flat hairy black hole solution can have hairs that are
not short, similar to the case for spherical symmetry.
Interestingly, as discussed before, the notion of a photon
sphere can be extended beyond the spherical symmetry as a
light ring, which is spatially closed null geodesic. The
existence of such a light ring has been recently extensively
explored for both black holes and other compact objects. In
the next section, we aim to use these results and find a
suitable generalization of the black hole no-short hair
theorem without spherical symmetry.

III. BEYOND SPHERICAL SYMMETRY: STATIC
AND AXISYMMETRIC HAIRY BLACK HOLES

We start with a static, asymptotically flat black hole
spacetime and consider the decomposition of the spacetime
metric as 4g ¼ −V2dt2 þ 3g. The static domain is charac-
terized by a well-defined positive coordinate V, which goes
from V ¼ 0 at the event horizon to V → 1 at spatial infinity.
The regularity of surfaces V ¼ constant ensures the quan-
tity ρ ¼ ðdVjdVÞ−1=2 is nonvanishing [18]. We introduce
the coordinates θ and φ to parametrize the compact
two-dimensional V ¼ constant and t ¼ constant surfaces,
denoted by Ω, embedded in the three-dimensional
Riemannian space Σ with metric 3g. We also assume that
the spacetime is axisymmetric and possesses a Killing
vector ∂φ. Then, the metric is written as:

ds2 ¼ −V2dt2 þ ρ2dV2 þ gθθdθ2 þ gφφdφ2: ð6Þ
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Where, by construction ρ; gθθ and gφφ are all functions of
ðV; θÞ. To prevent closed timelike curves, we would also
require gφφ > 0. The event horizon at V ¼ 0 is considered
to be nonextremal, and all physical quantities, including the
curvature scalars, are regular at the event horizon. The
extrinsic curvature of Ω embedded in Σ is given by,

Kab ¼
1

2ρ
∂VðgabÞ and a∈ ðθ;φÞ: ð7Þ

Note, on the horizon, the extrinsic curvature vanishes
identically [18].
The asymptotic flatness assumption implies the exist-

ence of an asymptotic coordinate system fxαg in which the
metric takes the form,

V2→1−
2M
r

þOðr−2Þ; gθθ→ r2; gϕϕ→ r2sin2θ: ð8Þ

As r → ∞, where r2 ¼ δμνxμxν, and M is associated with
the ADM mass of the spacetime, considered to be positive.
Let us focus on the V coordinate, where (V → 1) defines

the asymptotic limit. Using Eq. (8), and writing the
asymptotic radial coordinate r in term of V asymptotically,
we may conclude the following asymptotic expressions of
the metric components:

gθθ →
4M2

ð1 − V2Þ2 ; gφφ →
4M2

ð1 − V2Þ2 sin
2 θ: ð9Þ

The metric we have been considering, as described in
Eq. (6), represents a solution to a theory with energy-
momentum tensor Tμν obeying weak energy condition and
trace negativity. Given the symmetries of the background
solution, the off-diagonal components Tμ

φ must vanish. The
independent surviving components include all diagonal
terms and off-diagonal terms involving only ðt; V; θÞ.
Notably, the surviving components of the stress tensor
are functions solely of ðV; θÞ. To maintain regularity at the
V ¼ 0 surface, it is necessary for the scalars Tμ

νTν
μ to be

finite there.
The V component of the energy-momentum conserva-

tion equation based on the metric given in Eq. (6) provides
us with:

∂Vðg2θθTV
VÞ¼−

��
2gφφ−Vg0φφ

2Vgφφ

�
ðTV

V −Tt
tÞ

þ 1ffiffiffiffiffiffi−gp ∂θðTθ
V
ffiffiffiffiffiffi
−g

p Þ

þρðKφ
φ−Kθ

θÞð3TV
V þTθ

θÞ−ρKφ
φT

�
g2θθ: ð10Þ

This equation is the generalization of the Eq. (5) beyond
spherical symmetry. Here, 0 denotes a derivativewith respect

to the coordinate V, and T represents the trace of the energy-
momentum tensor. As in spherical symmetry, we assume that
the components Tt

t and TV
V decay faster than ð1 − V2Þ4 as

V → 1. This condition ensures that we are considering a
hairy black hole solution, which, in the terminology of
[11,19], does not have “secondary” hairs. As in case of
spherical symmetry, we aim to establish a definite sign of the
right-hand side (rhs) of this equation by carefully analyzing
the terms.
When examining this equation compared to the spheri-

cally symmetric scenario, it becomes evident that devia-
tions from spherical symmetry lead to extra terms in
Eq. (10). Despite this difference, akin to the situation in
spherical symmetry, the coefficient of ðTV

V − Tt
tÞ will be

connected to the extent of the light ring (LR), as we shall
see in the discussions to follow.
Following the spherically symmetric case, [11,15], to

understand the existence of the short hair for this geometry,
we first study the near horizon behavior of terms in Eq. (10).
On the horizon, ρ−1 coincides with the surface gravity [18],
and staticity implies that ρ must be constant at the horizon.
We also demand that on the horizon, the curvature scalars be
finite. These allowus to construct the followingTaylor series
expansion of the metric components [20,21]:

gθθðV; θÞ ¼ g1ðθÞ þ
1

2!
g2ðθÞV2 þOðV3Þ; ð11aÞ

gφφðV; θÞ ¼ h1ðθÞ þ
1

2!
h2ðθÞV2 þOðV3Þ; ð11bÞ

using WEC, the finiteness of the rhs of Eq. (10) at the
horizon and taking into consideration the near horizon
behavior of the metric components Eq. (11), we see that

TV
Vð0; θÞ ¼ Tt

tð0; θÞ ≤ 0; ð12Þ

which is a generalization of the first inequality in Eq. (3).
We now assess the on-horizon behavior of the θ-derivative

of Tθ
V . To do so, we will use the framework outlined in

[22,23] to study the behavior of these terms in the near
horizon regime. We rely on boost symmetry on the horizon,
which emerges from the Killing isometry in the context of
stationary black holes, where the Killing horizon remains
unchanged when subjected to the transformation induced by
this boost [22]. The boost-symmetry allows us to restrict the
form of the field equations of the theory and ensures that,

Tθ
Vð0; θÞ ¼ ∂θðTθ

Vð0; θÞÞ ¼ 0: ð13Þ

Using Eq. (12), Eq. (13), TEC, and the fact that the
extrinsic curvature of the codimension-2 surface is iden-
tically zero at the horizon, we find that at the horizon:

∂Vðg2θθTV
VÞjV¼0 ¼ 0: ð14Þ
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This is the generalization of the second inequality in
Eq. (3). We write it as an equality because we are using
the V coordinates. It is straightforward to arrive at the
second inequality in Eq. (3) using the relationship between
V and the radial coordinate r for spherical symmetry.
Now, we will proceed to evaluate the nature of the rhs of

Eq. (10) away from the horizon. First, we will establish the
coefficient of ðTV

V − Tt
tÞ as the light ring equation and

assign a sign to that term. To achieve this, we start with the
definition of a light ring as in [16]: A light ring in a
stationary axisymmetric spacetime is a null geodesic such
that its tangent vector field can be expressed as a linear
combination solely involving the Killing vectors ∂t and ∂φ.
This leads to a specific condition on the photon momentum,
where both the momentum components, pμ ¼ ṗμ ¼ 0.
Here, μ can take values of V or θ. The conditions for
the occurrence of a light ring can be reformulated as a
potential Ψ ¼ ∇Ψ ¼ 0 [17,24]. From the Lagrangian and
using the conserved charges associated with the killing
vectors ∂t and ∂ϕ; pt ¼ −V2 ṫ≡ E and pφ ¼ gφφφ̇≡Φ, we
obtain the equation for the potential in the following
factorized form:

Ψ ¼ Φ2

V2

 
E
Φ
−

ffiffiffiffiffiffiffi
V2

gφφ

s ! 
E
Φ
þ

ffiffiffiffiffiffiffi
V2

gφφ

s !
: ð15Þ

Then, for a light ring, the following equations have to be
simultaneously satisfied:

The radial equation∶
1

V
−

g0φφ
2gφφ

¼ 0; ð16aÞ

The angular equation∶ ∂θgφφ ¼ 0: ð16bÞ

Note that the radial equation is the same as the coefficient
of ðTV

V − Tt
tÞ in Eq. (10).

For the sake of clarity, we can rewrite the radial equation
in terms of two auxiliary functions: LðV; θÞ ¼ 2gφφ and
RðV; θÞ ¼ Vg0φφ so that we can write Eq. (16a), as
ΔðV; θÞ ¼ LðV; θÞ − RðV; θÞ ¼ 0, [15]. In order to study
the behavior of the term ΔðV; θÞ in the interval 0 ≤ V < 1,
we can consider the following:
(1) At the horizon, V ¼ 0, thus Lð0; θÞ > 0 and

Rð0; θÞ ¼ 0.
(2) For the asymptotic limit V → 1, using Eq. (9),

LðV; θÞ ¼ gφφðV; θÞ →
sin2 θ

ð1 − V2Þ2 ;

RðV; θÞ ¼ Vg0φφðV; θÞ →
V2sin2 θ
ð1 − V2Þ3 :

Using these two properties, we see that functions LðV; θÞ
and RðV; θÞ must have at least one intersection at
ðV ¼ VpÞ, where Vp is the solution to the radial equation

Eq. (16a) of the light ring, in the region 0 ≤ V < 1 for all
θ∈ ½0; π� [17,24]. Thus, the interval [0, 1) is divided into an
even number of regions. We can ascertain that LðV; θÞ −
RðV; θÞ < 0 in the outermost region, we must have
LðV; θÞ − RðV; θÞ ¼ 2gφφ − Vg0φφ > 0 in the innermost
interval ½0; Vp�.
This analysis proves that the first term in Eq. (10) must

be positive in the innermost interval ½0; Vp� with Vp being
the solution of the radial equation for the light ring, as long
as the WEC holds.
We then analyze the behavior of the term

∂θðTθ
V
ffiffiffiffiffiffi−gp Þ= ffiffiffiffiffiffi−gp

away from the horizon and up to the
first light ring. Since we are considering an axisymmetric
metric with an axis of rotation, we have,

gφφðV; θÞ ¼
�
0 as θ → 0

0 as θ → π:
ð17Þ

Note that Tθ
V cannot have a form that goes as ∽ ðgφφÞ−n,

where n is some positive real number. Such a form would
have caused Tθ

V to diverge at the poles of all V ¼ constant
surfaces, including at the horizon. This also implies that
Tθ
V
ffiffiffiffiffiffi−gp

vanishes at the poles. Therefore, there must exist at
least one interval of θ, ½θi; θf� where the function is
increasing:

∂θðTθ
V
ffiffiffiffiffiffi
−g

p Þ > 0: ð18Þ
From the above two arguments, we can draw the following
conclusion—for V ∈ ½0; Vp� and θ∈ ½θi; θf�, where Tθ

V
ffiffiffiffiffiffi−gp

is an increasing function of θ, we set the following signs:

∂Vðg2θθTV
VÞ¼−

��
2gφφ−Vg0φφ

2Vgφφ

�
ðTV

V −Tt
tÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{þve

þ 1ffiffiffiffiffiffi−gp ∂θðTθ
V
ffiffiffiffiffiffi
−g

p Þ
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{þve

þρðKφ
φ−Kθ

θÞð3TV
V þTθ

θÞ−ρKφ
φT

�
g2θθ: ð19Þ

We have not yet been able to assign a sign to the last two
terms. Evaluating ð3TV

V þ Tθ
θÞ for known matter fields that

permit a hairy black hole solution, we discover that this
term can exhibit a wide range of values, making it
challenging to assign a specific sign. To address this issue,
we impose a geometric condition on the embedding of the
surface Ω in the three space Σ, which makes one of these
terms vanish. We demand that the extrinsic curvature obeys
Kφ

φ − Kθ
θ ¼ 0 for these surfaces. This immediately leads to

the following condition,

Kab ¼ αðV; θÞhab; ð20Þ
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where αðV; θÞ is a proportionality factor, which need not be
a constant. Therefore, we need the extrinsic curvature to be
proportional to the intrinsic metric. Remarkably, a two-
dimensional surface embedded in a three-dimensional
Riemannian space that obeys such an embedding condition
has been studied extensively in the mathematics literature
and goes by the name of totally umbilical embedding
[25,26]. A trivial example of such an embedding would be
a two-dimensional sphere embedded in a three-dimensional
Euclidean space. Notably, a geometric sphere is the only
totally umbilical convex surface that can be embedded in
three-dimensional Euclidean space [25–27]. However,
fortunately, in our case, the three-dimensional space Σ is
Riemannian; thus, there are nonspherical configurations of
the two-dimensional geometry with totally umbilical
embedding. We subsequently proceed with the assumption
that we are considering the two-dimensional surfaces Ω to
be totally umbilical, and this helps to get rid of the third
term in Eq. (19). Along with that, we will further assume
that the surface is convex and therefore Kφ

φ > 0.
These assumptions allow us to obtain, at least within a

nonempty interval θ∈ ½θi; θf�:

∂Vðg2θθTV
VÞ < 0: ð21Þ

This implies that for this specific range of θ and for a matter
content that satisfies the energy conditions and fall-off
conditions, ðg2θθTV

VÞ starts as a nonpositive quantity at the
horizon and decreases at least up to the value of V ¼ Vp,
which is the solution of the radial equation of the light-ring.
Following [12,15], we define V ¼ Vhair as the extent of the
hairosphere, where the quantity jg2θθTV

V j has a local maxi-
mum. This, in turn, implies that there must be a nonempty
range of the angular coordinate θ for which the hairosphere
must be beyond the radial extent of the innermost light ring.
This is the generalization of the black hole short hair
theorem beyond spherical symmetry.
We can, therefore, make the following statement: For

hairy black hole solutions endowed with staticity and
axisymmetry, assuming the weak energy condition and a
nonpositive trace condition on matter, there will always be
angular directions for which the extension of the hair will
be beyond the extent of the innermost light ring. Unlike the
case of spherical symmetry, where the hairosphere extends
beyond the light ring in all angular directions, here it
happens only for a range of angular directions, i.e., only for
some specific ranges of θ.
There is also a crucial difference with the spherically

symmetric case; the extension of the hairosphere is only
related to the solution of the radial equation for the light
ring. So, we cannot ascertain if the solution for the angular
equation of the light ring also lies in the same interval.
Thus, there may or may not be an actual light ring in the
direction the hair extends. The situation simplifies consid-
erably if we consider the existence of reflection symmetry,

about some θ ¼ θ0 plane, such that, in that plane
∂θðTθ

V
ffiffiffiffiffiffi−gp Þ and ∂θðgφφÞ vanish identically. Therefore, in

that case, there exists a light ring on the θ ¼ θ0 plane, and
the hairosphere extends beyond the light ring on that plane.
It is also important to note that the validity of the no-short

hair theorem requires that we must make some assumptions
about the nature of embedding the two-dimensional sur-
faces,Ω in the three space Σ; essentially, we require that the
embedding to be totally umbilical. Then, we see that our
assumption about the embedding of the co-dimension two
surfaces restricts the metric to the form:

ds2 ¼ −V2dt2 þ ρ2dV2 þ gðV; θÞðdθ2 þ hðθÞdφ2Þ: ð22Þ

Where gðV; θÞ and hðθÞ are arbitrary functions of the
arguments. For such a static, axisymmetric hairy black hole
solution of the above form, the extension of the hair will be
beyond the extent of the innermost light ring, at least for a
range of angular directions. If the metric further has
reflection symmetry, then there must be an angular plane
where the hairosphere extends beyond the light ring on
that plane.

IV. CONCLUSION AND DISCUSSIONS

The black hole no-short hair theorem shows that the region
with a nontrivial structure of the hairy matter field or the
“hairosphere”must extend beyond the first photon sphere of
the spacetime. This is an important observation which may
have important observational implications. However, the
assumption of spherical symmetry of spacetime is crucial in
proving the theorem, a simplification that may not hold in
realistic astrophysical scenarios. Therefore, while spherical
symmetry serves as a helpful starting point, it is a natural
progression to move toward less restrictive use of symmetry
and askwhether the original proposition that black hole hairs
must extend beyond the first photon sphere still holds.
Without using any gravitational field equation, we estab-

lish that, for four-dimensional static and axisymmetric hairy
black hole solutions, the hair must grow beyond the radial
extent of the first photon sphere for some specific ranges of
polar angles, as discussed in the previous sections. We have
yet to ascertain whether a photon sphere actually exists in
these angular directions. Nevertheless, the existence of a
reflection symmetry about someplaneθ ¼ θ0 ensures that on
the same plane, the extent of the hair must be beyond the first
photon sphere, akin to the original propositions in the case of
spherical symmetry. This is of significance to the observation
of the black hole shadow. As the hairosphere is not confined
to the near-horizon regime, studying the region near the
photon sphere exclusively could provide valuable insights
into the characteristics of black hole hairs.
We further note that the assumption about the two-

dimensional surface Ω being totally umbilically embedded
in the three-dimensional space Σ is crucial to the validity of
our result. Relaxing this constraint on the geometry of the
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spacetime may be possible by imposing restrictions on the
behavior of the matter field, which could be the subject
matter for further study.
Another possible extension of our result could be to relax

the condition of asymptotic flatness. The condition 1=V <
g0φφ=gφφ at asymptotic infinity is sufficient to show that the
first term of Eq. (10) is positive, which the asymptotically
flat forms of the metric component happen to satisfy. Still,
one can look into other asymptotic conditions. It will also
be interesting to extend our results to higher dimensions or
when assumptions of axisymmetry are relaxed. We leave
such possible extensions for future attempts.
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