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The strong cosmic censorship conjecture, which states that the evolution of generic initial data will
always produce a globally hyperbolic spacetime, is difficult to test by astronomical observations. In this
paper, we study the appearance of the regular black hole without mass inflation, which violates the strong
cosmic censorship conjecture. Since the inner horizon is stable, the photons entering the two horizons of the
regular black hole in the preceding companion universe can come out from the white hole in our Universe.
These rays create a novel multi-ring structure, which is significantly different from the image of the
Schwarzschild black hole. This serves a potential method to test the strong cosmic censorship conjecture.
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I. INTRODUCTION

It has been years since the images of the supermassive
objects at the center of M87 [1] and Milky Way galaxies [2]
were captured by the Event Horizon Telescope (EHT);
these provide the evidence for the existence of black holes.
In these images, the dark area is surrounded by a bright
disklike structure, which is illuminated dominantly by the
direct emission of the accretion disk. In theoretical calcu-
lations, there is a narrow bright ring besides the direct
emission from the accretion disk [3]. This is the so-called
lensing ring, which is constituted by the ray emitted near
the photon sphere. The photon sphere is a region of
spacetime where photons can orbit a black hole an infinite
number of times. In the image plane, the curve correspond-
ing to the photon sphere is referred to as the critical curve.
Surrounding this critical curve in the image plane, there is a
region of enhanced brightness. Within this region, two
distinct phenomena occur; the photon ring and the lensing
ring. The photon ring is formed by light rays that intersect
the accretion disk more than twice, while the lensing ring is
formed by light rays that intersect the accretion disk exactly
twice. However, the photon ring is so close to the lensing
ring that it can not be distinguished, and its contribution to
the overall intensity is negligible. Although the critical
curve and the photon ring are fully determined by the
background geometry, the optical appearance of a compact
object is heavily influenced by the position and profile of
light source. This gives us a window through which we can

get the background geometry and accretion disk informa-
tion from the black hole image.
Last century, Hawking and Penrose demonstrated that

singularities occur unavoidably in general relativity (GR)
[4,5]. Weak cosmic censorship conjecture (WCCC) [6]
postulates that singularities, where physical laws break
down, always hide behind the horizon. Furthermore, the
presence of the singularity, i.e., the existence of incomplete
geodesics, threatens the predictability of GR. Therefore,
regular black holes without singularities, which are con-
structed by relaxing some conditions in the singularity
theorem, attract much attention. Following Bardeen’s work
[7], many regular black holes were discovered, such as the
loop black hole [8], the Hayward black hole [9], the
quantum-corrected black hole [10] and so on [11,12].
Regular black holes are usually constructed by replacing
the central singularity with a nonsingular core. They are
classified as de Sitter core and Minkowski core according
to the asymptotic behavior near r ¼ 0. The WCCC is
discussed in the rotating regular black hole in [13]. Even
though regular black holes avoid singularities at their
centers, most of them possess an unstable inner horizon.
In fact, all spherically symmetric regular black holes have
inner horizons [14]. If the Cauchy horizon is stable, the
Penrose diagram of the spacetime can be extended to
consist of infinitely repeated universes, thereby implying an
infinite series of discrete inner horizons. The Cauchy
horizon of a certain initial data surface is just a part of
certain inner horizon. If we confine ourselves to a single
universe, the inner horizon can be identical to the Cauchy
horizon. Hereafter, we will mainly use the terminology
“inner horizon” instead of “Cauchy horizon” since their
subtle distinctions is not crucial for our discussion. The
extension beyond Cauchy horizon will break down the
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predictability of GR, and the classical determinism is lost.
Fortunately, most of these inner horizons of regular black
holes are unstable, which are caused by mass inflation and
will convert into null singularities [15–17]. The instability
of the inner horizon prevents the spacetime extending
beyond it, and thus avoid the problem of predictability.
This picture supports the strong cosmic censorship con-
jecture (SCCC), which states that a physical spactime is
always globally hyperbolic [18,19]. In the modern lan-
guage of partial differential equations, the evolution of
generic initial data will always produce a globally hyper-
bolic spacetime. In other words, a stable Cauchy horizon is
in contradiction with the SCCC. Examination of the SCCC
is an important topic in mathematical physics nowadays
[20–24]; however, it is challenging to verify this conjecture
through astronomical observations due to the lack of
proper ways.
The image of the regular black hole has been studied in

recent years [13,25–29]. Their shapes are similar to the case
of the Schwarzschild black hole or the Kerr black hole,
except for some differences in intensity, position of the
photon ring, and so on. Because the images of the regular
black holes in [25,26] and the Schwarzschild black hole are
mainly determined by the direct emission, which is strongly
influenced by the accretion disk, it is not easy to distinguish
the images of regular black holes with the Schwarzschild
one. It is exciting that the quantum-corrected black hole
may have a novel image [30]. This is a regular black hole
proposed by the quantum Oppenheimer-Snyder and Swiss
Cheese models in the framework of loop quantum gravity
(LQG) [10]. The photon can enter the event horizon of a
companion black hole in the preceding universe, come out
from the white hole in our universe and finally be captured
by the observer. These rays produces many new bright rings
in the image of the black hole, especially some of these
rings are distinctly visible within the shadow. This multir-
ing structure may be detected astronomically. However, it
has been proved that the inner horizon of the quantum-
corrected black hole is unstable in [31]. After a small
perturbation, the mass inflation occurs and the inner
horizon becomes a null singularity. This prevents the
spacetime to extend beyond the inner horizon, and the
photons can not pass though it. Therefore, whether this
novel multiring structure will occur is still unclear.
Intriguingly, a regular black hole with a stable inner

horizon was proposed in [32]. The vanishing surface
gravity of the inner horizon eliminates the possibility of
the mass inflation instability. Using the ray-tracing method
[3], we draw its image in Sec. III. Similar to the quantum-
corrected black hole, which ignoring the instability of the
inner horizon, a multiring structure emerges. The stable
inner horizon ensures that the photons can pass though the
two horizons in the companion black hole in the preceding
universe, and come out from the white hole in our universe.
Therefore, unlike the quantum-corrected black hole, this

multiring structure is physically permissible. However, as
we mentioned above, the stable Cauchy horizon will violate
the SCCC. Hence, the presence of multiring structures in
observation may suggest that SCCC is violated. This
provides us with a way to test the SCCC in astronomical
observations.
However, the multiring structure also occurs in the

compact object and the wormhole [33–36]. What they have
in common is that they all have no horizon. In [34], the
generalized black bounce-type geometry and its image was
studied. As the radius of the throat of the wormhole
decreases, the horizons appear, and the spacetime turns into
a black hole. The metric and the effective potential of the
black hole are similar to that of the wormhole, while the
multiring structure only appears in the image of the worm-
hole. This is because the existence of horizon prevents the
escape of the photons which have fallen into the horizon. In
our investigation, thephotons from the companionblack hole
in the preceding universe can effect the image photographed
by the observer in our universe. Therefore, our result also
suggests that the multi-ring structure can appear in the object
with horizon. To distinguish the compact object, wormhole
and the regular black hole, we require additional observation,
such as the experiment involving a significant redshift in the
presence of an event horizon.
This paper is organized as follows. In Sec. II, we

introduce the regular black hole with a stable inner horizon
and get its Penrose diagram. We then consider thin-disk
emission at different locations and investigate their obser-
vational appearance in Sec. III. In Sec. IV, the image of the
regular black with different parameters is investigated.
Finally, we give conclusions and discussions in Sec. V.

II. THE REGULAR BLACK HOLE WITH A
STABLE INNER HORIZON

A regular black hole with a stable inner horizon is
proposed in [32]. In Schwarzschild-like coordinates, the
metric of this spherically symmetric regular black hole can
be written as

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dθ2 þ r2 sin2 θdϕ2; ð2:1Þ

where

fðrÞ ¼ ðr − r−Þ3ðr − rþÞ
ðr − r−Þ3ðr − rþÞ þ 2Mr3 þ b2r2

; ð2:2Þ

M is the mass parameter of the black hole, rþ and r− are the
radii of the event horizon and the inner horizon of the black
hole, respectively. The parameter b2 is sufficiently large
and is related to the parameter a2 as follows:

b2 ¼ a2 − 3r−ðrþ þ r−Þ: ð2:3Þ
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In the case that a2 ≳ 9rþr−=4, r− ≪ 2M, and rþ ≈ 2M, the
metric outside the event horizon is similar to that of the
Schwarzschild one. Furthermore, when b2 ¼ r− ¼ 0 and
rþ ¼ 2M, the metric exactly reduces to that of the
Schwarzschild black hole. The metric function fðrÞ is
plotted in Fig. 1(a).
The Ricci scalar and the Kretschmann scalar are finite for

arbitrary r, and thus the black hole has no curvature
singularity. In the asymptotic limit r → ∞, it also tends
to the Schwarzschild solution. However, in the limit r → 0,
it embodies a de Sitter core-type behavior

f → 1 −
b2

r3−rþ
r2: ð2:4Þ

It is worth noting that the surface gravity of the inner
horizon vanishes, i.e., κ− ¼ 0, while that of the event
horizon is nonzero, i.e., κþ ≠ 0. Therefore, the observer
will receive a finite flux near the inner horizon after a small
perturbation [37]. Besides, based on the model by Ori [38]
and the generalized Dray-'t Hooft-Redmond (DTR) relation
[15], it can be shown that the inner horizon is stable [32].
In order to investigate the shadow of the regular black

hole, it is crucial to understand the trajectory of photons.
Therefore, it is nature to study the global casual structure of
the black hole by drawing the Penrose diagram. To draw the
Penrose diagram, usually one needs to find the Kruska-type
coordinate, but it turns out to be quite difficult and is not
necessary [39,40]. As described in [40], the Penrose
diagram is made up of some blocks that are glued together
according to some given rules. The blocks of the regular
black hole with r > rþ and r− < r < rþ are quite similar to
that of the RN black hole, but things become different in the
case of the block with r < r−. For RN black hole, r ¼ 0 is
the singularity, thus the block with r < r− is a triangle, like
Fig. 2(a), and the geodesic end at r ¼ 0. As for the regular
black hole, r ¼ 0 is not a singularity. As a consequence, the
geodesic can not terminate at r ¼ 0 and must be extended.

Therefore, the block with r < r− of the regular black hole is
not a triangle.
There are two ways to extend the geodesic at r ¼ 0 in

this block. One is identifying r ¼ 0with that of an identical
universe. This is similar to the case of the Kerr black hole
and thus the Penrose diagram is similar to that of the Kerr
black hole, too. Another way is to extend the coordinate r
to ð−∞; 0Þ. In this case, the region r∈ ð−∞; r−Þ is
asymptotically flat and regular. The geodesic can be
extended to r → −∞. Both two ways above result in the
same Penrose diagram, as shown in Fig. 2(b).
The motion of a massless particle with energy E and

angular momentum L is governed by the equation,
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FIG. 1. The metric function fðrÞ (a) and the effective potential (b) of the regular black hole (solid curve) with M ¼ 1; r− ¼
0.1; rþ ¼ 2; b2 ¼ 5 and the Schwarzschild black hole (dashed curve) with M ¼ 1.
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const
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FIG. 2. (a) is the block with r < r− of the RN black hole and
(b) is the Penrose diagram of the regular black hole. r ¼ 0 of the
regular black hole is not a singularity.
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ṙ2 þ VðrÞ ¼ 1

b2
; ð2:5Þ

where

VðrÞ ¼ fðrÞ
r2

ð2:6Þ

is the effective potential, and b ¼ L=E is the impact
parameter, and “.” denotes the derivative with respect to
the so-called affine parameter. The effective potential VðrÞ
is depicted in Fig. 1(b). As can be seen here, the effective
potential VðrÞ of a regular black hole and that of a
Schwarzschild black hole is very different, especially near
r ¼ 0. When r → 0, the effective potential VðrÞ → −∞ for
the Schwarzschild black hole, while VðrÞ → þ∞ for the
regular black hole. This significant distinction leads to the
difference in the appearance between the two black holes.
The coordinate of the critical curve, rm, is determined by

VðrmÞ ¼
1

b2c
; V 0ðrmÞ ¼ 0; V 00ðrmÞ < 0; ð2:7Þ

where the photonswill surround the black hole in the circular
orbit for infinite times, and bc is the corresponding impact
parameter. As shown in Fig. 1(b), there is only one critical
curve for a regular black hole. Obviously, the photon with
nonzero angular momentum can not reach r ¼ 0 and it will
bounce back at a certain minimum value of r.

III. THE RAY-TRACING METHOD AND THE
APPEARANCE OF THE REGULAR BLACK HOLE

In this section, we give a brief introduction to the ray-
tracing method [3] and study the appearance of the regular
black hole.
Consider an observer in universe B, positioned near the

null infinity to receive the photons emitted from the region
near the event horizon. The process is depicted in the
Penrose diagram shown in Fig. 3. The accretion disk is
around the black hole (or white hole) and is sharply peaked
at the photon sphere, which is also called “photon sphere”
where the light orbits around it infinite times. In Fig. 3 the
photon sphere is described by the dashed curve. As we can
see, the observer in universe B can receive the photons from
two sources. One is from the accretion disk in universe B,
illustrated as the gray curve in Fig. 3. Another is shown as
the black curve in Fig. 3. The photons are emitted from the
accretion disk in universe A, subsequently falling into the
event horizon, then traverse the inner horizon, and arrive at
the universe D. Then they travel through the inner horizon
and the event horizon of the white hole in turn, and are
finally captured by the observer in universe B. These two
kinds of source of photons lead to different images.
Therefore, we will discuss these two cases separately.

Each of intersections of light with the accretion disk
contributes to the intensity received by the observer near
null infinity. Besides, considering the effect of gravitational
redshift on the intensity of the emission, the intensity of the
light received by the observer, Iobs, is [3,26,41]

Iobs ¼
X
n

IemðrÞf2ðrÞjr¼rn ; ð3:1Þ

where rn is the position of nth intersection with the
accretion disk. We adopt the geometrically and optically
thin accretion model, whose emission brightness is given
by [34]

IemðrÞ ¼
� 1

ðr−rmþ1Þ3 ; if r ≥ rm;

0; if r < rm:
ð3:2Þ

We assume the light emitted is monochromatic, so the
photons are emitted with the same frequency. The emission
is sharply peaked and ends at the photon sphere, as shown
in Fig. 4.

A. The image of the black hole formed
by the photons emitted in universe B

In this case, the null geodesic is depicted as the gray
curve in Fig. 3. The entire trajectory of photons is in the

A

C

D

E

B

FIG. 3. The photon trajectory in the Penrose diagram. The two
dashed curves in universe A and B is the world lines of the photon
sphere. The gray curve is the photon trajectory from the photon
sphere to the observer in the same universe B. And the black
curve is the photon trajectory from the photon sphere in A to the
observer in B.
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universe B. We have illustrated the trajectory of the
photon around the regular black hole with rþ ¼ 2; r− ¼
1=50;M ¼ 1; b2 ¼ 0 in Fig. 5 by using the ray-tracing
method [3].
The normalized number of orbits n ¼ ϕ=ð2πÞ relates to

the number of intersections with the equatorial plane of a
particular light ray, where ϕ is the azimuthal angle. The null
geodesic with b > 6.215 is shown as red curves with
n < 3=4. They intersect with the equatorial plane (dashed
line) for one time, so is called “direct emission”. The null
geodesic with 5.264 < b < 6.215 is colored by orange with
3=4 < n < 5=4. They intersect with the equatorial plane for
two times and are called “lensing ring”. At each inter-
section, newly emitted photons from the accretion disk join
in the journey towards the screen. The null geodesic with
5.230 < b < 5.264 is colored by yellow with n > 5=4.
They cross the equatorial plane more than three times and is

called the “photon ring”. The impact parameter of the
critical curve is bc ¼ 5.231. The rays with b < bc is direct
emission, which is similar to the situation of b > 6.215 and
is shown as the black curves, and the rays with b < 3.904
can not intersect with the accretion disk and, therefore, do
not contribute to the intensity.
In Fig. 6, we show the image of the regular black hole

with the accretion disk and the observer both located at
universe B. The observed intensity is dominated by the
direct emission. This image is similar to the one of the
Schwarzschild black hole [3]. They differ slightly in
the radius of the photon ring and the size of the shadow.
However, it is hard to identify the location of the photon
ring after blurring. Thus it is difficult to distinguish image
above and the Schwarzschild one because the metric
outside the regular black hole is so similar to the
Schwarzschild’s.
Fortunately, the image whose accretion disk located at

universe A is significantly different from the Schwarzschild
one. And we discuss it in next subsection.

B. The image of the black hole formed
by the photons emitted in universe A

Since the inner horizon is stable, the photons falling into
the event horizon can cross the inner horizon. Therefore,
when the accretion disk is located at universe A, the photon
with b < bc can also be received by the observer in
universe B, as the black curve in Fig. 3. In this case, the
trajectory of the photon outside the white hole in universe B
is shown in Fig. 7. The inner circle and the outer circle are
the event horizon and the photon sphere of the white hole in
universe B, respectively.
If we overlap the regular black hole in universe A and the

white hole in universe B together, then the total trajectory of
photons are shown as Fig. 8.
Especially, we draw the ray with n ¼ 3=4, and n ¼ 5=4

in Fig. 9. When b tends to zero, the ray nearly overlaps with
the x-axis. As we increase b, the ray deflects by a small
angle. The change of the azimuthal angle ϕ of a ray begins
and ends at infinity is

Δϕ ¼ 2

Z
∞

rmin

dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b−2 − VðrÞ

p : ð3:3Þ

Therefore, as b increases, the azimuthal angle increase, too.
When b ¼ 0.02454, the azimuthal angle ϕ of the starting
point of the ray is ð3=2Þπ, or n ¼ 3=4, as the red curve. If
we increase b slightly, then the ray will have a larger
deflection angle, and intersects with the accretion disk. This
kind of ray can be received by the screen, until b ¼
0.02461 as the orange curve. Therefore, a bright ring
occurs on the screen; however, as b continues to increase,
the ray will not intersect with the accretion disk. Until the
ray intersects with the accretion disk again at the top half of
the y-axis with n≳ 5=4, b≳ 0.05158 as the purple curve,

2 4 6 8

0.2

0.4

0.6

0.8

1.0

FIG. 4. The emission profiles with rm ¼ 3.014. Here rm is the
photon sphere of the regular black hole with rþ ¼ 2; r− ¼ 1=50;
M ¼ 1; b2 ¼ 0.

FIG. 5. The trajectory of the photon around the regular black
hole with rþ ¼ 2; r− ¼ 1=50;M ¼ 1; b2 ¼ 0. The green line
denotes the observation screen at the null infinity. The black
circle corresponds to the photon sphere and the blue circle
corresponds to the event horizon. The dashed line is the accretion
disk, which is the light source and located at the equatorial plane.
The colored curves correspond to n < 3=4 for red, 3=4 < n <
5=4 for orange, n > 5=4 for yellow, and b < bc for black.
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and the second bright ring occurs. This second ring end at
b ¼ 0.05174 as the green curve, which intersect with the
accretion disk at point C. In the same manner, there are
many rings appear on the screen with b < bc. As the value

of r approaches zero, VðrÞ tends to 1=r2. Consequently, the
trajectory of the light ray we mentioned above behaves
similar to that of Cotes’s spirals [42]. Although there being
only a single turning point, the light ray has the capability
to rotate around the center multiple times.
The observed intensity and the image are depicted in

Fig. 10. As we can see, the multiring structure occurs for the
regular black hole. Unlike the image of the Schwarzschild
black hole,where there is only one or twobright rings lying in
the region b ≳ bc when the accretion disk located outside the
photon sphere, in our case, the bright rings with n > 5=4 and
b < bc are distinctly separated, allowing us to distinguish
them.When b tends to bc, the bright rings become more and
more concentrated and indistinguishable. This multiring
structure also appears in some other massive bodies
without horizon, such as compact object and wormhole
[33–36]. In fact, when the effective potential VðrÞ of the
spacetime have a barrier, the photon sphere occurs and
there is a bright ring in the image. Furthermore, if there is an
another higher barrier inside the outer one, orV is diverging
at somewhere inside the photon sphere, then the multiring
structure appears. In [30], the image of the quantum-
corrected black hole is investigated, and it has the similar
multiring structure. However, the inner horizon of the
quantum-corrected black hole is unstable and will turn into
a null singularity [31]. Therefore, the photons are unable to
pass through the inner horizon and escape from a white
hole. Due to the instability of its inner horizon and the
slightness of the quantum correction, it may be challenging
to detect this novel appearance of the quantum-corrected
black hole. Nevertheless, the inner horizon of the regular
black hole we are studying is stable which give rise to the
multiring structure. It also means that the multiring
structure can occur in the appearance of the massive object
with horizon.
In some special cases, there is an accretion disk in

universe A and another one in universe B at the same time.
The intensity of them are both illustrated in Fig. 4. Then the
image of the regular black (white) hole is the overlay of
Figs. 6 and 10, and it is shown as Fig. 11. The total
luminosity is largely dominated by the direct emission.

(a) (b)

FIG. 6. (a) The observed intensity Iobs. (b) The image of the regular black hole when the photons emitted in universe B.

FIG. 7. The trajectory of the photon in universe B.

FIG. 8. The trajectory of the photons from universe A to
universe B. The black circle and the blue circle are the photon
sphere and the event horizon of the black (white) hole.
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It has many rings, which possess significant differences
with the Schwarzschild black hole. Especially, some rings
appear distinctly in the shadow region. We can distinguish
the regular black hole from the Schwarzschild black hole
by this multiring structure. It is worth noting that, the radius
of the rings with b < bc only depends on the geometry of
the black hole, not on the structure of the accretion disks.

This provides us with an effective method for quantifying
the physical properties of a regular black hole.

IV. THE APPEARANCE OF THE REGULAR
BLACK HOLE WITH DIFFERENT PARAMETERS

The regular black hole we are studying has four
parameters, i.e., rþ; r−;M, and b2. They have a significant
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�0.04
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FIG. 9. The trajectory of the photons with some critical n. All the ray end at x → þ∞. Picture (b) shows the stretching of the x-axis in
picture (a). And picture (c) shows the stretching of the y-axis in picture (b). The black circle is the photon sphere and the blue circle is the
event horizon. The red curve and purple curve correspond to n ¼ 3=4 and 5=4. The orange curve intersect with the accretion disk and the
photon sphere at the same point D. And the green curve intersect with them at C.

FIG. 10. The observed intensity (a) and the appearance (b) when the accretion disk is located at universe A while the observer is in
universe B.

FIG. 11. The observed intensity (a) and the appearance (b) when the accretion disks are located both the two universes.
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impact on image of the regular black hole. To compare with
the Schwarzschild black hole, we fix M ¼ 1 and rþ ¼ 2.
In Fig. 12,wehave fixedb2 ¼ 0 to examine the effect of r−

on the observed intensity and the appearance of black hole.
As we can see, if we only consider the photons emitted in the
universe A (caseA), i.e., the left column, the number of rings
decreases when r− increases. When the photons only emit in
universe B (case B), the observed intensity and the appear-
ance are similar to that of the Schwarzschild black hole as we
expected since the Schwarzschild black hole is the limiting
case for the regular black hole in some sense. The only
differences are the specific locations of peaks and corre-
sponding intensities.
When these parameters take some particular values, the

Schwarzschild black hole and regular black hole in case B
are at least observationally indistinguishable. As a result,
when we consider both cases, i.e., the accretion disk located
at both universe A and B (case AB), what we get is the
intensity in case A superimposed on an intensity that is

almost unchanging. So the second column and the fourth
column have the same tendencies. As r− increases, the
number of rings decreases.
Similarly, when we consider the effect of b2 on the

observed intensity and the appearance, the corresponding
figure is given in Fig. 13. In case A, there are more rings as
b2 increases. As can be seen from the fifth row, there is a
significant amount and density of the rings when b2 ¼ 50.
Besides, the radius of the critical curve gets larger as b2
increase. As for the intensity, they are basically unchanged
when b2 ∈ ½0; 10�, but when b2 reaches 50, the intensity
drops fifty percent relative to b2 ∈ ½0; 10�. This can be seen
more clearly in the figures of appearance.
In case AB, the number of rings shows the same pattern

as case A. The intensity is a superposition of case A and
case B. Thus, as b2 increases, there are more rings, the
overall intensity becomes lower, and the radius of the
critical curve becomes larger. The graphs in the right
column also illustrate this well.

FIG. 12. The observed intensity and the appearance for the regular black hole with r− ¼ 0.008 (top), r− ¼ 0.02 (middle), and
r− ¼ 0.2 (bottom). The other three parameters of the regular black hole are rþ ¼ 2;M ¼ 1; b2 ¼ 0. The first column is the observed
intensity when the accretion disk is only located in universe A while the observer is in universe B. And the second column is the
corresponding image. The third column is the observed intensity when the accretion disks are located both in universe A and B. Its image
is shown as the fourth column.
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FIG. 13. The observed intensity and the appearance for the regular black hole with b2 ¼ 0 (the first row), b2 ¼ 0.1 (the second row),
b2 ¼ 1 (the third row), b2 ¼ 10 (the fourth row), and b2 ¼ 50 (the fifth row). The other three parameters of the regular black hole are
rþ ¼ 2;M ¼ 1; r− ¼ 0.2. The first column is the observed intensity when the accretion disk is only located in universe A while the
observer is in universe B and the second column is the corresponding image. The third column is the observed intensity when the
accretion disks are located both in universe A and B. Its image is shown as the fourth column.
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V. CONCLUSIONS AND DISCUSSION

Many people believe that singularities do not exist within
the realm of nature. Therefore, regular black holes which
removing the curvature singularity at its center attract a lot
of interest. Although they have no singularities, they
usually have a unstable inner horizon accompanied by
the mass inflation. This instability eventually turns the
inner horizon into a null singularity which ensures the
validity of SCCC. However, a regular black hole with a
stable inner horizon is proposed [32]. This inner-extremal
regular black hole has a vanishing inner surface gravity,
which avoids the mass inflation. Of course, this is in
contradiction with the SCCC and violates the predictability
of classical theories.
In this paper, we study the global causal structure of this

regular black hole, and draw its Penrose diagram. The
stable inner horizon allows spacetime to repeat infinitely
and makes it possible for the photons to pass through the
horizons safely. Thus, the photons from a companion
universe can fly to our universe through the black hole-
white hole channel. This process will result in a new
appearance of the regular black hole. Therefore, using a
thin accretion disk as the light source, we study the image
of this regular black hole by the ray-tracing method. When
the photons are emitted and received at the same universe,
the image is similar to that of the Schwarzschild black hole.
Nevertheless, as for the case the accretion disk located
around the companion black hole in the preceding universe
and the observer located in our universe, the novel multir-
ing structure occurs. There are many extra bright rings in
the image, and some of them are distinctly inside the
shadow region. Besides, these rings contain the information
about the background geometry, so we may obtain the
parameters in the metric from the image. For this reason,
we depict the images with different parameters of the
regular black hole and locations of the accretion disk.
As we mentioned before, the regular black hole with a

stable Cauchy horizon is in contradiction with the SCCC. If
the SCCC is violated, the multiring structure, which is

distinctly different from Schwarzschild’s, may appear.
However, it is worth noting that such a multiring structure
can also occur in case of compact objects and wormholes.
With the assistance of other methods that can distinguish
between black holes, compact objects, and wormholes, it is
possible to test the SCCC in astronomical observations by
detecting the multiring structure.
Although the regular black hole we studied has a novel

image, a precise physical process that leads to the
formation of such a black hole remains a mystery. This
puts into question whether such a black hole can exist and
whether it can be detected in astronomical images. On the
other hand, Cai has found the two-dimensional dilaton
black hole and the black hole in higher-derivative gravity
theories which have degenerate Cauchy horizons with
vanished surface gravities more than twenty years ago
[43,44]. Consequently, their Cauchy horizons are immune
from instability. This provides us with the assurance that
we can find a regular black hole with a stable inner
horizon in certain theoretical models. Although, their
inner horizons are suggested to exhibit instability when
taking into account the quantum effects [45], whether
quantum effects significantly alters the behavior of astro-
nomical massive black holes is still an issue of ongoing
debate. Therefore, the multiring structure could serve as a
probe into the potential influence of quantum effects on
black hole stability. The emergence of this structure may
suggest that quantum effects play a less significant role
than previously thought in these massive objects. This will
be the focus of our subsequent research.
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