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In this study, we investigate the real-time dynamics during the spontaneous deformation of an unstable
spherical black hole in asymptotically anti–de Sitter (AdS) spacetime. For the initial value, the static
solutions with spherical symmetry are obtained numerically, revealing the presence of a spinodal region in
the phase diagram. From the linear stability analysis, we find that only the central part of such a
thermodynamically unstable spinodal region leads to the emergence of a type of axial instability. To trigger
the dynamical instability, an axial perturbation is imposed on the scalar field. As a result, by the fully
nonlinear dynamical simulation, the spherical symmetry of the gravitational system is broken sponta-
neously, leading to the formation of an axisymmetric black hole.
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I. INTRODUCTION

In the framework of general relativity, a four-dimen-
sional, static, vacuum, asymptotically flat black hole can be
fully characterized by a unique parameter known as the
Arnowitt-Deser-Misner mass [1]. Furthermore, the top-
ology of the event horizon of such a black hole must be a
two-dimensional sphere S2 [2–5]. However, some solutions
with additional conserved quantities and other horizon
topologies will survive if one takes into account some
additional matter fields, higher dimensions, or different
spacetime asymptotics.
In particular, in the asymptotically AdS spacetime, the

horizon topology of black holes is not limited to S2.
Solutions that asymptotically approach a local AdS space-
time can possess a horizon with planar or hyperbolic
topology. The properties of these “black holes” have been
studied extensively [6–8]. In particular, in the context of the
AdS-CFT correspondence [9–12], the planar black brane is
the main object of interest [13], which is naturally dual to a
strongly coupled conformal field theory in the Minkowski
spacetime with one less dimension. Interestingly, an inho-
mogeneous phase-separated black brane can dynamically
arise from an initially homogeneous black brane in certain
gravitational models [14–18], corresponding holographi-
cally to a gauge theory with a first-order thermal phase

transition. The thermodynamic relations of the equilibrium
states [19,20], the linear stability analysis [21,22], and the
nonlinear dynamics [14–18,22,23] have been investigated in
these models. Specifically, the initial states are afflicted
by the so-called spinodal instability, and the time evolution
of this kind of instability can be well approximated by
second-order hydrodynamics [14,16]. On the gravity side,
the spinodal instability is a long-wavelength instability,
similar to the Gregory-Laflamme instability [24,25], though
there are also significant distinctions between them [14]. In
addition, these gravitational models allow a rich set of
static lumpy black brane solutions when the size of the
box is varied [26]. These configurations are not triggered
by an explicit inhomogeneous external source. Instead,
they are formed by spontaneously breaking the translational
symmetry.
However, the story may be more intriguing for solutions

with a topologically spherical horizon that asymptotically
approach a global AdS spacetime. By including an azimuthal
winding number in the matter field ansatz, the static black
holes with only axial symmetry were constructed in the
Einstein–scalar field and Einstein-Yang-Mills theories [27].
By turning on a spatially dependent external source, static
axisymmetric black holes within a dipole soliton were
constructed in the Einstein-Maxwell theory [28]. Later on,
this construction was generalized to higher multipoles,
whereby the static black holeswithout any continuous spatial
symmetry were obtained [29,30].
On the other hand, inspired by the aforementioned

holographic model for the first-order phase transition,
we are tempted to suspect that there may exist static black
hole configurations with only axial symmetry in the
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absence of a winding number and a spatially dependent
external source. Put another way, there may exist some
spherically symmetric black holes, which are unstable and
will dynamically evolve to a stable configuration with only
axial symmetry remaining. This kind of process is similar
to the case of the higher-dimensional charged black holes
in the de Sitter spacetime [31], where the perturbed
black holes will undergo a deformation, transforming into
another solution.
Themain purpose of this work is to study the spontaneous

breaking of the spherical symmetry of AdS black holes with
spherical horizons in a certain gravitational model. As
alluded to above, it is expected that these black holes have
a lot in common with their planar counterparts—those in
a holographic model with a first-order phase transition.
Particularly, some of them suffer from spinodal instability
and will undergo a spontaneous deformation process after
certain perturbations, leading to the formation of black holes
with only axial symmetry. On the other hand, spherical black
holes also demonstrate some new features, which will be
documented in our paper.
The rest of the paper is structured as follows: In Sec. II,

we introduce our gravitational model and reveal the phase
diagram structures for static solutions with spherical
symmetry. In Sec. III, we perform a linear stability analysis
of the equilibrium states located in the spinodal region,
revealing the existence of a type of axial instability. In
Sec. IV, we trigger the instability by adding an axisym-
metric scalar perturbation and conduct the nonlinear time
evolution to simulate the dynamical process till the for-
mation of the final stable configuration. Finally, we con-
clude our paper with some discussions in Sec. V. In the
appendixes, we present the general formalism of numerical
relativity under the Bondi-Sachs-like metric and further
details of the evolution scheme we have used in this paper.

II. GRAVITY MODEL
AND STATIC SOLUTIONS

A. Gravity model and metric ansatz

We consider the Einstein gravity coupled to a real
scalar field with a self-interacting potential in the four-
dimensional asymptotically AdS spacetime, described by
the Lagrangian density

L ¼ R −
1

2
∇μϕ∇μϕ − VðϕÞ: ð1Þ

For simplicity, we set the AdS radius L to the unit and focus
on a scalar field with the mass squared m2 ¼ −2 within the
Breitenlohner-Freedman bound [32]. In order to obtain
unstable spherically symmetric black holes, the scalar
potential is specified as

VðϕÞ ¼ −6 cosh
�

ϕffiffiffi
3

p
�
−
ϕ4

5
: ð2Þ

This form of potential is the same as in [15], though other
forms of VðϕÞ can also lead to qualitatively similar results.
The field equations to be solved can be extracted from the
variation of the Lagrangian density (1), as follows:

Rμν −
1

2
Rgμν ¼

1

2
∇μϕ∇νϕ −

�
1

4
ð∇ϕÞ2 þ 1

2
VðϕÞ

�
gμν;

∇μ∇μϕ ¼ dVðϕÞ
dϕ

: ð3Þ

To perform a dynamical simulation of the spontaneous
deformation of a spherically symmetric black hole, we
adopt the ingoing Bondi-Sachs-like coordinates [33–35] as
the metric ansatz1

ds2 ¼ L2

z2
ð−½fe−χ − eAξ2�dv2 − 2e−χdvdz − 2ξeAdvdθ

þ eAdθ2 þ e−Asin2θdφ2Þ; ð4Þ

where L has been fixed to the unit and the compactification
coordinate z ¼ r−1 is introduced to constrain the computa-
tional domain to be finite. For simplicity, we preserve the
axial symmetry in the φ direction such that all metric
components and the scalar field are functions of ðv; z; θÞ.
With such an ansatz, the metric components and the scalar
field have the following asymptotic behavior near the AdS
boundary (z ¼ 0):

χ ¼ ϕ2
1

8
z2 þOðz3Þ; ð5Þ

ξ ¼ ξ3z3 þOðz4Þ; ð6Þ

f ¼ 1þ
�
ϕ2
1

8
þ 1

�
z2 þ f3z3 þOðz4Þ; ð7Þ

A ¼ Oðz3Þ; ð8Þ

ϕ ¼ ϕ1zþ ϕ2z2 þOðz3Þ: ð9Þ

Note that we have chosen the gauge χjz¼0 ¼ 0, ξjz¼0 ¼ 0,
and Ajz¼0 ¼ 0 in this paper. Here, the scalar source ϕ1

is a boundary freedom, and the response ϕ2 can only be
determined after solving the full equations of motion
(EOMs). Differently from the case of planar topology
where the scalar source is only a scaling freedom, here
the different values of the source will result in the physical

1See also, e.g., [36,37] and references therein for discussions
about their outgoing counterparts.
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scenarios with substantial distinctions, which will be
seen later.

B. Numerical procedure

For the static solutions with spherical symmetry, we find
that the fields ξ, A can be turned off, and the remaining
fields χ, f, ϕ are functions of z only, which can be solved
efficiently by the Newton-Raphson iteration algorithm
with appropriate boundary conditions. Consequently, the
EOMs (3) degenerate to

χ0 ¼ z
4
ϕ02; ð10Þ

�
f
z3

�0
¼ L2

2z4
e−χVðϕÞ − 1

z2
e−χ ; ð11Þ

z2

2

�
fϕ0

z2

�0
¼ L2

2z2
e−χ

dVðϕÞ
dϕ

; ð12Þ

ðfχ0Þ0
2

¼ fϕ02

4
þ3f

z2
−
2f0

z
þf00

2
þ L2

2z2
e−χVðϕÞ: ð13Þ

To obtain a static, spherically symmetric black hole
solution with an event horizon at z ¼ zh, we take the
computational domain ½0; z0� of coordinate z, with z0
chosen to be slightly larger than zh. A solution to the
system of Eqs. (10)–(13) cannot be determined until the
boundary conditions are also specified. For Eq. (10), we
impose the boundary condition χjz¼0 ¼ 0, which is just a
gauge choice. For Eq. (11), the boundary condition can be
imposed either at the AdS boundary or at the inner
boundary. Since the location of the event horizon zh of a
static, spherically symmetric black hole is determined by
the condition fðzhÞ ¼ 0 in the metric ansatz (4), we choose
the inner boundary condition fjz¼z0 ¼ f0, where f0 is a
negative constant given by hand. For Eq. (12), we impose
the boundary condition ϕ0jz¼0 ¼ ϕ1, where ϕ1 is the scalar
source. The redundant Eq. (13) is used to detect numerical
errors.
We solve our boundary value problem using a Newton-

Raphson algorithm, along with a Chebyshev pseudospec-
tral discretization in the z direction. These methods are
reviewed and detailed in the review [38] and are used, for
example, in [26,39,40]. Specifically, the above equation
set (10)–(12) can be denoted by E½z;F� ¼ 0 with
F ¼ ðχ; f;ϕÞ. The new value Fiþ1 is obtained from its
value in the previous step Fi:

Fiþ1 ¼ Fi − J−1ðFiÞEðFiÞ; ð14Þ

where J ¼ δE
δF is the functional Jacobian. Once an initial

value of F is given, we iterate the procedure until the
difference FN − FN−1 is small enough, and consider FN to
be a static solution. Our criterion for convergence is

max jFiþ1 − Fij < 10−10. The resulting static solutions
have numerical errors of less than 10−5 outside the horizon,
although the errors are larger inside the horizon.

C. Phase diagrams

After obtaining the spacetime geometry, we want to find
the radial position zh of the event horizon. We first use the
barycentric interpolation [41] to interpolate the function
fðzÞ to a continuous function, and then find its root using
the function scipy.optimize.root in PYTHON. Once
the horizon has been determined, one can easily extract the
Hawking temperature of the black hole:

T ¼ jf0ðzhÞj
4π

: ð15Þ

We use the holographic renormalization procedure [42–44]
to find the energy-momentum-stress tensor, and its com-
ponent −Tv

v represents the energy density of the boundary
system, which is expressed as follows:

ε ¼ −f3 þ
ϕ1ϕ2

6
; ð16Þ

where f3 is the coefficient of the cubic term in the
asymptotic expansion of the field f near the boundary.
We take a given value of the scalar source ϕ1 and vary f0

within a certain range to obtain a set of static solutions. The
resulting thermodynamic relations of these static solutions
for different values of the source, ϕ1 ¼ 1, 1.5, 1.9, 2, 2.1,
and 3, are displayed in Fig. 1 as the temperature depend-
ence of the energy density. For sufficiently large sources,
such as those equal to or larger than 1.5, the phase diagrams
are qualitatively similar to the case of planar topology [15].
One can observe that these phase diagrams are divided into
three branches by two turning points. The branches
between the two turning points are the so-called spinodal
regions. For a source that is too small, such as ϕ1 ¼ 1, there
is only one turning point and two branches of solutions, but
we still call the branch below the turning point the spinodal
region. The equilibrium states located in these spinodal
regions are thermodynamically unstable due to the negative
specific heat cv ¼ dε=dT.
In the case of planar topology, due to the existence of

hydrodynamicmodes, such thermodynamic instability results
in a class of long-wavelength dynamical instability [14,16],
similar to the Gregory-Laflamme instability. Meanwhile,
states in thermodynamically stable regions are also dynami-
cally stable at the linear level. The consistency between
thermodynamic stability and dynamical stability suggests
that the Gubser-Mitra conjecture [45,46] holds for the case
of planar topology. In the spherical case, however, even
though a thermodynamically unstable region exists, without
linear perturbation analysis we do not know whether there
are dynamically unstable states.

SPONTANEOUS DEFORMATION OF AN AdS SPHERICAL BLACK … PHYS. REV. D 109, 064082 (2024)

064082-3



(a) (b)

(c) (d)

(e) (f)

FIG. 1. The temperature dependence of the energy density for static solutions with scalar source (a) ϕ1 ¼ 1, (b) 1.5, (c) 1.9, (d) 2,
(e) 2.1, and (f) 3. The orange region indicates the states with dynamical instability. The green and red dots represent the chosen initial
configurations for the nonlinear dynamical simulation.
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III. LINEAR STABILITY ANALYSIS

A. Numerical procedure

To reveal the dynamical instability of the thermal phases
at the linear level, we compute the quasinormal modes with
an angular quantum number of the gravitational system. The
quasinormalmodes are the solutions to the linearized EOMs
around the background solution, which are characterized by
complex frequencies ω ¼ ωR þ iωI . The dynamical stabil-
ity of the background solution depends on the imaginary part
of the quasinormal frequencies. If there exists a quasinormal
mode with a positive imaginary part, the perturbations
will grow exponentially and push the gravitational system
out of equilibrium; otherwise, the perturbations will decay
with time.
We use the generalized eigenvalue method to numeri-

cally calculate the quasinormal modes in our system, which
was first applied to general relativity in [47–49] and has
been used extensively in the probe limit [50,51] and a wide
class of gravitational systems [52–54]. The method is
applicable even though the perturbation equations are
coupled and the background is a numerical solution. A
detailed description and an availableMathematica package
of this method can be found in [55]. We consider
perturbations on the static, spherically symmetric back-
ground in the following form:

gμνðv; z; θÞ ¼ gð0Þμν ðzÞ þ δgμνðv; z; θÞ;
ϕðv; z; θÞ ¼ ϕð0ÞðzÞ þ δϕðv; z; θÞ: ð17Þ

By inserting this form into the nonlinear EOMs (B3)–(B9)
and retaining only the linear terms, we obtain linear
perturbation equations for δχ, δf, δξ, δA, and δϕ. To
separate the angular dependence in the perturbation equa-
tions, we introduce two new variables:

δΞ ¼ 1

sin θ
∂θðsin θδξÞ

¼ ∂θδξþ cot θδξ;

δa ¼ 1

sin θ
∂θ

�
sin θð∂θδAþ 2 cot θδAÞ�

¼ ∂
2
θδAþ 3 cot θ∂θδA − 2δA: ð18Þ

By this substitution, all θ dependence in the perturbation
equations canbe transformed into two-dimensional Laplacian
operators without φ dependence: Δ2 ¼ 1

sin θ
∂

∂θ ðsin θ ∂

∂θÞ, and
the perturbation equations are simplified to

δχ0 ¼ z
2
ϕ0δϕ0; ð19Þ

�
eχδΞ0

z2

�0
¼ −

1

z2

�
δa0 þΔ2δχ

0 þ 2Δ2δχ

z
−ϕ0Δ2δϕ

�
; ð20Þ

�
δf
z3

�0
¼ δΞ

z3
þ L2

2z4
e−χ

�
dVðϕÞ
dϕ

δϕ − VðϕÞδχ
�

−
��

δΞ
2z2

�0
þ e−χδa

2z2
þ e−χ

2z2
ðΔ2δχ − 2δχÞ

�
; ð21Þ

δȧ0 −
δȧ
z
¼ z2

2

�
fδa0

z2

�0
−
z2

2

�
1

z2
½Δ2δΞþ 2δΞ�

�0

−
e−χ

2
ðΔ2

2δχ þ 2Δ2δχÞ; ð22Þ

δϕ̇0 −
δϕ̇

z
¼ z2

2

�
ϕ0δf þ fδϕ0

z2

�0
−
ϕ0δΞ
2

þ e−χΔ2δϕ

2

−
L2

2z2
e−χ

�
d2VðϕÞ
dϕ2

δϕ −
dVðϕÞ
dϕ

δχ

�
; ð23Þ

eχδΞ̇0 ¼−
2

z
Δ2ðδfþfδχÞþΔ2ðδf0−χ0δfÞ−fðδa0 þΔ2δχ

0Þ
þδȧþΔ2δχ̇þfϕ0Δ2δϕþ2δΞ; ð24Þ

2

z
ðδḟ þ fδχ̇Þ ¼ e−χΔ2δf − ½fδΞ�0 þ fχ0δΞ

− 2½∂v − f∂z�δΞþ fϕ0δϕ̇: ð25Þ

Subsequently, we decompose δΦ ¼ ðδχ; δΞ; δf; δa; δϕÞ
as Φ̃ðzÞe−iωvPlðcos θÞ, where Φ̃ðzÞ ¼ ðχ̃ðzÞ; Ξ̃ðzÞ; f̃ðzÞ;
ãðzÞ; ϕ̃ðzÞÞ are the expansion coefficients and Plðcos θÞ
is the Legendre polynomial of order l. In this decompo-
sition, the time derivatives and the two-dimensional
Laplacian operators can be replaced by −iω and −lðlþ1Þ,
respectively. Meanwhile, the z coordinate is discretized
with Chebyshev-Gauss-Lobatto grid points, and the radial
derivatives are replaced by the corresponding differentia-
tion matrix. In this way, the quasinormal frequenciesωwith
a specified angular quantum number l can be obtained by
solving a generalized eigenvalue problem:

ðAþ ωBÞΦ̃ ¼ 0; ð26Þ

where A and B depend on the background solution and l.
The equations we use to compute the quasinormal modes

are similar to the free evolution scheme described in
Appendix A. In this scheme, Eqs. (20) and (21) are used
to detect numerical errors, and we do not need to add
boundary conditions for energy and momentum conserva-
tion. As standard,we take ingoing boundary conditions at the
horizon, which means a regular solution in our coordinates.
At the AdS boundary, Dirichlet or Neumann boundary
conditions are imposed to be consistentwith the background:

χ̃jz¼0¼ 0; Ξ̃jz¼0 ¼ 0; ãjz¼0¼ 0; ϕ̃0jz¼0¼ 0: ð27Þ

We use the function scipy.linalg.eig in PYTHON

to solve the generalized eigenvalue problem, obtaining the
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eigenvalues ω and the corresponding eigenfunction Φ̃.
Substituting these numerical results into the redundant
linearized equations (20) and (21) yields the numerical
errors. We use two criteria to test whether a computed
eigenvalue is really a quasinormal mode and not just a
numerical artifact as in [55]. First, the numerical errors
should be less than 10−5. Second, we repeat the calculation
with different grid sizes of the z coordinate and test for
convergence. We see that the lowest mode has been
computed quite accurately, and as the mode number (both
n and l) increases, the accuracy of our result decreases.
Fortunately, the higher modes are not important for the
physics that we are interested in.

B. Dynamical instability

We have calculated quasinormal modes for all equilib-
rium states in the phase diagrams in Fig. 1 for angular
quantum numbers ranging from l ¼ 0 to l ¼ 5. The
tendency for the modes to vary with l suggests that larger
angular quantum numbers are less likely to give rise to
unstable modes. The states with unstable quasinormal
modes are marked in orange in Fig. 1. It can be seen that
for the scalar source ϕ1 ¼ 1 and 1.5, there are no unstable
states at all. For the source ϕ1 ¼ 1.9, unstable states are
present, although only in a small part of the spinodal
region. So there must exist a critical value of the source
below which all black hole solutions are axially dynami-
cally stable at the linear level. By dichotomizing, we find
that this critical value is about ϕ1 ¼ 1.889. On the other
hand, the fact that some states located in the spinodal region
are dynamically stable indicates a sharp contrast with the
case of planar topology. These states are free from
dynamical instability, even though they suffer from thermo-
dynamic instability, indicating the violation of the Gubser-
Mitra conjecture in our case. Remarkably, the discrepancy
between the dynamically unstable region and the spinodal
region depends on the scalar source. Specifically, the larger
the source, the more the dynamical and thermodynamic
instabilities coincide. Without loss of generality, we choose
a supercritical value ϕ1 ¼ 2 to show the inconsistency
between dynamical and thermodynamic instabilities by
displaying quasinormal spectra and performing nonlinear
dynamical evolution in Sec. IV.
For comparison, the green and red dots located in the

spinodal region in Fig. 1(d) are selected as initial data for
the nonlinear dynamical evolution. The quasinormal spec-
tra for these configurations, with angular quantum numbers
ranging from l ¼ 0 to l ¼ 3, are shown in Fig. 2. From the
figures, one can observe that in both cases for small angular
quantum numbers there are two branches of modes ending
at the origin (represented by the black dots in the figures),
similar to the hydrodynamic modes in the case of planar
topology, where the modes go to the origin as the
momentum k goes to zero. Such purely imaginary modes

become oscillating modes when l exceeds a critical value,
which depends on the energy density of the thermal phase.
On the other hand, for the configuration denoted by the

green dot, all the modes lie on or below the real axis,
indicating the dynamical stability at the linear level. The
situation is distinct for the solution represented by the red
dot, where the thermodynamic instability leads to the
emergence of a type of axial instability. As shown in the
lower panel of Fig. 2, the imaginary part of the mode with
the angular quantum number l ¼ 1 is positive in one of the
hydrodynamic-like branches, indicating the dynamical
instability under specific axial perturbations. Such a single
unstable mode necessarily lacks oscillatory behavior due to

FIG. 2. The quasinormal modes of the equilibrium states
represented by the green (upper panel) and red (lower panel)
dots in Fig. 1(d) with the variation of the angular quantum
number l. The different colors and markers represent different
quasinormal modes and angular quantum numbers, respectively.
The black dots indicate the common points of the two branches of
hydrodynamic-like modes for l ¼ 0. The dotted lines connecting
some of the markers represent the trajectories of the modes
varying with the angular quantum number, and the arrows
indicate the corresponding direction of migration.
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the symmetry ω → −ω� resulting from the real scalar field
configuration.

IV. NONLINEAR DYNAMICAL SIMULATION

A. Numerical approach

Based on the results of the linear analysis, we further
investigate the nonlinear dynamics of the gravitational
system to reveal the final fate of the dynamical instability.
With the metric ansatz (4), the gravitational dynamics is
transformed into a time-dependent solution to a set of
coupled partial differential equations. Due to the special
nested structure, these equations can be solved sequentially
with appropriate boundary conditions at the AdS boundary.
To simulate the gravitational system, we evolve the fields

in a fixed computational domain ½0; z0� in the z direction,
where z0 must be slightly larger than the reciprocals of the
apparent horizon radius at all times. Thus, z0 is chosen
a priori, and we need to reserve some space for the
apparent horizon to evolve. We find that z0 ¼ 1.3 is a
good choice for the initial states represented by the green
and red dots in Fig. 1(d). There is also previous work [35]
using the similar metric ansatz, which turned on an addi-
tional field and used the remaining gauge freedom to fix the
apparent horizon at z ¼ 1. Both horizon-fixed and horizon-
unfixed schemes can work, with their own advantages and
disadvantages. The horizon-unfixed method leads to a
simpler formalism, and we do not need to solve the elliptic
equation representing the apparent horizon condition at
each time step, which reduces the consumption of computa-
tional resources. However, the evolution of the field inside
the apparent horizon introduces additional numerical
errors. Fortunately, in the case of ϕ1 ¼ 2, this error is
acceptable, about 10−5. Additional numerical details,
including the procedure for solving fully nonlinear equa-
tions, the boundary conditions, the procedure for detecting
numerical errors, and the test for convergence are described
in Appendixes A and B.
We use the Chebyshev pseudospectral discretization in

the z direction as standard. In the direction of θ, we double
the coordinate range from ½0; π� to ½−π; π�. A similar
operation is performed in the radial direction of the polar
coordinates [41], from r∈ ½0; 1� to r∈ ½−1; 1�, which avoids
dealing with boundary conditions at the coordinate singu-
larity r ¼ 0 and prevents the grid points from being too
dense r ¼ 0. In our case, the periodic boundary condition
can also be employed, therefore. This allows us to use the
Fourier pseudospectral discretization instead of the
Chebyshev pseudospectral discretization, leading to several
advantages. First, it avoids having to deal with the
boundary conditions at the north and south poles.
Second, the grid points in the north and south pole regions
are not as dense as in the Chebyshev spectrum, which
reduces both the errors caused by the coordinate singular-
ities there and the CFL instability at the same time-step

size. On the other hand, we utilize an even number of
Fourier grid points, denoted asM, ranging from −π þ π=M
to π − π=M to avoid the coordinate singularity at the north
and south poles. With this extension, the functions χ, f, A,
and ϕ exhibit even symmetry with respect to θ, while ξ
displays odd symmetry. Thus, we can only evolve with data
from 0 to π.

B. Apparent horizon condition

While it is not necessary to solve the equation for the
apparent horizon condition at the time of evolution, we do
need to extract the horizon configuration at each instant from
the time-dependent solutions, since we are interested in the
shape of the black hole horizon aswell as the entropy density.
There is a simple way to derive the apparent horizon

condition [56]. We define the congruence as kμðxÞ ¼
λðxÞHðxÞ;μ, where x¼ðv;z;θ;φÞ and the surface HðxÞ¼ 0

within a given time slice denotes the apparent horizon.
Considering the null condition kμkμ ¼ 0, the time deriva-
tive ∂vH can be fixed in terms of the spatial derivatives of
HðxÞ. Requiring the congruence to satisfy the affinely
parametrized geodesic equation kμkν;μ ¼ 0 determines the
time derivative of the rescaling function λðxÞ in terms of its
spatial derivatives. With these time derivatives, the expan-
sion can be calculated by Θ ¼ kμ;μ, which must vanish on
the apparent horizonHðxÞ ¼ 0, giving the apparent horizon
condition.
In our case, we consider the apparent horizon

H ¼ z − hðv; θÞ, and the above steps give the following
condition:

ð∂θ þ hθ∂zÞðξþ hθe−A−χÞ þ cot θðξþ hθe−A−χÞ

¼ −
1

h
ðf − h2θe

−A−χÞ; ð28Þ

where all fields (except h and its θ derivative) should be
understood as functions of v, z ¼ hðv; θÞ, and θ. Using the
pseudospectral discretization and barycentric interpolation,
this differential equation can be cast into a linear equation,
essentially a root-finding problem, which can be solved by
the function scipy.optimize.root in PYTHON.
After the apparent horizon configurations zh ¼ hðθÞ are

determined, it is convenient to define the entropy density
from the Bekenstein-Hawking formula as follows:

sðθÞ ¼ 2π

h2
; ð29Þ

and the total entropy can be obtained by integrating the
entropy density over the angular direction:

S ¼
Z

2π

0

Z
π

0

sðθÞ sin θdθdφ. ð30Þ
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C. Simulation results

We consider the initial states represented by the green
and red dots in Fig. 1(d) and introduce a θ-dependent
perturbation to the scalar field, the form of which is chosen
as a mixture of all modes without loss of generality:

δϕðz; θÞ ¼ ϕ0z2 exp

�
−10 sin2

θ

2

�
; ð31Þ

where ϕ0 indicates the amplitude of the perturbation. For
the state represented by the green dot, the amplitude of the
perturbation ranges from ϕ0 ¼ 0.1 to ϕ0 ¼ 1, while for
the red dot, the range is ϕ0 ¼ 0.001 to ϕ0 ¼ 0.01. The
perturbation configuration with amplitude ϕ0 ¼ 0.001 at
the inner boundary z ¼ z0 is shown in Fig. 3.
We use 50 Chebyshev-Gauss-Lobatto grid points in the z

direction and 60 Fourier grid points in the θ direction (30
points in the physical range ½0; π�) in our numerical

simulations. We also run the simulations with other
numbers of grid points and perform a convergence test,
shown in Appendix B. The time-step size is taken as
Δv ¼ 0.0005, and the fourth-order Runge-Kutta method is
used to evolve the fields in time. The initial data are evolved
until v ¼ 200, which is long enough for the dynamical
transition to occur.
The fully nonlinear dynamical simulations demonstrate

that the gravitational system in the state denoted by the
green dot resists such an axial perturbation, indicating the
dynamical stability, consistent with the linear analysis.

FIG. 3. The angular configuration of the scalar perturbation
with amplitude ϕ0 ¼ 0.001 at the inner boundary z ¼ z0.

FIG. 4. The temporal evolution of the apparent horizon con-
figuration for the initial state denoted by the green dot.

FIG. 5. The φ ¼ const plane of the apparent horizon for the
initial and final states of the spontaneous deformation for the
scalar source ϕ1 ¼ 2 (upper panel) and ϕ1 ¼ 4 (lower panel).
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We take the perturbation amplitude ϕ0 ¼ 1 as an example,
and the temporal evolution of the apparent horizon con-
figuration is shown in Fig. 4. It can be seen that the axial
perturbation damps with time, leaving a spherically sym-
metric black hole.
For the initial state denoted by the red dot, we take the

amplitude of the perturbation to be ϕ1 ¼ 0.001. In stark
contrast to the former, here the unstable mode with angular
quantum number l ¼ 1 is excited under the axial perturba-
tion, leading to drastic changes in the gravitational con-
figuration. The φ ¼ const plane of the apparent horizon for
the initial and final states is depicted in the upper panel of
Fig. 5. One can observe that the apparent horizon radius rh
decreases in the north pole region and increases in the south
pole region, eventually leading to the formation of a black
hole with only axial symmetry. For larger sources, such as
ϕ1 ¼ 4, the deformation will be more obvious, as shown in
the lower panel of Fig. 5. However, we find that the
numerical errors in the dynamical evolution increase for
larger sources, and are about 10−3 for ϕ1 ¼ 4. Therefore,
we show it only for schematic purposes and leave the case
of larger sources for future work.
As the horizon configuration evolves, the distribution of

the entropy density shows a similar behavior, as shown in
Fig. 6, which displays the angular dependence of the
entropy density configurations at different times during
the dynamical transition, where the color spectrum indi-
cates the value of the entropy density. The final entropy
density configuration is shown in Fig. 7, clearly demon-
strating a strong θ dependence in the final state. Although
the entropy density exhibits distinct dynamical behavior in

different angular regions during the intermediate dynamical
process, the total entropy always increases monotonically
with time, as shown in Fig. 8, consistent with the second law
of black holemechanics.On the other hand,wehave checked
that the scalar source remains isotropic throughout the time
evolution; thus, it can be concluded that the spherical
symmetry of the gravitational system is broken spontane-
ously, resulting in a dynamical deformation process.

V. CONCLUSION

In this paper, we have revealed the real-time dynamics of
a spontaneous dynamical transition from a spherically
symmetric black hole to an axisymmetric black hole by
working with a certain gravitational model in the presence
of an isotropic external scalar source. Such an initial black
hole with spherical symmetry lies deep in a region

FIG. 6. The angular dependence of the entropy density at
different times for the initial state represented by the red dot. The
color spectrum indicates the value of the entropy density.

FIG. 7. The angular dependence of the final entropy density
configuration for the initial state represented by the red dot.

FIG. 8. The temporal evolution of the total entropy for the
initial state denoted by the red dot.
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of thermodynamic instability in the phase diagram.
Differently from the case of planar topology, where the
entire spinodal region is linearly dynamically unstable, in
our case only the central part of the spinodal region satisfies
the Gubser-Mitra conjecture, indicating a kind of axial
dynamical instability. We find that the energy range of this
dynamically unstable region depends on the scalar source.
For sources too small, there are no dynamically unstable
states. For sources above the critical value, the larger the
source, the larger the parameter range of dynamical insta-
bility in the spinodal region. In the intermediate process of
the dynamical evolution of this instability, there is a drastic
change in the apparent horizon rh, manifested by an inward
contraction of the north pole region and an outward
expansion of the south pole region. Eventually a black hole
with an event horizon with angular dependence forms as the
final fate of this dynamical instability. However, the scalar
source remains isotropic throughout the dynamical evolu-
tion, indicating that this type of dynamical deformation
spontaneously breaks the spherical symmetry.
For future research, a natural direction would involve

exploring the real-time dynamics of the spontaneous defor-
mation of rotating black holes. It will be interesting to
study whether the black hole spin inhibits or promotes this
dynamical transition. The thermodynamic relationships
involving the axisymmetric static solutions also deserve
to be revealed, visualizing the competition between the
spherically symmetric and axisymmetric solutions. Another
question deserving further attention is the dynamical behav-
ior of the modes during the transition, especially for larger
values of the scalar source, which may give rise to more
unstable modes.
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APPENDIX A: GENERAL FORMALISM
OF NUMERICAL RELATIVITY UNDER
THE BONDI-SACHS-LIKE METRIC

In this appendix, we denote time derivatives with respect
to v using dots or subscripts v, radial derivatives with
respect to z using primes, and angular derivatives with
respect to θ using subscripts θ.
The most general ingoing form of metric under the

Bondi-Sachs-like gauge in 1þ d dimensions can be
expressed as

ds2 ¼ L2

z2
ð−fe−χdv2 − 2e−χdvdz

þ hij½dxi − ξidv�½dxj − ξjdv�Þ; ðA1Þ

where f, χ, hij, and ξi are functions of ðv; z; xiÞ, and i, j
range from 1 to d − 1. In the asymptotically AdS or dS
cases, the constant L can be conveniently set to the AdS or
dS radius, while for the asymptotically flat case, L can be
arbitrarily chosen. Additionally, the determinant of hij is
constrained everywhere to be that of the standard sphere,
plane, hyperbolic space, or even more complicated topol-
ogies in higher dimensions, and so z is proportional to the
inverse of the local areal radius.
Some general discussion of this metric will be provided

in detail elsewhere. Here we only list the corresponding
Einstein equations for the planar case [with detðhijÞ ¼ 1]:

S1ðΨÞ ¼
d − 1

z
χ0 −

1

4
hikhjlh0lih

0
kj; ðA2Þ

S2ðΨÞ¼−
d−1

z
χ;i−Θj0

i;j−
1

2
h0kjh

kj
;i − zd−1

�
Θijξ

j0

zd−1

�0
; ðA3Þ

S3ðΨÞ ¼ −zd−1
�
2f
zd

�0
þ ξi0;i − zd−1

�
2ξi;i
zd−1

�0

þ 1

4
hknð2hnj;i − hij;nÞhij;ke−χ

−
�
hij;i χ;j þ hijχ;ij −

1

2
hijχ;jχ;i

�
e−χ

þ hij;ije
−χ þ 1

2
ξi0Θijξ

j0; ðA4Þ

S4ðΨÞ ≃ ḣjðnh
j0
mÞ þ

1

2
ḣ0mn þ zd−1

�
ḣmn

2zd−1

�0
−
1

2
fh0inh

i0
m − zd−1

�
fh0mn

2zd−1

�0
þ h0iðn∂mÞξi þ zd−1

�
hiðm∂nÞξi

zd−1

�0

þ 1

2
ðh0mnξ

kÞ;k þ zd−1
�
ξkhmn;k

2zd−1

�0
−
1

4
ð2hðnj;i − hij;ðnÞhij;mÞe

−χ þ
�
hkl

�
∂ðmhlnÞ −

1

2
∂lhmn

�
e−χ

�
;k

þ 1

2
χ;mχ;ne−χ þ ðχ;me−χÞ;n −

1

2
hmjhniξj0ξi0eχ ; ðA5Þ
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S5ðΨÞ ¼−
1

2
ðΘkjξ

j0Þ;vþ
1

2
ðdnΘj

kþhijhlkξl;i

− ξj;k− ξjΘkiξ
i0Þ;j

þ f0;k
2
−
d− 1

2z
ðf;kþfχ;kÞþ

1

4
hij;kdnhij

−
1

2
Θi

l;kξ
l
;i−

1

2
ξi;kΘijξ

j0; ðA6Þ

S6ðΨÞ ¼
1

2
ð−½fξi�0 þ ξiξj0Θjkξ

k − ξkdnΘi
k þΘijf;j

− 2dnξi þ ξkξi;k − ξmΘmkΘijξk;jÞ;i þ
1

4
ḣijdnhij

−
1

2
Θ̇j

kξ
k
;j þ

1

2
ξiðΘijξ

j0Þ;v −
d− 1

2z
ðḟ þ fχ̇Þ; ðA7Þ

where hij is the matrix inverse of hij, hi0j ≔ hikh0kj,
Θij ≔ eχhij; Θij is the matrix inverse of Θij, ∂μΘi

j ≔
Θik

∂μΘkj; dn ≔ ∂v − f∂z þ ξi∂i, Ψ denotes the matter
content of the theory; SkðΨÞ ðk ¼ 1; 2;…; 6Þ represent
the terms depending on the matter fields; and ≃ means
equality up to the trace part of a tensor equation. For other
topologies, the corresponding equations can be obtained by
appropriate coordinate transformations. In particular, for
the spherical case in the four dimensions we consider in this
paper, the EOMs can be achieved by the transformation
x ¼ − cos θ in one of the two transverse directions. These
equations have a very nice nested structure.2 Due to the fact
that they are not fully independent, two possible numerical
schemes can be adopted in the dynamical evolution.
We take the asymptotically AdS case as an example [35].

Initially, the data for the metric component hij, the material
fieldsΨ, and some integration constants on the time slice v0
should be given. These integration constants are the
coefficients of the cubic term in the near-boundary expan-
sions of the fields ξi and f, denoted as ξi3 and f3,
respectively. These data enable us to treat Eq. (A2) as a
first-order linear ordinary differential equation for the field
χ. By choosing the boundary condition χjz¼0 ¼ 0, we can
easily solve for χ. Once the field values of hij, Ψ, and χ are
determined, the quantities ξi0 and ξi can be consecutively
obtained by solving Eq. (A3), and the corresponding
boundary conditions are ξi000jz¼0 ¼ 6ξi3 and the gauge
choice ξijz¼0 ¼ 0, respectively. Next, we solve Eq. (A4)
to obtain the field f, with the boundary condition
f000jz¼0 ¼ 6f3. Subsequently, the field ḣij is determined
by solving Eq. (A5) with the boundary condition
ḣ0ijjz¼0 ¼ 0. Then, the matter field equations should be
solved with appropriate boundary conditions. Using these
field values, we integrate ḣij and Ψ̇ over time to push hij

and Ψ to the next time slice v0 þ dv. Subsequently, the
field value of χ on the time slice v0 þ dv can be obtained in
the same way described above. And then there are two
options about the fields ξi and f, leading to two different
evolution schemes:
(1) The constrained scheme:

The time derivatives of ξi3 and f3 can be deter-
mined through the near-boundary expansion of
Eqs. (A6) and (A7). Then, these integration con-
stants can be updated to the time slice v0 þ dv by
integrating over time. Consequently, we can solve
for ξi and f on the time slice v0 þ dv in the same
manner described above. Finally, all fields on the
time slice v0 þ dv are determined, and the evolution
of a time step dv is completed. This iterative
procedure continues until the simulation is complete.
Two redundant equations (A6) and (A7) are included
in the process to identify numerical errors.

(2) The free evolution scheme:
The time derivatives of ξi and f can be obtained

from Eqs. (A6) and (A7) [χ̇ should be determined
from the time derivative of Eq. (A2) in advance].
Then, we can obtain ξi and f on the time slice v0 þ
dv by integrating ξ̇i and ḟ over time. Finally, all
fields on the time slice v0 þ dv are determined, and
the evolution of a time step dv is completed. In the
subsequent evolution, we no longer need to solve
Eqs. (A3) and (A4). This iterative procedure con-
tinues until the simulation is complete. Two redun-
dant equations (A3) and (A4) are included in the
process to identify numerical errors.

The constrained scheme with the constraints imposed at
some other boundaries instead of the AdS conformal
boundary, as well as the free evolution scheme, does not
sensitively depend on the asymptotics of the spacetime, and
so it can be also applied to asymptotically flat and dS cases
(though certain technical subtleties may still arise).

APPENDIX B: NUMERICAL PROCEDURE
FOR DYNAMICAL EVOLUTION

In this paper, we focus on the axisymmetric and non-
rotating case, and the ingoing Bondi-Sachs-like metric (A1)
in four-dimensional asymptotically AdS spacetime3 degen-
erates to

ds2 ¼ L2

z2
ð−½fe−χ − eAξ2�dv2 − 2e−χdvdz

− 2ξeAdvdθ þ eAdθ2 þ e−A sin2 θdφ2Þ; ðB1Þ
where L is set to the unit, and all metric components
and the scalar field depend on v, z, and θ. To aid

2The matter part may ruin the nested structure, but fortunately
the scalar field we consider in this paper does not.

3See also, e.g., [57] for a review of dynamical evolution under
the Bondi-Sachs-like gauge in four-dimensional asymptotically
flat spacetime.
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our calculations, we introduce the following auxiliary
variables:

P ¼ eAþχ

4
ξ02 þ ξθ

z
−
ξ0θ
2
−
e−A−χ

4

× ð2Aθχθ þ χ2θ − ϕ2
θÞ þ

ðe−A−χÞθθ
2

;

Q ¼ ξ0

2
−
ξ

z
þ e−A−χχθ

2
: ðB2Þ

As a result, the EOMs are simplified to

χ0 ¼ z
4
ðA02 þ ϕ02Þ; ðB3Þ

�
eAþχ

z2
ξ0
�0

¼ −
1

z2

�
ðAþ χÞ0θ þ

2χθ
z

− ðA0Aθ þ ϕ0ϕθÞ þ 2 cot θA0
�
; ðB4Þ

�
f
z3

�0
¼ ξθ

z3
þ L2

2z4
e−χVðϕÞ þ 1

z2

�
P − cot θ

�
Q −

ξ

z

þ 3e−A−χAθ

2

�
− e−A−χ

�
; ðB5Þ

Ȧ0 −
Ȧ
z
¼ z2

2

�
fA0 − ξAθ

z2

�0
þ ðe−A−χAθ − ξA0Þθ

2

þ Pþ cot θ

�
Q −

ξA0

2

�
; ðB6Þ

ϕ̇0 −
ϕ̇

z
¼ z2

2

�
fϕ0 − ξϕθ

z2

�0
þ ðe−A−χϕθ − ξϕ0Þθ

2

−
L2

2z2
e−χ

dVðϕÞ
dϕ

þ cotθ

�
e−A−χϕθ

2
−
ξϕ0

2

�
; ðB7Þ

ðeAþχξ0Þv ¼ −
2

z
ðfθ þ fχθÞ − ð2ξeAþχξ0 − f0 þ f½A0 þ χ0�

− ½Ȧþ χ̇�Þθ þ ξðeAþχξ0 þ Aθ þ χθÞθ
− AθdnA − ϕθdnϕ

− cot θ½ξðeAþχξ0 − 3Aθ þ χθÞ
þ 2fA0 − 2Ȧ� þ 2ξ; ðB8Þ

2

z
ðḟ þ fχ̇Þ ¼ ðe−A−χfθ − ½fξ�0 þ ξ2eAþχξ0 − ξ½dnAþ dnχ�

− 2dnξÞθ − ξθðȦþ χ̇Þ − ȦdnA − ϕ̇dnϕ

þ ξðeAþχξ0Þv þ cot θðξ2½eAþχξ0 − ðAθ þ χθÞ�
þ ξ½fðA0 þ χ0Þ − 2χ̇ − 2ξθ − f0�
þ fξ0 − 2ξ̇þ e−A−χfθÞ; ðB9Þ

where dn ¼ ∂v − f∂z þ ξ∂θ. There is a systematic and
efficient integration strategy to solve these equations,
which benefits from their nested structure. We use the
constrained scheme described in Appendix A in this paper.
More specifically, the boundary conditions arise from the
near-boundary asymptotic behaviors of the field solutions:

χ ¼ ϕ2
1

8
z2 þOðz3Þ; ðB10Þ

ξ ¼ ξ3z3 þOðz4Þ; ðB11Þ

f¼ 1þ
�
ϕ2
1

8
þ1

�
z2þf3z3þOðz4Þ; ðB12Þ

A ¼ Oðz3Þ; ðB13Þ

ϕ ¼ ϕ1zþ ϕ2z2 þOðz3Þ: ðB14Þ

For Eq. (B3), the boundary condition χjz¼0 ¼ 0 is just a
gauge choice. For Eq. (B4), the asymptotic behavior of the
field ξ (B11) yields two boundary conditions with the
gauge choice Ajz¼0 ¼ 0:

�
eAþχ

z2
ξ0
�				

z¼0

¼ 3ξ3; ξjz¼0¼ 0: ðB15Þ

The asymptotic behavior of the field f (B12) determines a
single integration constant in Eq. (B5). By imposing the field
redefinition f ¼ 1þ z2f̃, the corresponding boundary con-
dition becomes f̃0jz¼0 ¼ f3. Moreover, the time derivatives
of the integration constants ξ3 andf3 are determined through
the near-boundary expansion of Eqs. (B8) and (B9):

∂vξ3 ¼ ∂θ

�
f3
3
− A3 −

2ϕ1ϕ2

9

�
− 2 cot θA3;

∂vf3 ¼
3∂θξ3
2

þ ϕ1∂vϕ2

6
þ cot θ

3ξ3
2

: ðB16Þ

Hence, the values of ∂vξ3 and ∂vf3 can be calculated after
obtaining Ȧ and ϕ̇ from Eqs. (B6) and (B7). Then A, ϕ, ξ3,
and f3 can be updated to the next time slice by integrating
over time.
In such a constrained scheme, two redundant

equations (B8) and (B9) can be used to identify numerical
errors. Since their asymptotic behaviors in the near-
boundary region are already used to determine the
boundary conditions, we can use the values of Eq. (B8)
at the apparent horizon to detect numerical errors, which
are averaged along the θ direction and denoted as Ē.
We take the case of spontaneous deformation in Fig. 5
as an example to test the convergence of our numerical
code, which is implemented in PYTHON (NUMPY and
SCIPY). We vary the number of grid points in the
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z direction or in the θ direction and keep the other
parameters unchanged. The results are shown in Fig. 9, as
the temporal evolution of the value of ln jĒj and its value
at v ¼ 500, varying with the number of grid points. It can

be seen that the accuracy of our numerical code improves
exponentially as the number of grid points increases,
which is exactly what is expected from the spectral
method [23,41].
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