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The electromagnetic radiation emitted by an accelerated charged particle can be described theoretically
as the interaction of the charge with the so-called Fulling-Davies-Unruh thermal bath in the coordinate
frame co-accelerated with the charge. We present a similar analysis on the gravitational radiation from a
classical point mass uniformly accelerated, being pulled by a string satisfying the weak energy condition. In
particular, we derive the interaction rate (with fixed transverse momentum) of this system of the point mass
and string in the Fulling-Davies-Unruh thermal bath in the co-accelerated frame and show that it equals the
graviton emission rate calculated in the standard method in Minkowski spacetime.
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I. INTRODUCTION

Following a period of controversies, the classical prob-
lem of radiation by a uniformly accelerated charge has
become well understood in recent decades. This phenome-
non is commonly observed from the perspective of a distant
inertial observer, who detects radiation emitted by a
charge undergoing an accelerated trajectory relative to that
observer (see, e.g., Refs. [1–4]). The power observed in an
inertial frame can be calculated using the well-known
Larmor formula [5], which has also been generalized to
a covariant form [4]. However, the connection of the
inertial-frame viewpoint with the viewpoint of a co-
accelerated frame of reference, where the charge is static
and hence the observer there sees no radiation, remained as
an unsolved part of the puzzle. This piece of the puzzle is
closely related to the apparent paradox of the equivalence
principle [3]. In a significant contribution, Boulware
investigated this problem and provided an explanation
for the apparent paradox of the equivalence principle in
Ref. [6]. According to Boulware’s findings, the co-
accelerated observer sees no radiation because the radiation
field can only be unambiguously interpreted in regions of
spacetime beyond the observer’s horizon. (See also Ref. [7]
and the references therein.)
The inertial and co-accelerated viewpoints about the

problem of radiation emitted by a uniformly accelerated
charge can also be addressed using a semiclassical frame-
work, i.e., using quantum field theory at tree level, which
provides a deeper understanding concerning this problem.
In this context, the theoretical description is different in the

inertial and accelerated frames, although the response rates
of the charge calculated in these frames are the same. While
in the inertial frame the source is seen to emit Minkowski
quanta, in the co-accelerated frame, or in the Rindler frame,
the source is seen to interact with a thermal bath, which is a
consequence of the interpretation of the inertial-frame
quantum-field state in the accelerated frame. This was
shown in Refs. [8,9], where it was concluded that the
radiation in the inertial frame is only consistently inter-
preted in the co-accelerated frame if the Unruh effect [10] is
taken into account. We also note that the Larmor formula
was reproduced recently through the modes of photons
defined in the Rindler frame using the Unruh effect [11].
The Unruh effect is an example of the observer-

dependent nature of the field-theoretic particle content
[12]. In particular, the Minkowski vacuum, the state with
no particles for inertial observers, is described as a thermal
bath in the co-accelerated frame of the charge, the Fulling-
Davies-Unruh (FDU) thermal bath [10,13,14]. The emis-
sion of a Minkowski photon, i.e., a field excitation in the
inertial frame, corresponds to either the absorption or
emission of Rindler photons, which are the field quanta
as viewed by Rindler observers, i.e., by the co-accelerated
observers [15]. Thus, in quantum field theory the theoreti-
cal description of the acceleration radiation by the inertial
observer is associated with the emission of a Minkowski
photon by the charge, and the theoretical description by the
co-accelerated observer is associated with the emission
and absorption of zero-energy Rindler particles, which are
shown to be undetectable by co-accelerated observers,
agreeing with the classical interpretation [6,9].
The Unruh effect is an intrinsic effect of quantum field

theory and is a necessary ingredient in the description of
physics in the Rindler frame. Despite this fact, works
questioning the existence of this effect can be found in the
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literature (see, e.g., Refs. [16,17]). The experimental
observation of the FDU thermal bath could dispel any
lingering doubt about the Unruh effect. Some proposals
have been put forward to observe the Unruh effect using
state-of-the-art technology, in particular exploiting the
above-mentioned description of the radiation using the
Unruh effect in the accelerated frame [18] (see also
Refs. [19–21]). In this proposal, the radiation emitted by
a circularly moving charge in the Rindler frame (also
interacting with the FDU thermal bath) is compared with
the radiation observed in the inertial frame by an exper-
imentalist. The output of the experiment in the inertial
frame can be predicted by classical electrodynamics and is
found to be the same as inferred by the Rindler observers
incorporating the Unruh effect. Another example of the
quantum phenomenon consistently described by consider-
ing the Unruh effect is the decay of uniformly accelerated
particles [22] (see also Ref. [23]).
The role played by the Unruh effect in quantum field

theory is still a matter of investigation, and the description
of many interesting phenomena is lacking. In particular, it
will be interesting to confirm that the equality between the
response rates of a scalar or an electric charge due to its
interaction with the scalar or electromagnetic field, respec-
tively, in the inertial and co-accelerated frames, holds for a
point mass interacting with the gravitational field. The main
purpose of this paper is to demonstrate in detail that this is
indeed the case.
The rest of the paper is organized as follows. In Sec. II

we find a conserved stress-energy tensor, which is
described in both inertial and accelerated frames, corre-
sponding to a point mass accelerated by a string satisfying
the weak energy condition (WEC). In Sec. III we review the
quantization of gravitational perturbations in Rindler space-
time. In Sec. IV we calculate the response rate associated
with the conserved stress-energy tensor found in Sec. II in
Rindler spacetime, taking into account the Unruh effect. In
Sec. V we calculate the corresponding response rate in the
inertial frame. Our final remarks are given in Sec. VI. In
Appendix A we show the equality of the response rates
computed in the inertial and co-accelerated frames, and in
Appendix B we present the response rate for another stress-
energy tensor with a string which does not satisfy the WEC.
We adopt metric signature ðþ;−;−;−Þ and units
where 8πG ¼ c ¼ ℏ ¼ kB ¼ 1.

II. CONSERVED STRESS-ENERGY TENSOR

Minkowski spacetime is globally covered by the set of
coordinates ðt; z; x; yÞ, and the right Rindler wedge, which
is natural to a uniformly accelerated observer, can be
covered by Rindler coordinates ðη; ξ; x; yÞ, with these
two sets of coordinates related as follows:

t ¼ a−1eaξ sinh aη; ð1Þ

z ¼ a−1eaξ cosh aη; ð2Þ

where z > jtj and −∞ < η, ξ < ∞. The line element is
given in Rindler coordinates as

ds2 ¼ e2aξðdη2 − dξ2Þ − dx2 − dy2; ð3Þ

with metric determinant detðgμνÞ≡ g ¼ −e4aξ. The lines
of constant ξ, x, and y are the uniformly accelerated
trajectories with proper acceleration ae−aξ and proper time
τ ¼ eaξη (see, e.g., Ref. [24]). There is a Killing horizon at
z ¼ jtj associated with the Killing vector field ∂η.
Let us first construct a conserved stress-energy tensor in

the spacetime described by Eq. (3) for a system with a
uniformly accelerated point mass. There will be an external
force acting on it because without it the point mass would
follow a timelike geodesic [25]. We assume that only the
components Tηη and Tξξ are nonzero and that they are
proportional to δð2Þðx⊥Þ ¼ δðxÞδðyÞ with x⊥ ¼ ðx; yÞ and
otherwise depend only on ξ. Then, the conservation
equation, ∇μTμν ¼ 0, is satisfied if

e−3aξ∂ξðe3aξTξξÞ ¼ −aTηη: ð4Þ

We let Tξξ be given by

Tξξ ¼ −μae−2aξFðξÞδð2Þðx⊥Þ; ð5Þ

where μ is a positive constant and FðξÞ is an arbitrary
function. Substituting this equation into Eq. (4), we find

Tηη ¼ μe−2aξ½F0ðξÞ þ aFðξÞ�δð2Þðx⊥Þ: ð6Þ

Equations (5) and (6) satisfy the conservation equation for
Tμν for any FðξÞ. Here, we choose

FðξÞ ¼ θðξÞ; ð7Þ

where θðxÞ is the Heaviside step function. This choice leads
to the following stress-energy tensor:

Tηη ¼ μ
�
δðξÞ þ ae−2aξθðξÞ�δð2Þðx⊥Þ; ð8Þ

Tξξ ¼ −μae−2aξθðξÞδð2Þðx⊥Þ; ð9Þ

with all the other tensor components vanishing.
The stress-energy tensor given by Eqs. (8) and (9)

describes a point mass μ at ðη; 0; 0; 0Þ attached to an
infinitely long string extended along the η ¼ constant line
(on the plane x⊥ ¼ 0) from ξ ¼ 0 to ∞. This is illustrated
in Fig. 1, where a diagram of Minkowski spacetime is
presented. This stress-energy tensor is given in Minkowski
coordinates (t and z) as
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Ttt ¼ μ
�
cosh2 aηδðξÞ þ aθðξÞ�δð2Þðx⊥Þ; ð10Þ

Ttz ¼ μ sinh aη cosh aηδðξÞδð2Þðx⊥Þ; ð11Þ

Tzz ¼ μ½sinh2aηδðξÞ − aθðξÞ�δð2Þðx⊥Þ; ð12Þ

with all other components vanishing. This stress-energy
tensor obeys the WEC.

III. GRAVITATIONAL PERTURBATIONS AND
THEIR QUANTIZATION IN RINDLER

SPACETIME

The Einstein-Hilbert action for pure gravity is

SEH ¼ −
1

16πG

Z
R

ffiffiffiffiffiffiffiffiffiffiffi
−gðfÞ

q
d4x; ð13Þ

where R is the Ricci scalar curvature, G is Newton’s
constant, and gðfÞ is the determinant of the (full) metric

tensor gðfÞμν . By writing the metric tensor as

gðfÞμν ¼ gμν þ
ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
hμν; ð14Þ

where gμν is the flat metric on Minkowski spacetime, the
action (13) is given to second order in hμν as

Sð2ÞEH ¼
Z

Lð2Þ
EH

ffiffiffiffiffiffi
−g

p
d4x; ð15Þ

where

Lð2Þ
EH ¼ 1

2
∇αhμν∇αhμν −∇αhβμ∇βhαμ

þ
�
∇αhμα −

1

2
∇μh

�
∇μh; ð16Þ

with h≡ hαα. Here and below the tensor indices are raised
and lowered by the flat metric gμν. The Euler-Lagrange
equation derived from this Lagrangian is

∇α∇αhμν −∇μ∇αhνα −∇ν∇αhμα þ∇μ∇νh

þ gμνð∇α∇βhαβ −∇α∇αhÞ ¼ 0: ð17Þ

This equation is gauge invariant; i.e., a tensor of the form

hðGÞμν ¼ ∇μΛν þ∇νΛμ, where Λμ is any vector field, is a
solution to this equation. This gauge invariance allows us to
impose the de Donder condition,

∇νhμν −
1

2
∇μh ¼ 0: ð18Þ

This condition simplifies the field equation (17) to

∇α∇α

�
hμν −

1

2
gμνh

�
¼ 0: ð19Þ

The gravitational perturbations in the right Rindler
wedge (and other regions of Minkowski spacetime) were
studied in Ref. [26]. In that paper the mode functions of
positive frequency with respect to the Killing vector ∂η

satisfying the de Donder condition (18) were found in the
formHμνðξÞe−iωηþik⊥·x⊥ , where ω is a positive constant and
k⊥ ¼ ðkx; kyÞ is a constant two-dimensional vector. There
are two independent nongauge modes for given values of ω
and k⊥, one with even parity and the other with odd parity.
The odd-parity modes do not couple to the stress-energy
tensor Tμν given by Eqs. (8) and (9) because their only
nonzero components are of the form hμν with μ ¼ η, ξ and
ν ¼ x, y (or vice versa). For this reason we discuss only the
even-parity modes here.
The even-parity modes can be described in terms of the

solutions φðω;k⊥Þ to the massless scalar field equation,

∇α∇αφðω;k⊥Þ ¼ 0; ð20Þ

of the form

φðω;k⊥Þðη; ξ;x⊥Þ ¼ ϕðω;k⊥ÞðξÞe−iωηþik⊥·x⊥ ; ð21Þ

where k⊥ ¼ kk⊥k. The functions ϕðω;k⊥Þ are given by

ϕðω;k⊥ÞðξÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=aÞ

4π4a

r
Kiω=a

�
k⊥eaξ
a

�
; ð22Þ

FIG. 1. Minkowski spacetime diagram and the four Rindler
wedges. The trajectory associated with ξ ¼ 0 is highlighted in the
right Rindler wedge. The dots with wavy tails on each η ¼
constant line indicate the location of the source of the stress-
energy tensor at constant Rindler times.
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where KνðzÞ is the modified Bessel function of the second
kind. The functions ϕðω;k⊥Þ are real because K−νðzÞ ¼
KνðzÞ and obey the following differential equation:

½∂2ξ þ ðω2 − k2⊥e2aξÞ�ϕðω;k⊥ÞðξÞ ¼ 0: ð23Þ

The mode functions φðω;k⊥Þ satisfy the Klein-Gordon
normalization condition [27],

hφðω;k⊥Þ;φðω0;k0⊥Þisc ≡ i
Z
Σ
φðω;k⊥Þ ∇μ

↔
φðω0;k0⊥ÞnμdΣ

¼ δðω − ω0Þδð2Þðk⊥ − k0⊥Þ; ð24Þ

where Σ is the η ¼ constant hypersurface for the right
Rindler wedge and where nμ is the future-pointing unit
normal to this hypersurface.
The even-parity modes are given in the form

hðω;k⊥Þ
μν ðη; ξ;x⊥Þ ¼ Hðω;k⊥Þ

μν ðξÞe−iωηþik⊥·x⊥ ; ð25Þ

where the nonzero components of Hðω;k⊥Þ
μν ðξÞ are [26]

Hðω;k⊥Þ
ηη ðξÞ ¼ Hðω;k⊥Þ

ξξ ðξÞ

¼ 1ffiffiffi
2

p
�
−e2aξ þ 2

k2⊥
ðω2 þ a∂ξÞ

�
ϕðω;k⊥ÞðξÞ; ð26Þ

Hðω;k⊥Þ
ηξ ðξÞ ¼

ffiffiffi
2

p
iω

k2⊥
ð∂ξ − aÞϕðω;k⊥ÞðξÞ; ð27Þ

Hðω;k⊥Þ
ij ðξÞ ¼ −

δijffiffiffi
2

p ϕðω;k⊥ÞðξÞ; ð28Þ

where i and j are x or y.
To discuss the normalization condition for these modes it

will be useful to consider physically equivalent mode
functions related to them by a gauge transformation. We
define the vector Λðω;k⊥Þ

μ by

Λðω;k⊥Þ
η ðη; ξ;x⊥Þ ¼

1ffiffiffi
2

p
k2⊥

∂ηφ
ðω;k⊥Þðη; ξ;x⊥Þ; ð29Þ

Λðω;k⊥Þ
ξ ðη; ξ;x⊥Þ ¼

1ffiffiffi
2

p
k2⊥

∂ξφ
ðω;k⊥Þðη; ξ;x⊥Þ; ð30Þ

Λðω;k⊥Þ
i ðη; ξ;x⊥Þ ¼ −

1ffiffiffi
2

p
k2⊥

∂iφ
ðω;k⊥Þðη; ξ;x⊥Þ; ð31Þ

where i ¼ x, y. We also define the gauge-transformed mode
functions by

h̃ðω;k⊥Þ
μν ¼ hðω;k⊥Þ

μν þ∇μΛ
ðω;k⊥Þ
ν þ∇νΛ

ðω;k⊥Þ
μ : ð32Þ

Noting that the nonzero Christoffel symbols are Γη
ηξ ¼

Γη
ξη ¼ Γξ

ηη ¼ Γξ
ξξ ¼ a, we readily find

h̃ðω;k⊥Þ
μν ¼ −

1ffiffiffi
2

p �
gμν þ 2qμνðk⊥Þ

�
φðω;k⊥Þ; ð33Þ

where

qμνðk⊥Þ ¼
(
δij −

kikj
k2⊥

if μ; ν ¼ x or y;

0 otherwise:
ð34Þ

It is straightforward to show that the mode functions h̃ðω;k⊥Þ
μν

satisfy both the de Donder condition (18) and the field
equation (19).
The mode functions describing the gravitational pertur-

bations are normalized with respect to the inner product
analogous to the Klein-Gordon inner product (24). We first
define the conjugate momentum current for a solution hðiÞμν
of the Euler–Lagrange equation (17) as follows (see, e.g.,
Ref. [28]):

pαμν
ðiÞ ¼ ∂Lð2Þ

EH

∂∇αhμν

				
h¼hðiÞ

: ð35Þ

Then the Euler-Lagrange equation (17) can be written as

∇αp
αμν
ðiÞ −

∂Lð2Þ
EH

∂hμν

				
h¼hðiÞ

¼ 0: ð36Þ

(In our case, i.e., in flat spacetime, the second term is

absent.) Since the Lagrangian density Lð2Þ
EH is quadratic in

hμν, we have, for any two solutions h
ðiÞ
μν and h

ðjÞ
μν to Eq. (17),

∇αh
ðiÞ
μνp

αμν
ðjÞ ¼ pαμν

ðiÞ ∇αh
ðjÞ
μν : ð37Þ

This equation and Eq. (36) imply that the following inner
product is η-independent:

hhðiÞ; hðjÞits ≡ i
Z
Σ
ðhðiÞμνpαμν

ðjÞ − pαμν
ðiÞ h

ðjÞ
μν ÞnαdΣ; ð38Þ

where Σ and nμ are defined as in Eq. (24). If the solutions

hðiÞμν and hðjÞμν obey the de Donder condition (18), then this
inner product simplifies to

hhðiÞ; hðjÞidD ¼ i
Z
Σ

�
hðiÞμν ∇α

↔
hðjÞμν −

1

2
hðiÞ∇α

↔
hðjÞ

�
nαdΣ:

ð39Þ
For the mode functions (33) we find

hh̃ðω;k⊥Þ; h̃ðω
0;k0⊥ÞidD ¼ hφðω;k⊥Þ;φðω0;k0⊥Þisc

¼ δðω − ω0Þδð2Þðk⊥ − k0⊥Þ: ð40Þ
Now let us discuss the quantization of the even-parity

metric perturbations, which couple to the stress-energy
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tensor Tμν in Eqs. (8) and (9). After fixing the gauge
completely, the quantized even-parity gravitation field can
be expressed as

ĥðevenÞμν ðη;ξ;x⊥Þ¼
Z

∞

0

dω
Z

d2k⊥

×
�
h̃ðω;k⊥Þ
μν ðη;ξ;x⊥Þâðω;k⊥Þ þH:c:

�
: ð41Þ

As in the scalar case [29], the inner product (40) implies

½âðω;k⊥Þ; â
†
ðω0;k0⊥Þ� ¼ δðω − ω0Þδð2Þðk⊥ − k0⊥Þ: ð42Þ

The Fulling vacuum state j0Fi [13], which is the no-particle
state in the Rindler frame, satisfies âðω;k⊥Þj0Fi ¼ 0 for
all ω and k⊥.

IV. RESPONSE RATE IN THE
ACCELERATED FRAME

The stress-energy tensor is defined from a matter action
Smatter by

Tμν ¼ 2ffiffiffiffiffiffiffiffiffiffiffi
−gðfÞ

p δSmatter

δgðfÞμν

: ð43Þ

At linear order we find from Eq. (14)

δSmatter

δhμν

				
h¼0

¼
ffiffiffiffiffiffiffiffiffi
8πG

p
Tμν: ð44Þ

Hence, the interaction term describing the one-graviton
processes due to the classical stress-energy tensor Tμν given
by Eqs. (8) and (9) can be taken to be

Ŝint ¼
ffiffiffiffiffiffiffiffiffi
8πG

p Z
TμνĥðevenÞμν

ffiffiffiffiffiffi
−g

p
d4x; ð45Þ

where the operator ĥðevenÞμν ðxÞ is given by Eq. (41). We set
8πG ¼ 1 from now on.
The probability amplitudes associated with the emission

and absorption of a graviton with frequency ω and trans-
verse momentum k⊥ in the Fulling vacuum state j0Fi are
given by

Aðω;k⊥Þ
em ¼ h0Fjâðω;k⊥ÞŜintj0Fi

¼
Z

Tμνhðω;k⊥Þ
μν

ffiffiffiffiffiffi
−g

p
d4x; ð46Þ

Aðω;k⊥Þ
abs ¼ h0FjŜintâ†ðω;k⊥Þj0Fi

¼
Z

Tμνhðω;k⊥Þ
μν

ffiffiffiffiffiffi
−g

p
d4x; ð47Þ

respectively, where hðω;k⊥Þ
μν is the even-parity positive-

frequency perturbation with frequency ω and transverse
momentum k⊥ given by Eq. (25). Here, we replaced the

gauge-transformed mode functions h̃ðω;k⊥Þ
μν , which are used

in the expansion of the even-parity quantum graviton field

ĥðevenÞμν in Eq. (41), with the original mode functions hðω;k⊥Þ
μν

without changing the result because the stress-energy
tensor satisfies ∇μTμν ¼ 0. The differential spontaneous
emission probability, i.e., the probability of emission of one
graviton with fixed transverse momentum k⊥ and Rindler
energy ω, is given by

dPem
ω;k⊥ ¼ jAðω;k⊥Þ

em j2dωd2k⊥: ð48Þ

The Minkowski vacuum state is equivalent to a thermal
bath of the Unruh temperature TU ¼ a=2π for processes
confined to the right Rindler wedge [10]. This correspon-
dence exemplifies the observer-dependent notion of the
field-theoretic particle content. Here, the notion of a
particle is defined with respect to the timelike Killing
vector ∂t for the inertial observers and with respect to ∂η for
the co-accelerated observers [13]. The expected number of
gravitons with a given (normalized) wave function with
(approximate) frequency ω that surround the co-accelerated
observers is

nðωÞ≡ 1

e2πω=a − 1
; ð49Þ

which is the Bose-Einstein distribution function with the
Unruh temperature a=2π. Thus, in the Rindler frame there
is induced emission as well as spontaneous emission. If we
write the total emission rate as

Rem
tot ¼

Z
Rem

k⊥d
2k⊥; ð50Þ

then the differential emission rate, Rem
k⊥ , i.e., the emission

rate per unit time and transverse momentum squared, is
given by

Rem
k⊥ ¼ 1

T0

Z
∞

0

jAðω;k⊥Þ
em j2½1þ nðωÞ�dω; ð51Þ

where T0 ¼
R
∞
−∞ dη is the “infinite total proper time.”1

Equation (51) was obtained from Eq. (48) taking into
account the spontaneous and induced emission due to the
thermal bath associated with nðωÞ. The differential absorp-
tion rate, i.e., the absorption rate per unit time and trans-
verse momentum squared, is

1We present a derivation of the result in this section without the
use of infinite proper time in Appendix A.
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Rabs
k⊥ ¼ 1

T0

Z
∞

0

jAðω;k⊥Þ
em j2nðωÞdω; ð52Þ

where we used the relation Aðω;k⊥Þ
abs ¼ Aðω;−k⊥Þ

em , which
follows from Eqs. (46) and (47), and Eq. (48) taking
into account the thermal factor nðωÞ. The differential
interaction rate,Rk⊥ , is the sum of the differential emission
and absorption rates, Rem

k⊥ and Rabs
−k⊥ . Noting that

nð−ωÞ ¼ −½1þ nðωÞ�, we find

Rk⊥ ¼ 1

T0

Z
∞

−∞
jAðω;k⊥Þ

em j2j1þ nðωÞjdω: ð53Þ

As we will see, Eq. (53), which follows directly from the
perturbation theory in Rindler spacetime taking into
account the FDU thermal bath, gives the same result as
the emission rate obtained using standard quantum field
theory in Minkowski spacetime.
To find the amplitude Aðω;k⊥Þ

em we first find from Eqs. (8)
and (9), noting that

ffiffiffiffiffiffi−gp ¼ e2aξ,

Z
Tηηhðω;k⊥Þ

ηη
ffiffiffiffiffiffi
−g

p
d4x

¼ μIðωÞ
�
Hðω;k⊥Þ

ηη ð0Þ þ a
Z

∞

0

Hðω;k⊥Þ
ηη ðξÞdξ

�
; ð54Þ

Z
Tξξhðω;k⊥Þ

ξξ

ffiffiffiffiffiffi
−g

p
d4x¼−μaIðωÞ

Z
∞

0

Hðω;k⊥Þ
ξξ ðξÞdξ; ð55Þ

where the functions Hðω;k⊥Þ
ηη and Hðω;k⊥Þ

ξξ are defined by
Eqs. (25) and (26) and where

IðωÞ ¼
Z

∞

−∞
eiωηdη: ð56Þ

The first (second) term of the right-hand side of Eq. (54)
comes from the point mass (extended string). Since

Hðω;k⊥Þ
ηη ðξÞ ¼ Hðω;k⊥Þ

ξξ ðξÞ, we obtain

Aðω;k⊥Þ
em ¼

Z
Tμνhðω;k⊥Þ

μν
ffiffiffiffiffiffi
−g

p
d4x ð57Þ

¼ μIðωÞHðω;k⊥Þ
ηη ð0Þ: ð58Þ

Thus, the contribution of the string to the probability
amplitude vanishes, and only the point mass contributes.
However, this vanishing contribution of the string is gauge
specific, and the string contribution is nonzero if we use the

gauge-transformed modes h̃ðω;k⊥Þ
μν given by Eq. (33) as we

show below.
The differential interaction rate, Rk⊥ , is found by sub-

stituting Eqs. (49) and (58) with (56) into Eq. (53). In

squaring the amplitudeAðω;k⊥Þ
em given by Eq. (58) we employ

the standard formal manipulation jIðωÞj2 ¼ 2πT0δðωÞ.
Thus, we find

Rk⊥ ¼ �
2πμ2jHðω;k⊥Þ

ηη ð0Þj2½1þ nðωÞ��ω→0
: ð59Þ

Note that in the limit ω → 0 we have nðωÞ → ∞: the Bose-
Einstein distribution function diverges for the low-Rindler-
energy gravitons as

nðωÞ ¼ a
2πω

þOð1Þ; ð60Þ

for smallω. On the other hand,Eq. (26)withEq. (22) leads to

Hðω;k⊥Þ
ηη ð0Þ¼−

ffiffiffiffiffiffiffiffiffiffiffiffi
πω

8π4a2

r �
K0

�
k⊥
a

�
−
2a
k⊥

K0
0

�
k⊥
a

�
þOðωÞ

�
;

ð61Þ

for small ω. Thus, we have Hðω;k⊥Þ
ηη ð0Þ → 0 as ω → 0. This

reflects the fact that the stress-energy tensor is static in the
Rindler frame, and, hence, the spontaneous emission rate
vanishes. However, the induced emission rate is nonzero
because of the interaction of the source with the zero-energy
Rindler gravitons from the thermal bath, whose state density
is infinite.We readily find the interaction rate by substituting
Eqs. (60) and (61) into Eq. (59) as

Rk⊥ ¼ μ2

8π3a

				K2

�
k⊥
a

�				2; ð62Þ

where we have used the equality,

K0ðzÞ −
2

z
K0

0ðzÞ ¼ K2ðzÞ; ð63Þ

which can be derived from Ref. [30, Sec. 10.29(i)]. In
AppendixAwe present a derivation of this result without the
use of infinite interaction time.
We should obtain the same result if we use the mode

functions h̃ðω;k⊥Þ
μν given by Eq. (33) instead of hðω;k⊥Þ

μν

because these modes are related by a gauge transformation
[see Eq. (32)]. Let us verify this fact. By expressing the

mode functions h̃ðω;k⊥Þ
μν as

h̃ðω;k⊥Þ
μν ðη; ξ;x⊥Þ ¼ H̃ðω;k⊥Þ

μν ðξÞe−iωηþik⊥·x⊥ ; ð64Þ
we find

H̃ðω;k⊥Þ
ηη ðξÞ ¼ −H̃ðω;k⊥Þ

ξξ ðξÞ ð65Þ

¼ −
1ffiffiffi
2

p e2aξϕðω;k⊥ÞðξÞ; ð66Þ

where the functions ϕðω;k⊥Þ are given by Eq. (22). Then,
Eq. (58) is replaced by
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Z
Tμνh̃ðω;k⊥Þ

μν
ffiffiffiffiffiffi
−g

p
d4x

¼ μIðωÞ
�
H̃ηηð0Þ þ 2a

Z
∞

0

H̃ηηðξÞdξ
�

ð67Þ

¼ −μIðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
πω

8π4a2

r

×

�
K0

�
k⊥
a

�
þ 2a2

k2⊥

Z
∞

k⊥=a
yK0ðyÞdyþOðωÞ

�
; ð68Þ

where we have changed the integration variable from ξ to
y ¼ ðk⊥=aÞeaξ, for small ω. Notice that the contribution
from the string does not vanish. By comparing this formula
with Eq. (58), where Hηηð0Þ is given by Eq. (61), one finds
that the equality of the response rates follows if

zK0
0ðzÞ ¼ −

Z
∞

z
yK0ðyÞdy: ð69Þ

Since both sides tend to 0 as z → ∞ because KνðzÞ ≈ffiffiffiffiffiffiffiffiffiffi
π=2z

p
e−z for large z, this equality is equivalent to its

derivative, i.e.,

zK00
0ðzÞ þ K0

0ðzÞ ¼ zK0ðzÞ; ð70Þ

which is the modified Bessel equation satisfied by K0ðzÞ.
Thus, we have verified that the mode functions h̃ðω;k⊥Þ

μν also
lead to the differential interaction rate Rk⊥ given
by Eq. (62).

V. RESPONSE RATE IN THE INERTIAL FRAME

The spontaneous emission probability in Minkowski
spacetime for fixed transverse momentum k⊥ for any
conserved stress-energy tensor Tμν given by Eqs. (10)–(12)
can be written as

PM
k⊥ ¼

Z
dkz

ð2πÞ32k
�
T μνT μν −

1

2
T̄ T

�
ð71Þ

¼
Z

dkz
ð2πÞ32k

�
1

2
jT tt þ T zzj2 − 2jT tzj2

�
; ð72Þ

where k≡ kkk≡ kðkz;k⊥Þk and T μνðkÞ is defined as

T μνðkÞ ¼
Z

eiðkt−k·xÞTμνðxÞd4x; ð73Þ

and T ðkÞ≡ T μ
μðkÞ. The total emission probability would

be the integral of PM
k⊥ over k⊥.

Equation (71) can be derived from the well-known
expression for the total emission probability,

PM ¼
Z

d3k
ð2πÞ32k T

μνðkÞ
X
λ

ϵλμνϵ
λ
αβT

αβðkÞ; ð74Þ

where ϵλμν is the Minkowski polarization matrix, with λ
denoting the independent polarization states, by using
kνT μν ¼ 0 and choosing, for simplicity, a coordinate
system such that kμ ¼ ðk; 0; 0; kÞ, with

ϵλ111 ¼ −ϵλ122 ¼ ϵλ212 ¼ ϵλ221 ¼
1ffiffiffi
2

p ; ð75Þ

and the other components vanishing.
To find the components of T μνðkÞ it is convenient to

change the integration variables from ðt; zÞ to ðη; ξÞ using
Eqs. (1) and (2). Thus, we find

T μνðkÞ ¼
Z

∞

−∞

�Z
∞

−∞
e2aξ exp

�
i
eaξ

a
K
�
Tμν
ðRÞðη; ξÞdξ

�
dη;

ð76Þ

where K≡ k sinh aη − kz cosh aη and

TμνðxÞ ¼ Tμν
ðRÞðη; ξÞδð2Þðx⊥Þ: ð77Þ

Then, using Eqs. (10)–(12), we obtain

T ttðkÞ ¼ μ
Z

∞

−∞



cosh2 aη exp

�
i
a
K
�

þ a
Z

∞

0

dξe2aξ exp

�
i
eaξ

a
K
��

dη; ð78Þ

T zzðkÞ ¼ μ
Z

∞

−∞



sinh2aη exp

�
i
a
K
�

− a
Z

∞

0

dξe2aξ exp

�
i
eaξ

a
K
��

dη: ð79Þ

Note that the first (second) term of the right-hand side of
Eqs. (78) and (79) comes from the point mass (extended
string). By adding Eqs. (78) and (79), we find

T ttðkÞ þ T zzðkÞ ¼ μ
Z

∞

−∞
cosh 2aη exp

�
i
a
K
�
dη: ð80Þ

Thus, the contribution of the string to the emission
probability PM

k⊥, given by Eq. (72), vanishes. (Recall that
this was the case with the interaction rate computed with

the mode function hðω;k⊥Þ
μν in the Rindler frame.)

Furthermore, the component T tzðkÞ is given by

T tzðkÞ ¼ μ
2

Z
∞

−∞
sinh 2aη exp

�
i
a
K
�
dη; ð81Þ

which has no contribution from the extended string.
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To evaluate the integral in Eq. (72) we “boost back” the
momentum variables (see Ref. [9]) by defining

k0z ¼ kz cosh aη̃ − k sinh aη̃; ð82Þ

k0 ¼ k cosh aη̃ − kz sinh aη̃: ð83Þ

Then, the integrand of Eq. (72) takes the following form:

1

2
jT tt þ T zzj2 − 2jT tzj2

¼ 1

2

Z
∞

−∞

"Z
∞

−∞
cosh ½2aðη0 − η00Þ�

× exp



2i
a

�
k0 sinh

�
a
2
ðη0 − η00Þ

���
dη00

�
dη0: ð84Þ

By changing variables as η̃≡ ðη0 þ η00Þ=2 and σ ≡ η0 − η00

we can factor out the infinite time T0 ¼
R∞
−∞ dη̃, which

makes the integral in (84) infinite. The differential response
rate in the inertial frame can be expressed as

RM
k⊥ ¼ PM

k⊥
T0

¼
Z

∞

−∞

�Z
∞

−∞
cosh 2aσ exp



2i
a

�
k0 sinh

�
a
2
σ

���
dσ

�

×
dk0z

4k0ð2πÞ3 : ð85Þ

We introduce a convergence factor by letting σ ↦ σ þ 2iϵ,
where ϵ is a positive real number, to make the σ-integral
convergent. Thus,

RM
k⊥ ¼

Z
∞

−∞


Z
∞

−∞
cosh 2aσ exp

�
ik0

a
ðeiaϵeaσ=2 − e−iaϵe−aσ=2Þ

�
dσ

�
dk0z

4k0ð2πÞ3 : ð86Þ

We take the limit ϵ → 0 at the end of the calculation. Now, we introduce the change of variables:

s� ¼ k0 þ k0z
k⊥

e�aσ=2: ð87Þ

Then we find

RM
k⊥ ¼ 1

64π3a

Z
∞

0


Z
∞

0

�
sþs− þ 1

s3þs3−

�
exp

�
iμ
2

�
sþ −

β2

sþ

��
exp

�
iμ
2

�
s− −

β2

s−

��
dsþ

�
ds−; ð88Þ

where μ≡ k⊥eiaϵ=a and β≡ e−iaϵ. By using the formula
[31, Eq. 3.471.10],

Z
∞

0

ds sν−1 exp

�
iμ
2

�
s −

β2

s

��
¼ 2βνeiνπ=2KνðβμÞ; ð89Þ

for Imμ > 0 and Imðβ2μÞ < 0, we obtain

RM
k⊥ ¼ μ2

8π3a

				K2

�
k⊥
a

�				2; ð90Þ

which is equal to the differential response rate Rk⊥ in
Eq. (62).

VI. FINAL REMARKS

Our work in this paper verifies that the equivalence
between the response rates in inertial and co-accelerated
frames, observed for a uniform accelerating classical point-
like source interacting with scalar [32] or electromagnetic
perturbations [8,9], also holds for gravitational perturba-
tions at the lowest order in perturbation theory. For

gravitational perturbations, the classical source is a con-
served stress-energy tensor describing a point mass moving
in a hyperbolic trajectory associated with ξ ¼ 0 in Rindler
coordinates with metric (3) and attached to a string
extended from ξ ¼ 0 to ∞. This string can be viewed as
the agent driving the acceleration of the point mass,
although it acts also as a source of stress energy. In the
scalar and electromagnetic settings the agent driving the
acceleration is there but does not couple with scalar or
electromagnetic perturbations provided if it is not charged.
It is interesting to note that the response rate of the

classical system coupled with a massless field with spin s at
the lowest order (where s takes the values of 0, 1, and 2 for
scalar, electromagnetic, and gravitational perturbations,
respectively) in the Minkowski vacuum state, can be
written in the following suggestive form:

Rs;k⊥ ¼ q2

4π3s!a

				Ks

�
k⊥
a

�				2; ð91Þ

where q is the coupling constant, which can be interpreted
as the charge or mass of the pointlike object. However,
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there is a puzzling feature in the gravitational case (s ¼ 2)
studied in this paper. Since K2ðzÞ ∼ z−2 for small z, we
haveR2;k⊥ ∼ k−4⊥ for small k⊥. This implies that the power
of the gravitational radiation, which is bounded below by
the integral of k⊥R2;k⊥ ∼ k−3⊥ over k⊥, is infrared divergent
because d2k⊥ ∼ k⊥dk⊥. The physical origin of this infrared
divergence needs to be investigated.

Note added. Recently, we have become aware of a
preprint [33] that contains some of the results presented
in this paper.
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APPENDIX A: THE RESPONSE RATE WITH
η-DEPENDENT STRESS-ENERGY TENSOR

In this appendix we find the response rate of the
gravitational field to a conserved stress-energy tensor
which is adiabatically turned on and off in order to dispense
with the formal argument using the infinite interaction time.
We first construct a stress-energy tensor T̃μν with nonzero
components T̃ηη, T̃ηξ, and T̃ξξ which depend on η as well as
ξ in Rindler coordinates.
The conservation equation ∇μT̃ημ ¼ 0 implies

e−4aξ∂ξðe4aξT̃ηξÞ ¼ −∂ηT̃ηη: ðA1Þ
We choose T̃ηη to be the same as before but multiplied by a
function gðηÞ, i.e.,

T̃ηη ¼ gðηÞTηη; ðA2Þ

where Tηη is given by Eq. (8). With this assumption we find
the following solution to Eq. (A1):

T̃ηξ ¼ −
μ
2
g0ðηÞðe−4aξ þ e−2aξÞθðξÞδð2Þðx⊥Þ: ðA3Þ

Then, the equation ∇μT̃μξ ¼ 0 is satisfied by the following
ξξ-component:

T̃ξξ ¼ gðηÞTξξ −
μ
2a

g00ðηÞðe−4aξ − e−2aξÞθðξÞδð2Þðx⊥Þ;
ðA4Þ

where Tξξ is given by Eq. (9). If we set gðηÞ ¼ 1, we recover
the η-independent stress-energy tensor found in Sec. II. We
shall find the interaction probability for this stress-energy
tensor with a general compactly supported and smooth
function gðηÞ in the inertial and co-accelerated frames.
We start with the inertial frame. We define from the

stress-energy tensor T̃μν given by Eqs. (A2)–(A4) its
Fourier transform T̃ μνðkÞ exactly as in Eq. (73) and then
Eq. (76) in Rindler coordinates. We also define the rapidity
ϑ by

ϑ≡ 1

2a
log

kþ kz
k − kz

: ðA5Þ

Then the Fourier transform of T̃μνðxÞ is given by

T̃ μνðkÞ ¼
Z

∞

−∞

�Z
∞

−∞
e2aξ−iðk⊥=aÞeaξ sinh aðϑ−ηÞT̃μνðxÞdξ

�
dη:

ðA6Þ

The integral over η is effectively in a finite interval
because the function gðηÞ is compactly supported by
assumption. The integrand grows in general for large ξ
but we make the integral over ξ absolutely convergent
(unless k⊥ ¼ 0) by introducing a convergence factor by
replacing sinh aðϑ − ηÞ by sinh aðϑ − ηÞ − iϵ, ϵ > 0, and
taking the limit ϵ → 0 in the end.
Going back to the Minkowski coordinates and integrat-

ing by parts, one finds kνT̃
μν ¼ 0, from the conservation

equation ∇νT̃μν ¼ 0. This equation implies kT̃ tt ¼ kzT̃
tz

and kT̃ tz ¼ kzT̃
zz. These equations can be used to show

that

1

2
jT̃ tt þ T̃ zzj2 − 2jT̃ tzj2 ¼ 1

2
jT̃ j2; ðA7Þ

where T̃ ¼ T̃ tt − T̃ zz. Hence, the differential interaction
probability with k⊥ fixed is

P̃M
k⊥ ¼ 1

2

Z
dkz

ð2πÞ32k jT̃
MðkÞj2; ðA8Þ

where
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T̃ MðkÞ ¼
Z

∞

−∞
dη

Z
∞

−∞
dξe2aξ−iðk⊥=aÞeaξ sinh aðϑ−ηÞT̃ðRÞðη; ξÞ:

ðA9Þ

The trace T̃ðRÞðη; ξÞ ¼ T̃μ
ðRÞμðη; ξÞ can be found from

Eqs. (A2) and (A4), with Tμν given by Eqs. (8) and (9), as

T̃ðRÞðη; ξÞ ¼ μgðηÞ½δðξÞ þ 2aθðξÞ�
þ μ
2a

g00ðηÞðe−2aξ − 1ÞθðξÞ: ðA10Þ

By substituting this equation into Eq. (A9) we find

T̃ MðkÞ ¼ μ
Z

∞

−∞
Fðη; ϑÞdη; ðA11Þ

where

Fðη; ϑÞ ¼ gðηÞ
�
e−iðk⊥=aÞ sinh aðϑ−ηÞ þ 2a2

k2⊥

Z
∞

k⊥=a
e−iz½sinh aðϑ−ηÞ−iϵ�zdz

�

þ 1

2
g00ðηÞ

�
1

a2

Z
∞

k⊥=a
e−iz½sinh aðϑ−ηÞ−iϵ� dz

z
−

1

k2⊥

Z
∞

k⊥=a
e−iz½sinh aðϑ−ηÞ−iϵ�zdz

�
: ðA12Þ

Next we derive the differential interaction probability with k⊥ fixed in the right Rindler wedge and show that it equals
P̃M

k⊥ given by Eq. (A8). The emission and absorption amplitudes corresponding to Eqs. (46) and (47) can be found using the
stress-energy tensor given by Eqs. (A2)–(A4) and the mode functions given by Eqs. (33) and (34) as

Ãðω;k⊥Þ
em ¼ −

ffiffiffi
2

p Z
T̃ðRÞðη; ξÞϕðω;k⊥ÞðξÞeiωη−ik⊥·x⊥ ffiffiffiffiffiffi

−g
p

d4x; ðA13Þ

where the trace of the stress-energy tensor, T̃ðRÞðη; ξÞ, and the functions ϕðω;k⊥ÞðξÞ are given by Eqs. (A10) and (22),
respectively. Thus, we find the one-graviton emission amplitude in the right Rindler wedge as

Ãðω;k⊥Þ
em ¼ −

ffiffiffi
2

p
μ
Z

∞

−∞

�
gðηÞϕðω;k⊥Þð0Þ þ 2a

Z
∞

−∞
ϕðω;k⊥ÞðξÞe2aξdξ

�
eiωηdη

−
μffiffiffi
2

p
a

Z
∞

−∞

�Z
∞

−∞
g00ðηÞϕðω;k⊥ÞðξÞð1 − e2aξÞdξ

�
eiωηdη; ðA14Þ

and the one-graviton absorption amplitude as

Ãðω;k⊥Þ
abs ¼ Ãðω;−k⊥Þ

em : ðA15Þ
Then, the interaction probability is the sum of the (sponta-
neous and induced) emission probability and the absorption
probability in the FDU thermal bath of gravitons:

P̃R ¼
Z

P̃R
k⊥d

2k⊥; ðA16Þ

where

P̃R
k⊥ ¼

Z
∞

0

½jÃðω;k⊥Þ
em j2½1þ nðωÞ� þ jÃðω;−k⊥Þ

abs j2nðωÞ�dω

¼
Z

∞

0

� jÃðω;k⊥Þ
em j2

1 − e−2πω=a
þ jÃðω;−k⊥Þ

abs j2
e2πω=a − 1

�
dω: ðA17Þ

Now, we show that Eq. (A17) agrees with the emission
probability P̃M

k⊥ given by Eq. (A8), which was found in the

standard Minkowski-spacetime calculation. An important
fact for this purpose is that, for scalar field theory, there is a
complete set of mode functions which are positive-
frequency in the right Rindler wedge and negative-fre-
quency in the left Rindler wedge, or vice versa, with respect
to the Killing vector ∂η and are positive-frequency with
respect to the Minkowski Killing vector ∂t. It is easy to see
that the same is true for the even-parity sector of the gravi-
tational field, because the even-parity mode functions are
scalar mode functions times a constant tensor. Let us
explain this fact in more detail. We choose the following
mode functions defined over the whole Minkowski
spacetime:

h̃ðR;ω;k⊥Þ
μν ≡



h̃ðω;k⊥Þ
μν in the right Rindler wedge;

0 in the left Rindler wedge:
ðA18Þ

If we define the Rindler coordinate system for the left
Rindler wedge, z < −jtj, by letting t ¼ a−1eaξ sinh aη and
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z ¼ −a−1eaξ cosh aη, the functions h̃ðω;k⊥Þ
μν ðη; ξ;x⊥Þ define

mode functions in the left Rindler wedge, which are of
positive frequency with respect to the Killing vector ∂η

there. Let us now define

h̃ðL;ω;k⊥Þ
μν ≡



0 in the right Rindler wedge;

h̃ðω;k⊥Þ
μν in the left Rindler wedge:

ðA19Þ

Then, exactly as in the scalar case [10], the following mode
functions, which we call the Unruh modes, are of positive
frequency with respect to the Minkowski Killing vector ∂t:

h̃ð−;ω;k⊥Þ
μν ¼ h̃ðR;ω;k⊥Þ

μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p þ h̃ðL;ω;−k⊥Þ
μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2πω=a − 1

p ; ðA20Þ

h̃ðþ;ω;k⊥Þ
μν ¼ h̃ðR;ω;−k⊥Þ

μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2πω=a − 1

p þ h̃ðL;ω;k⊥Þ
μνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p : ðA21Þ

Now, the quantum graviton field for the even-parity
sector can then be expanded in terms of the Unruh modes:

ĥðevenÞμν ¼
Z

∞

0

dω
Z

d2k⊥
�
h̃ð−;ω;k⊥Þ
μν âð−Þðω;k⊥Þ

þ h̃ðþ;ω;k⊥Þ
μν âðþÞ

ðω;k⊥Þ þ H:c:
�
: ðA22Þ

The inner product for the Unruh modes, h̃ð−;ω;k⊥Þ
μν and

h̃ðþ;ω;k⊥Þ
μν , can be found using the inner product for the

Rindler modes, h̃ðR;ω;k⊥Þ
μν and h̃ðL;ω;k⊥Þ

μν , given by Eq. (40).
One finds that the Unruh modes defined here are orthogo-
nal to one another and

hh̃ð−;ω;k⊥Þ; h̃ð−;ω
0;k0⊥ÞidD¼hh̃ðþ;ω;k⊥Þ; h̃ðþ;ω0;k0⊥ÞidD

¼δðω−ω0Þδð2Þðk⊥−k0⊥Þ: ðA23Þ

This implies that the annihilation operators, âð−Þðω;k⊥Þ and

âðþÞ
ðω;k⊥Þ, and the creation operators, âð−Þ†ðω;k⊥Þ and âðþÞ†

ðω;k⊥Þ,
satisfy the standard commutation relations,

½âð−Þðω;k⊥Þ; â
ð−Þ†
ðω0;k0⊥Þ� ¼ ½âðþÞ

ðω;k⊥Þ; â
ðþÞ†
ðω0;k0⊥Þ�

¼ δðω − ω0Þδð2Þðk⊥ − k0⊥Þ; ðA24Þ

with all other commutators vanishing. Since the mode

functions for the operators âð−Þðω;k⊥Þ and âðþÞ
ðω;k⊥Þ are positive-

frequency with respect to the Minkowski Killing vector ∂t,
the Minkowski vacuum state j0Mi is annihilated by these

operators: âð−Þðω;k⊥Þj0Mi ¼ âðþÞ
ðω;k⊥Þj0Mi ¼ 0.

The one-graviton final state due to the stress-energy
tensor T̃μνðxÞ can be found as

j1gi ¼ i
Z

T̃μνðxÞĥðevenÞμν ðxÞ ffiffiffiffiffiffi
−g

p
d4xj0Mi

¼ i
Z

∞

0

dω
Z

d2k⊥
�

Ãðω;k⊥Þ
emffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p âð−Þ†ðω;k⊥Þ

þ Ãðω;−k⊥Þ
absffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2πω=a − 1
p âðþÞ†

ðω;k⊥Þ

�
j0Mi: ðA25Þ

Then we find

h1gj1gi ¼ P̃R
k⊥ ; ðA26Þ

where P̃R
k⊥ is given by Eq. (A17). Thus, one can show that

P̃R
k⊥ ¼ P̃M

k⊥ by showing that h1gj1gi ¼ P̃M
k⊥ .

To show that h1gj1gi ¼ P̃M
k⊥ we need to express the

creation operators âð−Þ†ðω;k⊥Þ and âðþÞ†
ðω;k⊥Þ in terms of the

creation operators for the momentum eigenstates in
Minkowski spacetime. We define the following mode
function with momentum k in Minkowski spacetime:

h̃ðkÞμν ðxÞ ¼ −
1ffiffiffi
2

p �
gμν þ 2qμνðk⊥Þ

�
φðkÞðxÞ; ðA27Þ

where

φðkÞðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32k

p e−iktþik·x: ðA28Þ

Comparing this definition with Eq. (33) one can readily see

that the relationship between h̃ðω;k⊥Þ
μν ðη; ξ;x⊥Þ and h̃ðkÞμν ðt;xÞ

is the same as that between φðω;k⊥Þðη; ξ;x⊥Þ and φðkÞðt;xÞ.
This implies that the relationship between the Unruh modes

h̃ð�;ω;k⊥Þ
μν and the Minkowski modes h̃ðkÞμν is identical to that

between the Unruh modes and the Minkowski modes for
the scalar field [12]. Thus,

h̃ð�;ω;k⊥Þ
μν ¼

Z
∞

−∞
e�iωϑðkzÞh̃ðkÞμν

dkzffiffiffiffiffiffiffiffiffiffi
2πak

p ; ðA29Þ

where the rapidity ϑðkzÞ is defined by Eq. (A5). This
relation can be inverted as

h̃ðkÞμν ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πak

p
Z

∞

0

�
eiωϑðkzÞh̃ð−;ω;k⊥Þ

μν

þe−iωϑðkzÞh̃ðþ;ω;k⊥Þ
μν

�
dω: ðA30Þ

The field describing the even-parity sector can be
expanded as

ĥðevenÞμν ðxÞ ¼
Z

½h̃ðkÞμν ðxÞâk þ h̃ðkÞμν ðxÞâ†k�d3k; ðA31Þ

where the operators âk and â†k satisfy
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½âk; â†k0 � ¼ δð3Þðk − k0Þ: ðA32Þ

By substituting Eq. (A30) into Eq. (A31) and comparing

the coefficients of h̃ð�;ω;k⊥Þ
μν with the expansion (A22), we

find

að�Þ†
ðω;k⊥Þ ¼

Z
∞

−∞

dkzffiffiffiffiffiffiffiffiffiffi
2πak

p e�iωϑa†k: ðA33Þ

We substitute Eq. (A33) into Eq. (A25) and find

j1gi ¼ i
Z

d3kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32k

p AðRÞðkÞâ†kj0Mi; ðA34Þ

where

AðRÞðkÞ ¼
ffiffiffiffiffiffiffi
8π2

a

r Z
∞

−∞

e−iωϑðkzÞÃðω;k⊥Þ
emffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p dω: ðA35Þ

Here, we have used the fact that Ãðω;−k⊥Þ
abs =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2πω=a − 1

p
can

be obtained by letting ω → −ω in the expression

Ãðω;k⊥Þ
em =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p
. Then, Eqs. (A34) and (A26) imply

P̃R
k⊥ ¼

Z
dkz

ð2πÞ32k jA
ðRÞðkÞj2: ðA36Þ

We now show that

ffiffiffi
2

p
AðRÞðkÞ ¼ −T̃ MðkÞ: ðA37Þ

This will establish that P̃R
k⊥ ¼ P̃M

k⊥ [see Eq. (A8)]. First, we
find from Eq. (22),

ϕðω;k⊥ÞðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p ¼ eπω=2affiffiffiffiffiffiffiffiffiffi
8π4a

p Kiω=a

�
k⊥
a
eaξ

�
: ðA38Þ

By using the identity [31, Eq. 6.796],

Z þ∞

−∞
e−iωyeπω=2aKiω=aðzÞdω ¼ πae−iz sinh ay; ðA39Þ

we find

Z
∞

−∞

e−iωðϑ−ηÞϕðω;k⊥ÞðξÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p dω ¼
ffiffiffiffiffiffiffi
a
8π2

r
e−iðk⊥=aÞeaξ sinh aðϑ−ηÞ:

ðA40Þ

By combining this result with Eqs. (A35) and (A14) we
indeed find Eq. (A37). This shows that the response rate to
the η-dependent classical stress-energy tensor given by
Eqs. (A2)–(A4) is reproduced in the Rindler wedge using
the Unruh effect.
In the rest of this appendix we show that Eq. (A8) gives

the emission rate R̃k⊥ in Eqs. (62) and (90) if the function
gðηÞ is smooth and compactly supported and equals 1 for
most of the time when it is nonzero. First, we find by
integration by parts in η,

e−iðk⊥=aÞ sinh aðϑ−ηÞgðηÞ ≃ a2

k2⊥

�
3

cosh4aðϑ − ηÞ −
2

cosh2 aðϑ − ηÞ
�
gðηÞ − 2a

k2⊥
sinh aðϑ − ηÞ
cosh3aðϑ − ηÞ g

0ðηÞ − g00ðηÞ
k2⊥cosh2 aðϑ − ηÞ ðA41Þ

and

2a2

k⊥
gðηÞ

Z
∞

k⊥=a
e−iz½sinh aðϑ−ηÞ−iϵ�zdz ≃

2a2

k2⊥
gðηÞ

cosh2 aðϑ − ηÞ þ
2ia
k2⊥

g0ðηÞ
cosh aðϑ − ηÞ

Z
∞

k⊥=a
e−iz½sinh aðϑ−ηÞ−iϵ�dz; ðA42Þ

where ≃ denotes the equality under the η-integral. We use the following identity to make the z-integrals manifestly
convergent:

Z þ∞

−∞
Gðη; ϑÞ

�Z þ∞

k⊥=a
e−iz sinh aðϑ−ηÞ dz

zn

�
dη ¼ i

a

Z þ∞

−∞



d
dη

�
Gðη; ϑÞ

cosh aðϑ − ηÞ
� Z þ∞

k⊥=a
e−iz sinh aðϑ−ηÞ dz

znþ1

�
dη: ðA43Þ

We define the differential operator D on any smooth function fðη; ϑÞ by

ðDfÞðη; ϑÞ ¼ ∂

∂η

�
fðη; ϑÞ

cosh aðϑ − ηÞ
�
: ðA44Þ

Then we find
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Fðη; ϑÞ ≃ 3a2

k2⊥
gðηÞ

cosh4aðϑ − ηÞ −
2a
k2⊥

sinh aðϑ − ηÞ
cosh2 aðϑ − ηÞ g

0ðηÞ − g00ðηÞ
k2⊥cosh2 aðϑ − ηÞ

þ i

�
−

2

ak2⊥
ðD2g0Þðϑ; ηÞ þ 1

2a3
ðDg00Þðϑ; ηÞ þ 1

2a3k2⊥
ðD3g00Þðϑ; ηÞ

� Z
∞

k⊥=a
e−iz sinh aðϑ−ηÞ dz

z2
: ðA45Þ

We choose the function gðηÞ to be 1 for −T0 < η < T0, 0
for jηj > T0 þ b, and decrease (increase) smoothly from
η ¼ T0 to T0 þ b (from η ¼ −T0 − b to −T0). In the end
we let T0 → ∞while keeping b unchanged. Now, the terms
multiplied by g0ðηÞ or g00ðηÞ in Eq. (A45) are nonzero only
if η∈ ½−T0 − b;−T0� ∪ ½T0; T0 þ b�. Hence, these terms
contribute to the η-integral only if ϑ is in or near the set
½−T0 − b;−T0� ∪ ½T0; T0 þ b� because of the exponential
falloff of these terms for large jϑ − ηj. Then, the contribu-
tion from the terms other than the first term in Eq. (A45) to
the integral (A8) for the emission probability PM

k⊥, which is
an integral over ϑðkzÞ because dϑðkzÞ ¼ dkz=ak, remains
finite if we keep the shape of the function gðηÞ for T0 ≤
jηj ≤ T0 þ b unchanged as we take the limit T0 → ∞.
Therefore, we only need to consider the first term in
Eq. (A45) if we take the T0 → ∞ limit in this manner.
Thus, the differential emission rate with k⊥ fixed in this

limit can be found as

Rk⊥ ¼ lim
T0→∞

1

2T0

Z
∞

−∞
dkzjAðkÞj2 ðA46Þ

¼ 9μ2a5

32π3k4⊥
lim

T0→∞

1

2T0

Z
∞

−∞
dϑ

×

				
Z

∞

−∞
gðϑ − sÞ e

−iðk⊥=aÞ sinh as

cosh4 as
ds

				2; ðA47Þ

where we have defined s≡ ϑ − η. Because of the factor
cosh4 as in the denominator the integrand is non-negligible
only for jsj ∼ 1=a. Thus, for large T0 we may replace
gðϑ − sÞ by the characteristic function of the interval
½−T0; T0�, which is 1 if ϑ is in this interval and 0 otherwise.
Hence,

Rk⊥ ¼ μ2

8π3a

				
Z

∞

−∞

3a3e−iðk⊥=aÞ sinh as

2k2⊥cosh4 as
ds

				2: ðA48Þ

We recover the differential emission rate given by Eq. (62)
using Ref. [31, Eq. 8.432.5].

APPENDIX B: RESPONSE RATE OF ANOTHER
CONSERVED STRESS-ENERGY TENSOR

To have some more insight into the gravitational radi-
ation from the accelerated point mass, it may be useful to
consider the same point mass with an extended string with a
different stress-energy tensor. In this appendix, we give the

response rate of the gravitational field to the source with the
following conserved stress-energy tensor:

Tηη ¼ μδðξÞδð2Þðx⊥Þ; ðB1Þ

Tξξ ¼ −μae−3aξθðξÞδð2Þðx⊥Þ; ðB2Þ

with all other components vanishing. This stress-energy
tensor is obtained by letting FðξÞ ¼ e−aξθðξÞ in Eq. (5).
We can readily express the stress-energy tensor in

Minkowski coordinates using Eqs. (1) and (2), namely

Ttt ¼ μ½cosh2 aηδðξÞ − ae−aξsinh2aηθðξÞ�δð2Þðx⊥Þ; ðB3Þ

Ttz ¼ μ sinh aη cosh aη½δðξÞ − ae−aξθðξÞ�δð2Þðx⊥Þ; ðB4Þ

Tzz ¼ μ½sinh2aηδðξÞ − ae−aξcosh2 aηθðξÞ�δð2Þðx⊥Þ; ðB5Þ

with all other components vanishing. The stress-energy
tensor associated with Eqs. (B1) and (B2) describes a point
mass in a hyperbolic trajectory, with ξ ¼ 0, attached to a
massless string whose tension is associated with Tξξ. We
note that this stress-energy tensor does not satisfy theWEC.
The response rate of the gravitational field to the stress-

energy tensor given by Eqs. (B1)–(B5) in the inertial and
co-accelerated frames can be obtained by performing
calculations similar to those in Secs. IV and V. This
response rate is given by

Rk⊥ ¼ μ2

8π3a

�
K2

�
k⊥
a

�
−

a
k⊥

Z
∞

k⊥=a
K2ðzÞdz

�
2

ðB6Þ

¼ μ2

8π3a

�
K0

�
k⊥
a

�
þ a
k⊥

Z
∞

k⊥=a
K0ðzÞdz

�
2

: ðB7Þ

Equation (B6) is found by using the original mode
functions given by Eqs. (26)–(28), whereas Eq. (B7) is
found by using the gauge-transformed modes given by
Eqs. (33). These two expressions can directly be shown to
be equal by using Eqs. (63) and (70). It is interesting that
this response rate diverges such as k−2⊥ in the k⊥ → 0 limit,
whereas that for the stress-energy tensor given by
Eqs. (8) and (9) found in Secs. IV and V diverges as
k−4⊥ in this limit.
More generally, if we let FðξÞ ¼ e−βaξθðξÞ in Eq. (5), we

find
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Ťηη ¼ μ½δðξÞ þ ð1 − βÞae−ð2þβÞaξθðξÞ�δð2Þðx⊥Þ; ðB8Þ

Ťξξ ¼ −μae−ð2þβÞaξθðξÞδð2Þðx⊥Þ: ðB9Þ

Then,

Ťα
α ¼ μ½δðξÞ þ ð2 − βÞae−βaξθðξÞ�δð2Þðx⊥Þ: ðB10Þ

The stress-energy tensor in Sec. II corresponds to β ¼ 0
and satisfies the WEC. If β > 0, this stress-energy tensor

does not satisfy the WEC. On the other hand, if β < 0, then
its trace grows exponentially as a function of ξ. We find the
interaction rate for general β with k⊥ fixed as

Řk⊥ ¼ μ2

8π3a

�
K0

�
k⊥
a

�

þð2 − βÞ
�
a
k⊥

�
2−β Z ∞

k⊥=a
K0ðzÞz1−βdz

�
2

: ðB11Þ
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