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Gravitational bremsstrahlung and the Fulling-Davies-Unruh thermal bath
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The electromagnetic radiation emitted by an accelerated charged particle can be described theoretically
as the interaction of the charge with the so-called Fulling-Davies-Unruh thermal bath in the coordinate
frame co-accelerated with the charge. We present a similar analysis on the gravitational radiation from a
classical point mass uniformly accelerated, being pulled by a string satisfying the weak energy condition. In
particular, we derive the interaction rate (with fixed transverse momentum) of this system of the point mass
and string in the Fulling-Davies-Unruh thermal bath in the co-accelerated frame and show that it equals the

graviton emission rate calculated in the standard method in Minkowski spacetime.
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I. INTRODUCTION

Following a period of controversies, the classical prob-
lem of radiation by a uniformly accelerated charge has
become well understood in recent decades. This phenome-
non is commonly observed from the perspective of a distant
inertial observer, who detects radiation emitted by a
charge undergoing an accelerated trajectory relative to that
observer (see, e.g., Refs. [1-4]). The power observed in an
inertial frame can be calculated using the well-known
Larmor formula [5], which has also been generalized to
a covariant form [4]. However, the connection of the
inertial-frame viewpoint with the viewpoint of a co-
accelerated frame of reference, where the charge is static
and hence the observer there sees no radiation, remained as
an unsolved part of the puzzle. This piece of the puzzle is
closely related to the apparent paradox of the equivalence
principle [3]. In a significant contribution, Boulware
investigated this problem and provided an explanation
for the apparent paradox of the equivalence principle in
Ref. [6]. According to Boulware’s findings, the co-
accelerated observer sees no radiation because the radiation
field can only be unambiguously interpreted in regions of
spacetime beyond the observer’s horizon. (See also Ref. [7]
and the references therein.)

The inertial and co-accelerated viewpoints about the
problem of radiation emitted by a uniformly accelerated
charge can also be addressed using a semiclassical frame-
work, i.e., using quantum field theory at tree level, which
provides a deeper understanding concerning this problem.
In this context, the theoretical description is different in the
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inertial and accelerated frames, although the response rates
of the charge calculated in these frames are the same. While
in the inertial frame the source is seen to emit Minkowski
quanta, in the co-accelerated frame, or in the Rindler frame,
the source is seen to interact with a thermal bath, which is a
consequence of the interpretation of the inertial-frame
quantum-field state in the accelerated frame. This was
shown in Refs. [8,9], where it was concluded that the
radiation in the inertial frame is only consistently inter-
preted in the co-accelerated frame if the Unruh effect [10] is
taken into account. We also note that the Larmor formula
was reproduced recently through the modes of photons
defined in the Rindler frame using the Unruh effect [11].

The Unruh effect is an example of the observer-
dependent nature of the field-theoretic particle content
[12]. In particular, the Minkowski vacuum, the state with
no particles for inertial observers, is described as a thermal
bath in the co-accelerated frame of the charge, the Fulling-
Davies-Unruh (FDU) thermal bath [10,13,14]. The emis-
sion of a Minkowski photon, i.e., a field excitation in the
inertial frame, corresponds to either the absorption or
emission of Rindler photons, which are the field quanta
as viewed by Rindler observers, i.e., by the co-accelerated
observers [15]. Thus, in quantum field theory the theoreti-
cal description of the acceleration radiation by the inertial
observer is associated with the emission of a Minkowski
photon by the charge, and the theoretical description by the
co-accelerated observer is associated with the emission
and absorption of zero-energy Rindler particles, which are
shown to be undetectable by co-accelerated observers,
agreeing with the classical interpretation [6,9].

The Unruh effect is an intrinsic effect of quantum field
theory and is a necessary ingredient in the description of
physics in the Rindler frame. Despite this fact, works
questioning the existence of this effect can be found in the
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literature (see, e.g., Refs. [16,17]). The experimental
observation of the FDU thermal bath could dispel any
lingering doubt about the Unruh effect. Some proposals
have been put forward to observe the Unruh effect using
state-of-the-art technology, in particular exploiting the
above-mentioned description of the radiation using the
Unruh effect in the accelerated frame [18] (see also
Refs. [19-21]). In this proposal, the radiation emitted by
a circularly moving charge in the Rindler frame (also
interacting with the FDU thermal bath) is compared with
the radiation observed in the inertial frame by an exper-
imentalist. The output of the experiment in the inertial
frame can be predicted by classical electrodynamics and is
found to be the same as inferred by the Rindler observers
incorporating the Unruh effect. Another example of the
quantum phenomenon consistently described by consider-
ing the Unruh effect is the decay of uniformly accelerated
particles [22] (see also Ref. [23]).

The role played by the Unruh effect in quantum field
theory is still a matter of investigation, and the description
of many interesting phenomena is lacking. In particular, it
will be interesting to confirm that the equality between the
response rates of a scalar or an electric charge due to its
interaction with the scalar or electromagnetic field, respec-
tively, in the inertial and co-accelerated frames, holds for a
point mass interacting with the gravitational field. The main
purpose of this paper is to demonstrate in detail that this is
indeed the case.

The rest of the paper is organized as follows. In Sec. 1T
we find a conserved stress-energy tensor, which is
described in both inertial and accelerated frames, corre-
sponding to a point mass accelerated by a string satisfying
the weak energy condition (WEC). In Sec. III we review the
quantization of gravitational perturbations in Rindler space-
time. In Sec. IV we calculate the response rate associated
with the conserved stress-energy tensor found in Sec. II in
Rindler spacetime, taking into account the Unruh effect. In
Sec. V we calculate the corresponding response rate in the
inertial frame. Our final remarks are given in Sec. VI. In
Appendix A we show the equality of the response rates
computed in the inertial and co-accelerated frames, and in
Appendix B we present the response rate for another stress-
energy tensor with a string which does not satisfy the WEC.
We adopt metric signature (+,—,—,—) and units
where 872G =c=h =k = 1.

II. CONSERVED STRESS-ENERGY TENSOR

Minkowski spacetime is globally covered by the set of
coordinates (¢, z, x, y), and the right Rindler wedge, which
is natural to a uniformly accelerated observer, can be
covered by Rindler coordinates (7,&,x,y), with these
two sets of coordinates related as follows:

t = a"'e*sinh ap, (1)

z=a"'e%cosh an, (2)

where z > |t| and —oco <7, £ < oo. The line element is
given in Rindler coordinates as

ds* = e*(dn* — d&*) — dx* — dy?, (3)

with metric determinant det(g,,) = g = —e**. The lines
of constant &, x, and y are the uniformly accelerated
trajectories with proper acceleration ae~% and proper time
7 = e%y (see, e.g., Ref. [24]). There is a Killing horizon at
z = |t| associated with the Killing vector field 9,.

Let us first construct a conserved stress-energy tensor in
the spacetime described by Eq. (3) for a system with a
uniformly accelerated point mass. There will be an external
force acting on it because without it the point mass would
follow a timelike geodesic [25]. We assume that only the
components 7" and T< are nonzero and that they are
proportional to ) (x| ) = §(x)6(y) with x, = (x,y) and
otherwise depend only on & Then, the conservation
equation, V, 7" = 0, is satisfied if

e—3a§a§(e3a§]’§5) = —qT™m, (4)
We let T be given by
T = —pae®*F(£)s?) (x ), (5)

where p is a positive constant and F(&) is an arbitrary
function. Substituting this equation into Eq. (4), we find

T" = pe > [F'(§) + aF (£)]67) (x ). (6)

Equations (5) and (6) satisfy the conservation equation for
T for any F(&). Here, we choose

F(&) =0(8). (7)

where 0(x) is the Heaviside step function. This choice leads
to the following stress-energy tensor:

T = u[8(€) + ae™246(&)]6P (x 1), (8)
T = —pae™0(£)5 (x 1), )

with all the other tensor components vanishing.

The stress-energy tensor given by Eqs. (8) and (9)
describes a point mass p at (1,0,0,0) attached to an
infinitely long string extended along the # = constant line
(on the plane x| = 0) from £ = 0 to co. This is illustrated
in Fig. 1, where a diagram of Minkowski spacetime is
presented. This stress-energy tensor is given in Minkowski
coordinates (¢ and z) as

064080-2



GRAVITATIONAL BREMSSTRAHLUNG AND THE FULLING- ...

PHYS. REV. D 109, 064080 (2024)

N Future

Left Wedge <

Past

FIG. 1. Minkowski spacetime diagram and the four Rindler
wedges. The trajectory associated with £ = 0 is highlighted in the
right Rindler wedge. The dots with wavy tails on each 5 =
constant line indicate the location of the source of the stress-
energy tensor at constant Rindler times.

T"" = p[cosh? and(&) +ab(&)]6? (x 1), (10)

T* = psinh ancosh and(£)6? (x ), (11)

T% = p[sinh*and(§) — ad(§)]6? (x1).  (12)

with all other components vanishing. This stress-energy
tensor obeys the WEC.

III. GRAVITATIONAL PERTURBATIONS AND
THEIR QUANTIZATION IN RINDLER
SPACETIME

The Einstein-Hilbert action for pure gravity is

= R 4 1
Sen 16 G \/ —gPd'x (13)

where R is the Ricci scalar curvature, G is Newton’s

constant, and g(f ) is the determinant of the (full) metric
(f)

tensor g,,’. By writing the metric tensor as

g,w G + V327Ghy, (14)

where g, is the flat metric on Minkowski spacetime, the
action (13) is given to second order in £, as

S8 = / £ y=ad*x, (15)

where

Loy = v Iy VR —

a’ uy

V i, VP
+ <Vah/“” -3 wh> V,h, (16)

with i = h“,. Here and below the tensor indices are raised
and lowered by the flat metric g,,. The Euler-Lagrange
equation derived from this Lagrangian is

vava h;w _ V”va hm V AV hﬂa + v V h

+ gﬂu(V”V/’haﬂ -V, V%) =0. (17)

This equation is gauge invariant; i.e., a tensor of the form

uv =V,A, +V,A,, where A, is any vector field, is a
solution to this equatlon This gauge invariance allows us to
impose the de Donder condition,

vmW—%W%:o. (18)

This condition simplifies the field equation (17) to

A% <hﬂy

The gravitational perturbations in the right Rindler
wedge (and other regions of Minkowski spacetime) were
studied in Ref. [26]. In that paper the mode functions of
positive frequency with respect to the Killing vector 9,
satisfying the de Donder condition (18) were found in the
form H,, (&)~ k.%1 where @ is a positive constant and
k, = (kx, k) is a constant two-dimensional vector. There
are two independent nongauge modes for given values of @
and k |, one with even parity and the other with odd parity.
The odd-parity modes do not couple to the stress-energy
tensor 7 given by Eqgs. (8) and (9) because their only
nonzero components are of the form 4, with 4 = 7, £ and
v = x, y (or vice versa). For this reason we discuss only the
even-parity modes here.

The even-parity modes can be described in terms of the
solutions ¢(“*.) to the massless scalar field equation,

1
—§%m>_0. (19)

V, Vep@kl) =, (20)

of the form

g,,(wlu)(,,, EX|)= ¢(w-kl)(§)e—iwn+ierl, (21)

where k, = ||k ||. The functions ¢(®*1) are given by

kleaé
Kiw/u ( a ) ’ (22)

sinh(zw/a)

¢(’“»kL> (g) —

4r*a
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where K, (z) is the modified Bessel function of the second
kind. The functions ¢(®*.) are real because K_,(z) =
K,(z) and obey the following differential equation:

(0% + (0 — kL )| *)(8) = 0. (23)

The mode functions ¢(@¥) satisfy the Klein-Gordon
normalization condition [27],

<(p(w-kL)’ (p(w/’kl)>sc = i/

8(w — )8 (k| — k'), (24)

PRIV, @ K s

where X is the 5 = constant hypersurface for the right
Rindler wedge and where n* is the future-pointing unit
normal to this hypersurface.
The even-parity modes are given in the form
h(u) k L (

1, g XL) H(“’ ky) <§)e—iwr[+ikl-xL , (25)

where the nonzero components of H ff,‘,”kl) (£) are [26]

wkl (5) ka)(f)
= 5| @ ann g, o
» 2i
H’(ﬁkl)(é) _ \/k_{w (aé _ a)ql)(w,/q)(é)’ (27)
HPRE == 2hgie), )

V2

where i and j are x or y.

To discuss the normalization condition for these modes it
will be useful to consider physically equivalent mode
functions related to them by a gauge transformation. We
define the vector A("’ kL) by

(k) 1 (k)
Ay (80X ) = =5 0,0 (n,6,x 1), (29)
ﬁki !

A<w ) (n.&.x,) =

\/_k2 a{’w(m’kl) (77’ 57 XL)9 (30)

AR e x)) = 0ip @k (n, £.x,),  (31)

fk2

where i = x, y. We also define the gauge-transformed mode
functions by

RS = Bo*) v, AR A (32)

Noting that the nonzero Christoffel symbols are FZ.,: =

I}, =T =T% = a, we readily find

~(w, 1 [
h/(w K - _ﬁ [‘g/‘l’ + Zq/w(kL)} (,0( ’kL)9 (33)

where

Kk, .
0;i ——+ if y,v=xory,
] kl H y (34)

0 otherwise.

qlw(kl) = {

It is straightforward to show that the mode functions ﬁfﬁf’k”

satisfy both the de Donder condition (18) and the field
equation (19).

The mode functions describing the gravitational pertur-
bations are normalized with respect to the inner product
analogous to the Klein-Gordon inner product (24). We first
define the conjugate momentum current for a solution h,(f,f
of the Euler—Lagrange equation (17) as follows (see, e.g.,
Ref. [28]):

oL?
7. EH
Po = ov,n,,

(35)

h=h')

Then the Euler-Lagrange equation (17) can be written as

oL
Vv pov _ ——EH =0. 36
aP (i) ahm, i ( )

(In our case, i.e., in flat spacetime, the second term is
absent.) Since the Lagrangian density Lig})l is quadratic in

h,,, we have, for any two solutions hﬁf,,) and h,(fy) to Eq. (17),

uv>

V,h' Pl =

1= Vahil. (37)

This equation and Eq. (36) imply that the following inner
product is 7-independent:

0K =i [ oy = Pz, (38)
s :
where X and n* are defined as in Eq. (24). If the solutions

h,(j,f and h,(f,,) obey the de Donder condition (18), then this
inner product simplifies to

(hD, Ay = i/z (hf;g v, hmw

For the mode functions (33) we find

WV, hU)) neds.

(39)

<],~l<(”~,kL>’ ﬁ(a)’,k' > (w.ky) {p(w K’ )>sc

= (o
S(w—a)dP(k, —K/|). (40)

Now let us discuss the quantization of the even-parity
metric perturbations, which couple to the stress-energy
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tensor 7" in Egs. (8) and (9). After fixing the gauge
completely, the quantized even-parity gravitation field can
be expressed as

even n,EX) / dw/dzkl

X [ (n.6.x D, +Hel . (41)
As in the scalar case [29], the inner product (40) implies
(A )] = 8@ = )8k ~ k). (42)

The Fulling vacuum state |Og) [13], which is the no-particle
state in the Rindler frame, satisfies d,x )|0F) =0 for
all w and k.

IV. RESPONSE RATE IN THE
ACCELERATED FRAME

The stress-energy tensor is defined from a matter action
Smatter DY

2 55 matter

V=g 59,%)

At linear order we find from Eq. (14)

™ =

(43)

5S matter

= = \/8xGT™. (44)

h=0

Hv

Hence, the interaction term describing the one-graviton
processes due to the classical stress-energy tensor 7+ given
by Eqgs. (8) and (9) can be taken to be

S = V872G / TRE™ /=gd*x, (45)

where the operator ﬁﬁven) (x) is given by Eq. (41). We set
87G =1 from now on.

The probability amplitudes associated with the emission
and absorption of a graviton with frequency @ and trans-
verse momentum k | in the Fulling vacuum state |Og) are
given by

Aleks) — (08| @ (o, Sint | OF)

= / TRy =g dix, (46)
w.k &
AR = (O[S, ) |0F)
= / TR =gdtx, (47)

respectively, where h(' k) s the even-parity positive-
frequency perturbatlon with frequency @ and transverse

momentum k; given by Eq. (25). Here, we replaced the
(wk,)

gauge-transformed mode functions fz,w , which are used
in the expansion of the even-parity quantum graviton field

ﬁfﬁven) in Eq. (41), with the original mode functions h<w k)

without changing the result because the stress-energy
tensor satisfies V, 7" = 0. The differential spontaneous
emission probability, i.e., the probability of emission of one
graviton with fixed transverse momentum k ; and Rindler
energy w, is given by

dPen = | ALK dwdk | . (48)

wk |

The Minkowski vacuum state is equivalent to a thermal
bath of the Unruh temperature T;; = a/2x for processes
confined to the right Rindler wedge [10]. This correspon-
dence exemplifies the observer-dependent notion of the
field-theoretic particle content. Here, the notion of a
particle is defined with respect to the timelike Killing
vector d, for the inertial observers and with respect to 9, for
the co-accelerated observers [13]. The expected number of
gravitons with a given (normalized) wave function with
(approximate) frequency @ that surround the co-accelerated
observers is

1

nw)=-—-——"-
( ) eZn:w/a_l

, (49)
which is the Bose-Einstein distribution function with the
Unruh temperature a/2z. Thus, in the Rindler frame there
is induced emission as well as spontaneous emission. If we
write the total emission rate as

REM — / Rk | (50)

then the differential emission rate, , 1.e., the emission

rate per unit time and transverse momentum squared, is
given by

1 o,
=g | AGS PO n@))do. (5)
0

where Ty = [ dn is the “infinite total proper time.”
Equation (51) was obtained from Eq. (48) taking into
account the spontaneous and induced emission due to the
thermal bath associated with n(w). The differential absorp-
tion rate, i.e., the absorption rate per unit time and trans-
verse momentum squared, is

'We present a derivation of the result in this section without the
use of infinite proper time in Appendix A.
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Ry = [TIAG Pao)do. (52

where we used the relation Aa‘g’g‘“ — AL which

follows from Eqgs. (46) and (47), and Eq. (48) taking
into account the thermal factor n(w). The differential
interaction rate, Ry , is the sum of the differential emission

and absorption rates, Ry"T and Ribﬁl- Noting that

n(-w) = —[1 + n(w)], we find
Re, = i/ ASKIR 4 n(o)ldo.  (53)
Ty

As we will see, Eq. (53), which follows directly from the
perturbation theory in Rindler spacetime taking into
account the FDU thermal bath, gives the same result as
the emission rate obtained using standard quantum field
theory in Minkowski spacetlme

To find the amplitude Aem 4 we first find from Egs. (8)
and (9), noting that \/—g = e

/ TmRle*s) | /=g d*x

:pl()[ (ko) ( +a/ HR) (g } (54)

/ Tfé’h“"“ V=gd*x=—pal(w) / H””‘L (©)dé,  (55)

where the functions H\o**) and Hé‘g’kn are defined by
Egs. (25) and (26) and where

(o) = /_ " eiongy, (56)

The first (second) term of the right-hand side of Eq. (54)
comes from the point mass (extended string). Since

H:@Z”"“(é) = Hé?'m(é), we obtain
gurr){kl) — /Tuyhl(g/),kl) \/—_gd“x (57)
= pl(w)Hyy ™ (0). (58)

Thus, the contribution of the string to the probability
amplitude vanishes, and only the point mass contributes.
However, this vanishing contribution of the string is gauge
specific, and the string contribution is nonzero if we use the

(k)

gauge-transformed modes ﬁ,w
show below.

The differential interaction rate, Ry, is found by sub-
stituting Egs. (49) and (58) with (56) into Eq. (53). In

squaring the amplitude Al

given by Eq. (33) as we

glven by Eq. (58) we employ

the standard formal manipulation |I(@)|* = 22Té(w).

Thus, we find

Ri, = 2mp2|HY  (OP[1 + n(@)]], e (59)
Note that in the limit @ — 0 we have n(®) — oo: the Bose-
Einstein distribution function diverges for the low-Rindler-
energy gravitons as

n(w) :%—I— o(1). (60)

for small w. On the other hand, Eq. (26) with Eq. (22) leads to

H6) (0) = _\/%[KO (%) —i—jK’ (%) +0(w )]

(61)

for small @. Thus, we have H'**)(0) - 0 as @ — 0. This
reflects the fact that the stress-energy tensor is static in the
Rindler frame, and, hence, the spontaneous emission rate
vanishes. However, the induced emission rate is nonzero
because of the interaction of the source with the zero-energy
Rindler gravitons from the thermal bath, whose state density
isinfinite. We readily find the interaction rate by substituting
Egs. (60) and (61) into Eq. (59) as

2 2
K ki
R =——IK, | —]]|, 62
kL7 813 2< a > (62)
where we have used the equality,
2 /
Ko(z) - 2 Ko (2) = K> (2). (63)

which can be derived from Ref. [30, Sec. 10.29(1)]. In
Appendix A we present a derivation of this result without the
use of infinite interaction time.

We should obtain the same result if we use the mode
functions ﬁ,(f;”kl) given by Eq. (33) instead of h(w ki)
because these modes are related by a gauge transformatlon

[see Eq. (32)]. Let us verify this fact. By expressing the

(wky)

mode functions #,, as

R . x 1) = Bt @emiorikss - (64)

we find

Ay (@) = —AL (&) (65)

=—%e2“5¢<%><5), (66)

where the functions ¢*1) are given by Eq. (22). Then,
Eq. (58) is replaced by

064080-6
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/ Tﬂuﬁl(;;hki) /=g d*x
=pl(w) |:I:I,M(0) + ZGA FI,M

Tw
= —p[((x)) 4a2

<[ra(%) 25 [7 s+ o). @

where we have changed the integration variable from £ to
y = (k, /a)e®, for small w. Notice that the contribution
from the string does not vanish. By comparing this formula
with Eq. (58), where H,,(0) is given by Eq. (61), one finds
that the equality of the response rates follows if

<z:>dz:} (67)

Kj(2) = - / ® yKo(y)dy. (69)

Since both sides tend to 0 as z — oo because K, (z) ~

\/7m/2ze* for large z, this equality is equivalent to its
derivative, i.e.,

2K (2) + Kip(z) = zKo(2). (70)

which is the modified Bessel equation satisfied by Ky(z).
(k)

Thus, we have verified that the mode functions h~,4,,
lead to the differential interaction rate Ry
by Eq. (62).

also
given

V. RESPONSE RATE IN THE INERTIAL FRAME

The spontaneous emission probability in Minkowski
spacetime for fixed transverse momentum k, for any
conserved stress-energy tensor 7#* given by Eqgs. (10)—(12)
can be written as

dk __ 1 -
M (T —~TT 1
Pi. / (271')32k< ) ) (71)

dk. (1
_ / o <§|T”+TZZ|2—2|T’Z|2>, (72)

where k = || k|| = ||(k,, k| )|| and 7#*(k) is defined as

Tr(K) = / el k=kX) 7w () d*x, (73)

and 7 (k) = 7*,(k). The total emission probability would
be the integral of P} over k.

Equation (71) can be derived from the well-known
expression for the total emission probability,

d3
oo [T . o

where efw is the Minkowski polarization matrix, with A

denoting the independent polarization states, by using
k, 7"/ =0 and choosing, for simplicity, a coordinate
system such that &# = (k, 0,0, k), with

A1 R SR s S 1
€11 = —€pn =€ =61 = (75)

7

and the other components vanishing.

To find the components of 7#(k) it is convenient to
change the integration variables from (z,z) to (1, ) using
Egs. (1) and (2). Thus, we find

o o ag
Tt = [ [T e (15 ) 78 0 1 an,

(76)
where /C = ksinh an — k, cosh an and
T (x) = 7% (1. £)5%) (x, ). (77)

Then, using Eqgs. (10)—(12), we obtain

T'(k) = p/m{cosh2 anexp (LIC>
e a
(o) eaé
+ a/ dée* exp (i;lC) }dﬂ, (78)
0

T#(k) = p/w{sinhzan exp (;IC)
[ eaf
- a/ dée?® exp <i71C> }dn. (79)
0

Note that the first (second) term of the right-hand side of
Egs. (78) and (79) comes from the point mass (extended
string). By adding Egs. (78) and (79), we find

T + Tk = [

—0o0

cosh 2an exp (i IC> dn.  (80)
a

Thus, the contribution of the string to the emission
probability PML, given by Eq. (72), vanishes. (Recall that
this was the case with the interaction rate computed with
the mode function h,(ff,”k” in the Rindler frame.)
Furthermore, the component 7 (k) is given by

T (k) = g/wsinhZanexp (i/c>dn, (81)
— a

which has no contribution from the extended string.
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To evaluate the integral in Eq. (72) we “boost back” the
momentum variables (see Ref. [9]) by defining

k. = k, cosh aij — k sinh afj, (82)
k' = kcosh afj — k, sinh a7. (83)

Then, the integrand of Eq. (72) takes the following form:

|Ttt + Tzz|2 _ 2|th|2

_ %/_: V_: cosh 2a(y — 1")]
X exp {% {k' sinh (g (o — 4’))] }dn”] . (84)

1
2

By changing variables as 7= (7' +7")/2 and 6 =1/ — 1
we can factor out the infinite time Ty = [*_d#, which
makes the integral in (84) infinite. The differential response
rate in the inertial frame can be expressed as

RM — PlkVIL
kT,
0 0 2i ) a
= / [/ cosh 2ac exp { {k’ sinh (a)} }da}
o | o a 2
dk,
e TICIEE (85)

We introduce a convergence factor by letting ¢ = ¢ + 2ie,
where € is a positive real number, to make the o-integral
convergent. Thus,

0 00 'k’ ) ) dk/
Ry = / {/ cosh 2ac exp {%(e’“ee""ﬂ - e‘me‘“"/z)] da} z (86)

(Se]

4K (2x)3

We take the limit € — 0O at the end of the calculation. Now, we introduce the change of variables:

S+

Then we find

where u =k, e'“/a and = e~'““. By using the formula
[31, Eq. 3.471.10],

« -1 i P )2
dss*lexp | = | s —— )| =2pe"?K,(Bu), (89)
0 2 N
for Imy > 0 and Im(f%u) < 0, we obtain
k
(%)
a

which is equal to the differential response rate Ry, in
Eq. (62).

2
M _ M
RkL -~ 8n%a

2
. (90)

VI. FINAL REMARKS

Our work in this paper verifies that the equivalence
between the response rates in inertial and co-accelerated
frames, observed for a uniform accelerating classical point-
like source interacting with scalar [32] or electromagnetic
perturbations [8,9], also holds for gravitational perturba-
tions at the lowest order in perturbation theory. For

K+ K,
B o, (87)

1 © © 1 2 | 2
R T O R O I o I

I
gravitational perturbations, the classical source is a con-
served stress-energy tensor describing a point mass moving
in a hyperbolic trajectory associated with £ = 0 in Rindler
coordinates with metric (3) and attached to a string
extended from £ = 0 to co. This string can be viewed as
the agent driving the acceleration of the point mass,
although it acts also as a source of stress energy. In the
scalar and electromagnetic settings the agent driving the
acceleration is there but does not couple with scalar or
electromagnetic perturbations provided if it is not charged.
It is interesting to note that the response rate of the
classical system coupled with a massless field with spin s at
the lowest order (where s takes the values of 0, 1, and 2 for
scalar, electromagnetic, and gravitational perturbations,
respectively) in the Minkowski vacuum state, can be
written in the following suggestive form:

£ ()

where ¢ is the coupling constant, which can be interpreted
as the charge or mass of the pointlike object. However,

q2

 4rx3sla

2

Rk ; o1

ELE
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there is a puzzling feature in the gravitational case (s = 2)
studied in this paper. Since K,(z) ~z2 for small z, we
have Ry, ~ k7* for small k. This implies that the power
of the gravitational radiation, which is bounded below by
the integral of k| Ry g, ~ kf over k |, is infrared divergent
because d°k | ~ k, dk . The physical origin of this infrared
divergence needs to be investigated.

Note added. Recently, we have become aware of a
preprint [33] that contains some of the results presented
in this paper.
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APPENDIX A: THE RESPONSE RATE WITH
n-DEPENDENT STRESS-ENERGY TENSOR

In this appendix we find the response rate of the
gravitational field to a conserved stress-energy tensor
which is adiabatically turned on and off in order to dispense
with the formal argument using the infinite interaction time.
We first construct a stress-energy tensor 7 with nonzero
components 7, 7%, and 7% which depend on 7 as well as
& in Rindler coordinates. ~

The conservation equation V, 7% = 0 implies

e‘4“505(e4“5T'75) = —dnT’W. (A1)
We choose 7 to be the same as before but multiplied by a
function g(n), i.e.,
T = gy, (A2)
where 7" is given by Eq. (8). With this assumption we find
the following solution to Eq. (Al):

e = B () (e 1+ 0@ (x,). (A3

Then, the equation V,, T = 0 is satisfied by the following
£E-component:

T = g()T% = 2 () (e = e)0()5 (x. ).

(A4)

where T# is given by Eq. (9). If we set g(57) = 1, we recover
the n-independent stress-energy tensor found in Sec. II. We
shall find the interaction probability for this stress-energy
tensor with a general compactly supported and smooth
function g(#) in the inertial and co-accelerated frames.

We start with the inertial frame. We define from the
stress-energy tensor 7" given by Eqgs. (A2)—(A4) its
Fourier transform 7% (k) exactly as in Eq. (73) and then
Eq. (76) in Rindler coordinates. We also define the rapidity
3 by

k+ k.
k—k,

Z

9=—Ilog

1
% (AS)

Then the Fourier transform of T#¥(x) is given by

T (k) = / . [/ " 2ag=ilky fa)esinh ao-n) T () e | diy.
(A6)

The integral over 5 is effectively in a finite interval
because the function g() is compactly supported by
assumption. The integrand grows in general for large &
but we make the integral over ¢ absolutely convergent
(unless k; = 0) by introducing a convergence factor by
replacing sinh a(9 — ) by sinh a(8 —#) —ie, € > 0, and
taking the limit ¢ — O in the end.

Going back to the Minkowski coordinates and integrat-
ing by parts, one finds k,7** = 0, from the conservation
equation V, 7% = 0. This equation implies k7" = k, 7"
and k7" = k,7%. These equations can be used to show
that

2

~ ~ ~ 1. -~
|Ttt+7-zz|2 _2|th|2 :ElT , (A7)

1

2
where 7 = 7" — 7%, Hence, the differential interaction
probability with k| fixed is

~ 1 dk ~

? (A8)

where
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) = [an [ dgereitsmc v . ).
(A9)
The trace Tg)(n.&) = T, (1.€) can be found from
Egs. (A2) and (A4), with T given by Egs. (8) and (9), as
Ty (n,&) = pg(n)[6(8) + 2a0(&)]

+ 2 g () (e — 1Yo e).

> (A10)

F(n,9) = g(n) [

i(ky /a)sinh a(9—n) 4 212

1 0 s . 0
+ _gll n |:_/ e—lz[smh a(—n)—ie) 2% _
2 ( ) a’ ki/a z ki ki/a

By substituting this equation into Eq. (A9) we find

TM(Kk) = p/w (n,9)dn, (A11)
where
p—iz[sinh a(&—n)—ie]zdzj|
ki /a
1
dZ e—lz[smh a(9-n)— ]Zd2:| (A12)

Next we derive the differential interaction probability with k | fixed in the right Rindler wedge and show that it equals
75}\(’1i given by Eq. (A8). The emission and absorption amplitudes corresponding to Egs. (46) and (47) can be found using the
stress-energy tensor given by Egs. (A2)-(A4) and the mode functions given by Egs. (33) and (34) as

Aok \/—/

where the trace of the stress-energy tensor, T

a;kJ_ (5) ion—ik - XJ_\/_d4 (A13)

)(11,£), and the functions P\ kL) (&) are given by Egs. (A10) and (22),

respectively. Thus, we find the one-graviton emission amplitude in the right Rindler wedge as

ka _ \/_IJ/ [g(n)qﬁ(“"ki)(O)jLza/m ¢(kaL)<§)62“§d§:| ey

- ﬁ/—w [/_‘X’ g > ) ()(1 ~ ez“f)d‘f] ey,

and the one-graviton absorption amplitude as

A(‘kaL) _ ~(an’1’—kl)_ (AIS)

abs

Then, the interaction probability is the sum of the (sponta-
neous and induced) emission probability and the absorption
probability in the FDU thermal bath of gravitons:

,PR:/,]SELdelﬂ
where

~ ® -~ (wk
PR = [ 1A P+
I A(gn,km 2
:/ |: | : —2ml/a +
0 1—e

Now, we show that Eq. (A17) agrees with the emission
probability Pﬂ{ given by Eq. (A8), which was found in the

(A16)

n(@)] + AL P (w)]do

o,~Kk1)2
|Aabs | :|d0)

Zﬂm/a -1 (A17)

(A14)

standard Minkowski-spacetime calculation. An important
fact for this purpose is that, for scalar field theory, there is a
complete set of mode functions which are positive-
frequency in the right Rindler wedge and negative-fre-
quency in the left Rindler wedge, or vice versa, with respect
to the Killing vector g, and are positive-frequency with
respect to the Minkowski Killing vector d,. It is easy to see
that the same is true for the even-parity sector of the gravi-
tational field, because the even-parity mode functions are
scalar mode functions times a constant tensor. Let us
explain this fact in more detail. We choose the following
mode functions defined over the whole Minkowski

spacetime:
jRawky) _ { ﬁ,(,",f'kl) in the right Rindler wedge, (A18)
" 0 in the left Rindler wedge.

If we define the Rindler coordinate system for the left
Rindler wedge, z < —|t|, by letting t = a~'e sinh an and
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z = —a~'e% cosh an, the functions A\ (3, £,x ) define
mode functions in the left Rindler wedge, which are of
positive frequency with respect to the Killing vector 9,
there. Let us now define

fll(};;w,kt) —

{ 0 in the right Rindler wedge,

S(0k,) . _ A19)
huw in the left Rindler wedge.

Then, exactly as in the scalar case [10], the following mode
functions, which we call the Unruh modes, are of positive
frequency with respect to the Minkowski Killing vector 9,

7(Rok,) 7 (Liw,—k )

(. h h

A i , A20
H \/1 — g 2nm0/a + \/e2ﬂw/a -1 ( )

~(Riow,—k ~(Liw.k
h~(+;w~ki) _ h/(“’ 5 h/<“-/ B A21
(o) i (a2
Verola Z1 /1= ¢ e

Now, the quantum graviton field for the even-parity
sector can then be expanded in terms of the Unruh modes:

even 2 (Ukt ()
/ dco/d Kk, A

+ka ( )

i, )+Hc] (A22)

k)

The inner product for the Unruh modes, h,w and

i) can be found using the inner product for the

Rindler modes, h(R *k1) and fz,%;""kl), given by Eq. (40).
One finds that the Unruh modes defined here are orthogo-
nal to one another and

<E(—;w,kL)J’l(—;w’,k’ > < j(Hoky) h(+;(u’,kl)>dD
— (-0 (k, ~k').  (A23)
This implies that the annihilation operators, aE”)k ) and
dé:}kn, and the creation operators, aE”)E ) and a w>kl>
satisfy the standard commutation relations,
A=) AT ) AT
[0,y Gor )] = 1o,y o,
=6(w-a)d?(k, —K'), (A24)

with all other commutators vanishing. Since the mode

functions for the operators &E )k w)k

frequency with respect to the M1nk0wsk1 Killing vector 0,,
the Minkowski vacuum state |Oy) is annihilated by these

a,k 10p) = 0.

The one-graviton final state due to the stress-energy
tensor 7#*(x) can be found as

and a4 ,) are positive-

operators: dE”_)?ki) |Op) =

|lg>:i/f~ (x)h even( e d4XIOM>
A" o
/ dw/d kL|: —27m)/u a("’skt)
Aaw§ kL
+ﬁ (ka:||OM> (A25)
Then we find
(1glg) =Py, (A26)

where 7511§i is given by Eq. (A17). Thus, one can show that
PEL = Pﬁ"l by showing that~<1g|1g> = P}\(/IL.
To show that (1g|lg) =P} we need to express the

creation operators dg;i) and ﬁg)&)

creation operators for the momentum eigenstates in
Minkowski spacetime. We define the following mode
function with momentum k in Minkowski spacetime:

in terms of the

- 1
hLl;)(x) - _ﬁ [g/w + 2qyu(kl)] (p(k)(x)’ (A27)
where
1 oo
(k) x) = e—zkt+tk-x‘ A28
N ET: (AZ8)

Comparing this definition with Eq. (33) one can readily see
that the relationship between E,(ff’k” (n,&,x,)and 15,(},5) (1,%x)
is the same as that between ¢(“*1) (5, £,x | ) and p® (¢, x).

This implies that the relationship between the Unruh modes

ﬁ,(,f;w‘kt) and the Minkowski modes 5,92) is identical to that

between the Unruh modes and the Minkowski modes for
the scalar field [12]. Thus,

(4. o ~ dk
h(f,w,kt) _ / ei’w'g(kl)h(lz) ‘. A29
g e 2oV rrrall

where the rapidity 9(k,) is defined by Eq. (AS5). This
relation can be inverted as

r(k) _ 1un9 {U k)

" \/ 2rak

+€_’w'9(kl)h,(4j’w'kL)] do.

(A30)

The field describing the even-parity sector can be
expanded as

W) = [ 0+ B Walek. (a3

where the operators d, and dlz satisfy
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[ay, ap] = 6% (k — k). (A32)
By substituting Eq. (A30) into Eq. (A31) and comparing

the coefficients of h,w k)

find

with the expansion (A22), we

dkz eiina'lz‘

(+
a =
@k | V2mak
We substitute Eq. (A33) into Eq. (A25) and find

(A33)

lg) =i / ﬁ K)Ll0y).  (A34)
where
8 00 p—iwd(k (ﬁkL)
=\ 7 [ e A (A35)
V1 —2mu/a

Here, we have used the fact that A% 7%+ /Ve* e _ 1 can

abs
be obtained by letting w — —w in the expression

Aloks) )\/T =727/ Then, Egs. (A34) and (A26) imply

This will establish that Pk =P
find from Eq. (22),

| [see Eq. (A8)]. First, we

(w,k,) Tw/2a k
it O i O <—i eaf>. (A38)
V1—e2/a \/8ztq a
By using the identity [31, Eq. 6.796],
+oo o
/ €_lwy€”w/2aKiw/a (z)da) — rae 2 sinh ay (A39)

we find

o0 e_iw(’s_"/)qﬁ(kal.)(g) a

d R
o oo YT\

e—i(kL/a)e‘@ sinh a(9-7)

(A40)

By combining this result with Eqgs. (A35) and (Al14) we
indeed find Eq. (A37). This shows that the response rate to
the n-dependent classical stress-energy tensor given by
Eqgs. (A2)-(A4) is reproduced in the Rindler wedge using

PR = / dk; AR (K)|2. (A36) the Unruh effect.
. (27)"2k In the rest of this appendix we show that Eq. (A8) gives
the emission rate Ry, in Egs. (62) and (90) if the function
We now show that g(n) is smooth and compactly supported and equals 1 for
® M most of the time when it is nonzero. First, we find by
V2A (k) = =T"(k). (A37) integration by parts in 7,
|

: , 2 3 2 2a sinh a(9 —n) "(n)

—i(ky/a) sinh a(9—n) ~ 4 _ i iy — g\ Adl
¢ 9(n) K Losh“a(& —1n) cosh®a(8—n) 9(n) k% cosh®a(9 —n) g k% cosh? a(9 — n) (Ad1)
and

2 0 2 . /
219(,7) / e—iz[sinh 0(19—’1>—i€]zdz ~ 21 9(77) 2£ 9 (77) e—iz[sinh a(9—-n)—ie dZ, (A42)
k

L Ja k3 cosh®a(9 —

n) k% cosh a(8—n) Ji, a

where =~ denotes the equality under the y-integral. We use the following identity to make the z-integrals manifestly

convergent:

+00 +o0 o d / +o0
/ G(n, 19) |:/ p—izsinh a(9-n) f:| dﬂ — l/
-0 ki/a Z a ) -

d G(n, 9 oo d
a |:(’1):| / e—izsinh a(9—n) 7 2 }dn (A43)
dn |cosh a(9=1n)] Ji,/a "t

We define the differential operator D on any smooth function f (5, d) by

9
on

(Df)(n. 9) =

Then we find

cosh a(9—7n)|"
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3a® gln)

2a sinh a(8 —7n) ,

F(n,9)

il (D) (9.0) + 5.5 (D) (Bor) +

2
ak’

We choose the function g(n7) to be 1 for =Ty <5 < Ty, 0
for || > Ty + b, and decrease (increase) smoothly from
n=Tyto Ty+ b (fromn=—-Ty—b to —T). In the end
we let Ty — oo while keeping b unchanged. Now, the terms
multiplied by ¢'() or ¢"(n) in Eq. (A45) are nonzero only
if ne[-Ty—b,-Ty| U [Ty, Ty + b]. Hence, these terms
contribute to the n-integral only if 9 is in or near the set
[Ty —b,—Ty| U [Ty, Ty + b] because of the exponential
falloff of these terms for large |9 — #|. Then, the contribu-
tion from the terms other than the first term in Eq. (A45) to
the integral (A8) for the emission probability PML, which is
an integral over J(k_) because dd(k,) = dk_/ak, remains
finite if we keep the shape of the function g(1) for Ty <
|n| < Ty + b unchanged as we take the limit 7j — oo.
Therefore, we only need to consider the first term in
Eq. (A45) if we take the T — oo limit in this manner.

Thus, the differential emission rate with k | fixed in this
limit can be found as

1 ©
R, = lim — dk k)|? A46
k= im s [ kAT (A46)
9 2.5 1 0
=2 Gim — [ a9
327 kJ_ Ty—o 2T0 —00
0 9 e—i(kL/a)sinh usd 2 A47
| o090 | )

where we have defined s = 9 — 5. Because of the factor
cosh?* as in the denominator the integrand is non-negligible
only for |s| ~1/a. Thus, for large T, we may replace
g(9 —s) by the characteristic function of the interval
[T, To|, which is 1 if 9 is in this interval and O otherwise.
Hence,

W2

R, = 873a

©3 3 ,—i(k, /a)sinh as 2
/ e ds| . (A4B)
—o 2kjcosh®as

We recover the differential emission rate given by Eq. (62)
using Ref. [31, Eq. 8.432.5].

APPENDIX B: RESPONSE RATE OF ANOTHER
CONSERVED STRESS-ENERGY TENSOR

To have some more insight into the gravitational radi-
ation from the accelerated point mass, it may be useful to
consider the same point mass with an extended string with a
different stress-energy tensor. In this appendix, we give the

g n)

" k2 cosh*a(9 —n) K% cosh?a(d —n)

_ g'(n)
k2 cosh? a(9 — n)

) o d
(D3g//)(19,77)] l/ e~izsinh a(&—n)_§.

<

A45
2a°k% (A43)

[
response rate of the gravitational field to the source with the

following conserved stress-energy tensor:

™ = ps()5)(x ), (B1)

T% = —pae™*0(£)5% (x 1), (B2)
with all other components vanishing. This stress-energy
tensor is obtained by letting F(£) = e~%“0(¢) in Eq. (5).
We can readily express the stress-energy tensor in
Minkowski coordinates using Egs. (1) and (2), namely

T" = plcosh? and(&) — ae~*sinh?and(¢)|6?) (x ), (B3)

T* = psinh ancosh an[6(&) — ae=0(£)]6 (x,), (B4)

T = plsinh?and (&) — ae~*“cosh? and(¢)]6? (x,), (BS5)

with all other components vanishing. The stress-energy
tensor associated with Egs. (B1) and (B2) describes a point
mass in a hyperbolic trajectory, with £ = 0, attached to a
massless string whose tension is associated with 7%¢. We
note that this stress-energy tensor does not satisfy the WEC.

The response rate of the gravitational field to the stress-
energy tensor given by Eqs. (B1)—(B5) in the inertial and
co-accelerated frames can be obtained by performing
calculations similar to those in Secs. IV and V. This
response rate is given by

2 2
W k| a [o

Ry = K(— | —— K>(z)d B6
K, 87r3a[ 2<a> kJ_LL/a 2(2) Z} (B6)

2 2
W k, a [
=—|Ky|— — K dz| . B7
8;:%{ °<a>+k¢A/a 0(z) Z] (B7)

Equation (B6) is found by using the original mode
functions given by Egs. (26)—(28), whereas Eq. (B7) is
found by using the gauge-transformed modes given by
Egs. (33). These two expressions can directly be shown to
be equal by using Egs. (63) and (70). It is interesting that
this response rate diverges such as k7% in the k; — 0 limit,
whereas that for the stress-energy tensor given by
Egs. (8) and (9) found in Secs. IV and V diverges as
k7* in this limit.

More generally, if we let F(£) = e #%0(¢) in Eq. (5), we
find
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T = n[8(&) + (1 — plae~@P49(£)]6@ (x,), (BS)
T% = —pae~@t)atg(£)s (x ). (B9)

Then,
T, = p[s(&) + (2 = plaeP40(£)]s? (x,).  (BI0)

The stress-energy tensor in Sec. II corresponds to =0
and satisfies the WEC. If § > 0, this stress-energy tensor

does not satisfy the WEC. On the other hand, if § < 0, then
its trace grows exponentially as a function of £. We find the
interaction rate for general § with k| fixed as

2
oot ko
R, = 87a [K()(a)

+2-p) <a>2_ﬂ A " KU(Z)ZI‘/’dz]Z. (B11)

ki /a
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