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This paper studies the reduced phase space formulation (relational formalism) of gravity coupling to the
Brown-Kuchar dust for asymptotic flat spacetimes. A set of boundary conditions for the asymptotic flatness
are formulated for Dirac observables on the reduced phase space. The physical Hamiltonian generates the
time translation of the dust clock. We compute the boundary term of the physical Hamiltonian, which is
identical to the Arnowitt-Deser-Misner mass. We construct a set of the symmetry charges on the reduced
phase space, which are conserved by the physical Hamiltonian evolution. The symmetry charges generate
transformations preserving the asymptotically flat boundary condition. Under the reduced-phase-space
Poisson bracket, the symmetry charges form an infinite dimensional Lie algebra A after adding a central
charge. A suitable quotient of A is analogous to the Bondi-Metzner-Sachs algebra at spatial infinity by

Henneaux and Troessaert.
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I. INTRODUCTION

The canonical formulation of gravity is a theory of
constraints [1,2]. The Hamiltonian of four-dimensional
gravity consists of four constraints: one Hamiltonian con-
straint and three components of diffeomorphism constraint.
All hypersurface deformations generated by these con-
straints are gauge transformations. Constructing gauge
invariant quantities is important for understanding the
physics of gravitational field at both classical and quantum
levels [3-5].

An interesting approach of constructing gauge invariant
observables is the relational formalism [6-25]. The idea is
to couple gravity with certain matter fields, e.g., pressure-
less dust fields or scalar fields. In this work, we consider
the Brown-Kuchar (BK) dust as the matter and refer to this
formalism as BK formalism [18,26]. In this formalism,
BK dust fields play the role of rulers and clocks that
provide a physical reference frame at every spacetime
point, and they relate to the gauge fixing scheme that
allows us to construct a reduced phase space of the
gravity-dust system. The gauge invariant Dirac observ-
ables defined on the reduced phase space are canonical
fields evaluated in the physical reference frame made by
the dust fields. Importantly, when formulating the
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dynamics on the reduced phase space in terms of Dirac
observables, the gravity-dust system in the BK formalism
becomes free of any constraint, since the Hamiltonian and
diffeomorphism constraints are resolved on the reduced
phase space. As a result, the formalism provides a physical
Hamiltonian Hp, = f d30'thys, which generates the
physical time evolution of the Dirac observables. ¢ and
7 are the spatial and time coordinates in the physical
reference frame. There are infinitely many conserved
charges H(0) and C;(6) descended from the hyper-
surface deformation. H(6) and C;(6) relates to the
time translation and spatial diffeomorphism in the space
of (z,0).

The purpose of this work is to apply the relational
formalism to spacetimes with boundary at infinity. In
particular we focus on the situation of asymptotically flat
spacetimes. We propose a set of asymptotic boundary
conditions for the asymptotically flatness in the BK for-
malism. These boundary conditions, discussed in Sec. III,
are formulated for Dirac observables on the reduced phase
space, and thus they implement the asymptotically flatness
in the gauge-invariant manner. In addition, the compatibility
with the asymptotically flatness requires the BK dust
density to have a falloff behavior of O(r~ log r) as the
radius r — oo.

As a technical aspect, the BK dust turns out to either be
incompatible to the usual falloff behavior and the parity
condition of the canonical fields in the literature, or it rules

© 2024 American Physical Society
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out many interesting boundary charges (e.g., in [27-29]).
As the resolution, some additional r~" log(r)-terms are
added to the falloff behavior, and the parity condition is
relaxed and replaced by other suitable boundary conditions.
In this case, a counterterm has to be added to the symplectic
form to remove the divergence. These treatments are
partially inspired by [30,31].

A key development is to construct the boundary-
preserving symmetry charge on the reduced phase space:

aéa—/&ﬂﬂmﬁ+ﬂm+5@@- (11)

The smearing fields ¢, E satisfy certain boundary conditions
relating to a subset of the traditional Poincaré transforma-
tions and the supertranslations. Unlike the usual situations
in general relativity, the bulk terms of the symmetry charge
do not vanish on shell, and they generate physical sym-
metries in the bulk of the dust space (the space of 5). The

symmetry charge contains the boundary term B(, E)

which we call the boundary charge. B(¢, 5) is determined
by the compatibility to the asymptotically flat boundary

condition and making the variation 5G(&, &) well defined

on the reduced phase space. The boundary charge 5(¢, E) is
computed explicitly in Sec. IV.
We show that the boundary-preserving symmetry charge

G(¢, E) enjoys the following important properties [the first

and second properties are what we mean by G(&, 5) being
symmetry and boundary-preserving]:

(1) It commutes with the total physical Hamiltonian
Hpys + Hpgy, where Hygy is the boundary term
relating to the Arnowitt-Deser-Misner (ADM) mass.

(2) The Hamiltonian flow generated by G(&,&) pre-
serves the boundary conditions.

(3) With the Poisson bracket on the reduced_phase
space, the set of charges G(&, &) for all &, & form
an infinite-dimensional Lie algebra up to a central
charge C, namely

(G(£.8).G(&.8)} =GE.& +c . (1.2)

where £ =&Di& —&Diéy and & =[5.&). In
other words, the boundary-preserving symmetry
charge G and the central charge C form a closed
Lie algebra. The derivation of the algebra is given
in Sec. V.

We denote by A the algebra of the boundary-preserving

symmetry charges G(¢, E), and we would like to compare
Ag to the original Bondi-Metzner-Sachs (BMS) algebra,
Apms [32-35]. The original BMS charges are defined as
boundary charges that generate symmetry transformations
on the null infinity of an asymptotically flat spacetime.

These symmetry transformations include the traditional
Poincaré transformations and the supertranslations. The
supertranslation charges form an infinitesimal Abelian

subalgebra of Agys. In contrast, the charges G (¢, E) defined
in this paper incorporate both bulk terms and boundary
terms and are Dirac observables. The bulk terms in the
charges do not correspond to any constraint and thus
nonvanishing. Indeed, Ag contains an ideal Ag of the
symmetries in the bulk of the dust space that are not
extended to the asymptotic boundary. The quotient Lie

algebra Ag = Ag/Ag is analog to Agys. There is one
issue to emphasize: We release the parity conditions of the
canonical variables as mentioned previously, which may
result in the divergency at the null infinity and prevent one
from constructing the BMS charges there [36-38].
Therefore, in this paper we only compare the algebraic
structures between these two algebras, setting aside the
associated physical interpretations.

As mentioned earlier, the supertranslations themselves
form an Abelian subalgebra within the original BMS
algebra. Correspondingly, the supertranslations in AG
along the physical time and radial directions form an
Abelian subalgebra when the central charge vanishes. If
we impose appropriate parity conditions on the parameters
of the supertranslations, then the central extension vanishes,

and we obtain a subalgebra of Ag, which is analogous to
the original BMS subalgebra of supertranslations. In our
work, we do not generally require the parameters of the
supertranslations to satisfy parity conditions, and we
introduce two additional degrees of freedom contributed
by the angular components of the supertranslations in the

spatial direction. Therefore, As represents a generalized
algebraic structure of Agys as far as the supertranslations
are concerned. .

The asymptotic spatial rotations in Ag form an SO(3)
algebra thus is analogous to the corresponding subalgebra
in BMS. The commutator between the supertranslations in
the time direction and in the spatial directions involves the
central charge of the algebra. In this work, we only consider
the isometric spatial rotations generated by the Killing
vectors on S2. It would be interesting to generalize the
analysis to the conformal transformations on S%. But we
leave this aspect to future research.

The symmetry algebra AG does not take account of the
asymptotic boost transformation, since it is difficult to
make the boost transformation preserving the boundary
condition. The detailed discussion is given in Sec. VI.

AG closely relates to the BMS group at spatial infinity
proposed in [28]. In particular, certain restriction of 5,5

selects a subalgebra of Ag that recovers the algebraic
structures of the BMS algebra at spatial infinity in [28] with
vanishing boost generator, as shown in Sec. V B.
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The relational formalism enables the gravity-dust system
to be formulated on the reduced phase space and free of
constraints, and the dynamics are expressed similarly to
common Hamiltonian dynamical systems. Intriguingly, the
symmetry of the gravity-dust system can be formulated
similarly to symmetries in typical Hamiltonian dynamical
systems. This is illustrated in this study for asymptotically
flat spacetimes: All symmetry charges G(&, &) are obtained
as phase space functions that Poisson commute with
the physical Hamiltonian. The symmetry charge, when
expressed in terms of Dirac observables, includes both
the bulk and boundary contributions. We are concentrating
on asymptotically flat spacetimes at this stage because our
aim is to analyze the similarity between the algebra of the
symmetry charges obtained in this case and the familiar
result on the BMS algebra [32-35]. However, the same
symmetry analysis can be carried out for other boundary
conditions, or even spacetimes without a boundary.

The relational formalism is an approach for resolving the
problem of time in classical and quantum gravity. On the
reduced phase space, the physical Hamiltonian generates
the physical time translation, whose quantization makes
sense the unitarity of quantum gravity [17,39,40]. In
contrast, in the usual formulation of gravity, the time
translation and unitarity are meaningful only on the boun-
dary of the spacetime, and this is the idea behind the
holographic duality. It is worth exploring the relation
between the physical time evolution formulated on the
reduce phase space and the time evolution of the holo-
graphic boundary dynamics. This work may present an
initial effort towards understanding this relation, by com-
paring Ag to the BMS algebra on the boundary.

This paper is organized as follows: Sec. II reviews the
relational formalism. Section III introduces the asymptotic
boundary conditions and defines the finite symplectic
structure with a counterterm. Section IV constructs the
boundary-preserving symmetry charges. Section V com-
pute the Poisson bracket between a pair of the boundary-
preserving symmetry charges. Section VI demonstrates
that the generator of the boost term does not satisfy
the definition of the boundary-preserving generator.
Section VII summarizes the results and discusses a few
future perspectives.

II. A REVIEW OF THE BROWN-KUCHAR
FORMALISM
A. Lagrangian formalism

The BK formalism is a realization of relational formal-
ism with the BK dust field consisting of four scalars
T, 5/=123 The total action in the BK formalism is

S - SEH + Sdust‘ (21)

Sgy is the Einstein-Hilbert action.' The BK dust action Sy,

depends on the dust fields T, S/ and Lagrangian multipliers
p. W, [26];

1
Sa = =3 | dx/[&aple V.U, + 1. (22

with
U,=-0,T+W;0,5. (2.3)
The equation of motion % = 0 yields
gruu, =-1. (2.4)

Thus, U* is the 4-velocity of the dust. Another equation of

motion 5‘?}5 = 0 relates the Einstein tensor to the energy-

I

stress tensor of the dust field:

T = pU,U,, (2.5)
which indicates that the BK dust is a pressure-less perfect
fluid. p is interpreted as the dust density, and

> 0 physical dust

’ { <0 phantom dust (2:6)
Note that the case of phantom dust can still fulfill the
energy condition when coupling to additional matter
fields [18]. Our following discussion applies to both cases
of physical and phantom dusts.
Other equations of motion 2 =

58S _ oS
. 0, & = O, and 5_W] =0
provide

> 58/

urv,u, =0, UV, T =1, U'V,S; =0. (2.7)
The first two equations in (2.7) indicate that the integral line
of U* is a timelike geodesic and T is its line-length
parameter. The last one indicates that §; are constants
along the integral line of U¥. The dust field naturally

introduces a reference frame to the spacetime. On this
spacetime, the dust fields 7 and S can be viewed as

providing a coordinate system where 7 and § are the time
and space coordinates, respectively.

B. Hamiltonian analysis

Following the ADM formalism, a spacetime is decom-
posed into £ x R, where X is the three-dimensional spatial
slice. We denote the 3-metric on X by ¢,;, and its conjugate
momentum by p"”.2 The Hamiltonian analysis provides

four first-class constraints

n our convention, the constant x = 16zG is set to be 1.
>The latin letters a, b are the indices of X.

064079-3



MUXIN HAN, ZICHANG HUANG, and HONGWEI TAN

PHYS. REV. D 109, 064079 (2024)

clot — cgeo Cdust’ (28)
ot = 5 + cdust, (2.9)
with
1 1
&0 — e —~qupq. ab ,cd
det(q) [q 4bd 261 »q d]]’ p
—+/det(q)PR,, (2.10)

1[ P2
cdust — — [i 4 det(q)p(q“b U,U,+ 1>:| , (21 1)

2 [\/det(q)
c§60 = _2QacDbpbc’ (212)
cdst = P[T , — W;S%], (2.13)

where P and P; are conjugate momenta of 7 and S/,

respectively, and )R, is the Ricci scalar of g,,. There are
eight second-class constraints. Four of them are

2 i b 1
=——@*"U,U,+1)"". 2.15
Equation (2.15) gives
p=c¢€ (¢**U, U, + 1)71/2, e==+1. (2.16)

det(q)

The future-pointing timelike U* fixes € = 1 [18]. By (2.8),
¢t = 0 yields

& = —/det(q)p(q**U, U, +1). (2.17)
With (2.3), (2.13), and ¢ = 0, we get
geo
Ca
U, = . 2.18
= (2.18)

These formulas are useful in analyzing the asymptotic
behaviors of the dust density p, which we will see in the
next section. Other second-class constraints are less impor-
tant for our discussion, so we refer the reader to [18] for
further details.

In this section, we do not introduce the boundary
condition and boundary terms to the constraints or Dirac
observables. We will introduce the asymptotically flat
boundary condition directly at the level of reduced phase
space, as to be discussed in Sec. III.

C. Dirac observables and the bulk symmetry charges

BK formalism defines the gauge invariant quantities—
Dirac observables through the deparametrization process
[18]. First, the first-class constraints (2.8) and (2.9) are
solved by

P = sgn(P)h, P;=—h;

J J’

(2.19)

with

h = \/(cgeo)Z _ qabcgeocieo’ hj _ S?(—hT.a + Cge())’

(2.20)

and S} is the inverse matrix of d, S/, and h does not depend
on (7, P).
Second, the smeared constraint is

Ky = L Ex[f(F)c(X) + ()P (X)]. (2.21)
The Dirac observable from a generic phase space function f
is constructed by the exponential map generated by Ky

0,[r.0] = {f:nl'{ 7. K,j}(n)] (2.22)
n=0"""

por=T .
pl—al -SI

Here {f, K} ,) means doing n times of the Poisson bracket
between f and K. For example: {f, Ky}, = f, and
{f Kphoy = I AL Kp}} 7 o/ €R are coordinates in
the reference frame defined by the dust fields. One can
prove that O;[z,0] is gauge invariant on the constraint
surface, namely, it is a (weakly) Dirac observable [2]. O is
a field defined on the dust space 82 In this way, we
construct the Dirac observables of g,, and p®® and denote
them by g;; and 7', respectively.4 The symplectic structure
on the reduced phase space is then given by
We have ignored the possible modification of Q. In the case
that S has a boundary, we will come back to the symplectic
structure in the next section.

c2%° and ¢5°° can be promoted to the Dirac observables C
and C; by substituting (g, p*”) with (g;;,7") in their
expressions:

*Here the S is the spacelike hypersurface whose coordinates
are given by /. We have a dust space S[z] at each instance of the
physical time 7.

“The indices of the Dirac observables are the greek letters since
the observables are defined on the dust space.
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1 1 .
C=—+— [gikgjl - _gijgkl] righ — V det(g)<3>R,
V/det(g) 2
(2.24)
Cj = —2gjkDiﬂ'ik, (225)

with G)R is the Ricci scalar of g; ;- The Dirac observable of

h is given by
thys =14/ C2 — gl]C,Cj

Ignoring again the situation that S has a boundary, the
integration of H,,, over S gives the physical Hamiltonian

(2.26)

phys

Hpys = /9 Ao H s (2.27)

Given a generic Dirac observable F' on the reduced phase
space, its physical time evolution with respect to 7 is
generated by H,

dF

- = {F7 thys}'

o (2.28)

The variation of the Hp, is given by

, 1 o
OHphys = [Sd%(N(SC + N'6C; + EHPh)’SNleégij>'
(2.29)

In analogy to the lapse function and the shift vector field in
general relativity, N and N’ are called the dynamical lapse
function and the dynamical shift vector field, respectively.
The expressions of N’ and N are

Qijcj

9
thys

—1/1 4 ¢/*N;N; physical dust
phys — - :
\/ 1+ ¢*N Nk phantom dust

(2.31)

Ni = (2.30)

N=C/H

A difference between the general relativity and the BK
formalism is that both N and N/ depend on the canonical
variables. When ignoring the boundary of S, we have
infinitely many conserved charges Hy(6) and C;(5)

{Cj(&))’ thys} =0, {thys(g)’ thys} =0. (232)

-

The Hamiltonian density H(6) and the dust-space
diffeomorphism C;(6) generate symmetries that are ana-
logs of the hypersurface deformations in canonical general
relativity, although here they are physical symmetries on
the reduced phase space rather than gauge symmetries [26].
The modification of these symmetries charges in presence
of boundary will be discussed in Sec. IV.

III. ASYMPTOTIC BOUNDARY CONDITIONS

Starting from this section, we analyze the situation that
the dust space S has an asymptotic boundary at infinity.
We consider the asymptotically flat boundary condition,
and accordingly, we modify the symmetry charges Hyys
and C; by adding the corresponding boundary charges.
Section IIT A introduces the boundary conditions and the
symplectic structure. Subsection III B shows that the
boundary charge of the physical Hamiltonian corresponds
to the ADM mass.

A. The phase space and the symplectic structure

In any asymptotically flat spacetime, there exits an
asymptotic Cartesian coordinate X“, such that the 4-metric
has the following asymptotic behavior at ry, — oco:

0 3
fap(X ’X/rO)—i-o(rgl),
ro

where ry = \/X'X;, and faﬁ(XO,)?/ro) is a smooth tensor
field on S2 at X°.” To study the asymptotically flat spacetime

in the reduced phase space, we propose that the material
reference frame given by the dust is asymptotically

Yap :naﬂ+ (31)

Cartesian. Namely, we identify 7 = X0 &= )?, and we

define r = y/6'c;. Then Eq. (3.1) leads to the following

asymptotic behaviors of ¢;; and 7'/ on the dust space S:
7

hi; N
ij = bij +%+0(r'1), ' :7—1—0(;").

(3.2)

A naively approach might be to adapt the standard
procedure [27-29] in our context, by expanding

IEAC):
o ij ij _
gij—éij+—r + r2 +0(}" 2), (33)
g @i B
T = ﬂ_2_|_”_3_|_ﬂ_4+ 0(,,—4)’ (34)
r r r

and imposing parity conditions to 1_11-]- and 7/.° The reason
of the parity condition is to make the following symplectic
form finite as R — oo

’In our notations, o(r*) means decaying faster than r* while
O(r*) means decaying as fast as ¢ for some constant a.

®For a function f(3) on S2, f(X) has odd parity if
f(=6) = =f(6); f(6) has even parity if f(-5) = f(0).

064079-5
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Q= / d*8g;; A Smil, (3.5)
Sr

where Sy is the dust space with radial cutoff R. €
diverges logarithmically as R — oo without the parity
conditions.

However, as to be clarified in a moment, the above naive
approach fails here because it is incompatible with neither
physical dust nor phantom dust (see the remark at the end of
this subsection), or it rules out many interesting boundary
charges. We make two modifications: (1) We consider more
general boundary condition by relaxing the parity con-
ditions, similar to the approach in [30,31]. Then a counter-
term has to be added to €, to cancel the divergent terms
in (3.5), as we will see in a moment. (2) We consider the
following more general falloff conditions including loga-
rithmic terms

©

hz log Il hi; _

=8+t Y (i), (36)

@ logr oa@i logr

ij T (log)ij (I)ij

T 2 + 3" + 3 AT
73

+ - +o(r ). (3.7)
Here, hu’ hl(}og>’ alog)i hz(‘f)’ 2@ zWij and 73V are

called the boundary fields, since they are functions on S,
which is the boundary of S. In order to analyze the higher
order asymptotic behavior of C;, we expand 7'/ to O(r™).
The motivation of adding log r-terms in (3.6) and (3.7) is to
include more general solutions of C; =0 (see [31] and
Appendix B of [29]). We next transform (3.6) and (3.7) to
spherical coordinates {r,6"}(A = 1,2). Here ¢* are the
angular coordinates, and they are the functions of the
traditional spherical coordinates @, ¢. They have odd parity
M —0,9+r)=—c(x, ).

log r

1. w1
=14l ot A g)+ S+

o(r?), (3.8)
Io o
Gra = hoa + = rh(l ¥ 4 - th) +o(r™), (3.9)
Gap = r*¥ap + rhag + IOg(”)h(log) + hﬁxg o(r?), (3.10)
e L2087 log r (log)rr 4 lﬂ_(Z)rr + gﬂ(ll)rr
r r r
ﬂ.(3)rr 5
i = +o(r2), (3.11)

r r r
ﬂ(S)rA »
+— (r=), (3.12)
g1 _,p logr 1 log r
77,'A _2 + (10g)AB + (Z)AB + 73 (ll)A
r r
2(3)AB
+——+o(r™) (3.13)

Here A and B are indices of the angular coordinates on S2,
and 745 is the metric on a unit sphere. We introduce some
short-hand notations for the following discussion

S = 1. - -
A= Ehrr’ kap = EhAB + AV aBs Aa = hyas
=27~ 7). =2 (3.14)

We need to impose some additional boundary conditions
to g; and . First, there is a parity condition that is
imposed to z(°9" and is compatible to the dust:

aloRrA (—g) = gllog)ra(5), (3.15)
This parity condition results in that the ADM angular
momentum becomes finite (it will be shown in Sec. IV).
Equations (3.8)—(3.13) yield

(1) (2)
Cr | log(r) og) G logr
C, = p + 2 C&Og)+7+ C()+O( )
(3.16)
© , log(r) _(og) Cﬁxl) log 2
CA:CA +_r CA +T+TCA +O(r_ )’
(3.17)
c ]
c= E0 1020 o) 4 g2y (3.18)
r r
where
V) =2(74 — 9,7) (3.19)
C(rlog) 2(ﬂ(log) 0, loglrd o 71-(10%)'/2) (3,20)
V) = —2(7 + Dyib), (3.21)
cl®® = —2Dprlloe)B, (3.22)
) = =2/7(D, Dk = D, Dk + D,4).  (3.23)
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The explicit expression of C(°2) is complicate and unnec-
essary for the following discussions. We will provide
further comments on this term in a moment.

Generically, the physical Hamiltonian density H,y
decays as O(r™') by (3.16)~(3.18) and (2.26). Then the
bulk physical Hamiltonian diverges logarithmically,

Hinys = I;g&[g &*VH g, = I;i_r){.lo|C(1)| log(R) + finite.
R
(3.24)

This integral is written in the spherical coordinates. The
coordinate volume is

d*V = drde'do?. (3.25)

To remove the logarithmic divergence, we introduce the
boundary condition

c) =o. (3.26)
The leading order contribution to H . is C (log) The parity
condition (3.15) has no impact on C(°¢) based on power
counting. It is convenient to analyze this in asymptotic
Cartesian coordinates, where the contribution of C1°%) is in

(10g <£7). On the other hand, with (2.24) and (3.7), one finds
that the leading order of the contribution from z(1°9)/ in C is
at O(k’fS "). As the result, regardless what parity condition

assigned to z(°2)/ it does not influence C(°2),
Given a functional f of the fields g;;, 7"/, the boundary
term of &f is a differential if

r—o00°

for B/|,_, depending on only boundary fields. In this case,
the variation of f + B is well defined, i.e., f + By is a
differentiable functional. If f relates to a symmetry, then we
call f+ B, the symmetry charge and B, the boundary
charge. If we only impose (3.6) and (3.7), then the
boundary term of SH, is not a differential thus cannot
be canceled by adding boundary charges. A resolution is to
impose some additional boundary conditions:

C"(“O) — CI&I()g) — C.Ell) — CE«I) — CE«log) —

Clog) £ (), (3.28)
In vacuum gravity, the boundary conditions for C and C;
are adapted on shell due to C and C; are constraints. All the
solutions of the equations of motion satisfy C =0 and
C; = 0. In our case of gravity coupled to BK dust, C # 0
and C; # 0in general, since the boundary conditions (3.26)

and (3.28) only impose C and C to be O up to certain orders
in the asymptotic expansion. Equations (3.26) and (3.28)
are viewed as additional restrictions, which restrict the
solution space of the equations of motion. In Sec. III B, we
will show that these boundary conditions ensure the non-
differential boundary terms in 6H,,  decaying fast enough
and vanishing in the spatial infinity.

Inspired by [30,31], the symplectic form € becomes
finite at R — oo after adding a counterterm:

Q= lim
R—o0 S

d30'5gl’j A 57Tij - 10g<R)% széf_l,J AN 57_l'ij,
SZ

(3.29)

with d?S = do'de?, and the & indicates the variation of
fields satisfying the falloff conditions (3.6) and (3.7) and
boundary conditions (3.15), (3.26), and (3.28). The counter
term of (3.29) may relate to the corner term in the
formalism of [41]. Note that Q does not depend on the
variations of the boundary fields 7'/, h;;, 7(1°2)1/, h(log) etc.,
in the expansions (3.6) and (3.7). Th1s can be seen by
inserting the expansions of g;;,7 in Q. Indeed, in
Cartesian coordinate, the boundary contribution of (3.29)
is 2 6o @25 (6740 A ShUE) + 52000 A 8hy;) + O(RT),
and it vanishes as R — oo.

We define the reduced phase space P to be the space of
fields g;;, 7'/ satisfying the falloff conditions (3.6) and (3.7)
and boundary conditions (3.15), (3.26), and (3.28). P is
equipped with the symplectic form Q. For any differ-
entiable function f on P, its variation on P is given by

of of
of = | & 89, =
: /s 6[591']'(0) 9() +5””(5)
where the variations 8g;; and ' preserve the falloff
conditions. If two differentiable functions f, f’ have the

corresponding Hamiltonian vector fields, their Poisson
bracket is given by

(sp= [ o [5911

In the above two formulas and formulas in the following
discussion, we adopt the following notation:

S R—o00 Sk

There are two remarks about the boundary conditions:
(1) By (3.16)—(3.18) and (3.28), we have C =
0(10;% " and & = O(r7!) in the Cartesian coordi-

C
nates. Then (2.26), (2.19), and (2.18) give

S (o—)} . (3.30)

sff &f of
)6 (o) 6 (0)69;i(0)

] (3.31)

(3.32)
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C

U;j=4=0(r"). Recall (2.17), we have C =

—\/det(9)p(¢"U;U;+1) in the dust space,
and ¢"U,U; = O(r™?). Thus, p = O(*%%). Refer-
ence [42] analyzes the spacetime coupling to a
perfect fluid with certain boundary conditions. The
asymptotic flatness conditions would be violated if
the energy density p decays as O(r~2). In our case,
the asymptotic flatness conditions, however, are
preserved due to the faster falloff behavior of p.

As mentioned above, naively adding parity condi-
tions to the expansions (3.3) and (3.4) does not work
in the BK formalism. In the cases without introduc-
ing logarithmic terms to the falloff conditions (3.2),
we need to impose C®) # 0 as the boundary con-
dition. The explicit expression of C?) is in Appen-
dix B of [28], where C(? contains the contributions
of the canonical variables with odd parity. It turns
out that the sign of C?) can flip under an antipodal
map. Since C o ,/gp, p can be smaller than 0 in
some regions and be greater than 0 in other regions,
whereas the BK formalism requires sgn(p) to be
constant. Introducing logarithmic terms to the falloff
conditions with appropriate parity conditions of
plog)

ij

nates, the leading order of C is “)E#CU%’) with
CM) = 0. The terms contribute to k”f# C°%) are the

second derivative of k’f#hl(-}og)
ducing even parity to hg}og) ensures C°%) has even
parity. Its sign does not flip under the antipodal map.
Nevertheless, relaxing the parity conditions give us
more general results. We will concentrate on the
relaxed parity conditions cases in our discussions

throughout this paper.

(@)

removes this problem. In Cartesian coordi-

. Henceforth, intro-

B. The boundary term of the physical Hamiltonian

In this subsection, we show that the boundary term that
arises from the variation 6Hp, is a differential under our
boundary conditions. Thus, we can add a boundary
Hamiltonian H4, whose variation cancels the boundary
term. Hyg, turns out to be the ADM mass.

Recall (2.29), [¢d*Vg/N;5C; and [ d*VNSC may give
boundary terms after integration by parts. First,

/ BEVGINSC; = / EV(37 Ly = 69, L")
S S

— lim
R—-oo [g2

d2S(2NJ5<ﬂ'rkgjk) - Nrﬂ'lj&glj)

(3.33)

The boundary conditions turns out to make the boundary
terms in (3.33) vanish at R — co. Indeed, recall (2.30),
we have

Ci
H

. (3.34)
phys

By (3.8)—(3.13), we find that the boundary term in (3.33)
vanishes at R — oo once C; decays faster than H, in
Cartesian coordinates. Equation (3.2) indicates C; decays
as fast as H,, without additional conditions and their
leading terms are O(r~3). The approach in Ref. [18] is to
add an e regulator to the leading order of C; such that C;
decays as C; = O(r7¢). Here € is a positive constant.

Then

(3.35)
With (3.35), the boundary terms of (3.33) vanish. In
this paper, we take a different approach by imposing

(3.26)—(3.28). First, in spherical coordinates (3.34) reads

Ca
.

N, =- . Ny=- (3.36)

H phys phys

By (2.30), (3.16)—(3.17), (3.26), and (3.28), we find the
following asymptotic behaviors of N,, Ny:

N =00,  N,=o(l).  (337)
Or for N and N4,
N =0, NA = 0(r?). (3.38)

Then we analyze the boundary terms in (3.33) by using
(3.8)—(3.13), and we obtain

j{z d*SN/5(n" g;) = ]gz d*S[N"8("" g, + 7P g,p)

+ NS(z" ge, + 7P gcp)).
— o), (3.39)
and
]{ d*SN" /%69 = ]{ d>SN"(7""8g,,
52 52
+27"8g,4 + 7485g,5),
— 0(r). (3.40)

When taking the limit R — oo, both terms vanish:
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R—oo 2

On the other hand,

The explicit expressions of A;; and B can be found in [18]:

1
Aij = 2Ng™ <”ij - Egljﬂ),

y I 1 - 1 T
Bi = -Ng (R” - EQUR> + ENg‘%g’J (ﬂmnﬂ’"” - 5712) —2Ng (ﬂ”"ﬂ"m - Eﬂ'“ﬂ')

+ ¢@(D'DIN — ¢'iD™D,,N).

lim ¢ d*S(2N/6(x*g;) — N'zisg;;) = 0. (3.41)
S S
(3.43)

Here N is the dynamical lapse function, rather than the Lagrange multiplier in the original ADM formalism. The boundary

term Ky reads (see Appendix A for more details):

1 A
Ky = I%im jg sz\/J7 (_EVAB(DrN)‘SVAB +77’BC(DAN)‘SVBC> - 2[%im
—00 SZ

d*S(NSK +No(yac)r**K5)

—>00 S2

N Vs M1 2B
+ llm sz\/?—(‘)' ——(aA/1+KAcﬂC)+DA/1A —DAél/{A - llm dQSWN— —}/BCDAéyBC—é _KBA
R-oo [ A A R— [ A\2 A
/1 A8 A8 5
. 2 AL B : 2 _ -
+1%1_£1010 szd SVYN ] 6(/1(6/424—1(/43/1 )) +1;1_{130jé2d Siﬁ( N e 0K p+NK,p o 12>
; 2 Al s BC
—00 SZ
|
Recall (2.31), we find YAB = B
2408
- =g ——. (3.48)
2
N = +£4/1+ g/N;N;. (3.45) A
D, is the covariant derivative compatible with y 5, and the
Here the “+ sign is for the phantom dust and the “~" sign ~ angular indexes A and B are lowered and raised by y,5 and

is for the physical dust. In Cartesian coordinates, the
asymptotic behaviors of N; (3.6) read

N, = 0(r ). (3.46)
It turns out that’
N ==£1+0(r2). (3.47)

Here y,p is the 2-metric on the S in the “2+1”
decomposition [28], which satisfies

"As a comparison, N decays as N = 1 + O(r~%) in [18].

its inverse y*2. By (3.8)—(3.13) and (3.47), the boundary
term /Cy to be a differential

’CN == _5Hbdy»
=F j[ d282/75(24 + D, i*),
SZ

=F4 7{2 d>S+\/76. (3.49)
s

The last step is because the integration region is closed.
Here D, is the covariant derivative compatible with 7,5,
and the angular indices A and B are lowered and raised by
¥ap and its inverse 742. We can add the boundary term
Hyg, to the physical Hamiltonian to make its variation well
defined. Where
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Hyqy = +4 ﬁz d2S\/74, (3.50)

and it is interpreted as the ADM mass. Here the “+” sign is
for the phantom dust, while the “—" sign is for the physical
dust. These signs are consistent with the convention that the
physical time evolution corresponding to the phantom dust
is future toward, whereas the physical time evolution
corresponding to the physical dust is past toward, see [18].

Hyg, is conserved under the physical time evolution, i.e.,

dI:% = 0. Note that /7 is fiducial in (3.50), we only need to

compute the physical time derivative of 1. We first compute
the physical time derivative of g,,.. Since asymptotically flat
cases necessitate the consideration of boundary terms, the
physical time derivative formula (2.28) needs to be modi-
fied as

dg
— = {grra thys + Hbdy}v

. (3.51)

and the result is

dgrr _1 1 —
- = Ng™ (ﬂrr - Eg,,n’) + L59,, = 0(r?) (3.52)

with the falloff conditions and boundary conditions intro-
duced before. On the other hand, 4 is proportional to the
coefficient of the O(r~!) term in g,,, and its physical time

derivative is induced by expanding (3.52) to the boundary.
Therefore,

di
—~ =0, 3.53
= (3.53)
and thus
dHpgy
—=0 3.54
= (3.54)

The similar boundary Hamiltonian is obtained by the
approach with the e regulator in [18]. However, as an
advantage of our approach, the boundary conditions
(3.26)—(3.28) result in more general symmetry charges,
which turn out to relate to supertranslations on the
boundary. We will show this in the next section.

IV. BOUNDARY-PRESERVING SYMMETRY
CHARGES AND BOUNDARY CHARGES

In this section, we firstly define the boundary-preserving
symmetry charges. Then these symmetry charges are
explicitly constructed as phase space functions. The
expressions of the symmetry charges contain both bulk
and boundary terms. The boundary terms are constructed
such that the variations of the functions are well defined on
the phase space.

Definition 1. G is a boundary-preserving symmetry
charge if
(i) G commutes with the physical Hamiltonian:

{G’ thys + Hbdy} =0. (41)

(i) The Hamiltonian flow of G preserves the falloff and
boundary conditions in Sec. III A.
We first introduce the vector fields used to construct
the boundary-preserving charges, which are denoted as
&= (E,8). As r - oo, & falls off as

E=f+0(rY),  E=W+0(),

H=r+ %IA +0(r ). (4.2)

For convenience, we require that the expansions of (&, E)
only contain integer order of #~!. f, W, and I* are functions
and vector field on S2, Y4 is the Killing vector field on the
S?. Their geometric meaning will be discussed shortly. The

boundary-preserving symmetry G(&, E) is constructed as

G(£,8) =J(£8) + B9, (4.3)
where J(&,&) is the bulk term
JEE =T () +PE), (4.4)
with
T(E) = [ Vit
P(E) = /S BVEC,. (4.5)

B(¢, E) is the boundary term, whose variation should cancel
the boundary term from 8J (&, £), where

wied - [ d3v[§5c (& +EVSC, + (B + BYsC,

& -
+ 5 HonysN'N'3g .

S

In (4.6), E=¢N, & = EN', and K(&, E) is the boundary
term. The bulk terms are
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1
Gij =28g (ﬂij - 59;’;”) + Lz9:; + 'ngij»

. - 1. 1= . 1
#1210 Ln) + L (e L)

~ . . 1 .. . L~ . -
— 2§y (”Zm”i" B 5”"”) + ¢(D'DIE~ giD"D,, &)

ij ij 5 inJ
+£Eﬂ] +;C%—'7l'] +§thySN NJ. (47)

Unlike the typical general relativity, the Eand the & in (4.7)
are dynamical. The terms Egg,- ; and Egn'ij are contributed

by E6H . The term 5 N'N/8g;  is the correction due to the
dust field.

We discuss the geometric meaning of the parameters
in (4.2). The boundary-preserving symmetry charges
generate the diffeomorphisms in the bulk and the asymp-
totic symmetry transformations at the boundary. The
asymptotic symmetry transformations at the boundary
preserve the falloff conditions and the boundary condi-
tions. The charges are classified into the following four

types:

G(f) = /Sd3Vprhys + B(f)’

G(W) = / SVWE, + BW),
S

G(Y) = / dVYAC, + B(Y),
S

G(I) = [S dW?CA + B(I). (4.8)

-

B(f).B(W),B(Y),B(I) are the boundary charges.
Physically, these four types of charges generate the
following four classes of the asymptotic symmetry trans-
formations at the boundary:
(1) G(Y): spatial rotations.
(2) G(f): supertranslations in
direction.
(3) G(W): The radius component of the supertransla-
tions in the spatial direction.
(4) G(I): The angular components of the supertransla-
tions in the spatial direction.
When f =1, G(f) reduces to the physical Hamiltonian
with the ADM mass as the boundary charge, and it
generates the physical time translation. As is shown in
[28], when

the physical time

W=W;=T,sinoycosc,+Tysinoysino,+ T cos oy,

" =14 =DAWy,

(4.9)

where Ty, Ty, T, are constants and other components of (&, E) are 0, G(¢, E) generates spatial translation since

o I4 0
Wr—+-L
or

T 7. % 7,2 .
r do* X 0oy doy do,

(4.10)

In order to obtain the boundary charge B(¢, E), we compute K(&, E) (see Appendix A for more details)

K(£,€) = lim

R—oo [g2

— lim
R—o0

B
— lim
R—o0

+ 1%1_{1.30 ?gz d*SA\/y <_§/1—55KAB + EKap

with ' = & + &. From (3.8)~(3.13) and (3.38),

d2s Eﬁ lBCD(S -5 A—K
o \/77 2 27 AOYBC P BA

. . 1 ~ A -
dZS(—Zuléﬂ{ + urﬂljégij) + Rllm f dzsﬁ(—z AB(D,,S)&}/AB + TyBC(DA§)5y3C>
—00 s2
. . 3 Vs
s? —o0 g2
: 2 ~AA 1 B
+ lim dS\/yg—é _(0AA+KABA )
R—o0 52 /1 /1

JALB JAIB )
* 2

R—o0

A
+ lim 7{ d2s\/fy <—SDA G) 84 — %VBC(DCE)57A8> :
S2
(4.11)
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K(£ &) = lim d?S(-2RY4s7, — 2Y4 10g<R)5ﬂ20g)r

R—oo [

—2¥AS(7" Ay + 2P + 7 hp)

— 21487, = 2W8™ F 2\/7f8(20 + D24Y)).
(4.12)

Similar to the discussion in Sec. III B, we want to show C
as a differential of certain boundary charge 5. There are
two terms in /C that would be divergent without the suitable
boundary condition (see Appendix B of [29] for similar
results): As R — oo, the term 2R §, d2SYA57, is generi-
cally divergent linearly but vanishes by imposing the

boundary condition C ©)

Y4. Note that Y* has odd parity and nﬁog)r = VupT
the term -2 § d*SY4 1og(R)5ﬂ§°g)r is generically diver-
gent logarithmically but vanishes by (3.15). Finally,

= 0 and the Killing equation of
(log)rB’

K(£.8) = fz S(=2YAS(7"7 Ay + 7y + 7 Bhap) — 21757,
N

—2W8z™ F 2\/7f8(24+ D4JN)). (4.13)

In order to fulfill (&, E) = —38B(¢, E),

B8 = §, &SV (4lfas = Tran)?”
+ 275" + 24 (P + 273))
+ f d2S(2M17 4578 + W(p + 274)
+ 2?@0(21 + Dj2%))
= B(&) + B(&). (4.14)

where

B(&)
B(E)

B(f).
B(Y) + B(I) + B(W).

(4.15)

Here B(f), B(Y), B(I), and B(W
boundary charges:

) are the four types of

B(?) = ?{ szYA(“'(]_;AB — 2ap)®® + 27 upn@E
SZ
+ 24 (P +278)),

B(1) = 7{ d282147 ,p 7B
S’l

BW) = 7£ PSW(p + 271).

B(f) = (4.16)

+ ]4 d2S2\/7f (2 + D, A%).
SZ

The boundary charges (4.14) are finite. By (3.16)—(3.18),
(3.26), (3.28), and (4.2), J(¢, E) are also finite. Thus, the

boundary-preserving charges G(&,&) = J(£, &) + B(&.€)
are finite on the phase space. Additionally, by adding
the boundary terms B(¢, E) the variation of G(¢, E) is well
defined. Furthermore, similar to the discussions at the
end of Sec. III B, one can show the boundary charges in
(4.14) are conserved, and the detailed discussion is in
Appendix B.

The symplectic form defined by Eq. (3.29) is preserved

by G(¢, E) First, Eq. (3.29) only contains bulk terms, as the
boundary term of the integration limg_ f Sk d*edg; i A

or'/ is canceled by the counterterm, as previously dis-

cussed. Second, the variation of G(¢, E) is well defined,
implying the existence of corresponding Hamiltonian
vector field. Consequently, the transformation on the phase

space generated by G(¢, E) is a canonical one, which
preserves the symplectic structure (see Appendix C).
Before ending this section, we would like to compare our
results with the results in [28]. First, our work is concep-
tually different from [28]. The result in [28] bases on the
traditional formulation of general relativity, where the bulk
is a totally constrained system, thus the symmetry charges
vanish in the bulk and only have nonvanished terms at the
boundary. The result in our case, however, is based on the
reduced phase space formulation. The gravity-dust system
on the reduced phase space is not a constraint system any
longer and has a physical Hamiltonian. Therefore, our
symmetry charges have both nonvanishing bulk and boun-
dary terms. The transformations generated by these charges
are symmetries but not gauge symmetries. Second, although
some boundary terms look similar to the ones in [28], there
are several additional boundary terms in our results,
including 2 ¢ d>SWz4 and 4 §p» d>SYAk, 7. These
terms vanish when the parity condition in [28] is imposed.
Finally, [28] considers the symmetry charge corresponding
to the boundary boost, which requires ) 4 = 0. However, we

do not take into account the boundary boost in G(&, E), )
we do not need to introduce 44 = 0 here.

V. ALGEBRA OF THE BOUNDARY-PRESERVING
SYMMETRY CHARGES

In this section, we obtain the algebra of the boundary-
preserving symmetry charges by computing their Poisson
brackets. Section VA presents some detailed computations
of the Poisson bracket between a pair of G(¢,¢) for &, &
satisfying the boundary condition (4.2). In Section V B, we

show that G(¢, E) form a closed Poisson algebra up to a
central charge, and we also discuss the relation between this
algebra and BMS algebra. Section V C checks that the
boundary conditions (3.28) are preserved by the trans-

formations generated by G(¢, E)
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A. Computing Poisson brackets between the boundary-preserving symmetry charges

We first derive the following useful relations. In these derivations, the vector field (&, E) satisfies (4.2). The boundary
charge B(£) is given by the second equation of (4.15) and B(&) = +B(&) = §p d252\/7 (22 + D,I*), where B(&) is given
by the first equation of (4.15). First,

{/dBVfllCl +B(El>,/d3V£éC, +B(Ez)} = / d%V[—Eaﬂ'”Légu +£§_Iglj£§;ﬂlj]’
S S S
:/d3V[El,EZ}jCj+2I%im/ dzs[gl,e?z]j”} (5.1)
S —00 SZ !
Second,
N N o1 1 U 1
{/ d3V§1C+B(§1),/d3V§zC+ B(éz)} = /d3V[§197<R” ——g”R) -=&197g™ (ﬂmnﬂ’"" ——712)
S S S 2 2 2
1 . i 1 .. 1 P .. 1 1
+2&1972 (ﬂ""ﬂ'm _E”Uﬂ> - @(D'D/& — g”DmD'"il)] &g (”ij _Egij”> - (1 < 2),
= [9 EV(EDIE - &EDIE)C; + 2 lim ﬁ ES(&\DIg - £DIE) ), (5.2)

Third,
. - ~ .. 1 1
{/ dEVEC; + B(&), / d*VEC + B(fz)} = /dSV{—zﬁg mégm (”ij - —gij”>
S S S ! 2
L . 1 .
— Lz g;) {5297@” —9'R) - Efzguc
+26g7 (nfmnin - %:ﬂ'in) - ¢(D'DIg, - giijDmfz)} }
— [@vaae)c -5 B - fim § eseec. (5.3)

Before continuing, we introduce the notation 65. For a vector field E in (4.2), 559,» ; and 657?1' are given by

0:9ij = {gijv/sd3V§i1Ci +B(El)} = Eggij (5.4)
and
Sen' = {ni-f, /8 BVEC; + B(El)} = Lzn¥, (5.5)
respectively. We only consider 65 acting on phase space linear functions f[g;;, 7],
5Ef[gijv”ij} = f[éggijvégﬂij}' (5.6)
The boundary-preserving symmetry charges G(¢, E) can split into the temporal part G(£) and the spatial part G(E):
G(£.8) = G(&) +G(d), (5.7)

where
G(®) = /5 EVEH 4 B(&).

G(&) = /S dBVEC; + B(E). (5.8)
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The Poisson bracket is bilinear,

{(G(£1,8)).G(&,8)} = {G(&) + G(&).G(&) + G(&)}
= {G(&).G(&)} +{G(&).G(&)} +{G(£).G(&)} + {G(&). G(&)}-

By (5.1), the first term of (5.9) becomes

(GE).GE) = [ PVE.EVC;+2fim § @56 &)

By (2.29), (5.1), and (5.2),
- . ~ 1 . - 2
{G(fl),G(fz)}:/Sd3V§’18,-(§2)C—2fsd3V§2thysN-’Nkﬁglgik+/Sd3V[§1,§2]jCj
-5 B(E,) - lim 7{ d>SErE,C + 2 lim ]{ dZS[El,Ez]jn;,
1 R—00 s2 R—o0 s2
= lim /S FVEDi(E)Hpnys = 6 BE) = lim  ¢SEEC + 2 Jim j{ ES[E. &) .

—00

Similarly,

{G(51)7G(§2)} = —{G(22)7G(51)}’

i R(E : rg : 2z F4 r
= —[Sd3V§zDi(§1)thys +5528(§1) +1%1_{I.}° o d25§2§1C—21;1_{£10£2 sz[fz,fl} Ty

By (5.1)~(5.3),

{G(§)).G(&)} =B+ 21;1111 ]{ d?S(&,DIE, - fszjégl)”f — B(&,)
-0 [g2 1

— lim d255152c+5§ B(&) + lim ]f d2SEE C+2 Jim d2S[E,.&)n’,
SZ 2 — 00 SZ

R—o0 —oo Jg2

where the bulk term B is

B:/Sd3V(§1Dj§2—§2Dj§1)Cj+/Sd3V§{Dj(§2)C—Ld3VE£Dj(§1)C+/Sd3V[§1,§2] C;
PV 1 1 S 1
+/d3VthyN'Njflfzg_7(ﬂij—Eﬂgij> —5/d3VthyN’N152§19_7<ﬂij—5”91‘,)
S S

+/Sd3VthyNiNjlei<§2)j _/§d3VthyNiNj§2Di(gl)j'

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

This term turns out to vanish, in agree with the result of [39]. The detailed computation is provided in Appendix E.
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In summary, with generic ¢, E, the general form of the Poisson bracket between a pair of G(¢, E) reads
(66166 B)) = [(@VELEIC,+ [ OVIEDIE) - D4 (6)
- 5: B(&) - lim j[ d2SEE,C + 2 lim f sz[El,fz]jﬂj’»Jrég B(&)
1 R-o [ R-oo [g2 2
+lim ¢ d2SEEC—2lim ¢ d2SE,E x4 2lim ¢ @2S(EDIE - EDIE)
R—oo [g2 R—-oo [g2 R—oo [¢2
—6: B(&) — lim ¢ d*SEEC +6: B(E) + lim ¢ d2SEE C
i 52 & R—oo [

R—o0

- -

+ 2 lim ]{ dZS[fl,fz]jﬂ']r- + 2 lim f dZS[El, Eﬂjﬂ;, (5.15)
R—oo [g2 R—oo [g2
where & = EN, E = EN'.

B. The Poisson algebra of symmetry charges
We take into account the boundary condition (4.2) for &, E The bulk terms of (5.15) become

[ avidic; « ) (5.16)
S
where ff %j are

&= E\ D&, — EXDE,, &= [Eh Eﬂj- (5.17)

The smearing fields &, 5, 51,2 satisfying (4.2) imply that % c:&j also satisfy (4.2), see Appendix D. The boundary data of % ;Ej is
denoted by 17,7, ? ﬁ/, and they have the following relations with the boundary data of ¢&,, 51’2, denoted by
Yio,Lin, f12.Wia

YA =YBDgY4 — (1 < 2),
JAC =Y10,f>— (1 < 2),
W=Y40,W, - (1 < 2),
1" = YEDgl4 + I8DgY4 — (1 < 2). (5.18)

The boundary terms of (5.15) include four parts:

Bflvfz — —5518(52) - I%EI;IO %gz d2S€i§2C + 5526(51) + 1%1_1;1;10 52 szé‘SflC

+afim § @By 2fim § @SEDE - B0 (5.19)
By g, = 2lim ), &S[E. &)/, (5.20)
B: . =—5:B(&) - lim 2 d>SgE,C +2 Jlim ﬁ d2S[E,, Ez]jn;, (5.21)
B,z = 5:B(&) + lim 75 d*5556,C - 2 lim 7€ d@2S[Ey, ] n. (5.22)
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They come from {G(¢1). G(&)}, {G(&).G(&)}, {G(&1). G(&)}, and {G(&). G(&,)}, respectively, and the boundary
term of {G(&,.£,).G(&,. &)} is Be g, + Bz z + Bz o + B, z. Next, we evaluate them individually. By (3.8)~(3.13),
(3.38), and (4.2),

Be, e, = _5518(52) - 1%1_{1.}0 j{Z d>SEE,C + 552[3(51) + 1;1_{{)10 ) d?S&é C
N S°

+210im ¢ d2S[E,, &)ix’ + 2 Jim ]{ &2S(E,DIE, - EDIE),

R—o0 s2 R— 0 s2?
= —6: B(&,) + 6z B(§,) — lim 7{ d2S&,&N'NC + lim jaf d2S&,EN'NC

& & R—c g2 R-oo [

+ 2I§im d*S(EIN/N¥0 (&) — E;NINFO (&) + 21%im ]4 d*S(&,D/E, — & DIE)N?

— 00 SZ —00 SZ

= —5515’(52) +5§28(§1)~ (5.23)

Recall (4.16), we have
5518(52) =F ]i dZS\/%fz(ztang +2D4 (5 AY)). (5.24)

Here 55 2 is determined by the coefficient of O(r~!) of 62 g, and 5E A4 is determined by the coefficient of O(1) of 543 GrA-
1 1 1 1
With (3.8)—(3.10) and (3.38), we have

8z g = O(r7), 8z 9,4 = O(7). (5.25)
1 1
Henceforth,
5: =0, 8z 24 = 0. (5.26)
i i
Consequently, we have
5515'(52) = 5525’(51) =0. (5.27)

Therefore, we obtain B; ¢, = 0, so the symmetry charges G(&) form an Abelian subalgebra. By (3.8)—(3.13), (3.28), (4.2),
(4.16), and (5.10),

B; ;= 2Jim ¢ S &)'x,

= 21im dzs[gl,é]’nHzl;im RIS
2 —00 SZ

R—o00 s

=21lim ¢ d*S&xl 42 lim d>SE
—00 SZ

R—o0 S2
- 74 PSP (A(kap = Fap) 7™ + 204578 + u(p +225)) + ]{ Q252147 1778 + f @SW(p +274)
SZ SZ Sz
+21im ¢ d2SRY*%, +21im ¢ d*Slog(R)¥*x|*",
R—o [g2 R—oo 2

= B(W) + B(Y) + B(I) + 2 lim ), 2SRV 7} + 2 lim ), S log(R) VA", (5.28)
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The commutator of Killing vector fields ¥4 = [¥,, ¥,]*
is still a Killing vector field on S? and it has odd parity.
Similar to the discussions in Sec. IV, the terms limg_ .,

$o PSRYA%, and  limp_ o §o d2Slog(R) A7\ are
actually vanishing rather than divergent. As the result, we
obtain

B: : = B(W) + B(Y) + B(I).

i (5.29)

By (5.11), we obtain
By ., = -0;B(&) - Jim § @seiéc
+21im ¢ 25, &),
R—o0 s2 K
=¥ jéz dsv7 f2(4651/_1 +2D4(8;, )
— lim
R—o0

(5.30)

By (3.8)—(3.13), (3.18), (3.26), and (3.38), we find the last
two terms vanish. Therefore,

Bye =% § SVEf(40; 14 2D,(0,7). (531)
S2 1 1

d2SETNE,C 4 2 lim f dS[E,. &N .
s2 R—o0 2

Here

8z 2 = Y{Dal, (5.32)
5&’[/_/{‘4 = E?]ZA + DAW1 - 7ABIBl' (533)
In Appendix F, we prove
DA(‘C?IZB) = E?l (DAZB) (534)
By this result, (5.31) becomes
B; . =% 7@ d>S(2/7YEDg(f,)(24 + DyIY)
= 2V7f2(DADsW, — DyI)). (5.35)

Here we have used the Killing equations of Y. Similarly, we
obtain

By . +B,; =+ ?gz ES(2V7YTDp(f2)(24+ Da2?) = 2/7f2(D*DaW, = Dy11))

T i PSQVFYEDH(F1) (21 + DyI) = 207 £, (DDA, — DyI4)).

= B(}) +C(.8),

where

B(f) =+ f; d*S2\/7(YEDgf> — Y5Dpf1) (22 + Da2%).

(5.38)
and
CE.d) =F 2§ PSVEA(DDAW, = D)
— VIF(DADAW, — D)), (539)

Therefore, we have the following Poisson algebra of

G(& &)

Bz = §, @SQVTYED,(f1)(22+ DaT)
s2
— 25 £ (DAD,W, — D,y IA)). (5.36)
Then we have
(5.37)
(G(£.8).G(En &)} =GE.E +CE . (540)

Although the Poisson algebra of G(¢, E) is not immediately

close, the quantity C(Z’, E) is a phase-space independent
constant, and furthermore it is a central charge (see
Appendix G for detailed discussion). As a result, we find

the symmetry charges G(¢, E) together with the central

charge C(& &) form an infinite-dimensional Lie algebra
under the Poisson bracket. This algebra is denoted by Ag.

In particular, if the G(&,, &) in (5.40) is restricted to the
physical Hamiltonian with boundary term, ie., &, =1,

32 = 0, the result of (5.40) vanishes. Indeed, it is obvious

that the bulk terms of (5.40) vanish. For the boundary
terms, (5.37) reads
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Bgl,l + B0 =F ngz d?S\/7(DAD,W, — DIt = 0.
(5.41)

The last step is because it is integrated on a closed surface.
Therefore, the boundary-preserving symmetry charges
commute with the physical Hamiltonian, which satisfies
the first requirement of Definition 4.1.

The central charge C(¢, E) vanishes when we require the

boundary data of .f,c_f to satisfy certain conditions. For
example, R
(1) I* = DAW for the boundary data of &.
(2) The parity condition: we assign the odd parity to W
and the even parity to f and [4.*

We next compare Ag to the original BMS algebra, Agys
[32-35]. Before discussing the similarities, it is important to
note the distinctions between the two algebras. The original
BMS charges are defined as boundary charges at the null
infinity of an asymptotically flat spacetime. In contrast, the
charges in Ag have both bulk and boundary terms, while
being Dirac observables on the reduced phase space.
Furthermore, the boundary in our study is defined at spatial
infinity. In addition, the fact of no imposing suitable parity
conditions on the leading order fields at spatial infinity
yields logarithmic divergences at null infinity, preventing in
this way to find BMS algebra there [36—38]. Therefore, here
we compare the algebraic structures of these two kinds of
algebra, setting aside the associated physical interpretations.

The boundary-preserving generators defined in this work
are significantly larger than the original BMS charges. In
the bulk, they generate arbitrary physical transformations.
Consequently, comparing Ag with the traditional BMS
algebra directly is meaningless. Nevertheless, we can
construct a quotient Lie algebra of Ag, which is denoted
as AG. AG is determined by boundary data of &, and we
will compare it with the original BMS algebra. We consider
the vector fields v* = (v, V), which satisfy f =W =0,
YA = I* = 0 in (4.2). The symmetry charges correspond-
ing to v# constitute a subalgebra of Ag. We denote these

charges by G(v,7) and their algebra by Ag. G(v,7) is
given by
G(v,7) ==/d3Vvahys+/d3ijCj. (5.42)
s S

Note that (5.42) contains no boundary term. We next
demonstrate that AG is an ideal of Ag. First, it is obvious
that Ag is a subalgebra of Ag. The algebraic structure of

D ,D* preserves the parity of W: Note that D,DAW =
0,0"W +7 T4 ,0°W. The first term preserves the parity of W
obviously. For the second term, note that 7,5 has even parity, and
7T is first derivative of ¥4, thus 7T} ; has odd parity. Therefore,
the term 7T ,08 W also preserves the parity conditions of W.

Ag naturally induces an algebraic structure of /ig, which
is given by the Poisson bracket of the generators.

V G(v. 7)€ Ag, G(¢.8) € Ag, we have

{G(v.7).G(&.&)} = G(0, D), (5.43)

with
b= vi0;E o, (5.44)

and
o = [3,&. (5.45)

Therefore, G(7, 1A7) € fIG. Consequently, /IG is an ideal of
Ag. Next, we define a equivalent relation between the
elements of Ag:

Deﬁnition 5.1. Given G(é‘l,él)

(51,51) is equivalent to G(&,, 52) if

G(&. &) € Ac.

G(§1,E1) —G(fz’gz)ev‘{(;- (5.46)

With the equivalent relation given above, we define a

quotient Lie algebra of Ag
Ag = Ag/ Ag. (5.47)

The algebraic structure of AG is naturally induced by the
algebraic structure of Ag. First, we define a projection
: Ag — Ag as follows:

Definition 5.2. ¥ G(¢, tf)eAg, G(v, )EAg, the
projection IT is a linear map I1: Ag — Ag,

M(G(.8)] =TG(&. &) +G(v.7)] = G(6.8).  (548)
with G(¢, &) € Ag.

The value of G(£&, &) only depends on the boundary data
of &. The algebraic structure of A; naturally induces a

algebraic structure of AG by IT

(1) Addition: Given G(fl,éjl) G(&.8) € Ag. Then
we have
G(er &) = [G(&.&))],
G(&. &) =T[G(6,5) (5.49)

Then the addition of AG is given by

H[G(EI,E}) + G(fz,;éz)}-
(5.50)

6(51731) + G(fzvgz) =

The self-consistency of this definition is easy to
check: Given G(v,, 7). G(v,.7,) € Ag, then
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(@)

3

6(51,51) = H[G(ﬁl,%}) + G(vy. 1)),
G (&, 52) =M[G(&, ;éz) + G(v2. 1)) (5.51)
As the result, we have
G(&1.8) + G(6. &) =T[G(£,.&) + G(v,. 7))
+G(&.&) + G0y, 5],
=M[G(¢,, El) +G(&, Ez)]
(5.52)

Scalar multiplication: Given G(&, &) € Ag, with

G(&.8) =TI[G(£, ). Ya€R, the scalar Multipli-
cation is given by

aG(&. &) = MaG(£,&)). (5.53)

Multiplication: The multiplication is essential in the
definition of an algebra. In our case, we denote it as

{ -}, which is a bilinear map {-,-}z: Agx
AG - Ag, and it is defined as following: Given
(51,51), (cfz,cfz) € Ag. Then we have

G(&.&) = [G(&. &),

G(6.8) =[G (5. 5)). (5.54)

The {-, -} is defined as
{G(Zjlvgl)v G(fz,gz)}g = H[{G(Zjlvgl)v G(fzfz)”
(5.55)

Next, we check the self-consistency of the definition
of {-,-}5. Given G(v,,7,), G(v,,7,) € Ag, then

G(&.&) =[G(&, &) + G(vy, )],
G (&, 52) =M[G(&, Ez) + G(v5,V5)]. (5.56)

Note that Ag is an ideal of Ag, we have

{G(£1.8) +G(v).5)).G(E2.&) + G0, 1)}

={G(f§1,§1) (52152)}+{G(51»§1) G(va.75)}
+ {G(Ul,vl)»c(fzﬁz)} + {G(Ul,vl),G(Uz,Uz)},
={G(£1.£)).G(&2.8)} + G (v. 7). (5.57)

with

G(v,7) = {G(£1, &), G(vy, 1)}
0,
1)

+1{G(0.7),G(.8)}
+{G(v1.7,).G(va, %2)}, (5.58)
and G(v,¥) € Ag. Consequently, we find
{6(51751)76(52752)}3 = H[{G(§17EI)
+ G(Ul, 771)7 G(§27 52)

+ G(v2, 1)},

= H[{G(f], 51), G(é% 52)}]
(5.59)

In the original BMS algebra, the supertranslations
form an Abelian subalgebra, which is denoted as
AL in this paper. Similarly, in our work, as indicated
by (5.40), G(f) and G(W) also form an Abelian subalgebra
when the central term F 2 §o d>S(\/7 /2D DWW —
V7f1D*D4W,) vanishes. This central term arises from
the contribution of W in (5.39), and it vanishes if we assign
even parity to f and odd parity to W. Therefore, we have an
Abelian subalgebra of AG, which is denoted as A(Ga b, Next,

we show that fig b i analog to Al(;l\l/?s. Indeed, Ref. [28]
proves that in vacuum gravity, the algebra of the super-

translations at the spatial infinity is isomorphic to Ag“hﬁg
(which is at the null infinity). We provide a brief review of
the proof below. We first rewrite the asymptotically flat
metric (3.1) using a generalization of the Beig-Schmidt
ansatz [31,43,44]

20

Gudxtdx? = (1—1— . + —I—o( )>dn +o(n V) dndx®

0 .
+n Zh(aﬁ + n(kab ~20hy) +log i

—l—h +o(n°))dx*dx’. (5.60)
Here
w =+ (5.61)
The coordinates x¢ are
= (s,x%) (A=1,2), (5.62)

where X4(A = 1,2) are the angular coordinates, and

s = +t/r. (5.63)
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o, kyp, i,4p, and hsz) depend on x“ only. The spatial infinity
is given by the limitation # — oo, and the boundary metric

h(a(;) is the metric of a unit hyperboloid, which reads

-1

©) gvagb —
h,, dx*dxb = (1= )

Sds? + (5.64)

1
e YapdxAdx®.
-5

The covariant derivative compatible with hfg] is denoted
as D,.

Next, we aim to establish a connection between the null
infinity Z* and the spatial infinity i of the asymptotically
flat spacetime. In the geometrical definition of the asymp-
totically flat spacetime (M, g,,), one requires that there

exists a conformal spacetime (M. ), such that

G = Qg (5.65)
Where Q is a scalar field satisfying certain conditions [45].
To construct Q explicitly, we follow the scheme described
in [44]. Assuming some smoothness conditions for the
metric around the spatial infinity (for more details, refer to
[46-48]), we can introduce a new coordinate system in a
neighborhood of ¥, which is (p,s,x*). p is a new
coordinate we introduce, which is given by

1
= ——.
pV1—s?

Note that the spatial infinity is given by # — oo. Therefore,
it is also given by p — 0. Then Q reads

)

where Q and @ are some scalar functions satisfying

(5.66)

(5.67)

limp~'Q =1, limd = 1. (5.68)
p—0 p—0
The null infinity Z% locates at
s = +a. (5.69)

At the neighborhood of i°, the null infinity Z* locates at

s ==+1. (5.70)
Then we can connect spatial infinity and the null infinity by
taking the following limitation:

p — 0, s — +1. (5.71)
The parameter that characterizes the supertranslation is
govern by the following equation

D,Dw =0, (5.72)

where o is a function of (s, x*). Reference [44] states that
the solutions with odd parity’ of (5.72) correspond to the
supertanslations, which are isomorphic to the usual BMS
supertanslations. These solutions are

o= (1-s>)""2a. (5.73)

Here & can be expanded by the spherical harmonics

1
D= W)Y u(xh), ¥,==(1-5%)720%Q,. (5.74
@ ;wl,m l(s) lm(x ) ! 2( s ) sQl ( )

Here Q,(s) are Legendre functions of the second kind and
can be written in terms of Legendre Polynomials P;(s) as

1+5s
1-ys

0/() = P15 1o

) +0,s),  (5.75)

where Q,(s) are polynomials. Furthermore, we have the
following limitation:

lirrll ¥, =1, (5.76)
which can be found in [44]. We then introduce
7 =1lim (V1 - s’w). (5.77)

s—1

Here 7 can be viewed as the parameter of usual BMS
supertranslations, and it is expanded as

T = Zwlmylm(xA)

Im

(5.78)

In Ref. [28], f is assigned with even parity and W is
assigned with odd parity. Then the subalgebra formed by f
and W is isomorphic to the subalgebra formed by 7. To see
this, we need to show the coefficients w,,; in (5.78) can be
determined by f and W completely, and vice versa. Note
that @ is odd, we can set its initial conditions at s = O:

asw|s:0 = asé)|s:0 = f(xA)'

(5.79)

a)|s:0 = d)|s:0 = W(xA)’

Note that W is odd and f is even, they are expanded by the
spherical harmonics as

°Here odd parity means w(s,x4) = —w(—s, —x*).
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2k+1
W=>" " WuirnYaiim
kK m=—2k-1
Z Z Sokm¥Yokm- (5.80)
m==2k

As the result, the coefficients w,,; are determined by

a)Zk,maslPZk | =0

:ka,m'
(5.81)

@it mYors1l5—9 = Wkt 1.mo

Therefore, the algebra of the spuertranslations obtained in
[28] and Agl\l,’l)s are isomorphic.

In our case, the BMS charge might be ill defined at the
null infinity due to the relaxation of the parity conditions
of the canonical variables, as previously discussed.
Nevertheless 1t is still interesting to analyze the similarity
between .AG and the original BMS supertranslations.
Here we emphasize that we only compare the algebraic
structure of these two algebras, setting aside the associated

physical interpretations. Note that .,élg " is formally equiv-
alent to the algebra of the spuertranslations obtained

in [28]. Consequently, fl(ah) can be considered as an

analogy of ABMS at the algebraic level. In general, f and W

are not required to have the parity conditions. Moreover,
we have additionally the supertranslations contributed by
I2. Therefore, the subalgebra in AG of supertranslations
represents a generalized algebraic structure of the original
BMS subalgebra of supertranslations.

The asymptotic spatial rotations in .AG form an SO(3)
algebra thus is analogous to the corresponding subalgebra
in BMS. The commutator between the supertranslations
and spat1al rotations also involves the central charge of the
algebra

It is also interesting to compare .AG to the results in [28],
which constructs the BMS group at the spatial infinity. The
analysis there relies on the usual falloff (3.3) and (3.4) and
the parity conditions on #; ; and 7;;. The resulting BMS
algebra in [28] does not have the central charge due to the
additional boundary condition 1, = 0. Preserving 1, =0
needs to require /4 = \2/”- 7" + DAW, where b is the boost

parameter. AG does not take into account the boost, and
b = 0 precisely reduces this requirement to /4 = DAW for
vanishing C(¢, E) mentioned above. Another way to make
C(¢, E) vanishing is to assign even parity to f and odd parity
to W. If we impose these parity conditions to f and W and
require 14 = DAW, then Ag recovers the BMS algebra at

YAs a comparison, the central charges obtained in [35] are
field dependent, whereas the central charge here is not.

spatial infinity given by [28] with vanishing » (vanishing
boost generators).

C. Preservation of the falloff conditions
and the boundary conditions

This subsection shows that the boundary-preserving
symmetry transformations preserve the falloff conditions
(3.8)—(3.13) and the boundary conditions (3.28). This
means that the transformations generated by the boun-
dary-preserving charges are restricted in the phase space
defined in Sec. III. .

As stated in Sec. IV, G(&, ¢) is finite and its variation is
well defined in the phase space. Therefore, the Hamiltonian
flow of G(&.&) is well defined and we can compute the
transformations of the canonical variables with Poisson
bracket:

5691']' = {gij’ G(f» E)}’

- 1 ~

G(£.9)}.
= &g (gikgf’ GRy - %g"" (3)R>

ogr’ ={x",

1., . 1
+§fg'ig’~’ (ﬂ'mnﬂ:m" —2]1'2)
~2£g™ <7r”"7r’m - 5n’/7z> +¢(D'DIE~ gD, D"E)
+£§:ﬂij+§thysNiN/+£gﬂu_ (5.83)

Here ((¢, E) is given by (4.2) and & = N&. GIR;, is the
Riccei tensor of g;; and ()R is the corresponding Ricci
scalar. With (3.6), we have

log( ) Rl

\|%l

CIRy = —% 4 +0(r ) (5.84)

in the asymptotically Cartesian coordinates. Then we find

,’:{l 1 0
869 =~ + Of( )H“ 9L 0(r2),  (5.85)
_ -~
Som'l = P_zj +w7p(log>ij +P_3J
r r
log(r) i 4
r

We have used H;;, PV, H,;; (log) plog)ij p2)ij PUDij 1o Jabel

the expansions coefﬁments whose explicit expression may
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not be useful for the discussion. Equations (5.85)—(5.86)
satisfy the falloff conditions (3.6)—(3.7). Additionally,
(5.86) gives

S n,rA — 7_)rA 10g(}") log )rA + ’P(Z)VA
G }" r
log(r) ., -
+ 5P 4 o). (5.87)

Especially, Plog)4

#1974 is preserved.
The charge G(¢, 5) infinitesimally transforms C; as'!

= L;n1°9)"A_ Therefore, the parity of

{C;.G(E. 8} ={C;.G(&)} +{C;. G(E)}.
=0,(&)H phys T £3C,
= 0;(&)Hphys + E'D;C; + CiD;E + C;D;E'.
(5.88)

To check the boundary conditions of C; are preserved by
(5.88), the asymptotic Cartesian coordinates are conven-
ient. With (3.16)—(3.18), (3.26), and (3.28), we can rewrite
the asymptotic behaviors of C; and H, in the asymptotic
Cartesian coordinates

log r

1 _
€ =5 "+ o(r ), (5.89)
log r _
Hypnys ==~ H®® + 0(r™). (5.90)
Additionally, with (4.2), £ = O(1) and & = O(r) in the

asymptotic Cartesian coordinates. Thus (5.88) gives

(€GB} = (k’f )

which agrees with (5.89). Since H
[49],

(5.91)

phys commutes with itself

G(¢, é’) infinitesimally transforms H yy as

{thys’ G(f, E)} = {thys’ G(f)} + {thys’ G(f’ E)}7
= EEthys = Di(finhys) = ai(finhys)'
(5.92)

Note that Hy is a density of weight one, D; can be
replaced by 0; in the last step. Similar to the discussions
above, we have

""We apply (D;D; — D;D;)v* = —R,;*v' in the calculation.

{thysv G(é’ E)} =0 (log4 r> y (593)

I%

which agrees with (5.90).

VI. ON THE BOOST TRANSFORMATION

In this section we discuss the boost component of the
boundary-preserving generators. We will explore some
challenges that arise when considering the boost compo-
nent, which is why we have chosen not to include it in
this work.

The vector field of the boost component is [28,29]

&, =rb, (6.1)
where b(c?) is the boost parameter, satisfying
DADBb + 7ABb = 0 (62)

In the traditional spherical coordinates {0, ¢}, b takes the
following formula
b = by sin 6 cos ¢ + b, sin 0 sin ¢ + b; cos 0. (6.3)
Here by, b,, and b5 are some constants. It is obvious that b
has odd parity:

b(m—0,p+x) =

—b(m, ). (6.4)

We formally construct the boost component of the boun-
dary-preserving symmetry generators as

G, = / BVEH s + By (6.5)
S

To ensure the finiteness of the bulk term of G, it is
necessary for Hp to decay at a faster rate than O(r2) in

the spherical coordinates. We first introduce the higher
orders falloff conditions of the canonical variables:

[a—

1- o 1 1
Gor = 1+ Py + =D W) )+ 22
r r
1 (3) lOg r (111 IOg r
+ 3 hy + 2 hyr’ +o e B (66)
r r r
- 1 1
G = I ogr h(log) += hSA) Org2 rhg)
lh( ) 8y, (logr (6.7)
r2 P r) '

(log) log r
Gap = r*Tap + rhap + log(r) g + hg; hﬁm)

1 log r log r
iy + rgz hgg>+o< rg2 >

(6.8)
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3)rr
ooy 4 Ly 1087 sy T
r r r

1
ﬂrr_ﬂrr+0gr (

log ¥ _ppr  #Y7 log r s log r
+—7Z'(l) +T+T7[( i) +o0 1"4 ’

(3)rA
allog)ra | iQ 22 +10$ g L *

r r r r r
log r @A log r log r
_’_%”(lu)m +T+%ﬂ(zzmm +0< rgg )

rAzlﬂ 10g2r

3

(3)AB
AB — lzj—z.AB n 10% " p(og)AB n %ﬂ(Z)AB L o8 log " RIDAB Lz :
I r r r

log r a®AB og r log r
+i5”(m)AB+_+%ﬂ(zzu)AB+o< g >

r r o

By (6.6)—(6.11),

c OV logr o C¥ ogr g C9 (log ) gam 08T cany 4, (1027
r r? r r r r rt

(1) (2) (3) 2
C; log r o C; log r Cy log r)~ - log r
€=+ 250 S+ B P +—( i) & + 22l
(4)
C, log r)~ . r log r
e +( g r)? . g5 ngzzz)+0< g5 )
r r r r
1) , log 7 _(og) Cf) log r CS) (log r)? ~uuy  log r
CA:CA =+ p CA +T+ > CA +7+ }"3 CA -+ }"3 CA
4) 2
CA (10g r) ~(111) 10g r (111 10g r
+—r3 + T w t—Cy " +o — |-

In this case, the boundary conditions for C, C; are
1 1 2 i 3 it it 4
Ci)_ciog) cg)zcg>:cg>_cg ) _ CEx ):Cg)
_ £1) _ £2) _ Cgu) _ gs) _ (log) ﬁ”l) _ C<ruz) _ C£4)
=) = cliog) — c(») = clh) =
CB) #0.

These boundary conditions ensure

v-o(W). o o).

r r

Similar to the discussions in Sec. III B, the nondifferentiable terms of & |, S d3V<§thhys

integrating by part:

5/ d3V§prhys = / d3V[./4ij5ﬂ'ij - Blj(sgu] + ’Cb,
S S

where
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contributed by & [ d*VE,N/C;
is then vanished. Furthermore, similar to Sec. IV, the boundary terms B, are given by variating [¢d*VE&H

and
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| 1
Ajj = 2rbg™ <”ij - 591’]’”) + L;9i),

. 1 1 . 1
Bi = —rbg: <R’-’ - EQUR> + 2 rbg g <7tmn7z’”” — 571'2)
of oo 1o
—2rbg™ (ﬂ””ﬁln - Eﬂ'”ﬂ')
+ g (D'DI(rb) = ¢'D" D, (rb))

physNiNj’ (616)

. rb
with b := rbN. Before computing the boundary terms
of (6.15), we first introduce some useful notations.
Following [28], the extrinsic curvature of a 2-sphere reads

1
Kap =57

27 (=0,9ap + Dadg + Dgly).

(6.17)

Here A4 = g,4. With (3.8)=(3.10), its trace K = y*8K
asymptotically behaviors as

2k

Io
k=-245 4 g(r)
r r

k2
—=32 k08 4 =+ o(r?).

> ; (6.18)

Then the boundary terms of (6.15) read
Ky = =+ lim d>S\/7(=2Rbsk — 2 log(R)bsk!o2)
—00 SZ

1 _ _
-7 b8(h? 4 h*Phyp) — 2b5k?)
+ (A€0cb7*E — bDA2B)Sh g — hbS(22 + D4 3%)).

(6.19)
|

1
5bgij = ZVbNg_% <”ij - Egijﬂ'> + 2D(,(rbN])),

The terms (A€9-b748 — bDA2P)Shyy are obviously not
to be differentials, so we introduce an additional boun-
dary A4 =0 to make them vanish. To deal with
—hb6(2A + D42*), we require the function f in (4.2) to
be phase-space dependent:

f=-bl—bk+T, (6.20)

where T is an arbitrary function on S%. The detailed
derivation can be found in [28]. There are a linear diver-
gent term F2R fsz dzs \/;szél_c and a logarithmic divergent
term F2 log (R) § d*S/7bsk1°®) in (6.15). By impo-
sing the boundary condition C!) =0, we find that
F 2R $ d>S\/7bSk vanishes with (6.15), see [28]. One
way to get rid of F2 log (R) $ d2S\/7b5k1?) is to assign
even parity to k(°¢). The parity condition of k(¢ is not
preserved by G, in general but we can assign additional
parity conditions to 72"/ to ensure the parity condition
of k°2) be preserved, which will be shown shortly. Finally
we get

K, =F lim ﬁz A2 S\/7bs(2k@ + K + kpkE — 67k).

(6.21)

Then we can compute the transformations of the canonical
variables:

y . 1 y 1 S
Syl = —rbN g2 <R’f - zg’/R> + 3 rbNg g (ﬂmnﬂ’”" - 5712) — 2rbNg™ <Jz”"n"m - Eﬂ”ﬂ?)

Lo ) b
+ g(D'DI(rbN) = ¢ D,,D" (rbN)) + Ly + %HN’N/.

Here b/ := rbN/. With (6.18), we have

kllo®) = plloel4 | pjttog) 4 paled) (6 23)

(1)

Afe) introduce C,"’ =

where 1,
o

= hg;’g>. We further
= 0, then 6,g;; gives

(6.22)
1
5bh£‘1%g) =2b <”S%g) - ET’AB”“Og))
5,000 = 2p <,;9r°g) - % ﬂ(log)> ,
5,05 = 262\, (6.24)

with
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”g%g) = Fac7ppr°¥P, 7198) — s(log)rr
ﬂ<r1:g) = 74510078 (6.25)
and

rlloe) = glog)rr 4 5 7(log)AB (6.26)
Therefore,

Syklo2) = 5, B84 4 25, )10e) 4 P, 5, Aloe)A
= 2b(z " + 2708) _ 270000) 1 P, gllow)ra),

(6.27)
|
(1) 2) (3)
C. log r C log r C:
_ (log) J g j
Ci=st—7 G ta+—56G +—5+
10g r ) 10g r
TG e )
ch Cﬁz) _ Cﬁ-”) —c® = C;log) _ éﬁzm _ Cﬁ”” — W
=) = cllog) = ¢ = ) =,
CB) #£0.

By (6.29), C;=0("%™) and Hy, = O(r~). From
(5.88)
{Cj’ Gb} = aj(rb)PIphysv
= 0(r%). (6.30)

Then Cf) becomes nonvanishing, so the boundary
conditions of C; in (6.29) are broken. These boundary
conditions are important for ensuring that both
8 [¢VH s and & [¢d*VrbH y,  are well defined by
adding appropriate boundary terms. Indeed, similar to the
discussions in Sec. IIIB, there are boundary terms
-2 $ d*SN/S5(n"*g1) and —2R ¢ d*SON'§(n™ g;;.) from
8 [¢ @PVH s and § [ d*VrbH s, respectively. b has odd
parity, so the boundary terms cannot vanish at the same
time, no matter what parity condition is assigned to
N’8(z"™ g;,). Imposing the boundary conditions in (6.12)
can resolve this problem. Since the boundary conditions in
(6.12) are broken, G, is not a boundary-preserving
symmetry charge.

VII. CONCLUSION AND OUTLOOK

In this paper, we introduce asymptotic boundary con-
ditions for the asymptotic flatness in BK formalism and

As mentioned before, 7(°9™ has even parity. We assign
odd parity to z(°2)"" and 7z(1°9)AB then the parity condition
of 8,k°9) is preserved by G,.

Although G, preserves the parity condition of k(1°2), it
breaks the boundary conditions conditions of C;. To see
this, we first transform (6.12) and (6.13) to the asymptotic
Cartesian coordinates

cM 1o c? 1o c®
€= O S Sl o
2
1 (og 1) ey | 108 7 . o(loi r), (6.28)
r r r
2 c® 2
logr)* ~auy logr ny € (log r)* ~um

6Cj+6C'+—6+7Cj

r r

(6.29)

investigate the symmetries preserving these conditions. A
counterterm is added to the symplectic form to make it
finite. We add the boundary term to the physical
Hamiltonian Hp,,¢ to make 6H,,,, well defined. The
boundary term coincides with the ADM mass.

We define the boundary-preserving symmetry charges
on the reduced phase space consisting contributions from
both bulk and boundary of the dust space. Unlike the usual
formulation in general relativity (on the nonreduced phase
space), the bulk terms of these charges do not generally
vanish on shell. The Poisson brackets of the charges form a
closed Lie algebra up to a central term. The resulting Lie
algebra of symmetry charges relates to the BMS algebra by
a suitable quotient.

Our work is the first step of investigating the boundary
terms in relational formalism. There are several projects we
plan to do in future:

(1) We can apply our work to the connection dynamics
formalism [50]. In this formalism, the canonical
variables are converted to the densitized tetrads and
Ashtekar-Barbero connections {E“, A%}. In the
canonical formalism of loop quantum gravity,
{E*, A%} are the basic variables in the quantization
(e.g., see [2,51,52]). Applying our work in con-
nection dynamics may benefit our understanding of
asymptotically flat quantum gravity.
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(2) It may be interesting to investigate the BK formalism
in asymptotically anti—de Sitter spacetimes. Unlike
asymptotically flat spacetimes, the boundary of an
asymptotically anti—de Sitter spacetime is a three-
dimensional timelike hypersurface [53,54]. This
may relate to the bulk/boundary duality.

In this work, we require the asymptotic symmetry
preserve the metric on $2. We may relax this
requirement and allow generic diffeomorphisms
on S? as the asymptotic symmetries. Some existing
results along this direction are given in, e.g.,
[34,55,56].

In general relativity with asymptotically flat space-
time, asymptotic symmetry charges have close
relation with Weinberg’s soft theorem [57]. For
example, Refs. [58,59] show the equivalence be-
tween the BMS charges and soft graviton theorem

(©))

“

[60,61] at the null infinity by scattering a massless
scalar field. There is a subtlety to applying this
analysis to BK formalism, since BK formalism can
only analyze the structure at the spatial infinity,
whereas there is no dynamics at the spatial infinity.
Therefore, we expect that the analysis of the scatter-
ing process should be carried out in the regime near
spatial infinity but still with finite distance. We plan
to do this analysis in our future work.
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APPENDIX A: THE BOUNDARY TERMS FROM N6C

Using (1.5.10) in [2], the boundary terms from NOC are

[Néc]boundary = _I;I—I}olo éz \/Z]gcdgef[(DCN)(dsdégef) - (DeN) (dScégdf)]

— lim
R—

?gz V99IN[-dS 6T, + dS,or¢),

(A1)

with /g = A,/y. With the results in Appendix A of [28], Eq. (A1) can be expressed in the spherical coordinates:

A

. 1 A
[Nac]boundary = }%1_1;20 © sz\/? <_17AB (DrN)(sVAB + 778C (DAN)(S}/BC>

—21lim
R—o0 [g2
B
— lim
R—oo [ 2
. A8
+1%1—1;Iolo Szd2Sl\/}7(—N/1—55KAB +NKAB

+ lim

R—oo [ g2

A

1 Vi
d2S\/]7 <—NDA (-) 5/1A - TyBC(DCN)éyAB> .

A

N A
d2S(N5K + N&(}/Ac>]/ABKg) + I%Im szﬁjé |: <—— (0A/1 + KAclIC) + DA/1A> —_ DA5/1A:|
—00 S2

A

Al A
d2S\/7N’1— —yBCD Sy pe — 6 2 k) ) + lim ]{ dZSﬁNia ~(04A + K 5AB)
2 \2 A koo Jgo 2\

JAIB 52
* 2

(A2)

APPENDIX B: THE CONSERVATION OF THE BOUNDARY CHARGES

This appendix demonstrates the boundary charges defined in (4.14) are conserved. It is convenient to demonstrate this
statement in the asymptotically Cartesian coordinates. We first compute the physical time derivative of g;;:

dgi' 1 1 _
2 = Ng ;<”ij —Egijﬂ'> + Eﬁg” = O(V 2). (B])

The physical time derivative of the &; j 1n (3.6) is given by expanding (B1) to the boundary, which reads
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i _y.
dr

(B2)
Note that all of the metric variables in (4.14) are the
components of i_z,»j, so their physical time derivatives
vanish. Next, we compute the physical time derivative
of 7l

drt
dr

_— <gik911(3> Ry — % gi® R>
1 -1 ij mn 1 2
+§Ng Y TnT _Eﬂ

P
— 2Ng_% (ﬂ"”ﬁin - 5ﬂ”ﬂ.’>

+ g%(D’DJN -¢“D,,D"N) + EthysN’Nf + Lyn,
=0(r ). (B3)
It turns out that
dzl/
= 0. B4
& (B4)

Thus, the physical time derivatives of the conjugate
momenta with a bar on the top in (4.14) vanish, due to
they are the components of 7. Finally, we deal with the
term with 724, By (B4),

dﬂ(Z)rA _ |
N )

dr (B5)

Here )R is the coefficient of the leading order of ®)R, ,,
which reads
R = DyDA® = Dy + 3 (PP ouue — FPC0u7nc)
— Ay + 2044,
= DADy" +7Ryg1" — Dyl + 57D higc
— Ay + 2044,

o - _ - 1 - - _
= D,Dpl® — Dpk® +§7BCDAhBC +2044.  (B6)

In the last step, we use the fact that on a unit sphere we have
(B7)

"Rap = 7ap-

Then we find

dr 2B - - I
2% dZSYA]_/AB - :F 2% dZSYA <DADBAB—DB]C§
s T s
1 I -
+ E;‘/BCDAhBC + 26A/1> .
= 0. (B8)

In the last step, we integrate by part and use the Killing
equation of Y4. As the result, we demonstrate that the
boundary charges defined in (4.14) are conserved.

APPENDIX C: REVIEW OF (WEAK)
SYMPLECTIC FORM

In this appendix, we give a brief review of the (weak)
symplectic form. The details can be found in [62].

First, we define the strong and weak nondegenerate
bilinear forms of a Banach space.

Definition C.1. Let V be a Banach space, whose dual
space is denoted as V*. B:V xV — R is a continuours
bilinear map. B naturally induces a continuous bilinear map
B:V >V, st Y abeV, B(a) b= B(a,b). Here “
denotes the inner product. If B is injective, and V b€V,
B(a,b) =0 gives a = 0, then we call B is weakly non-
degenerate. If B is an isomorphism, then we call B is
nondegenerate or strongly nondegenerate.

With the bilinear form defined above, we can define the
(weakly) nondegenerate form as

Definition C.2. Let P be a Banach manifold and TP is
the tangent bundle of P. A two-form field Q on P is called
a symplectic form if

(i) Q is closed: 622 =0 (6 denotes the exterior

derivative).

(i) YxeP, the map Q|,: T,PxT,P— R is non-

degenerate.
In particular, if Q|, is weakly nondegenerate, we call Q a
weak symplectic form.

In the following, we choose (g;;(5),7"(c)) as the
canonical pairs of the phase space. Given any C' function
f(gij» p'/) of the phase space, we construct the correspond-
ing dual vector field as

0 5 -
(5f)a=/8d30{5gf (5gz~,~)a+&5j (677),|.

ij

(C1)

Here, the greek letters a, 3, v, ... are the indexes of P.

Definition C.3. Given a Banach manifold P equipped
with a weak symplectic form Q. D is a domain of P:
D cP.Let X&eTD, where TD C TP. X is said to be a
Hamiltonian vector field if there 3 a C! function
h:D — R, s.t.

[QpX ]| = [(6h) 0] (C2)

v

VxeD and Yov*€TD.
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In the following, we denote X, as the Hamiltonian vector
field of A.

Theorem C.1. Suppose X7 is a Hamiltonian vector on the
domain D, then X§ is a (infinitesimal) symmetry:

Ly Qup = 0. (C3)

Proof.

L3 Qup = 5(X) Q) + (6Q),X] = 5,(X/Q,).  (C4)

Here we have used 6Q2 = 0 in the last step. Then with (C2),
we have

X7Qy5 = 8pf (CS)

thus
[,;(anﬂ = 0,04f = 0. (C6)
]

[Qaﬁx?vﬂ] |x =
of

o ) =
O9u

571./(1

(59k1>

and the right-hand side of (C2) reads

[(57), 07|, = [ / Ry L;Sf

Jij

f

B [/s Lsnu

(89;7), +

of
o0 591, ”

X

Suppose a C' function f on D has corresponding
Hamiltonian vector field X, we can check that

L Sf « 5f (8 \@
Xf_/sd Lsﬂ” <591,> 59;j (5#7)] (€7)

with the (weak) symplectic form

Q= /Sd30'(5g[j)a A (67T) 5,
= /‘Sd36[(5gij)a<5ﬂ'ij)ﬁ_ (591',')/;(5””)0:]- (C8)

To see this, we introduce an arbitrary vector field v* € TD:

a __ 3 =i
v _/sd 6[”1’/(@) +7f/<5ﬂij> :|7 (C9)

here v;; and 7 are the coefficients of v*. With (C1), and
(CTH—(C9), the left-hand side of (C2) reads

|:/5‘ d361d362d30'3[(591‘]‘)(1(57[“)/} - (5gij)ﬁ(5ﬂij)a:|

5\« o g —mn o s
() e () 7 () ]
- 5f . of
UgdS Lsﬂw ’+5g,J ”

’
X

, (C10)

X

19} . o \¢ o \¢
_ (57l mmn
7/ ( i )ai| |:’Umn <5gmn> e <5ﬂmn> :|:|

X

(C11)

Thus, we have checked (C7). The Poisson bracket between the C' functions of the phase space which have the
corresponding Hamiltonian vector fields is defined as follows:

Definition C.4. Suppose P is a Banach manifold equipped with a (weak) symplectic form Q. D;, D, €P, and
D, N D, #0. fisaC! functions on D;, whose Hamiltonian vector field is X 15 g is another C ! functions on D,, whose
Hamiltonian vector field is X,. The Poisson bracket {f., g} is a map:

{f,g}: Dl nDz —)R,

given by

{f,9}(x) =

with xED1 N D2.

QX (x), X,(x)),

(C12)

(C13)
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With (C2) and (C13), we have
{9} = QX X,) = (3f),X5 = L3 f = ~L3 g. (C14)

Next, we prove the Poisson bracket we define satisfies the
Jacobi identity. To do this, we first proof the follow-
ing lemma:

Lemma C.2. Supposed f, g are the C! functions with
domains D, D,, respectively, and D; N D, # 0. We have

Xy = =X X, c15)

where [-, -] denotes the Lie bracket.
Proof. Since Q.5 is (weakly) nondegenerate, we just
need to show

Qaﬂ(X?f,g} + [Xf,Xg]a) = 0 (C16)

With (C3), we have
QuplX X ) = Qs X = L (QupXS) — Lz, (Qup)XS.
= ‘C)?f (QaﬁXg’). (C17)

Then with (C2), the left-hand side of (C16) reads

Qup(X{y gy + X7 Xgl*) = QupXy ) + Lz (QupX),
= —0p{f. 9} — Lz, (8p9)- (C18)

Use (C14), we have
|

—0p{f.9} = Lx,(559) = 65(L3,9) — L5 (859)

= [Igf(éﬁg) - ﬁ)-('f (5/,»9) =0. (C19)

|

Thus, we have the following theorem:

Theorem C.3. Given three C' functions f, g, h with
domains D, D,, D5, respectively, and D; N D, N D3 # @.
X% is the Hamiltonian vector field of f. X7 is the
Hamiltonian vector field of g. X§ is the Hamiltonian vector
field of h. V xe€D; Nn D, N D3, we have the Jacobi
identity:

{{g.h}. 1) +{f. g} h} (x) +{{h.f}.9}(x) =0. (C20)
Proof. Note that 6Q = 0,
[(5Q)aﬂyX?XgX§z]|x =0. (Czl)

Use the properties of the exterior derivative, (C21) gives

0= [X?éLI(QﬁngXZ) - Xgéa(gﬁrxﬁx}llz) + Xzéa(gﬂyxgxg)
—Qqp [Xf,Xg]“Xﬁ + QX Xh]an — Q4 [Xg,Xh]aXff}

™

(C22)
With (C14), we have
X98,(Q4, XiX1) = X35,{g.h} = {{g.h}.f}. (C23)
With Lemma C.2 we have
—Qusl Xy X" X)y = QupX§, 1 X0 = {{f. 9}, 1. (C24)

Thus, (C22) reads

0 = [X96,(Qp, X5X7}) — X28,(Q, XIX7) + X516, (R4, X[ X0) = Qupl X 1. X JOX + QX 1. X, 10X — QuplX . X X1 ..

=g 1}, 5 = {{f. n}. 93 + {7 9}, 1} + {{F 9}, B} -

2[{{g. h}. [} = {{F. hy. g} + {{S g} h}]
2[{{g.h}. [} + {{h. 1 gy +{{S. g} 1.

x°

{f- 1}, 9} + {{g. h}. f}]

X

(C25)

We consider a simple example. Suppose D; = D, and the Q takes the form of (C8), we have

{f.93(x) = [/S Foid’o,d’o3((8gi;) 4 (6775 — (5gij)ﬁ(5ﬂ'ij)a}

5f [ 6\« &f (5
X E— R [ — —
st \ 8y 89 \or"!

([ o
S Sg,] (‘)‘ﬂ'ij 5gl] 5ﬂij

This result agrees with Eq. (3.31).

)] [6;55“ <6g(smz>ﬂ B 5(:1, (5:ml>ﬂH

9
X

(C26)

X
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It is proven that the symplectic form defined in (3.29) is YA =YBDpY4 — (1 < 2),
strong [2]. Also note that the variation of the boundary- A~ UA _
preserving symmetry charges G(&, &) construct in Sec. IV is F=Yiopfr=(1<2),

well defined. Therefore, for any G(¢&, E), there is corre- W=Y{0,W,; - (1 & 2),

sponding Hamiltonian vector field. Consequently, the A = YBDI4 + I8DyY4 — (1 < 2). (D2)
symplectic form is preserved the transformations generated

by G(&.&). Since f, W are functions of S* and Y is the Killing vector

of §2, f, W are also functions of S2. Similarly, I* is the
vector field of S2. Note that Y4, ¥4 are the Killing vector

APPENDIX D: PROPERTIES OF (£.) fields on $2, their commutator ¥4 := [V}, Y,]* is also the

From (5.17), we have Killing vector field on S2. Therefore, (S %j ) satisfies (4.2).
27 -1 2R -1
c=f+00), =W+ 0o0m) APPENDIX E: DETAILS OF SECTION 5.1
=y +liA +0(r?), (D1) This subsection gives some detailed calculations of
r

Sec. VA. We first give the details of (5.11). By (2.31)
and (2.30), (5.11) yields

{G(£).G(&)} = [S BVED(NE)C + [9 PVIE D (NE) — N'E,DE]C;

r—o0

_ L d3VEH p NIND; (€)= 53 B(&) — lim : d>Sg1E,C + 2lim ﬁ d2s[<§1,§2]’n;,

- ¢*N.D;,N , C?
—Ld3V{i§’lu§2C+§’,Di(§2)—}

\/ 1+ ¢*N;N, Hphys

3 i j c i C J
+ [ @v]aning - 5 —enie) + 5 e |

phys H phys

cict = . = . = 2
- [V T i - 5 BE) - fim § @seibe+2tim f s Bl
phys N s
C? - g*C,C,

- /d3V[§’iNjDi(Nj)thy§2+§§Di(Nj)52Cj] +/d3V§§D,-(§2) H
s S phys
cick c/ck % z Al
- / d3V§2{ 6D _—Dj(‘fl)k] =6z B(&) _% d*S&1é6,C + 2% dzs[fl’fz]]”;’
s H H ' §* s

phys phys

— /S d3V§’iDi(§2)thyS—6515’(52)—lim 2 d255;§20+2r12?0 : dzs[él,g’z]’ﬂ;. (E1)

r—00

Next, we show that B in (5.13) is vanished. By (2.31) and (2.30),

B:/Sd3V[N§1Df(N§2)—N§2Df(N.§1)]Cj+/Sd3V[Nj.§le(N§2)—fosz(Nfl)]C

+/Sd3V[N’.§1D,»(N/§2) _Nl§2Di(Nj§1)}Cj+E/S_d3VthyleNJ§1N§29_§<”ij_Eﬂgij)

1 o 1 L
_E/Sd3VthysNZNJ§2N§lg_é<ﬂij_E”gij> +/Sd3VthysN'N’§1Di(Nj§2)

- [g d*VH 1, N'NIED;(N &),
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—/dSV(szlefz—szszfl)Cj+/d3V(NNj§1Dj§2—NNjszjfl)C
S s

+/d3v(§1NiNjDi<§2—sziNjDifl)Cj‘i‘/dSVthysNiNjé:leDi‘fz
S S

_[gd3VthysNiNj§2NjDi§1’

Cc? ) Cc? .
-/ dSV<H2 §,CDIE — 1 EC DI

phys phys

Cc? , Cc? -
)= [ov(acmi - aone)

phys phys

+/dSV(ileiNjCjDifz—‘sziNjCjDifl)—/d3V(N[Nj§1CjDi52—NiNjfzchifl),
s S

= 0. (E2)
APPENDIX F: PROOF OF (5.34)
Da(LyA) = Da(YDcdg + AcDpY©),
- YCDAI_)C/_IB + DA(YC)DC;lB + DA(Zc)DBYC + ZchDBYC,
= YDeDpdg + YTR4c5PAp + Ds(YO)Dedg + Da(Ac)DgYC + AcDsDgYC. (F1)

On the other hand

L3(Dadg) = Y DcDadg + De(Ap)DyY€
+ D4 (Ac)DpYC. (F2)

To prove (5.34), we need to show
YC}_/RACBD/_/{D + ch_)ADBYC — 0 (F3)

For a Killing vector field on the spacetime &, we have

V. V.6s = =Ryp"E,. (F4)
then
A¢D,DyYC = 1D, DyY e,
= —ACTRpcsPYp. (F5)
We have

YRy cgPAp + AcDsDgY€

= YC?RACBD/_ID - /_IC?RBCADYD’
= YCZD?RACBD - YDZC?RBCAD?
= YCZD?RACBD - YCZD?RACBDv

= 0. (F6)

APPENDIX G: CENTRAL CHARGES

We first give the definition of the central extension of a
Lie algebra L, which can be find in, e.g., [63]. For a Lie
algebra Lg, its central extension g is the direct sum of
itself and a one-dimensional complex vector space with the
basis ¢

Lg & Cc, (G1)
satisfying the following requirements:
£+ ac.n+ pe] = [E.n] + (& n)e.
& n€lg, a,pecC,
[c.é]=0. (G2)

Here the square bracket denotes the Lie bracket of the
algebra, and the @ is a bilinear form, w:Lgx Lg — C
satisfying the 2-cocycle condition:

w(x,y) = —a(y, x),

o([x.y].2) + o([y. 2], x) + o([z. x].y) = 0. (G3)
with x,y,z€ Lg. s

With the definition above, we can check that the C(&, &)
in (5.40) provides a central extension of the algebra.
Introduce &y = (1.81), & = (£2.62), and &5 = (&3.63),
which satisfy (4.2). Define their commutators with Poisson
bracket:
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{G(&).G(&)} = G([E1. &) +C([&1. &)

(G4)

Here (&, &] is the commutator of & and & defined by the Poisson bracket. In our case, & € Lg. The complex vector space

C is restricted to be the real vector R. Especially, ¢ = 1. The w is given by

(&), &) = C([&). &)

By (5.39),

(&), &) = (&, &)

By (5.18) and (5.39),

ol[£1.4).8) = 22 § ESVIYIDaF: = VADA) (D" DyWs = Dy)

— [3D*Dy(YTDpWy = Y3DW,) + f3DA(Y?Dyly + I{DY5 — YSDpI{ — I§DpY?)).

Since

DA(YED,IA + 2Dy} — VDI — 12D,1Y)
= Dy(Y7)Dpl3 + Y7 DsDply + Ds(I7)DpY5 + I{DaDpY?
Dy (VE)DyI — VEDADyIL  Do(IE)Dy Y}~ 18D, Dy
= Da(Y?)Dgly + Y7 DpDsI5 + YT Rpac* 1S + Dy(I7)DpY5 + I¥DgDAYS + [T Rppc*YS
— Dy (Y3)Dplt = Y3DpDAlY = YRpac T — Da(13) DY) — I5DpDAYY — IFRppc" Y
= Da(Y?)Dgly + Y7 DpDsI5 + YRpcIS + Da(I7)DgY% + 17 DDy Y5 + ITRpcYS
DY)yt — VEDGDALY — VRIS — (5D ¥t — EDyD, ¥~ [ERcYS,
= Da(Y?)Dgly + Y7 DpDsI5 + Da(I7)DpY?3 = Ds(Y3)Dplt = Y3DDal't — D4 (15)DpY?,
= Y?DypDaI3 — YiDpDAIY,

Eq. (G6) becomes
ol[E. ). ) = £2 . ESVTIVIDAS2 — YADA) (D" Dy - Dit?)
— [3DAD4(Y7DgW, = YSDgW) + f3D4 (Y7 DgDyly — Y3DpDAIY)).
Similarly
0l[85.&1).8) = £2 § ESVFIDaS: = YIDA) (D" Dy W, - Dyit)
— [2D*D(YDWy = Y DpWs3) + foDA(YDpD It — YT DgDaI%)),
and
([ 8).8) = £2 § ESVTUVEDASs — YiDAL) (D" Dy, - Dit})
— f1DADA(YEDyWy — YEDsWs) + £1Do(YEDyDAI — YEDsDI4).
With the results above, we can show that w(&*) satisfies the Jacobi identity:

o([&), &), &) + o([55. 8], &) + (8, 8], &) = 0.
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First

o([&, &].8) + (5. 811, &) + o([&. &]. &)

=22 § @SVFIVIDA2 = YADAS) (DO DuWs = Dyl?)
— [3DAD4(Y?DgW, = YSDgWy) — f3D4(Y?DpDaly — Y3 DpD4I})
+ (Y3Daf1 = Y{Daf3)(DPDgW, — Dpl¥)
— [2D*DA(YDsW, = YYDpWs3) — fZDA(YBDBDAI]A — Y?DyD4I%)
+ (Y3Daf3 = Y3Daf2)(DPDgWy — Dyl?)
A\ DAD(YED W, — YDy Ws) - fIDA<YBDBDA1;} _YDuD,)]

Next since

DADA(YBDBW) = DA(DA(YB)DBW + YBDADBW)y
= DA(—DB(YA)DBW + YBDADBW>

— —DA (DY \)DPW = Di(Y ) DADPIW + Dyy (Y ) DUDPIW + Y 3 DAD, DEW,

= —Dg(D,YA)DBW — YCRp-DBW + YAD,DyDPW + YAR D W,
— YADADBDBW,

we have

2 éz d*SV7[(YiDaf2 = Y4DAf1)DPDWs — f3D*Dy(YYDgW, — YE D W)

+ (Y3Duf1 = Y{Daf3)DPDgW; — f,D*Ds(Y3DpW, — Y DpW3)
+ (Y4DAf3 = Y3Duf2)DEDgW, — f1D*D4(Y3DpW5 — YEDsW,)]

=42 ]éz &SVF(YDafr = YaDsf1)DPDWs — f3(Y{DsDgDPW, — Y4 DDy D W)
+ (Y3Daf1 = Y{Daf3)DPDpW, — fo(Y4 Dy DyDPW, — Y1 DoDpD*W5)
+ (Y4Duf3 = Y3DAf2)DEDgW, — f1(Y4D,DgDPW;3 — Y43D, D DW,)]

— 52§ @SVTI-(V12DADDyWs - VA1 DAD Dy Ws)
~ (Y1 f3DsDgD*Wy = Y5 f3D,DgD"W ) — (Y4 f1DADPDgW, — Y{ f3DAD" D W)
— (Y3f2D4DD*W, = Y f2D4DgD"W3) — (Y5 f3DoD"DgW, — Y4 f,DAD" D W)
— (Y3f1DADpDPW5 = Y4 f1DADD"W,)]

=0.

Furthermore,
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£2 ) PSVA-(1ADuf s = VIDufs) Dul! = (~Fo(VEDyDAIY = YEDyDAIY))
— (Y!Dufr = Y4Duf1)Dpls — (=f3(YYDpDAI5 — YEDgDAIY))
— (Y4Duf3 = Y4Duf2)Dpl} — (—f1(YEDgDAIS — Y§DgDAI%))]

=22 § PSVTIVADADSIE = i FsDADYIE) + (F2YIDsDAI} - f:VPDsDA1Y)

+ (Y f2DADgl8 = Y3 f1DsDgIy) + (f3YY DDAl — f3Y5DpDAIY)
+ (Y8 f3DADgI} = Y3 f2DsDpl}) + (f1Y5DpDAIS — f1Y5DpDAI5))]

=0.

As the result, we verify (G11).

(G15)
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