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This paper studies the reduced phase space formulation (relational formalism) of gravity coupling to the
Brown-Kuchař dust for asymptotic flat spacetimes. A set of boundary conditions for the asymptotic flatness
are formulated for Dirac observables on the reduced phase space. The physical Hamiltonian generates the
time translation of the dust clock. We compute the boundary term of the physical Hamiltonian, which is
identical to the Arnowitt-Deser-Misner mass. We construct a set of the symmetry charges on the reduced
phase space, which are conserved by the physical Hamiltonian evolution. The symmetry charges generate
transformations preserving the asymptotically flat boundary condition. Under the reduced-phase-space
Poisson bracket, the symmetry charges form an infinite dimensional Lie algebra AG after adding a central
charge. A suitable quotient of AG is analogous to the Bondi-Metzner-Sachs algebra at spatial infinity by
Henneaux and Troessaert.
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I. INTRODUCTION

The canonical formulation of gravity is a theory of
constraints [1,2]. The Hamiltonian of four-dimensional
gravity consists of four constraints: one Hamiltonian con-
straint and three components of diffeomorphism constraint.
All hypersurface deformations generated by these con-
straints are gauge transformations. Constructing gauge
invariant quantities is important for understanding the
physics of gravitational field at both classical and quantum
levels [3–5].
An interesting approach of constructing gauge invariant

observables is the relational formalism [6–25]. The idea is
to couple gravity with certain matter fields, e.g., pressure-
less dust fields or scalar fields. In this work, we consider
the Brown-Kuchař (BK) dust as the matter and refer to this
formalism as BK formalism [18,26]. In this formalism,
BK dust fields play the role of rulers and clocks that
provide a physical reference frame at every spacetime
point, and they relate to the gauge fixing scheme that
allows us to construct a reduced phase space of the
gravity-dust system. The gauge invariant Dirac observ-
ables defined on the reduced phase space are canonical
fields evaluated in the physical reference frame made by
the dust fields. Importantly, when formulating the

dynamics on the reduced phase space in terms of Dirac
observables, the gravity-dust system in the BK formalism
becomes free of any constraint, since the Hamiltonian and
diffeomorphism constraints are resolved on the reduced
phase space. As a result, the formalism provides a physical
Hamiltonian Hphys ≔

R
d3σHphys, which generates the

physical time evolution of the Dirac observables. σ⃗ and
τ are the spatial and time coordinates in the physical
reference frame. There are infinitely many conserved
charges Hphysðσ⃗Þ and Cjðσ⃗Þ descended from the hyper-
surface deformation. Hphysðσ⃗Þ and Cjðσ⃗Þ relates to the
time translation and spatial diffeomorphism in the space
of ðτ; σ⃗Þ.
The purpose of this work is to apply the relational

formalism to spacetimes with boundary at infinity. In
particular we focus on the situation of asymptotically flat
spacetimes. We propose a set of asymptotic boundary
conditions for the asymptotically flatness in the BK for-
malism. These boundary conditions, discussed in Sec. III,
are formulated for Dirac observables on the reduced phase
space, and thus they implement the asymptotically flatness
in the gauge-invariant manner. In addition, the compatibility
with the asymptotically flatness requires the BK dust
density to have a falloff behavior of Oðr−4 log rÞ as the
radius r → ∞.
As a technical aspect, the BK dust turns out to either be

incompatible to the usual falloff behavior and the parity
condition of the canonical fields in the literature, or it rules
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out many interesting boundary charges (e.g., in [27–29]).
As the resolution, some additional r−n logðrÞ-terms are
added to the falloff behavior, and the parity condition is
relaxed and replaced by other suitable boundary conditions.
In this case, a counterterm has to be added to the symplectic
form to remove the divergence. These treatments are
partially inspired by [30,31].
A key development is to construct the boundary-

preserving symmetry charge on the reduced phase space:

Gðξ; ξ⃗Þ ¼
Z

d3σðξHphys þ ξjCjÞ þ Bðξ; ξ⃗Þ: ð1:1Þ

The smearing fields ξ; ξ⃗ satisfy certain boundary conditions
relating to a subset of the traditional Poincaré transforma-
tions and the supertranslations. Unlike the usual situations
in general relativity, the bulk terms of the symmetry charge
do not vanish on shell, and they generate physical sym-
metries in the bulk of the dust space (the space of σ⃗). The
symmetry charge contains the boundary term Bðξ; ξ⃗Þ,
which we call the boundary charge. Bðξ; ξ⃗Þ is determined
by the compatibility to the asymptotically flat boundary
condition and making the variation δGðξ; ξ⃗Þ well defined
on the reduced phase space. The boundary charge Bðξ; ξ⃗Þ is
computed explicitly in Sec. IV.
We show that the boundary-preserving symmetry charge

Gðξ; ξ⃗Þ enjoys the following important properties [the first
and second properties are what we mean by Gðξ; ξ⃗Þ being
symmetry and boundary-preserving]:
(1) It commutes with the total physical Hamiltonian

Hphys þHbdy, where Hbdy is the boundary term
relating to the Arnowitt-Deser-Misner (ADM) mass.

(2) The Hamiltonian flow generated by Gðξ; ξ⃗Þ pre-
serves the boundary conditions.

(3) With the Poisson bracket on the reduced phase
space, the set of charges Gðξ; ξ⃗Þ for all ξ; ξ⃗ form
an infinite-dimensional Lie algebra up to a central
charge C, namely

fGðξ1; ξ⃗1Þ; Gðξ2; ξ⃗2Þg ¼ Gðξ̂; ˆξ⃗Þ þ Cðξ̂; ˆξ⃗Þ; ð1:2Þ

where ξ̂ ¼ ξi1Diξ2 − ξi2Diξ1 and ξ̂j ¼ ½ξ⃗1; ξ⃗2�j. In
other words, the boundary-preserving symmetry
charge G and the central charge C form a closed
Lie algebra. The derivation of the algebra is given
in Sec. V.

We denote byAG the algebra of the boundary-preserving
symmetry charges Gðξ; ξ⃗Þ, and we would like to compare
AG to the original Bondi-Metzner-Sachs (BMS) algebra,
ABMS [32–35]. The original BMS charges are defined as
boundary charges that generate symmetry transformations
on the null infinity of an asymptotically flat spacetime.

These symmetry transformations include the traditional
Poincaré transformations and the supertranslations. The
supertranslation charges form an infinitesimal Abelian

subalgebra ofABMS. In contrast, the chargesGðξ; ξ⃗Þ defined
in this paper incorporate both bulk terms and boundary
terms and are Dirac observables. The bulk terms in the
charges do not correspond to any constraint and thus
nonvanishing. Indeed, AG contains an ideal ÃG of the
symmetries in the bulk of the dust space that are not
extended to the asymptotic boundary. The quotient Lie
algebra ÂG ¼ AG=ÃG is analog to ABMS. There is one
issue to emphasize: We release the parity conditions of the
canonical variables as mentioned previously, which may
result in the divergency at the null infinity and prevent one
from constructing the BMS charges there [36–38].
Therefore, in this paper we only compare the algebraic
structures between these two algebras, setting aside the
associated physical interpretations.
As mentioned earlier, the supertranslations themselves

form an Abelian subalgebra within the original BMS
algebra. Correspondingly, the supertranslations in ÂG

along the physical time and radial directions form an
Abelian subalgebra when the central charge vanishes. If
we impose appropriate parity conditions on the parameters
of the supertranslations, then the central extension vanishes,
and we obtain a subalgebra of ÂG, which is analogous to
the original BMS subalgebra of supertranslations. In our
work, we do not generally require the parameters of the
supertranslations to satisfy parity conditions, and we
introduce two additional degrees of freedom contributed
by the angular components of the supertranslations in the
spatial direction. Therefore, ÂG represents a generalized
algebraic structure of ABMS as far as the supertranslations
are concerned.
The asymptotic spatial rotations in ÂG form an SO(3)

algebra thus is analogous to the corresponding subalgebra
in BMS. The commutator between the supertranslations in
the time direction and in the spatial directions involves the
central charge of the algebra. In this work, we only consider
the isometric spatial rotations generated by the Killing
vectors on S2. It would be interesting to generalize the
analysis to the conformal transformations on S2. But we
leave this aspect to future research.
The symmetry algebra ÂG does not take account of the

asymptotic boost transformation, since it is difficult to
make the boost transformation preserving the boundary
condition. The detailed discussion is given in Sec. VI.
ÂG closely relates to the BMS group at spatial infinity

proposed in [28]. In particular, certain restriction of ξ; ξ⃗
selects a subalgebra of ÂG that recovers the algebraic
structures of the BMS algebra at spatial infinity in [28] with
vanishing boost generator, as shown in Sec. V B.

MUXIN HAN, ZICHANG HUANG, and HONGWEI TAN PHYS. REV. D 109, 064079 (2024)

064079-2



The relational formalism enables the gravity-dust system
to be formulated on the reduced phase space and free of
constraints, and the dynamics are expressed similarly to
common Hamiltonian dynamical systems. Intriguingly, the
symmetry of the gravity-dust system can be formulated
similarly to symmetries in typical Hamiltonian dynamical
systems. This is illustrated in this study for asymptotically
flat spacetimes: All symmetry charges Gðξ; ξ⃗Þ are obtained
as phase space functions that Poisson commute with
the physical Hamiltonian. The symmetry charge, when
expressed in terms of Dirac observables, includes both
the bulk and boundary contributions. We are concentrating
on asymptotically flat spacetimes at this stage because our
aim is to analyze the similarity between the algebra of the
symmetry charges obtained in this case and the familiar
result on the BMS algebra [32–35]. However, the same
symmetry analysis can be carried out for other boundary
conditions, or even spacetimes without a boundary.
The relational formalism is an approach for resolving the

problem of time in classical and quantum gravity. On the
reduced phase space, the physical Hamiltonian generates
the physical time translation, whose quantization makes
sense the unitarity of quantum gravity [17,39,40]. In
contrast, in the usual formulation of gravity, the time
translation and unitarity are meaningful only on the boun-
dary of the spacetime, and this is the idea behind the
holographic duality. It is worth exploring the relation
between the physical time evolution formulated on the
reduce phase space and the time evolution of the holo-
graphic boundary dynamics. This work may present an
initial effort towards understanding this relation, by com-
paring AG to the BMS algebra on the boundary.
This paper is organized as follows: Sec. II reviews the

relational formalism. Section III introduces the asymptotic
boundary conditions and defines the finite symplectic
structure with a counterterm. Section IV constructs the
boundary-preserving symmetry charges. Section V com-
pute the Poisson bracket between a pair of the boundary-
preserving symmetry charges. Section VI demonstrates
that the generator of the boost term does not satisfy
the definition of the boundary-preserving generator.
Section VII summarizes the results and discusses a few
future perspectives.

II. A REVIEW OF THE BROWN-KUCHAŘ
FORMALISM

A. Lagrangian formalism

The BK formalism is a realization of relational formal-
ism with the BK dust field consisting of four scalars
T; Sj¼1;2;3. The total action in the BK formalism is

S ¼ SEH þ Sdust: ð2:1Þ

SEH is the Einstein-Hilbert action.1 The BK dust action Sdust
depends on the dust fields T; Sj and Lagrangian multipliers
ρ;Wj [26]:

Sdust ¼ −
1

2

Z
M
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðgÞj

p
ρ½gμνUμUν þ 1�; ð2:2Þ

with

Uμ ¼ −∂μT þWj∂μSj: ð2:3Þ

The equation of motion δS
δρ ¼ 0 yields

gμνUμUν ¼ −1: ð2:4Þ

Thus, Uμ is the 4-velocity of the dust. Another equation of
motion δS

δgμν
¼ 0 relates the Einstein tensor to the energy-

stress tensor of the dust field:

Tdust
μν ¼ ρUμUν; ð2:5Þ

which indicates that the BK dust is a pressure-less perfect
fluid. ρ is interpreted as the dust density, and

ρ ¼
�
> 0 physical dust

< 0 phantom dust
: ð2:6Þ

Note that the case of phantom dust can still fulfill the
energy condition when coupling to additional matter
fields [18]. Our following discussion applies to both cases
of physical and phantom dusts.
Other equations of motion δS

δT ¼ 0, δS
δSj ¼ 0, and δS

δWj
¼ 0

provide

Uν∇νUμ ¼ 0; Uν∇νT ¼ 1; Uν∇νSj ¼ 0: ð2:7Þ

The first two equations in (2.7) indicate that the integral line
of Uμ is a timelike geodesic and T is its line-length
parameter. The last one indicates that Sj are constants
along the integral line of Uμ. The dust field naturally
introduces a reference frame to the spacetime. On this
spacetime, the dust fields T and S⃗ can be viewed as
providing a coordinate system where T and S⃗ are the time
and space coordinates, respectively.

B. Hamiltonian analysis

Following the ADM formalism, a spacetime is decom-
posed into Σ × R, where Σ is the three-dimensional spatial
slice. We denote the 3-metric on Σ by qab and its conjugate
momentum by pab.2 The Hamiltonian analysis provides
four first-class constraints

1In our convention, the constant κ ¼ 16πG is set to be 1.
2The latin letters a, b are the indices of Σ.
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ctot ¼ cgeo þ cdust; ð2:8Þ

ctota ¼ cgeoa þ cdusta ; ð2:9Þ

with

cgeo ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp �

qacqbd −
1

2
qabqcd

�
pabpcd

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p ð3ÞR0; ð2:10Þ

cdust ¼ 1

2

�
P2=ρffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
ρðqabUaUb þ 1Þ

�
; ð2:11Þ

cgeoa ¼ −2qacDbpbc; ð2:12Þ

cdusta ¼ P½T;a −WjS
j
;a�; ð2:13Þ

where P and Pj are conjugate momenta of T and Sj,
respectively, and ð3ÞR0 is the Ricci scalar of qab. There are
eight second-class constraints. Four of them are

Wj ¼ −Pj=P; ð2:14Þ

ρ2 ¼ P2

detðqÞ ðq
abUaUb þ 1Þ−1: ð2:15Þ

Equation (2.15) gives

ρ ¼ ϵ
Pffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp ðqabUaUb þ 1Þ−1=2; ϵ ¼ �1: ð2:16Þ

The future-pointing timelike Uμ fixes ϵ ¼ 1 [18]. By (2.8),
ctot ¼ 0 yields

cgeo ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
ρðqabUaUb þ 1Þ: ð2:17Þ

With (2.3), (2.13), and ctota ¼ 0, we get

Ua ¼
cgeoa

P
: ð2:18Þ

These formulas are useful in analyzing the asymptotic
behaviors of the dust density ρ, which we will see in the
next section. Other second-class constraints are less impor-
tant for our discussion, so we refer the reader to [18] for
further details.
In this section, we do not introduce the boundary

condition and boundary terms to the constraints or Dirac
observables. We will introduce the asymptotically flat
boundary condition directly at the level of reduced phase
space, as to be discussed in Sec. III.

C. Dirac observables and the bulk symmetry charges

BK formalism defines the gauge invariant quantities—
Dirac observables through the deparametrization process
[18]. First, the first-class constraints (2.8) and (2.9) are
solved by

P ¼ sgnðPÞh; Pj ¼ −hj; ð2:19Þ

with

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcgeoÞ2 − qabcgeoa cgeob

q
; hj ¼ Saj ð−hT;a þ cgeoa Þ;

ð2:20Þ

and Saj is the inverse matrix of ∂aSj, and h does not depend
on ðT; PÞ.
Second, the smeared constraint is

Kβ ≡
Z
Σ
d3x½βðx⃗Þctotðx⃗Þ þ βjðx⃗Þctotj ðx⃗Þ�: ð2:21Þ

The Dirac observable from a generic phase space function f
is constructed by the exponential map generated by Kβ

Of½τ; σ�≡
�X∞
n¼0

1

n!
ff; KβgðnÞ

�
β→τ−T

βj→σj−Sj

: ð2:22Þ

Here ff; KβgðnÞ means doing n times of the Poisson bracket

between f and Kβ. For example: ff; Kβgð0Þ ¼ f, and

ff; Kβgð2Þ ¼ ff; ff;Kβgg. τ; σj ∈R are coordinates in

the reference frame defined by the dust fields. One can
prove that Of½τ; σ� is gauge invariant on the constraint
surface, namely, it is a (weakly) Dirac observable [2].Of is
a field defined on the dust space S.3 In this way, we
construct the Dirac observables of qab and pab and denote
them by gij and πij, respectively.4 The symplectic structure
on the reduced phase space is then given by

Ω ≔
Z
S
d3σδgij ∧ δπij: ð2:23Þ

We have ignored the possible modification ofΩ. In the case
that S has a boundary, we will come back to the symplectic
structure in the next section.
cgeo and cgeoa can be promoted to the Dirac observables C

and Cj by substituting ðqab; pabÞ with ðgij; πijÞ in their
expressions:

3Here the S is the spacelike hypersurface whose coordinates
are given by σj. We have a dust space S½τ� at each instance of the
physical time τ.

4The indices of the Dirac observables are the greek letters since
the observables are defined on the dust space.
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C ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp �

gikgjl −
1

2
gijgkl

�
πijπkl −

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

p ð3ÞR;

ð2:24Þ

Cj ¼ −2gjkDiπ
ik; ð2:25Þ

with ð3ÞR is the Ricci scalar of gij. The Dirac observable of
h is given by

Hphys ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 − gijCiCj

q
: ð2:26Þ

Ignoring again the situation that S has a boundary, the
integration of Hphys over S gives the physical Hamiltonian

Hphys ≔
Z
S
d3σHphys: ð2:27Þ

Given a generic Dirac observable F on the reduced phase
space, its physical time evolution with respect to τ is
generated by Hphys

dF
dτ

≔ fF;Hphysg: ð2:28Þ

The variation of the Hphys is given by

δHphys ¼
Z
S
d3σ

�
NδCþ NiδCi þ

1

2
HphysNiNjδgij

�
:

ð2:29Þ

In analogy to the lapse function and the shift vector field in
general relativity, N and Ni are called the dynamical lapse
function and the dynamical shift vector field, respectively.
The expressions of Ni and N are

Ni ¼ −
gijCj

Hphys
; ð2:30Þ

N ¼ C=Hphys ¼

8>><
>>:

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gjkNjNk

q
physical dustffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ gjkNjNk

q
phantom dust

:

ð2:31Þ

A difference between the general relativity and the BK
formalism is that both N and Nj depend on the canonical
variables. When ignoring the boundary of S, we have
infinitely many conserved charges Hphysðσ⃗Þ and Cjðσ⃗Þ

fCjðσ⃗Þ;Hphysg ¼ 0; fHphysðσ⃗Þ;Hphysg ¼ 0: ð2:32Þ

The Hamiltonian density Hphysðσ⃗Þ and the dust-space
diffeomorphism Cjðσ⃗Þ generate symmetries that are ana-
logs of the hypersurface deformations in canonical general
relativity, although here they are physical symmetries on
the reduced phase space rather than gauge symmetries [26].
The modification of these symmetries charges in presence
of boundary will be discussed in Sec. IV.

III. ASYMPTOTIC BOUNDARY CONDITIONS

Starting from this section, we analyze the situation that
the dust space S has an asymptotic boundary at infinity.
We consider the asymptotically flat boundary condition,
and accordingly, we modify the symmetry charges Hphys

and Cj by adding the corresponding boundary charges.
Section III A introduces the boundary conditions and the
symplectic structure. Subsection III B shows that the
boundary charge of the physical Hamiltonian corresponds
to the ADM mass.

A. The phase space and the symplectic structure

In any asymptotically flat spacetime, there exits an
asymptotic Cartesian coordinate Xα, such that the 4-metric
has the following asymptotic behavior at r0 → ∞:

gαβ ¼ ηαβ þ
fαβðX0; X⃗=r0Þ

r0
þ oðr−10 Þ; ð3:1Þ

where r0 ¼
ffiffiffiffiffiffiffiffiffiffi
XiXi

p
, and fαβðX0; X⃗=r0Þ is a smooth tensor

field on S2 atX0.5 To study the asymptotically flat spacetime
in the reduced phase space, we propose that the material
reference frame given by the dust is asymptotically
Cartesian. Namely, we identify τ ¼ X0, σ⃗ ¼ X⃗, and we
define r ¼

ffiffiffiffiffiffiffiffi
σiσi

p
. Then Eq. (3.1) leads to the following

asymptotic behaviors of qij and πij on the dust space S:

gij ¼ δij þ
h̄ij
r
þ oðr−1Þ; πij ¼ π̄ij

r2
þ oðr−1Þ: ð3:2Þ

A naively approach might be to adapt the standard
procedure [27–29] in our context, by expanding

gij ¼ δij þ
h̄ij
r
þ hð2Þij

r2
þ oðr−2Þ; ð3:3Þ

πij ¼ π̄ij

r2
þ πð2Þij

r3
þ πð3Þij

r4
þ oðr−4Þ; ð3:4Þ

and imposing parity conditions to h̄ij and π̄ij.6 The reason
of the parity condition is to make the following symplectic
form finite as R → ∞

5In our notations, oðraÞ means decaying faster than ra while
OðraÞ means decaying as fast as ra for some constant a.

6For a function fðσ⃗Þ on S2, fðx⃗Þ has odd parity if
fð−σ⃗Þ ¼ −fðσ⃗Þ; fðσ⃗Þ has even parity if fð−σ⃗Þ ¼ fðσ⃗Þ.
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Ω0 ≔
Z
SR

d3σδgij ∧ δπij; ð3:5Þ

where SR is the dust space with radial cutoff R. Ω0

diverges logarithmically as R → ∞ without the parity
conditions.
However, as to be clarified in a moment, the above naive

approach fails here because it is incompatible with neither
physical dust nor phantom dust (see the remark at the end of
this subsection), or it rules out many interesting boundary
charges. We make two modifications: (1) We consider more
general boundary condition by relaxing the parity con-
ditions, similar to the approach in [30,31]. Then a counter-
term has to be added to Ω0 to cancel the divergent terms
in (3.5), as we will see in a moment. (2) We consider the
following more general falloff conditions including loga-
rithmic terms

gij ¼ δij þ
h̄ij
r
þ log r

r2
hðlogÞij þ hð2Þij

r2
þ oðr−2Þ; ð3:6Þ

πij ¼ π̄ij

r2
þ log r

r3
πðlogÞij þ πð2Þij

r3
þ log r

r4
πðllÞij

þ πð3Þij

r4
þ oðr−4Þ: ð3:7Þ

Here, h̄ij, π̄ij, h
ðlogÞ
ij , πðlogÞij, hð2Þij , πð2Þij, πðllÞij, and πð3Þij are

called the boundary fields, since they are functions on S2,
which is the boundary of S. In order to analyze the higher
order asymptotic behavior of Cj, we expand πij to Oðr−4Þ.
The motivation of adding log r-terms in (3.6) and (3.7) is to
include more general solutions of Cj ¼ 0 (see [31] and
Appendix B of [29]). We next transform (3.6) and (3.7) to
spherical coordinates fr; σAgðA ¼ 1; 2Þ. Here σA are the
angular coordinates, and they are the functions of the
traditional spherical coordinates θ, φ. They have odd parity
σAðπ − θ;φþ πÞ ¼ −σAðπ;φÞ.

grr ¼ 1þ 1

r
h̄rr þ

log r
r2

hðlogÞrr þ 1

r2
hð2Þrr þ oðr−2Þ; ð3:8Þ

grA ¼ h̄rA þ log r
r

hðlogÞrA þ 1

r
hð2ÞrA þ oðr−1Þ; ð3:9Þ

gAB ¼ r2γ̄AB þ rh̄AB þ logðrÞhðlogÞAB þ hð2ÞAB þ oðr0Þ; ð3:10Þ

πrr ¼ π̄rr þ log r
r

πðlogÞrr þ 1

r
πð2Þrr þ log r

r2
πðllÞrr

þ πð3Þrr

r2
þ oðr−2Þ; ð3:11Þ

πrA ¼ 1

r
π̄rA þ log r

r2
πðlogÞrA þ 1

r2
πð2ÞrA þ log r

r3
πðllÞrA

þ πð3ÞrA

r3
þ oðr−3Þ; ð3:12Þ

πAB ¼ 1

r2
π̄AB þ log r

r3
πðlogÞAB þ 1

r3
πð2ÞAB þ log r

r4
πðllÞAB

þ πð3ÞAB

r4
þ oðr−4Þ: ð3:13Þ

Here A and B are indices of the angular coordinates on S2,
and γ̄AB is the metric on a unit sphere. We introduce some
short-hand notations for the following discussion

λ̄ ¼ 1

2
h̄rr;

˜̄kAB ¼ 1

2
h̄AB þ λ̄γ̄AB; λ̄A ¼ h̄rA;

p̄ ¼ 2ðπ̄rr − π̄AAÞ; πABðkÞ ¼ 2π̄AB: ð3:14Þ

We need to impose some additional boundary conditions
to gij and πij. First, there is a parity condition that is
imposed to πðlogÞrA and is compatible to the dust:

πðlogÞrAð−σ⃗Þ ¼ πðlogÞrAðσ⃗Þ: ð3:15Þ

This parity condition results in that the ADM angular
momentum becomes finite (it will be shown in Sec. IV).
Equations (3.8)–(3.13) yield

Cr ¼
Cð1Þ
r

r
þ logðrÞ

r2
CðlogÞ
r þ Cð2Þ

r

r2
þ log r

r3
CðllÞ
r þOðr−3Þ;

ð3:16Þ

CA ¼ Cð0Þ
A þ logðrÞ

r
CðlogÞ
A þ Cð1Þ

A

r
þ log r

r2
CðllÞ
A þOðr−2Þ;

ð3:17Þ

C ¼ Cð1Þ

r
þ logðrÞ

r2
CðlogÞ þOðr−2Þ; ð3:18Þ

where

Cð1Þ
r ¼ 2ðπ̄AA − ∂Aπ̄

rAÞ; ð3:19Þ

CðlogÞ
r ¼ 2ðπðlogÞrr − ∂Aπ

ðlogÞrA þ πðlogÞAAÞ; ð3:20Þ

Cð0Þ
A ¼ −2ðπ̄rA þ D̄Bπ̄

B
AÞ; ð3:21Þ

CðlogÞ
A ¼ −2D̄Bπ

ðlogÞB
A; ð3:22Þ

Cð1Þ ¼−2
ffiffiffī
γ

p ðD̄AD̄B
˜̄kAB − D̄AD̄A ˜̄kþ D̄Aλ̄

AÞ: ð3:23Þ
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The explicit expression of CðlogÞ is complicate and unnec-
essary for the following discussions. We will provide
further comments on this term in a moment.
Generically, the physical Hamiltonian density Hphy

decays as Oðr−1Þ by (3.16)–(3.18) and (2.26). Then the
bulk physical Hamiltonian diverges logarithmically,

Hphys ¼ lim
R→∞

Z
SR

d3VHphys ¼ lim
R→∞

jCð1Þj logðRÞ þ finite:

ð3:24Þ

This integral is written in the spherical coordinates. The
coordinate volume is

d3V ¼ drdσ1dσ2: ð3:25Þ

To remove the logarithmic divergence, we introduce the
boundary condition

Cð1Þ ¼ 0: ð3:26Þ

The leading order contribution to Hphys is CðlogÞ. The parity
condition (3.15) has no impact on CðlogÞ based on power
counting. It is convenient to analyze this in asymptotic
Cartesian coordinates, where the contribution of CðlogÞ is in
Oðlog r

r4 Þ. On the other hand, with (2.24) and (3.7), one finds
that the leading order of the contribution from πðlogÞij in C is
at Oðlog r

r5
Þ. As the result, regardless what parity condition

assigned to πðlogÞij, it does not influence CðlogÞ.
Given a functional f of the fields gij; πij, the boundary

term of δf is a differential if

δf ¼ Aijδπ
ij þ Bijδgij − δBfjr→∞; ð3:27Þ

for Bfjr→∞ depending on only boundary fields. In this case,
the variation of f þ Bf is well defined, i.e., f þ Bf is a
differentiable functional. If f relates to a symmetry, then we
call f þ Bf the symmetry charge and Bf the boundary
charge. If we only impose (3.6) and (3.7), then the
boundary term of δHphys is not a differential thus cannot
be canceled by adding boundary charges. A resolution is to
impose some additional boundary conditions:

Cð0Þ
A ¼ CðlogÞ

A ¼ Cð1Þ
A ¼ Cð1Þ

r ¼ CðlogÞ
r ¼ Cð2Þ

r ¼ 0;

CðlogÞ ≠ 0: ð3:28Þ

In vacuum gravity, the boundary conditions for C and Cj

are adapted on shell due to C and Cj are constraints. All the
solutions of the equations of motion satisfy C ¼ 0 and
Cj ¼ 0. In our case of gravity coupled to BK dust, C ≠ 0

and Cj ≠ 0 in general, since the boundary conditions (3.26)

and (3.28) only imposeC andCj to be 0 up to certain orders
in the asymptotic expansion. Equations (3.26) and (3.28)
are viewed as additional restrictions, which restrict the
solution space of the equations of motion. In Sec. III B, we
will show that these boundary conditions ensure the non-
differential boundary terms in δHphys decaying fast enough
and vanishing in the spatial infinity.
Inspired by [30,31], the symplectic form Ω becomes

finite at R → ∞ after adding a counterterm:

Ω ¼ lim
R→∞

Z
SR

d3σδgij ∧ δπij − logðRÞ
I
S2
d2Sδh̄ij ∧ δπ̄ij;

ð3:29Þ

with d2S ¼ dσ1dσ2, and the δ indicates the variation of
fields satisfying the falloff conditions (3.6) and (3.7) and
boundary conditions (3.15), (3.26), and (3.28). The counter
term of (3.29) may relate to the corner term in the
formalism of [41]. Note that Ω does not depend on the

variations of the boundary fields π̄ij; h̄ij; πðlogÞij; h
ðlogÞ
ij , etc.,

in the expansions (3.6) and (3.7). This can be seen by
inserting the expansions of gij; πij in Ω. Indeed, in
Cartesian coordinate, the boundary contribution of (3.29)

is logðRÞ
R

H
S2 d

2Sðδπ̄ij ∧ δh̄ðlogÞij þ δπðlogÞij ∧ δh̄ijÞ þOðR−1Þ,
and it vanishes as R → ∞.
We define the reduced phase space P to be the space of

fields gij; πij satisfying the falloff conditions (3.6) and (3.7)
and boundary conditions (3.15), (3.26), and (3.28). P is
equipped with the symplectic form Ω. For any differ-
entiable function f on P, its variation on P is given by

δf ¼
Z
S
d3σ

�
δf

δgijðσÞ
δgijðσÞ þ

δf
δπijðσÞ δπ

ijðσÞ
�
; ð3:30Þ

where the variations δgij and δπij preserve the falloff
conditions. If two differentiable functions f, f0 have the
corresponding Hamiltonian vector fields, their Poisson
bracket is given by

ff;f0g≔
Z
S
d3σ

�
δf

δgijðσÞ
δf0

δπijðσÞ−
δf

δπijðσÞ
δf0

δgijðσÞ
�
: ð3:31Þ

In the above two formulas and formulas in the following
discussion, we adopt the following notation:Z

S
� � � ¼ lim

R→∞

Z
SR

� � � : ð3:32Þ

There are two remarks about the boundary conditions:
(1) By (3.16)–(3.18) and (3.28), we have C ¼

Oðlog r
r4 Þ and Cj

C ¼ Oðr−1Þ in the Cartesian coordi-
nates. Then (2.26), (2.19), and (2.18) give
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Uj ¼ Cj

P ¼ Oðr−1Þ. Recall (2.17), we have C ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞp

ρðgijUiUj þ 1Þ in the dust space,

and gijUiUj ¼ Oðr−2Þ. Thus, ρ ¼ Oðlog r
r4 Þ. Refer-

ence [42] analyzes the spacetime coupling to a
perfect fluid with certain boundary conditions. The
asymptotic flatness conditions would be violated if
the energy density ρ decays as Oðr−2Þ. In our case,
the asymptotic flatness conditions, however, are
preserved due to the faster falloff behavior of ρ.

(2) As mentioned above, naively adding parity condi-
tions to the expansions (3.3) and (3.4) does not work
in the BK formalism. In the cases without introduc-
ing logarithmic terms to the falloff conditions (3.2),
we need to impose Cð2Þ ≠ 0 as the boundary con-
dition. The explicit expression of Cð2Þ is in Appen-
dix B of [28], where Cð2Þ contains the contributions
of the canonical variables with odd parity. It turns
out that the sign of Cð2Þ can flip under an antipodal
map. Since C ∝ ffiffiffi

g
p

ρ, ρ can be smaller than 0 in
some regions and be greater than 0 in other regions,
whereas the BK formalism requires sgnðρÞ to be
constant. Introducing logarithmic terms to the falloff
conditions with appropriate parity conditions of

hðlogÞij removes this problem. In Cartesian coordi-

nates, the leading order of C is logðrÞ
r4 CðlogÞ with

Cð1Þ ¼ 0. The terms contribute to logðrÞ
r4 CðlogÞ are the

second derivative of logðrÞ
r2 hðlogÞij . Henceforth, intro-

ducing even parity to hðlogÞij ensures CðlogÞ has even
parity. Its sign does not flip under the antipodal map.
Nevertheless, relaxing the parity conditions give us
more general results. We will concentrate on the
relaxed parity conditions cases in our discussions
throughout this paper.

B. The boundary term of the physical Hamiltonian

In this subsection, we show that the boundary term that
arises from the variation δHphys is a differential under our
boundary conditions. Thus, we can add a boundary
Hamiltonian Hbdy whose variation cancels the boundary
term. Hbdy turns out to be the ADM mass.
Recall (2.29),

R
S d

3VgijNiδCj and
R
S d

3VNδC may give
boundary terms after integration by parts. First,

Z
S
d3VgijNiδCj¼

Z
S
d3VðδπijLN⃗gij−δgijLN⃗π

ijÞ

− lim
R→∞

I
S2
d2Sð2NjδðπrkgjkÞ−NrπijδgijÞ:

ð3:33Þ

The boundary conditions turns out to make the boundary
terms in (3.33) vanish at R → ∞. Indeed, recall (2.30),
we have

Ni ¼ −
Ci

Hphys
: ð3:34Þ

By (3.8)–(3.13), we find that the boundary term in (3.33)
vanishes at R → ∞ once Cj decays faster than Hphys in
Cartesian coordinates. Equation (3.2) indicates Cj decays
as fast as Hphys without additional conditions and their
leading terms are Oðr−3Þ. The approach in Ref. [18] is to
add an ϵ regulator to the leading order of Cj such that Cj

decays as Cj ¼ Oðr−3−ϵÞ. Here ϵ is a positive constant.
Then

Nj ¼ Oðr−ϵÞ: ð3:35Þ

With (3.35), the boundary terms of (3.33) vanish. In
this paper, we take a different approach by imposing
(3.26)–(3.28). First, in spherical coordinates (3.34) reads

Nr ¼ −
Cr

Hphys
; NA ¼ −

CA

Hphys
: ð3:36Þ

By (2.30), (3.16)–(3.17), (3.26), and (3.28), we find the
following asymptotic behaviors of Nr, NA:

Nr ¼ Oðr−1Þ; NA ¼ Oð1Þ: ð3:37Þ

Or for Nr and NA,

Nr ¼ Oðr−1Þ; NA ¼ Oðr−2Þ: ð3:38Þ

Then we analyze the boundary terms in (3.33) by using
(3.8)–(3.13), and we obtain

I
S2
d2SNjδðπrkgjkÞ ¼

I
S2
d2S½Nrδðπrrgrr þ πrDgrDÞ

þ NCδðπrrgCr þ πrDgCDÞ�;
¼ Oðr−1Þ; ð3:39Þ

and

I
S2
d2SNrπjkδgjk ¼

I
S2
d2SNrðπrrδgrr

þ 2πrAδgrA þ πABδgABÞ;
¼ Oðr−2Þ: ð3:40Þ

When taking the limit R → ∞, both terms vanish:
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lim
R→∞

I
S2
d2Sð2NjδðπrkgjkÞ − NrπijδgijÞ ¼ 0: ð3:41Þ

On the other hand,

Z
S
d3V NδC ¼

Z
S
d3V ðAijδπ

ij − BijδgijÞ þKN: ð3:42Þ

The explicit expressions of Aij and Bij can be found in [18]:

Aij ¼ 2Ng−
1
2

�
πij −

1

2
gijπ

�
;

Bij ¼ −Ng
1
2

�
Rij −

1

2
gijR

�
þ 1

2
Ng−

1
2gij

�
πmnπ

mn −
1

2
π2
�
− 2Ng−

1
2

�
πimπjm −

1

2
πijπ

�
þ g

1
2ðDiDjN − gijDmDmNÞ: ð3:43Þ

Here N is the dynamical lapse function, rather than the Lagrange multiplier in the original ADM formalism. The boundary
term KN reads (see Appendix A for more details):

KN ¼ lim
R→∞

I
S2
d2S

ffiffiffi
γ

p �
−
1

λ
γABðDrNÞδγABþ

λA

λ
γBCðDANÞδγBC

�
−2 lim

R→∞

I
S2
d2SðNδKþNδðγACÞγABKC

BÞ

þ lim
R→∞

I
S2
d2S

ffiffiffi
γ

p N
λ
δ

��
−
λA

λ
ð∂AλþKACλ

CÞþDAλ
A

�
−DAδλ

A

�
− lim

R→∞

I
S2
d2S

ffiffiffi
γ

p
N
λA

λ

�
1

2
γBCDAδγBC−δ

�
λB

λ
KBA

��

þ lim
R→∞

I
S2
d2S

ffiffiffi
γ

p
N
λA

λ
δ

�
1

λ
ð∂AλþKABλ

BÞ
�
þ lim

R→∞

I
S2
d2Sλ

ffiffiffi
γ

p �
−N

λAλB

λ5
δKABþNKAB

λAλB

λ4
δλ

λ2

�

þ lim
R→∞

I
S2
d2S

ffiffiffi
γ

p �
−NDA

�
1

λ

�
δλA−

λA

λ
γBCðDCNÞδγAB

�
: ð3:44Þ

Recall (2.31), we find

N ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gijNiNj

q
: ð3:45Þ

Here the “þ” sign is for the phantom dust and the “−” sign
is for the physical dust. In Cartesian coordinates, the
asymptotic behaviors of Nj (3.6) read

Nj ¼ Oðr−1Þ: ð3:46Þ

It turns out that7

N ¼ �1þOðr−2Þ: ð3:47Þ

Here γAB is the 2-metric on the S2 in the “2þ 1”
decomposition [28], which satisfies

γAB ¼ gAB;

γAB ¼ gAB −
λAλB

λ2
: ð3:48Þ

DA is the covariant derivative compatible with γAB, and the
angular indexes A and B are lowered and raised by γAB and
its inverse γAB. By (3.8)–(3.13) and (3.47), the boundary
term KN to be a differential

KN ¼ −δHbdy;

¼∓
I
S2
d2S2

ffiffiffī
γ

p
δð2λ̄þ D̄Aλ̄

AÞ;

¼∓ 4

I
S2
d2S

ffiffiffī
γ

p
δλ̄: ð3:49Þ

The last step is because the integration region is closed.
Here D̄A is the covariant derivative compatible with γ̄AB,
and the angular indices A and B are lowered and raised by
γ̄AB and its inverse γ̄AB. We can add the boundary term
Hbdy to the physical Hamiltonian to make its variation well
defined. Where7As a comparison, N decays as N ¼ 1þOðr−2ϵÞ in [18].
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Hbdy ¼ �4

I
S2
d2S

ffiffiffī
γ

p
λ̄; ð3:50Þ

and it is interpreted as the ADM mass. Here the “þ” sign is
for the phantom dust, while the “−” sign is for the physical
dust. These signs are consistent with the convention that the
physical time evolution corresponding to the phantom dust
is future toward, whereas the physical time evolution
corresponding to the physical dust is past toward, see [18].
Hbdy is conserved under the physical time evolution, i.e.,

dHbdy

dτ ¼ 0. Note that
ffiffiffī
γ

p
is fiducial in (3.50), we only need to

compute the physical time derivative of λ̄. We first compute
the physical time derivative of grr. Since asymptotically flat
cases necessitate the consideration of boundary terms, the
physical time derivative formula (2.28) needs to be modi-
fied as

dgrr
dτ

¼ fgrr;Hphys þHbdyg; ð3:51Þ

and the result is

dgrr
dτ

¼ Ng−
1
2

�
πrr −

1

2
grrπ

�
þ LN⃗grr ¼ Oðr−2Þ ð3:52Þ

with the falloff conditions and boundary conditions intro-
duced before. On the other hand, λ̄ is proportional to the
coefficient of the Oðr−1Þ term in grr, and its physical time
derivative is induced by expanding (3.52) to the boundary.
Therefore,

dλ̄
dτ

¼ 0; ð3:53Þ

and thus

dHbdy

dτ
¼ 0: ð3:54Þ

The similar boundary Hamiltonian is obtained by the
approach with the ϵ regulator in [18]. However, as an
advantage of our approach, the boundary conditions
(3.26)–(3.28) result in more general symmetry charges,
which turn out to relate to supertranslations on the
boundary. We will show this in the next section.

IV. BOUNDARY-PRESERVING SYMMETRY
CHARGES AND BOUNDARY CHARGES

In this section, we firstly define the boundary-preserving
symmetry charges. Then these symmetry charges are
explicitly constructed as phase space functions. The
expressions of the symmetry charges contain both bulk
and boundary terms. The boundary terms are constructed
such that the variations of the functions are well defined on
the phase space.

Definition 1. G is a boundary-preserving symmetry
charge if

(i) G commutes with the physical Hamiltonian:

fG;Hphys þHbdyg ¼ 0: ð4:1Þ

(ii) The Hamiltonian flow of G preserves the falloff and
boundary conditions in Sec. III A.

We first introduce the vector fields used to construct
the boundary-preserving charges, which are denoted as
ξμ ≔ ðξ; ξjÞ. As r → ∞, ξμ falls off as

ξ ¼ f þOðr−1Þ; ξr ¼ W þOðr−1Þ;

ξA ¼ YA þ 1

r
IA þOðr−2Þ: ð4:2Þ

For convenience, we require that the expansions of ðξ; ξ⃗Þ
only contain integer order of r−1. f,W, and IA are functions
and vector field on S2, YA is the Killing vector field on the
S2. Their geometric meaning will be discussed shortly. The
boundary-preserving symmetry Gðξ; ξ⃗Þ is constructed as

Gðξ; ξ⃗Þ ≔ Jðξ; ξ⃗Þ þ Bðξ; ξ⃗Þ; ð4:3Þ

where Jðξ; ξ⃗Þ is the bulk term

Jðξ; ξ⃗Þ ¼ T ðξÞ þ Pðξ⃗Þ; ð4:4Þ

with

T ðξÞ ¼
Z
S
d3VξHphys;

Pðξ⃗Þ ¼
Z
S
d3VξiCi: ð4:5Þ

Bðξ; ξ⃗Þ is the boundary term, whose variation should cancel
the boundary term from δJðξ; ξ⃗Þ, where

δJðξ; ξ⃗Þ ¼
Z
S
d3V

�
ξ̃δCþ ðξr þ ξ̃rÞδCr þ ðξA þ ξ̃AÞδCA

þ ξ

2
HphysNiNjδgij

�
;

¼
Z
S
d3V½Gijδπ

ij − F ijδgij� þKðξ; ξ⃗Þ: ð4:6Þ

In (4.6), ξ̃ ¼ ξN, ξ̃i ¼ ξNi, and Kðξ; ξ⃗Þ is the boundary
term. The bulk terms are
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Gij ¼ 2ξ̃g−
1
2

�
πij −

1

2
gijπ

�
þ Lξ⃗gij þ L ⃗ξ̃

gij;

F ij ¼ −ξ̃g1
2

�
Rij −

1

2
gijR

�
þ 1

2
ξ̃g−

1
2gij

�
πmnπ

mn −
1

2
π2
�

− 2ξ̃g−
1
2

�
πimπjm −

1

2
πijπ

�
þ g

1
2ðDiDjξ̃ − gijDmDmξ̃Þ

þ Lξ⃗π
ij þ L ⃗ξ̃

πij þ ξ

2
HphysNiNj: ð4:7Þ

Unlike the typical general relativity, the ξ̃ and the ξ̃j in (4.7)
are dynamical. The terms L ⃗ξ̃

gij and L ⃗ξ̃
πij are contributed

by ξδHphys. The term
ξ
2
NiNjδgij is the correction due to the

dust field.
We discuss the geometric meaning of the parameters

in (4.2). The boundary-preserving symmetry charges
generate the diffeomorphisms in the bulk and the asymp-
totic symmetry transformations at the boundary. The
asymptotic symmetry transformations at the boundary
preserve the falloff conditions and the boundary condi-
tions. The charges are classified into the following four
types:

GðfÞ ≔
Z
S
d3VfHphys þ BðfÞ;

GðWÞ ≔
Z
S
d3VWCr þ BðWÞ;

GðY⃗Þ ≔
Z
S
d3VYACA þ BðY⃗Þ;

GðI⃗Þ ≔
Z
S
d3V

IA

r
CA þ BðI⃗Þ: ð4:8Þ

BðfÞ;BðWÞ;BðY⃗Þ;BðI⃗Þ are the boundary charges.
Physically, these four types of charges generate the
following four classes of the asymptotic symmetry trans-
formations at the boundary:
(1) GðY⃗Þ: spatial rotations.
(2) GðfÞ: supertranslations in the physical time

direction.
(3) GðWÞ: The radius component of the supertransla-

tions in the spatial direction.
(4) GðI⃗Þ: The angular components of the supertransla-

tions in the spatial direction.
When f ¼ 1, GðfÞ reduces to the physical Hamiltonian
with the ADM mass as the boundary charge, and it
generates the physical time translation. As is shown in
[28], when

W¼WT ¼TA sin σθ cos σφþTY sin σθ sin σφþTZ cos σθ;

IA ¼ IAT ¼ D̄AWT; ð4:9Þ

where TX, TY , TZ are constants and other components of ðξ; ξ⃗Þ are 0, Gðξ; ξ⃗Þ generates spatial translation since

WT
∂

∂r
þ IAT

r
∂

∂σA
¼ TX

∂

∂σX
þ TY

∂

∂σY
þ TZ

∂

∂σZ
: ð4:10Þ

In order to obtain the boundary charge Bðξ; ξ⃗Þ, we compute Kðξ; ξ⃗Þ (see Appendix A for more details)

Kðξ; ξ⃗Þ ¼ lim
R→∞

I
S2
d2Sð−2uiδπri þ urπijδgijÞ þ lim

R→∞

I
S2
d2S

ffiffiffi
γ

p �
−
1

λ
γABðDrξ̃ÞδγAB þ λA

λ
γBCðDAξ̃ÞδγBC

�

− lim
R→∞

I
S2
d2S

ffiffiffi
γ

p ð2ξ̃δK þ ξ̃δðγACÞγABKC
BÞ þ lim

R→∞

I
S2
d2S

ffiffiffi
γ

p ξ̃

λ

�
δ

�
−
λA

λ
ð∂Aλþ KACλ

CÞ þDAλ
A

�
−DAδλ

A

�

− lim
R→∞

I
S2
d2S

ffiffiffi
γ

p
ξ̃
λA

λ

�
1

2
γBCDAδγBC − δ

�
λB

λ
KBA

��
þ lim

R→∞

I
S2
d2S

ffiffiffi
γ

p
ξ̃
λA

λ
δ

�
1

λ
ð∂Aλþ KABλ

BÞ
�

þ lim
R→∞

I
S2
d2Sλ

ffiffiffi
γ

p �
−ξ̃

λAλB

λ5
δKAB þ ξ̃KAB

λAλB

λ4
δλ

λ2

�
þ lim

R→∞

I
S2
d2S

ffiffiffi
γ

p �
−ξ̃DA

�
1

λ

�
δλA −

λA

λ
γBCðDCξ̃ÞδγAB

�
;

ð4:11Þ

with ui ¼ ξi þ ξ̃i. From (3.8)–(3.13) and (3.38),
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Kðξ; ξ⃗Þ ¼ lim
R→∞

I
S2
d2Sð−2RYAδπ̄rA − 2YA logðRÞδπðlogÞrA

− 2YAδðπ̄rrλ̄A þ πrð2ÞA þ π̄rBh̄ABÞ
− 2IAδπ̄rA − 2Wδπ̄rr ∓ 2

ffiffiffī
γ

p
fδð2λ̄þ D̄Aλ̄

AÞÞ:
ð4:12Þ

Similar to the discussion in Sec. III B, we want to show K
as a differential of certain boundary charge B. There are
two terms inK that would be divergent without the suitable
boundary condition (see Appendix B of [29] for similar
results): As R → ∞, the term 2R

H
S2 d

2SYAδπ̄rA is generi-
cally divergent linearly but vanishes by imposing the

boundary condition Cð0Þ
A ¼ 0 and the Killing equation of

YA. Note that YA has odd parity and πðlogÞrA ¼ γ̄ABπ
ðlogÞrB,

the term −2
H
S2 d

2SYA logðRÞδπðlogÞrA is generically diver-
gent logarithmically but vanishes by (3.15). Finally,

Kðξ; ξ⃗Þ ¼
I
S2
d2Sð−2YAδðπ̄rrλ̄Aþ πrð2ÞA þ π̄rBh̄ABÞ− 2IAδπ̄rA

−2Wδπ̄rr ∓ 2
ffiffiffī
γ

p
fδð2λ̄þ D̄Aλ̄

AÞÞ: ð4:13Þ

In order to fulfill Kðξ; ξ⃗Þ ¼ −δBðξ; ξ⃗Þ,

Bðξ; ξ⃗Þ ¼
I
S2
d2SYAð4ð ˜̄kAB − λ̄γ̄ABÞπ̄rB

þ 2γ̄ABπ
ð2ÞrB þ λ̄Aðp̄þ 2π̄BBÞÞ

þ
I
S2
d2Sð2IAγ̄ABπ̄rB þWðp̄þ 2π̄AAÞ

� 2
ffiffiffī
γ

p
fð2λ̄þ D̄Aλ̄

AÞÞ
¼ BðξÞ þ Bðξ⃗Þ; ð4:14Þ

where

BðξÞ ¼ BðfÞ;
Bðξ⃗Þ ¼ BðY⃗Þ þ BðI⃗Þ þ BðWÞ: ð4:15Þ

Here BðfÞ, BðY⃗Þ, BðI⃗Þ, and BðWÞ are the four types of
boundary charges:

BðY⃗Þ ¼
I
S2
d2SYAð4ð ˜̄kAB − λ̄γ̄ABÞπ̄rB þ 2γ̄ABπ

ð2ÞrB

þ λ̄Aðp̄þ 2π̄BBÞÞ;

BðI⃗Þ ¼
I
S2
d2S2IAγ̄ABπ̄rB;

BðWÞ ¼
I
S2
d2SWðp̄þ 2π̄AAÞ;

BðfÞ ¼ �
I
S2
d2S2

ffiffiffī
γ

p
fð2λ̄þ D̄Aλ̄

AÞ: ð4:16Þ

The boundary charges (4.14) are finite. By (3.16)–(3.18),
(3.26), (3.28), and (4.2), Jðξ; ξ⃗Þ are also finite. Thus, the
boundary-preserving charges Gðξ; ξ⃗Þ ¼ Jðξ; ξ⃗Þ þ Bðξ; ξ⃗Þ
are finite on the phase space. Additionally, by adding
the boundary terms Bðξ; ξ⃗Þ, the variation of Gðξ; ξ⃗Þ is well
defined. Furthermore, similar to the discussions at the
end of Sec. III B, one can show the boundary charges in
(4.14) are conserved, and the detailed discussion is in
Appendix B.
The symplectic form defined by Eq. (3.29) is preserved

byGðξ; ξ⃗Þ. First, Eq. (3.29) only contains bulk terms, as the
boundary term of the integration limR→∞

R
SR

d3σδgij ∧
δπij is canceled by the counterterm, as previously dis-
cussed. Second, the variation of Gðξ; ξ⃗Þ is well defined,
implying the existence of corresponding Hamiltonian
vector field. Consequently, the transformation on the phase
space generated by Gðξ; ξ⃗Þ is a canonical one, which
preserves the symplectic structure (see Appendix C).
Before ending this section, we would like to compare our

results with the results in [28]. First, our work is concep-
tually different from [28]. The result in [28] bases on the
traditional formulation of general relativity, where the bulk
is a totally constrained system, thus the symmetry charges
vanish in the bulk and only have nonvanished terms at the
boundary. The result in our case, however, is based on the
reduced phase space formulation. The gravity-dust system
on the reduced phase space is not a constraint system any
longer and has a physical Hamiltonian. Therefore, our
symmetry charges have both nonvanishing bulk and boun-
dary terms. The transformations generated by these charges
are symmetries but not gauge symmetries. Second, although
some boundary terms look similar to the ones in [28], there
are several additional boundary terms in our results,

including 2
H
S2 d

2SWπ̄AA and 4
H
S2 d

2SYA ˜̄kABπ̄rB. These
terms vanish when the parity condition in [28] is imposed.
Finally, [28] considers the symmetry charge corresponding
to the boundary boost, which requires λ̄A ¼ 0. However, we
do not take into account the boundary boost in Gðξ; ξ⃗Þ, so
we do not need to introduce λ̄A ¼ 0 here.

V. ALGEBRA OF THE BOUNDARY-PRESERVING
SYMMETRY CHARGES

In this section, we obtain the algebra of the boundary-
preserving symmetry charges by computing their Poisson
brackets. Section VA presents some detailed computations
of the Poisson bracket between a pair of Gðξ; ξ⃗Þ for ξ; ξ⃗
satisfying the boundary condition (4.2). In Section V B, we
show that Gðξ; ξ⃗Þ form a closed Poisson algebra up to a
central charge, and we also discuss the relation between this
algebra and BMS algebra. Section V C checks that the
boundary conditions (3.28) are preserved by the trans-
formations generated by Gðξ; ξ⃗Þ.
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A. Computing Poisson brackets between the boundary-preserving symmetry charges

We first derive the following useful relations. In these derivations, the vector field ðξ; ξ⃗Þ satisfies (4.2). The boundary
charge Bðξ⃗Þ is given by the second equation of (4.15) and B̃ðξÞ ¼ �BðξÞ ¼ H

S2 d
2S2

ffiffiffī
γ

p
fð2λ̄þ D̄Aλ̄

AÞ, where BðξÞ is given
by the first equation of (4.15). First,�Z

S
d3Vξi1Ci þ Bðξ⃗1Þ;

Z
S
d3Vξi2Ci þ Bðξ⃗2Þ

�
¼

Z
S
d3V½−Lξ⃗1

πijLξ⃗2
gij þ Lξ⃗1

gijLξ⃗2
πij�;

¼
Z
S
d3V½ξ⃗1; ξ⃗2�jCj þ 2 lim

R→∞

Z
S2
d2S½ξ⃗1; ξ⃗2�jπrj: ð5:1Þ

Second,�Z
S
d3Vξ1Cþ B̃ðξ1Þ;

Z
S
d3Vξ2Cþ B̃ðξ2Þ

�
¼

Z
S
d3V

�
ξ1g

1
2

�
Rij −

1

2
gijR

�
−
1

2
ξ1gijg−

1
2

�
πmnπ

mn −
1

2
π2
�

þ2ξ1g−
1
2

�
πimπjm −

1

2
πijπ

�
− g

1
2ðDiDjξ1 − gijDmDmξ1Þ

�
ξ2g−

1
2

�
πij −

1

2
gijπ

�
− ð1 ↔ 2Þ;

¼
Z
S
d3Vðξ1Djξ2 − ξ2Djξ1ÞCj þ 2 lim

R→∞

I
S2
d2Sðξ1Djξ2 − ξ2Djξ1Þπrj: ð5:2Þ

Third,�Z
S
d3Vξi1Ci þ Bðξ⃗1Þ;

Z
S
d3Vξ2Cþ B̃ðξ2Þ

�
¼

Z
S
d3V

�
−2Lξ⃗1

πijξ2g−
1
2

�
πij −

1

2
gijπ

�

− Lξ⃗1
gij

�
ξ2g

1
2ðRij − gijRÞ − 1

2
ξ2gijC

þ 2ξ2g−
1
2

�
πimπjm −

1

2
πijπ

�
− g

1
2ðDiDjξ2 − gijDmDmξ2Þ

��
;

¼
Z
S
d3Vξi1∂iðξ2ÞC − δξ⃗1B̃ðξ2Þ − lim

R→∞

I
S2
d2Sξr1ξ2C: ð5:3Þ

Before continuing, we introduce the notation δξ⃗. For a vector field ξ⃗ in (4.2), δξ⃗gij and δξ⃗π
ij are given by

δξ⃗gij ≔
�
gij;

Z
S
d3Vξi1Ci þ Bðξ⃗1Þ

�
¼ Lξ⃗gij ð5:4Þ

and

δξ⃗π
ij ≔

�
πij;

Z
S
d3Vξi1Ci þ Bðξ⃗1Þ

�
¼ Lξ⃗π

ij; ð5:5Þ

respectively. We only consider δξ⃗ acting on phase space linear functions f½gij; πij�,

δξ⃗f½gij; πij� ≔ f½δξ⃗gij; δξ⃗πij�: ð5:6Þ
The boundary-preserving symmetry charges Gðξ; ξ⃗Þ can split into the temporal part GðξÞ and the spatial part Gðξ⃗Þ:

Gðξ; ξ⃗Þ ¼ GðξÞ þ Gðξ⃗Þ; ð5:7Þ
where

GðξÞ ¼
Z
S
d3VξHphys þ BðξÞ;

Gðξ⃗Þ ¼
Z
S
d3VξiCi þ Bðξ⃗Þ: ð5:8Þ
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The Poisson bracket is bilinear,

fGðξ1; ξ⃗1Þ; Gðξ2; ξ⃗2Þg ¼ fGðξ1Þ þ Gðξ⃗1Þ; Gðξ2Þ þ Gðξ⃗2Þg
¼ fGðξ⃗1Þ; Gðξ⃗2Þg þ fGðξ⃗1Þ; Gðξ2Þg þ fGðξ1Þ; Gðξ⃗2Þg þ fGðξ1Þ; Gðξ2Þg: ð5:9Þ

By (5.1), the first term of (5.9) becomes

fGðξ⃗1Þ; Gðξ⃗2Þg ¼
Z
S
d3V½ξ⃗1; ξ⃗2�jCj þ 2 lim

R→∞

I
S2
d2S½ξ⃗1; ξ⃗2�jπrj: ð5:10Þ

By (2.29), (5.1), and (5.2),

fGðξ⃗1Þ; Gðξ2Þg ¼
Z
S
d3Vξi1∂iðξ̃2ÞC −

1

2

Z
S
d3Vξ2HphysNjNkLξ⃗1

gjk þ
Z
S
d3V½ξ⃗1; ⃗ξ̃2�

j
Cj

− δξ⃗1B̃ðξ̃2Þ − lim
R→∞

I
S2
d2Sξr1ξ̃2Cþ 2 lim

R→∞

I
S2
d2S½ξ⃗1; ⃗ξ̃2�

j
πrj;

¼ lim
R→∞

Z
S
d3Vξi1Diðξ2ÞHphys − δξ⃗1B̃ðξ̃2Þ − lim

R→∞

I
S2
d2Sξr1ξ̃2Cþ 2 lim

R→∞

I
S2
d2S½ξ⃗1; ⃗ξ̃2�

j
πrj: ð5:11Þ

Similarly,

fGðξ1Þ; Gðξ⃗2Þg ¼ −fGðξ⃗2Þ; Gðξ1Þg;

¼ −
Z
S
d3Vξi2Diðξ1ÞHphys þ δξ⃗2B̃ðξ̃1Þ þ lim

R→∞

I
S2
d2Sξr2ξ̃1C − 2 lim

R→∞

I
S2
d2S½ξ⃗2; ⃗ξ̃1�

j
πrj: ð5:12Þ

By (5.1)–(5.3),

fGðξ1Þ; Gðξ2Þg ¼ B þ 2 lim
R→∞

I
S2
d2Sðξ̃1Djξ̃2 − ξ̃2Djξ̃1Þπrj − δ ⃗ξ̃1

B̃ðξ̃2Þ

− lim
R→∞

I
S2
d2Sξ̃r1ξ̃2Cþ δ ⃗ξ̃2

B̃ðξ̃1Þ þ lim
R→∞

I
S2
d2Sξ̃r2ξ̃1Cþ 2 lim

R→∞

I
S2
d2S½ ⃗ξ̃1; ⃗ξ̃2�jπrj; ð5:13Þ

where the bulk term B is

B ¼
Z
S
d3Vðξ̃1Djξ̃2 − ξ̃2Djξ̃1ÞCj þ

Z
S
d3Vξ̃j1Djðξ̃2ÞC −

Z
S
d3Vξ̃j2Djðξ̃1ÞCþ

Z
S
d3V½ ⃗ξ̃1; ⃗ξ̃2�

j
Cj

þ
Z
S
d3VHphyNiNjξ1ξ̃2g−

1
2

�
πij −

1

2
πgij

�
−
1

2

Z
S
d3VHphyNiNjξ2ξ̃1g−

1
2

�
πij −

1

2
πgij

�

þ
Z
S
d3VHphyNiNjξ1Diðξ̃2Þj −

Z
S
d3VHphyNiNjξ2Diðξ̃1Þj: ð5:14Þ

This term turns out to vanish, in agree with the result of [39]. The detailed computation is provided in Appendix E.
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In summary, with generic ξ; ξ⃗, the general form of the Poisson bracket between a pair of Gðξ; ξ⃗Þ reads

fGðξ1; ξ⃗1Þ; Gðξ2; ξ⃗2Þg ¼
Z
S
d3V½ξ⃗1; ξ⃗2�jCj þ

Z
S
d3V½ξi1Diðξ2Þ − ξi2Diðξ1Þ�Hphys

− δξ⃗1B̃ðξ̃2Þ − lim
R→∞

I
S2
d2Sξr1ξ̃2Cþ 2 lim

R→∞

I
S2
d2S½ξ⃗1; ⃗ξ̃2�

j
πrj þ δξ⃗2B̃ðξ̃1Þ

þ lim
R→∞

I
S2
d2Sξr2ξ̃1C − 2 lim

R→∞

I
S2
d2S½ξ⃗2; ⃗ξ̃1�

j
πrj þ 2 lim

R→∞

I
S2
d2Sðξ̃1Djξ̃2 − ξ̃2Djξ̃1Þπrj

− δ ⃗ξ̃1
B̃ðξ̃2Þ − lim

R→∞

I
S2
d2Sξ̃r1ξ̃2Cþ δ ⃗ξ̃2

B̃ðξ̃1Þ þ lim
R→∞

I
S2
d2Sξ̃r2ξ̃1C

þ 2 lim
R→∞

I
S2
d2S½ ⃗ξ̃1; ⃗ξ̃2�jπrj þ 2 lim

R→∞

I
S2
d2S½ξ⃗1; ξ⃗2�jπrj; ð5:15Þ

where ξ̃ ¼ ξN, ξ̃i ¼ ξNi.

B. The Poisson algebra of symmetry charges

We take into account the boundary condition (4.2) for ξ; ξ⃗. The bulk terms of (5.15) becomeZ
S
d3Vðξ̂jCj þ ξ̂HphysÞ; ð5:16Þ

where ξ̂; ξ̂j are

ξ̂ ¼ ξi1Diξ2 − ξi2Diξ1; ξ̂j ¼ ½ξ⃗1; ξ⃗2�j: ð5:17Þ

The smearing fields ξ1;2; ξ⃗1;2 satisfying (4.2) imply that ξ̂; ξ̂j also satisfy (4.2), see Appendix D. The boundary data of ξ̂; ξ̂j is

denoted by bY;bI; bf; bW, and they have the following relations with the boundary data of ξ1;2; ξ⃗1;2, denoted bybY1;2;bI1;2;bf1;2; bW1;2

ŶA ¼ YB
1 D̄BYA

2 − ð1 ↔ 2Þ;
f̂ ¼ YA

1 ∂Af2 − ð1 ↔ 2Þ;
bW ¼ YA

1 ∂AW2 − ð1 ↔ 2Þ;
ÎA ¼ YB

1 D̄BIA2 þ IB1 D̄BYA
2 − ð1 ↔ 2Þ: ð5:18Þ

The boundary terms of (5.15) include four parts:

Bξ1;ξ2 ¼ −δ ⃗ξ̃1B̃ðξ̃2Þ − lim
R→∞

I
S2
d2Sξ̃r1ξ̃2Cþ δ ⃗ξ̃2

B̃ðξ̃1Þ þ lim
R→∞

I
S2
d2Sξ̃r2ξ̃1C

þ 2 lim
R→∞

I
S2
d2S½ ⃗ξ̃1; ⃗ξ̃2�jπrj þ 2 lim

R→∞

I
S2
d2Sðξ̃1Djξ̃2 − ξ̃2Djξ̃1Þπrj; ð5:19Þ

Bξ⃗1;ξ⃗2
¼ 2 lim

R→∞

I
S2
d2S½ξ⃗1; ξ⃗2�jπrj; ð5:20Þ

Bξ⃗1;ξ2
¼ −δξ⃗1B̃ðξ̃2Þ − lim

R→∞

I
S2
d2Sξr1ξ̃2Cþ 2 lim

R→∞

I
S2
d2S½ξ⃗1; ⃗ξ̃2�

j
πrj; ð5:21Þ

Bξ1;ξ⃗2
¼ δξ⃗2B̃ðξ̃1Þ þ lim

R→∞

I
S2
d2Sξr2ξ̃1C − 2 lim

R→∞

I
S2
d2S½ξ⃗2; ⃗ξ̃1�

j
πrj: ð5:22Þ
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They come from fGðξ1Þ; Gðξ2Þg, fGðξ⃗1Þ; Gðξ⃗2Þg, fGðξ⃗1Þ; Gðξ2Þg, and fGðξ1Þ; Gðξ⃗2Þg, respectively, and the boundary
term of fGðξ1; ξ⃗1Þ; Gðξ2; ξ⃗2Þg is Bξ1;ξ2 þ Bξ⃗1;ξ⃗2

þ Bξ⃗1;ξ2
þ Bξ1;ξ⃗2

. Next, we evaluate them individually. By (3.8)–(3.13),
(3.38), and (4.2),

Bξ1;ξ2 ¼ −δ ⃗ξ̃1B̃ðξ̃2Þ − lim
R→∞

I
S2
d2Sξ̃r1ξ̃2Cþ δ ⃗ξ̃2

B̃ðξ̃1Þ þ lim
R→∞

I
S2
d2Sξ̃r2ξ̃1C

þ 2 lim
R→∞

I
S2
d2S½ ⃗ξ̃1; ⃗ξ̃2�jπrj þ 2 lim

R→∞

I
S2
d2Sðξ̃1Djξ̃2 − ξ̃2Djξ̃1Þπrj;

¼ −δ ⃗ξ̃1Bðξ̃2Þ þ δ ⃗ξ̃2
B̃ðξ̃1Þ − lim

R→∞

I
S2
d2Sξ1ξ2NrNCþ lim

R→∞

I
S2
d2Sξ1ξ2NrNC

þ 2 lim
R→∞

I
S2
d2Sðξ1NjNk

∂kðξ2Þ − ξ2NjNk
∂kðξ1ÞÞπrj þ 2 lim

R→∞

I
S2
d2Sðξ1Djξ2 − ξ2Djξ1ÞN2πrj;

¼ −δ ⃗ξ̃1B̃ðξ̃2Þ þ δ ⃗ξ̃2
B̃ðξ̃1Þ: ð5:23Þ

Recall (4.16), we have

δ ⃗ξ̃1
B̃ðξ̃2Þ ¼∓

I
S2
d2S

ffiffiffi
γ

p
f2ð4δ ⃗ξ̃1 λ̄þ 2D̄Aðδ ⃗ξ̃1 λ̄

AÞÞ: ð5:24Þ

Here δ ⃗ξ̃1
λ̄ is determined by the coefficient of Oðr−1Þ of δ ⃗ξ̃1grr and δ ⃗ξ̃1

λ̄A is determined by the coefficient of Oð1Þ of δ ⃗ξ̃1grA.
With (3.8)–(3.10) and (3.38), we have

δ ⃗ξ̃1
grr ¼ Oðr−2Þ; δ ⃗ξ̃1

grA ¼ Oðr−1Þ: ð5:25Þ

Henceforth,

δ ⃗ξ̃1
λ̄ ¼ 0; δ ⃗ξ̃1

λ̄A ¼ 0: ð5:26Þ

Consequently, we have

δ ⃗ξ̃1
B̃ðξ̃2Þ ¼ δ ⃗ξ̃2

B̃ðξ̃1Þ ¼ 0: ð5:27Þ

Therefore, we obtain Bξ1;ξ2 ¼ 0, so the symmetry charges GðξÞ form an Abelian subalgebra. By (3.8)–(3.13), (3.28), (4.2),
(4.16), and (5.10),

Bξ⃗1;ξ⃗2
¼ 2 lim

R→∞

I
S2
d2S½ξ⃗1; ξ⃗2�jπrj;

¼ 2 lim
R→∞

I
S2
d2S½ξ⃗1; ξ⃗2�rπrr þ 2 lim

R→∞

I
S2
d2S½ξ⃗1; ξ⃗2�AπrA;

¼ 2 lim
R→∞

I
S2
d2Sξ̂rπrr þ 2 lim

R→∞

I
S2
d2Sξ̂AπrA;

¼
I
S2
d2SŶAð4ð ˜̄kAB − λ̄γ̄ABÞπ̄rB þ 2γ̄ABπ

ð2ÞrB þ λ̄Aðp̄þ 2π̄BBÞÞ þ
I
S2
d2S2ÎAγ̄ABπ̄rB þ

I
S2
d2SŴðp̄þ 2π̄AAÞ

þ 2 lim
R→∞

I
S2
d2SRŶAπ̄rA þ 2 lim

R→∞

I
S2
d2S logðRÞŶAπðlogÞrA ;

¼ BðŴÞ þ Bð ˆY⃗Þ þ BðˆI⃗Þ þ 2 lim
R→∞

I
S2
d2SRŶAπ̄rA þ 2 lim

R→∞

I
S2
d2S logðRÞŶAπðlogÞrA : ð5:28Þ
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The commutator of Killing vector fields ŶA ¼ ½Y⃗1; Y⃗2�A
is still a Killing vector field on S2 and it has odd parity.
Similar to the discussions in Sec. IV, the terms limR→∞H
S2 d

2SRŶAπ̄rA and limR→∞
H
S2 d

2S logðRÞŶAπðlogÞrA are
actually vanishing rather than divergent. As the result, we
obtain

Bξ⃗1;ξ⃗2
¼ BðŴÞ þ Bð ˆY⃗Þ þ BðˆI⃗Þ: ð5:29Þ

By (5.11), we obtain

Bξ⃗1;ξ2
¼ −δξ⃗1B̃ðξ̃2Þ − lim

R→∞

I
S2
d2Sξr1ξ̃2C

þ 2 lim
R→∞

I
S2
d2S½ξ⃗1; ⃗ξ̃2�

j
πrj;

¼∓
I
S2
d2S

ffiffiffī
γ

p
f2ð4δξ⃗1 λ̄þ 2D̄Aðδξ⃗1 λ̄AÞÞ

− lim
R→∞

I
S2
d2Sξr1Nξ2Cþ 2 lim

R→∞

I
S2
d2S½ξ⃗1; ξ2N⃗�jπrj:

ð5:30Þ

By (3.8)–(3.13), (3.18), (3.26), and (3.38), we find the last
two terms vanish. Therefore,

Bξ⃗1;ξ2
¼∓

I
S2
d2S

ffiffiffī
γ

p
f2ð4δξ⃗1 λ̄þ 2D̄Aðδξ⃗1 λ̄AÞÞ: ð5:31Þ

Here

δξ⃗1 λ̄ ¼ YA
1 D̄Aλ̄; ð5:32Þ

δξ⃗1 λ̄A ¼ LY⃗1
λ̄A þ D̄AW1 − γ̄ABIB1: ð5:33Þ

In Appendix F, we prove

D̄AðLY⃗1
λ̄BÞ ¼ LY⃗1

ðD̄Aλ̄BÞ: ð5:34Þ

By this result, (5.31) becomes

Bξ⃗1;ξ2
¼ �

I
S2
d2Sð2 ffiffiffī

γ
p

YB
1 D̄Bðf2Þð2λ̄þ D̄Aλ̄

AÞ

− 2
ffiffiffī
γ

p
f2ðD̄AD̄AW1 − D̄AIA1 ÞÞ: ð5:35Þ

Herewe have used the Killing equations of YA. Similarly, we
obtain

Bξ1;ξ⃗2
¼∓

I
S2
d2Sð2 ffiffiffī

γ
p

YB
2 D̄Bðf1Þð2λ̄þ D̄Aλ̄

AÞ

− 2
ffiffiffī
γ

p
f1ðD̄AD̄AW2 − D̄AIA2 ÞÞ: ð5:36Þ

Then we have

Bξ⃗1;ξ2
þ Bξ1;ξ⃗2

¼ �
I
S2
d2Sð2 ffiffiffī

γ
p

YB
1 D̄Bðf2Þð2λ̄þ D̄Aλ̄

AÞ − 2
ffiffiffī
γ

p
f2ðD̄AD̄AW1 − D̄AIA1 ÞÞ

∓
I
S2
d2Sð2 ffiffiffī

γ
p

YB
2 D̄Bðf1Þð2λ̄þ D̄Aλ̄

AÞ − 2
ffiffiffī
γ

p
f1ðD̄AD̄AW2 − D̄AIA2 ÞÞ;

¼ Bðf̂Þ þ Cðξ̂; ˆξ⃗Þ; ð5:37Þ

where

Bðf̂Þ ¼ �
I
S2
d2S2

ffiffiffī
γ

p ðYB
1 D̄Bf2 − YB

2 D̄Bf1Þð2λ̄þ D̄Aλ̄
AÞ;

ð5:38Þ

and

Cðξ̂; ˆξ⃗Þ ¼∓ 2

I
S2
d2Sð ffiffiffī

γ
p

f2ðD̄AD̄AW1 − D̄AIA1 Þ

−
ffiffiffī
γ

p
f1ðD̄AD̄AW2 − D̄AIA2 ÞÞ: ð5:39Þ

Therefore, we have the following Poisson algebra of
Gðξ; ξ⃗Þ

fGðξ1; ξ⃗2Þ; Gðξ2; ξ⃗2Þg ¼ Gðξ̂; ˆξ⃗Þ þ Cðξ̂; ˆξ⃗Þ: ð5:40Þ

Although the Poisson algebra of Gðξ; ξ⃗Þ is not immediately

close, the quantity Cðξ̂; ˆξ⃗Þ is a phase-space independent
constant, and furthermore it is a central charge (see
Appendix G for detailed discussion). As a result, we find
the symmetry charges Gðξ; ξ⃗Þ together with the central

charge Cðξ̂; ˆξ⃗Þ form an infinite-dimensional Lie algebra
under the Poisson bracket. This algebra is denoted by AG.
In particular, if the Gðξ2; ξ⃗2Þ in (5.40) is restricted to the

physical Hamiltonian with boundary term, i.e., ξ2 ¼ 1,
ξ⃗2 ¼ 0, the result of (5.40) vanishes. Indeed, it is obvious
that the bulk terms of (5.40) vanish. For the boundary
terms, (5.37) reads
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Bξ⃗1;1
þ Bξ1;0 ¼∓ 2

I
S2
d2S

ffiffiffī
γ

p ðD̄AD̄AW1 − D̄AIA1 Þ ¼ 0:

ð5:41Þ

The last step is because it is integrated on a closed surface.
Therefore, the boundary-preserving symmetry charges
commute with the physical Hamiltonian, which satisfies
the first requirement of Definition 4.1.

The central charge Cðξ̂; ˆξ⃗Þ vanishes when we require the
boundary data of ξ; ξ⃗ to satisfy certain conditions. For
example,
(1) IA ¼ D̄AW for the boundary data of ξ⃗.
(2) The parity condition: we assign the odd parity to W

and the even parity to f and IA.8

We next compare AG to the original BMS algebra,ABMS
[32–35]. Before discussing the similarities, it is important to
note the distinctions between the two algebras. The original
BMS charges are defined as boundary charges at the null
infinity of an asymptotically flat spacetime. In contrast, the
charges in AG have both bulk and boundary terms, while
being Dirac observables on the reduced phase space.
Furthermore, the boundary in our study is defined at spatial
infinity. In addition, the fact of no imposing suitable parity
conditions on the leading order fields at spatial infinity
yields logarithmic divergences at null infinity, preventing in
this way to find BMS algebra there [36–38]. Therefore, here
we compare the algebraic structures of these two kinds of
algebra, setting aside the associated physical interpretations.
The boundary-preserving generators defined in this work

are significantly larger than the original BMS charges. In
the bulk, they generate arbitrary physical transformations.
Consequently, comparing AG with the traditional BMS
algebra directly is meaningless. Nevertheless, we can
construct a quotient Lie algebra of AG, which is denoted
as ÂG. ÂG is determined by boundary data of ξμ, and we
will compare it with the original BMS algebra. We consider
the vector fields vμ ¼ ðv; v⃗Þ, which satisfy f ¼ W ¼ 0,
YA ¼ IA ¼ 0 in (4.2). The symmetry charges correspond-
ing to vμ constitute a subalgebra of AG. We denote these
charges by G̃ðv; v⃗Þ and their algebra by ÃG. G̃ðv; v⃗Þ is
given by

G̃ðv; v⃗Þ ≔
Z
S
d3V vHphys þ

Z
S
d3V vjCj: ð5:42Þ

Note that (5.42) contains no boundary term. We next
demonstrate that ÃG is an ideal of AG. First, it is obvious
that ÃG is a subalgebra of AG. The algebraic structure of

AG naturally induces an algebraic structure of ÃG, which
is given by the Poisson bracket of the generators.
∀ G̃ðv; v⃗Þ∈ ÃG, Gðξ; ξ⃗Þ∈AG, we have

fG̃ðv; v⃗Þ; Gðξ; ξ⃗Þg ¼ G̃ðv̂; ˆv⃗Þ; ð5:43Þ

with

v̂ ¼ vj∂jξ − ξj∂jv; ð5:44Þ
and

v̂j ¼ ½v⃗; ξ⃗�j: ð5:45Þ

Therefore, G̃ðv̂; ˆv⃗Þ∈ ÃG. Consequently, ÃG is an ideal of
AG. Next, we define a equivalent relation between the
elements of AG:
Definition 5.1. Given Gðξ1; ξ⃗1Þ, Gðξ2; ξ⃗2Þ∈AG.

Gðξ1; ξ⃗1Þ is equivalent to Gðξ2; ξ⃗2Þ if

Gðξ1; ξ⃗1Þ − Gðξ2; ξ⃗2Þ∈ ÃG: ð5:46Þ

With the equivalent relation given above, we define a
quotient Lie algebra of AG

ÂG ≔ AG=ÃG. ð5:47Þ

The algebraic structure of ÂG is naturally induced by the
algebraic structure of AG. First, we define a projection
Π∶AG → ÂG as follows:
Definition 5.2. ∀ Gðξ; ξ⃗Þ∈AG, G̃ðv; v⃗Þ∈ ÃG, the

projection Π is a linear map Π∶AG → ÂG, s.t.,

Π½Gðξ; ξ⃗Þ� ¼ Π½Gðξ1; ξ⃗1Þ þ G̃ðv; v⃗Þ� ¼ Ĝðξ; ξ⃗Þ; ð5:48Þ

with Ĝðξ; ξ⃗Þ∈ ÂG.
The value of Ĝðξ; ξ⃗Þ only depends on the boundary data

of ξμ. The algebraic structure of AG naturally induces a
algebraic structure of ÂG by Π:
(1) Addition: Given Gðξ1; ξ⃗1Þ; Gðξ2; ξ⃗2Þ∈AG. Then

we have

Ĝðξ1; ξ⃗1Þ ¼ Π½Gðξ1; ξ⃗1Þ�;
Ĝðξ2; ξ⃗2Þ ¼ Π½Gðξ2; ξ⃗2Þ�: ð5:49Þ

Then the addition of ÂG is given by

Ĝðξ1; ξ⃗1Þ þ Ĝðξ2; ξ⃗2Þ ≔ Π½Gðξ1; ξ⃗1Þ þ Gðξ2; ξ⃗2Þ�:
ð5:50Þ

The self-consistency of this definition is easy to
check: Given G̃ðv1; v⃗1Þ; G̃ðv2; v⃗2Þ∈ ÃG, then

8D̄AD̄A preserves the parity of W: Note that D̄AD̄AW ¼
∂A∂

AW þγ̄ ΓA
AB∂

BW. The first term preserves the parity of W
obviously. For the second term, note that γ̄AB has even parity, and
γ̄ΓA

AB is first derivative of γ̄AB, thus γ̄ΓA
AB has odd parity. Therefore,

the term γ̄ΓA
AB∂

BW also preserves the parity conditions of W.
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Ĝðξ1; ξ⃗1Þ ¼ Π½Gðξ1; ξ⃗1Þ þ G̃ðv1; v⃗1Þ�;
Ĝðξ2; ξ⃗2Þ ¼ Π½Gðξ2; ξ⃗2Þ þ G̃ðv2; v⃗2Þ�: ð5:51Þ

As the result, we have

Ĝðξ1; ξ⃗1Þ þ Ĝðξ2; ξ⃗2Þ ¼ Π½Gðξ1; ξ⃗1Þ þ G̃ðv1; v⃗1Þ
þGðξ2; ξ⃗2Þ þ G̃ðv2; v⃗2Þ�;

¼ Π½Gðξ1; ξ⃗1Þ þ Gðξ2; ξ⃗2Þ�:
ð5:52Þ

(2) Scalar multiplication: Given Gðξ; ξ⃗Þ∈AG, with
Ĝðξ; ξ⃗Þ ¼ Π½Gðξ; ξ⃗Þ�. ∀α∈R, the scalar Multipli-
cation is given by

αĜðξ; ξ⃗Þ ¼ Π½αGðξ; ξ⃗Þ�: ð5:53Þ

(3) Multiplication: The multiplication is essential in the
definition of an algebra. In our case, we denote it as
f·; ·gB, which is a bilinear map f·; ·gB∶ ÂG ×
ÂG → ÂG, and it is defined as following: Given
Gðξ1; ξ⃗1Þ; Gðξ2; ξ⃗2Þ∈AG. Then we have

Ĝðξ1; ξ⃗1Þ ¼ Π½Gðξ1; ξ⃗1Þ�;
Ĝðξ2; ξ⃗2Þ ¼ Π½Gðξ2; ξ⃗2Þ�: ð5:54Þ

The f·; ·gB is defined as

fĜðξ1; ξ⃗1Þ; Ĝðξ2; ξ⃗2ÞgB ≔ Π½fGðξ1; ξ⃗1Þ; Gðξ2; ξ⃗2Þg�:
ð5:55Þ

Next, we check the self-consistency of the definition
of f·; ·gB. Given G̃ðv1; v⃗1Þ; G̃ðv2; v⃗2Þ∈ ÃG, then

Ĝðξ1; ξ⃗1Þ ¼ Π½Gðξ1; ξ⃗1Þ þ G̃ðv1; v⃗1Þ�;
Ĝðξ2; ξ⃗2Þ ¼ Π½Gðξ2; ξ⃗2Þ þ G̃ðv2; v⃗2Þ�: ð5:56Þ

Note that ÃG is an ideal of AG, we have

fGðξ1; ξ⃗1Þþ G̃ðv1; v⃗1Þ;Gðξ2; ξ⃗2Þþ G̃ðv2; v⃗2Þg
¼ fGðξ1; ξ⃗1Þ;Gðξ2; ξ⃗2ÞgþfGðξ1; ξ⃗1Þ; G̃ðv2; v⃗2Þg
þfG̃ðv1; v⃗1Þ;Gðξ2; ξ⃗2ÞgþfG̃ðv1; v⃗1Þ; G̃ðv2; v⃗2Þg;

¼ fGðξ1; ξ⃗1Þ;Gðξ2; ξ⃗2Þgþ G̃ðv; v⃗Þ; ð5:57Þ

with

G̃ðv; v⃗Þ ¼ fGðξ1; ξ⃗1Þ; G̃ðv2; v⃗2Þg
þ fG̃ðv1; v⃗1Þ; Gðξ2; ξ⃗2Þg
þ fG̃ðv1; v⃗1Þ; G̃ðv2; v⃗2Þg; ð5:58Þ

and G̃ðv; v⃗Þ∈ ÃG. Consequently, we find

fĜðξ1; ξ⃗1Þ; Ĝðξ2; ξ⃗2ÞgB ¼ Π½fGðξ1; ξ⃗1Þ
þ G̃ðv1; v⃗1Þ; Gðξ2; ξ⃗2Þ
þ G̃ðv2; v⃗2Þg�;

¼ Π½fGðξ1; ξ⃗1Þ; Gðξ2; ξ⃗2Þg�:
ð5:59Þ

In the original BMS algebra, the supertranslations
form an Abelian subalgebra, which is denoted as

AðabÞ
BMS in this paper. Similarly, in our work, as indicated

by (5.40),GðfÞ andGðWÞ also form an Abelian subalgebra
when the central term ∓ 2

H
S2 d

2Sð ffiffiffī
γ

p
f2D̄AD̄AW1−ffiffiffī

γ
p

f1D̄AD̄AW2Þ vanishes. This central term arises from
the contribution ofW in (5.39), and it vanishes if we assign
even parity to f and odd parity toW. Therefore, we have an

Abelian subalgebra of ÂG, which is denoted as Â
ðabÞ
G . Next,

we show that ÂðabÞ
G is analog to AðabÞ

BMS. Indeed, Ref. [28]
proves that in vacuum gravity, the algebra of the super-

translations at the spatial infinity is isomorphic to AðabÞ
BMS

(which is at the null infinity). We provide a brief review of
the proof below. We first rewrite the asymptotically flat
metric (3.1) using a generalization of the Beig-Schmidt
ansatz [31,43,44]

gμνdxμdxν ¼
�
1þ 2σ

η
þ σ2

η2
þoðη−2Þ

�
dη2þoðη−1Þdηdxb

þðη2hð0Þab þ ηðkab− 2σhð0Þab Þþ logηiab

þhð2Þab þoðη0ÞÞdxadxb: ð5:60Þ

Here

η2 ¼ −t2 þ r2: ð5:61Þ

The coordinates xa are

xa ¼ ðs; xAÞ ðA ¼ 1; 2Þ; ð5:62Þ

where XAðA ¼ 1; 2Þ are the angular coordinates, and

s ¼ �t=r: ð5:63Þ
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σ, kab, iab, and hðnÞab depend on xa only. The spatial infinity
is given by the limitation η → ∞, and the boundary metric

hð0Þab is the metric of a unit hyperboloid, which reads

hð0Þab dx
adxb ¼ −1

ð1 − s2Þ2 ds
2 þ 1

1 − s2
γABdxAdxB: ð5:64Þ

The covariant derivative compatible with hð0Þab is denoted
as Da.
Next, we aim to establish a connection between the null

infinity I� and the spatial infinity i0 of the asymptotically
flat spacetime. In the geometrical definition of the asymp-
totically flat spacetime ðM; gμνÞ, one requires that there
exists a conformal spacetime ðM̃; g̃μνÞ, such that

g̃μν ¼ Ω2gμν: ð5:65Þ

Where Ω is a scalar field satisfying certain conditions [45].
To construct Ω explicitly, we follow the scheme described
in [44]. Assuming some smoothness conditions for the
metric around the spatial infinity (for more details, refer to
[46–48]), we can introduce a new coordinate system in a
neighborhood of i0, which is ðρ; s; xAÞ. ρ is a new
coordinate we introduce, which is given by

η ¼ 1

ρ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p : ð5:66Þ

Note that the spatial infinity is given by η → ∞. Therefore,
it is also given by ρ → 0. Then Ω reads

Ω ¼ Ω̃
�
1 −

�
s
ω̃

�
2
�
; ð5:67Þ

where Ω̃ and ω̃ are some scalar functions satisfying

lim
ρ→0

ρ−1Ω̃ ¼ 1; lim
ρ→0

ω̃ ¼ 1: ð5:68Þ

The null infinity I� locates at

s ¼ �ω̃: ð5:69Þ

At the neighborhood of io, the null infinity I� locates at

s ¼ �1: ð5:70Þ

Then we can connect spatial infinity and the null infinity by
taking the following limitation:

ρ → 0; s → �1: ð5:71Þ

The parameter that characterizes the supertranslation is
govern by the following equation

DaDaω ¼ 0; ð5:72Þ

where ω is a function of ðs; xAÞ. Reference [44] states that
the solutions with odd parity9 of (5.72) correspond to the
supertanslations, which are isomorphic to the usual BMS
supertanslations. These solutions are

ω ¼ ð1 − s2Þ−1=2ω̂: ð5:73Þ

Here ω̂ can be expanded by the spherical harmonics

ω̂¼
X
lm

ωl;mΨlðsÞYl;mðxAÞ; Ψl¼
1

2
ð1−s2Þ2∂2sQl: ð5:74Þ

Here QlðsÞ are Legendre functions of the second kind and
can be written in terms of Legendre Polynomials PlðsÞ as

QlðsÞ ¼ PlðsÞ
1

2
log

�
1þ s
1 − s

�
þ Q̃lðsÞ; ð5:75Þ

where Q̃lðsÞ are polynomials. Furthermore, we have the
following limitation:

lim
s→1

Ψl ¼ 1; ð5:76Þ

which can be found in [44]. We then introduce

T ¼ lim
s→1

ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − s2

p
ωÞ: ð5:77Þ

Here T can be viewed as the parameter of usual BMS
supertranslations, and it is expanded as

T ¼
X
lm

ωl;mYl;mðxAÞ: ð5:78Þ

In Ref. [28], f is assigned with even parity and W is
assigned with odd parity. Then the subalgebra formed by f
andW is isomorphic to the subalgebra formed by T . To see
this, we need to show the coefficients ωml in (5.78) can be
determined by f and W completely, and vice versa. Note
that ω̂ is odd, we can set its initial conditions at s ¼ 0:

ωjs¼0 ¼ ω̂js¼0 ¼WðxAÞ; ∂sωjs¼0 ¼ ∂sω̂js¼0 ¼ fðxAÞ:
ð5:79Þ

Note that W is odd and f is even, they are expanded by the
spherical harmonics as

9Here odd parity means ωðs; xAÞ ¼ −ωð−s;−xAÞ.
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W ¼
X
k

X2kþ1

m¼−2k−1
W2kþ1;mY2kþ1;m;

f ¼
X
k

X2k
m¼−2k

f2k;mY2k;m: ð5:80Þ

As the result, the coefficients ωml are determined by

ω2kþ1;mΨ2kþ1js¼0 ¼W2kþ1;m; ω2k;m∂sΨ2kjs¼0 ¼ f2k;m:

ð5:81Þ

Therefore, the algebra of the spuertranslations obtained in

[28] and AðabÞ
BMS are isomorphic.

In our case, the BMS charge might be ill defined at the
null infinity due to the relaxation of the parity conditions
of the canonical variables, as previously discussed.
Nevertheless, it is still interesting to analyze the similarity
between ÂðabÞ

G and the original BMS supertranslations.
Here we emphasize that we only compare the algebraic
structure of these two algebras, setting aside the associated

physical interpretations. Note that ÂðabÞ
G is formally equiv-

alent to the algebra of the spuertranslations obtained

in [28]. Consequently, ÂðabÞ
G can be considered as an

analogy ofAðabÞ
BMS at the algebraic level. In general, f andW

are not required to have the parity conditions. Moreover,
we have additionally the supertranslations contributed by
IA. Therefore, the subalgebra in ÂG of supertranslations
represents a generalized algebraic structure of the original
BMS subalgebra of supertranslations.
The asymptotic spatial rotations in ÂG form an SO(3)

algebra thus is analogous to the corresponding subalgebra
in BMS. The commutator between the supertranslations
and spatial rotations also involves the central charge of the
algebra.10

It is also interesting to compare ÂG to the results in [28],
which constructs the BMS group at the spatial infinity. The
analysis there relies on the usual falloff (3.3) and (3.4) and
the parity conditions on h̄ij and π̄ij. The resulting BMS
algebra in [28] does not have the central charge due to the
additional boundary condition λ̄A ¼ 0. Preserving λ̄A ¼ 0

needs to require IA ¼ 2bffiffī
γ

p π̄rA þ D̄AW, where b is the boost

parameter. ÂG does not take into account the boost, and
b ¼ 0 precisely reduces this requirement to IA ¼ D̄AW for
vanishing Cðξ; ξ⃗Þ mentioned above. Another way to make
Cðξ; ξ⃗Þ vanishing is to assign even parity to f and odd parity
to W. If we impose these parity conditions to f and W and
require IA ¼ D̄AW, then ÂG recovers the BMS algebra at

spatial infinity given by [28] with vanishing b (vanishing
boost generators).

C. Preservation of the falloff conditions
and the boundary conditions

This subsection shows that the boundary-preserving
symmetry transformations preserve the falloff conditions
(3.8)–(3.13) and the boundary conditions (3.28). This
means that the transformations generated by the boun-
dary-preserving charges are restricted in the phase space
defined in Sec. III.
As stated in Sec. IV, Gðξ; ξ⃗Þ is finite and its variation is

well defined in the phase space. Therefore, the Hamiltonian
flow of Gðξ; ξ⃗Þ is well defined and we can compute the
transformations of the canonical variables with Poisson
bracket:

δGgij ¼ fgij; Gðξ; ξ⃗Þg;

¼ 2ξ̃g−
1
2

�
πij −

1

2
gijπ

�
þ 2Dðiξ̃jÞ þ 2DðiξjÞ; ð5:82Þ

δGπ
ij ¼ fπij;Gðξ; ξ⃗Þg;

¼−ξ̃g1
2

�
gikgjlð3ÞRlk −

1

2
gijð3ÞR

�

þ 1

2
ξ̃g−

1
2gij

�
πmnπ

mn−
1

2
π2
�

− 2ξ̃g−
1
2

�
πimπjm −

1

2
πijπ

�
þ g

1
2ðDiDjξ̃− gijDmDmξ̃Þ

þL ⃗ξ̃
πijþ ξ

2
HphysNiNjþLξ⃗π

ij: ð5:83Þ

Here ððξ; ξ⃗Þ is given by (4.2) and ξ̃j ¼ Nξj. ð3ÞRlk is the
Ricci tensor of gij and ð3ÞR is the corresponding Ricci
scalar. With (3.6), we have

ð3ÞRlk ¼
R̄lk

r3
þ logðrÞ

r4
RðlogÞ
lk þOðr−4Þ ð5:84Þ

in the asymptotically Cartesian coordinates. Then we find

δGgij ¼
H̄ij

r
þ logðrÞ

r2
HðlogÞ

ij þOðr−2Þ; ð5:85Þ

δGπ
ij ¼ P̄ij

r2
þ logðrÞ

r3
PðlogÞij þ Pð2Þij

r3

þ logðrÞ
r4

PðllÞij þOðr−4Þ: ð5:86Þ

We have used H̄ij; P̄ij;HðlogÞ
ij ;PðlogÞij;Pð2Þij;PðllÞij to label

the expansions coefficients, whose explicit expression may
10As a comparison, the central charges obtained in [35] are

field dependent, whereas the central charge here is not.
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not be useful for the discussion. Equations (5.85)–(5.86)
satisfy the falloff conditions (3.6)–(3.7). Additionally,
(5.86) gives

δGπ
rA ¼ P̄rA

r
þ logðrÞ

r2
PðlogÞrA þ Pð2ÞrA

r2

þ logðrÞ
r3

PðllÞrA þOðr−3Þ: ð5:87Þ

Especially, PðlogÞrA ¼ LY⃗π
ðlogÞrA. Therefore, the parity of

πðlogÞrA is preserved.
The charge Gðξ; ξ⃗Þ infinitesimally transforms Cj as

11

fCj;Gðξ; ξ⃗Þg ¼ fCj;GðξÞg þ fCj;Gðξ⃗Þg;
¼ ∂jðξÞHphys þ Lξ⃗Cj;

¼ ∂jðξÞHphys þ ξiDiCj þ CiDjξ
i þ CjDiξ

i:

ð5:88Þ

To check the boundary conditions of Cj are preserved by
(5.88), the asymptotic Cartesian coordinates are conven-
ient. With (3.16)–(3.18), (3.26), and (3.28), we can rewrite
the asymptotic behaviors of Cj and Hphys in the asymptotic
Cartesian coordinates

Cj ¼
log r
r5

CðllÞ
j þOðr−5Þ; ð5:89Þ

Hphys ¼
log r
r4

HðlogÞ þOðr−4Þ: ð5:90Þ

Additionally, with (4.2), ξ ¼ Oð1Þ and ξi ¼ OðrÞ in the
asymptotic Cartesian coordinates. Thus (5.88) gives

fCj;Gðξ; ξ⃗Þg ¼ O

�
log r
r5

�
; ð5:91Þ

which agrees with (5.89). Since Hphys commutes with itself

[49], Gðξ; ξ⃗Þ infinitesimally transforms Hphys as

fHphys; Gðξ; ξ⃗Þg ¼ fHphys; GðξÞg þ fHphys; Gðξ; ξ⃗Þg;
¼ Lξ⃗Hphys ¼ DiðξiHphysÞ ¼ ∂iðξiHphysÞ:

ð5:92Þ

Note that Hphys is a density of weight one, Di can be
replaced by ∂i in the last step. Similar to the discussions
above, we have

fHphys; Gðξ; ξ⃗Þg ¼ O

�
log r
r4

�
; ð5:93Þ

which agrees with (5.90).

VI. ON THE BOOST TRANSFORMATION

In this section we discuss the boost component of the
boundary-preserving generators. We will explore some
challenges that arise when considering the boost compo-
nent, which is why we have chosen not to include it in
this work.
The vector field of the boost component is [28,29]

ξb ¼ rb; ð6:1Þ

where bðσAÞ is the boost parameter, satisfying

D̄AD̄Bbþ γ̄ABb ¼ 0: ð6:2Þ

In the traditional spherical coordinates fθ;φg, b takes the
following formula

b ¼ b1 sin θ cos φþ b2 sin θ sin φþ b3 cos θ: ð6:3Þ

Here b1, b2, and b3 are some constants. It is obvious that b
has odd parity:

bðπ − θ;φþ πÞ ¼ −bðπ;φÞ: ð6:4Þ

We formally construct the boost component of the boun-
dary-preserving symmetry generators as

Gb ¼
Z
S
d3VξbHphys þ Bb: ð6:5Þ

To ensure the finiteness of the bulk term of Gb, it is
necessary for Hphys to decay at a faster rate than Oðr−2Þ in
the spherical coordinates. We first introduce the higher
orders falloff conditions of the canonical variables:

grr ¼ 1þ 1

r
h̄rr þ

log r
r2

hðlogÞrr þ 1

r2
hð2Þrr þ log r

r3
hðllÞrr

þ 1

r3
hð3Þrr þ log r

r4
hðlllÞrr þ o

�
log r
r4

�
; ð6:6Þ

grA ¼ h̄rA þ log r
r

hðlogÞrA þ 1

r
hð2ÞrA þ log r

r2
hðllÞrA

þ 1

r2
hð3ÞrA þ log r

r3
hðlllÞrA þ o

�
log r
r3

�
; ð6:7Þ

gAB ¼ r2γ̄AB þ rh̄AB þ logðrÞhðlogÞAB þ hð2ÞAB þ log r
r

hðllÞAB

þ 1

r
hð3ÞAB þ log r

r2
hðlllÞAB þ o

�
log r
r2

�
; ð6:8Þ

11We apply ðDiDj −DjDiÞvk ¼ −Rijl
kvl in the calculation.
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πrr ¼ π̄rr þ log r
r

πðlogÞrr þ 1

r
πð2Þrr þ log r

r2
πðllÞrr þ πð3Þrr

r2

þ log r
r3

πðlllÞrr þ πð4Þrr

r3
þ log r

r4
πðllllÞrr þ o

�
log r
r4

�
; ð6:9Þ

πrA ¼ 1

r
π̄rA þ log r

r2
πðlogÞrA þ 1

r2
πð2ÞrA þ log r

r3
πðllÞrA þ πð3ÞrA

r3

þ log r
r4

πðlllÞrA þ πð4ÞrA

r4
þ log r

r5
πðllllÞrA þ o

�
log r
r5

�
; ð6:10Þ

πAB ¼ 1

r2
π̄AB þ log r

r3
πðlogÞAB þ 1

r3
πð2ÞAB þ log r

r4
πðllÞAB þ πð3ÞAB

r4

þ log r
r5

πðlllÞAB þ πð4ÞAB

r5
þ log r

r6
πðllllÞAB þ o

�
log r
r6

�
: ð6:11Þ

By (6.6)–(6.11),

C ¼ Cð1Þ

r
þ log r

r2
CðlogÞ þ Cð2Þ

r2
þ log r

r3
CðllÞ þ Cð3Þ

r3
þ ðlog rÞ2

r4
C̃ðlllÞ þ log r

r4
CðlllÞ þ o

�
log r
r4

�
;

Cr ¼
Cð1Þ
r

r
þ log r

r2
CðlogÞ
r þ Cð2Þ

r

r2
þ log r

r3
CðllÞ
r þ Cð3Þ

r

r3
þ ðlog rÞ2

r4
C̃ðlllÞ
r þ log r

r4
CðlllÞ
r

þ Cð4Þ
r

r4
þ ðlog rÞ2

r5
C̃ðllllÞ
r þ log r

r5
CðllllÞ
r þ o

�
log r
r5

�
;

CA ¼ Cð1Þ
A þ log r

r
CðlogÞ
A þ Cð2Þ

A

r
þ log r

r2
CðllÞ
A þ Cð3Þ

A

r2
þ ðlog rÞ2

r3
C̃ðlllÞ
A þ log r

r3
CðlllÞ
A

þ Cð4Þ
A

r3
þ ðlog rÞ2

r4
C̃ðllllÞ
A þ log r

r4
CðllllÞ
A þ o

�
log r
r4

�
: ð6:12Þ

In this case, the boundary conditions for C, Cj are

Cð1Þ
A ¼ CðlogÞ

A ¼ Cð2Þ
A ¼ CðllÞ

A ¼ Cð3Þ
A ¼ C̃ðlllÞ

A ¼ CðlllÞ
A ¼ Cð4Þ

A

¼ Cð1Þ
r ¼ Cð2Þ

r ¼ CðllÞ
r ¼ Cð3Þ

r ¼ CðlogÞ
r ¼ C̃ðlllÞ

r ¼ CðlllÞ
r ¼ Cð4Þ

r

¼ Cð1Þ ¼ CðlogÞ ¼ Cð2Þ ¼ CðllÞ ¼ 0;

Cð3Þ ≠ 0: ð6:13Þ

These boundary conditions ensure

Nr ¼ O

�ðlog rÞ2
r2

�
; NA ¼ O

�ðlog rÞ2
r3

�
: ð6:14Þ

Similar to the discussions in Sec. III B, the nondifferentiable terms of δ
R
S d

3VξbHphys contributed by δ
R
S d

3VξbNjCj

is then vanished. Furthermore, similar to Sec. IV, the boundary terms Bb are given by variating
R
S d

3VξbHphys and
integrating by part:

δ

Z
S
d3VξbHphys ¼

Z
S
d3V½Aijδπ

ij − Bijδgij� þKb; ð6:15Þ

where
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Aij ¼ 2rbg−
1
2

�
πij −

1

2
gijπ

�
þ Lb⃗gij;

Bij ¼ −rbg1
2

�
Rij −

1

2
gijR

�
þ 1

2
rbg−

1
2gij

�
πmnπ

mn −
1

2
π2
�

− 2rbg−
1
2

�
πimπjm −

1

2
πijπ

�
þ g

1
2ðDiDjðrbÞ − gijDmDmðrbÞÞ

þ Lb⃗π
ij þ rb

2
HphysNiNj; ð6:16Þ

with b⃗ ≔ rbN⃗. Before computing the boundary terms
of (6.15), we first introduce some useful notations.
Following [28], the extrinsic curvature of a 2-sphere reads

KAB ¼ 1

2λ
ð−∂rgAB þDAλB þDBλAÞ: ð6:17Þ

Here λA ¼ grA. With (3.8)–(3.10), its trace K ≔ γABKAB
asymptotically behaviors as

K ¼ −
2

r
þ k̄
r2

þ logðrÞ
r3

kðlogÞ þ kð2Þ

r3
þ oðr−3Þ: ð6:18Þ

Then the boundary terms of (6.15) read

Kb ¼ � lim
R→∞

I
S2
d2S

ffiffiffī
γ

p ð−2Rbδk̄ − 2 logðRÞbδkðlogÞ

−
1

4
bδðh̄2 þ h̄ABh̄ABÞ − 2bδkð2Þ

þ ðλ̄C∂Cbγ̄AB − bD̄Aλ̄BÞδh̄AB − h̄bδð2λ̄þ D̄Aλ̄
AÞÞ:
ð6:19Þ

The terms ðλ̄C∂Cbγ̄AB − bD̄Aλ̄BÞδh̄AB are obviously not
to be differentials, so we introduce an additional boun-
dary λ̄A ¼ 0 to make them vanish. To deal with
−h̄bδð2λ̄þ D̄Aλ̄

AÞ, we require the function f in (4.2) to
be phase-space dependent:

f ¼ −bλ̄ − bk̄þ T; ð6:20Þ

where T is an arbitrary function on S2. The detailed
derivation can be found in [28]. There are a linear diver-
gent term ∓2R

H
S2 d

2S
ffiffiffī
γ

p
bδk̄ and a logarithmic divergent

term ∓2 log ðRÞ HS2 d2S ffiffiffī
γ

p
bδkðlogÞ in (6.15). By impo-

sing the boundary condition Cð1Þ ¼ 0, we find that
∓ 2R

H
S2 d

2S
ffiffiffī
γ

p
bδk̄ vanishes with (6.15), see [28]. One

way to get rid of∓2 log ðRÞ HS2 d2S ffiffiffī
γ

p
bδkðlogÞ is to assign

even parity to kðlogÞ. The parity condition of kðlogÞ is not
preserved by Gb in general but we can assign additional
parity conditions to πðlogÞij to ensure the parity condition
of kðlogÞ be preserved, which will be shown shortly. Finally
we get

Kb ¼ ∓ lim
R→∞

I
S2
d2S

ffiffiffī
γ

p
bδð2kð2Þ þ k̄2 þ k̄ABk̄

B
A − 6λkÞ:

ð6:21Þ

Then we can compute the transformations of the canonical
variables:

δbgij ¼ 2rbNg−
1
2

�
πij −

1

2
gijπ

�
þ 2DðiðrbNjÞÞ;

δbπ
ij ¼ −rbNg

1
2

�
Rij −

1

2
gijR

�
þ 1

2
rbNg−

1
2gij

�
πmnπ

mn −
1

2
π2
�
− 2rbNg−

1
2

�
πimπjm −

1

2
πijπ

�

þ g
1
2ðDiDjðrbNÞ − gijDmDmðrbNÞÞ þ Lb⃗π

ij þ rb
2
HNiNj: ð6:22Þ

Here bj ≔ rbNj. With (6.18), we have

kðlogÞ ¼ hðlogÞAA þ 2λðlogÞ þ D̄AλðlogÞA ; ð6:23Þ

where λðlogÞA ¼ hðlogÞrA . We further introduce CðllllÞ
A ¼

CðllllÞ
r ¼ 0, then δbgij gives

δbh
ðlogÞ
AB ¼ 2b

�
πðlogÞAB −

1

2
γ̄ABπ

ðlogÞ
�
;

δbλ
ðlogÞ ¼ 2b

�
πðlogÞrr −

1

2
πðlogÞ

�
;

δbλ
ðlogÞ
A ¼ 2bπðlogÞAr ; ð6:24Þ

with
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πðlogÞAB ¼ γ̄ACγ̄BDπ
ðlogÞCD; πðlogÞrr ¼ πðlogÞrr;

πðlogÞrA ¼ γ̄ABπ
ðlogÞrB; ð6:25Þ

and

πðlogÞ ¼ πðlogÞrr þ γ̄ABπ
ðlogÞAB: ð6:26Þ

Therefore,

δbkðlogÞ ¼ δbh
ðlogÞA
A þ 2δbλ

ðlogÞ þ D̄Aδbλ
ðlogÞA;

¼ 2bðπðlogÞAA þ 2πðlogÞrr − 2πðlogÞ þ D̄Aπ
ðlogÞrAÞ:

ð6:27Þ

As mentioned before, πðlogÞrA has even parity. We assign
odd parity to πðlogÞrr and πðlogÞAB, then the parity condition
of δbkðlogÞ is preserved by Gb.
Although Gb preserves the parity condition of kðlogÞ, it

breaks the boundary conditions conditions of Cj. To see
this, we first transform (6.12) and (6.13) to the asymptotic
Cartesian coordinates

C ¼ Cð1Þ

r3
þ log r

r4
CðlogÞ þ Cð2Þ

r4
þ log r

r5
CðllÞ þ Cð3Þ

r5

þ ðlog rÞ2
r6

C̃ðlllÞ þ log r
r6

CðlllÞ þ o

�
log r
r6

�
; ð6:28Þ

Cj ¼
Cð1Þ
j

r3
þ log r

r4
CðlogÞ
j þ Cð2Þ

j

r4
þ log r

r5
CðllÞ
j þ Cð3Þ

j

r5
þ ðlog rÞ2

r6
C̃ðlllÞ
j þ log r

r6
CðlllÞ
j þ Cð4Þ

j

r6
þ ðlog rÞ2

r7
C̃ðllllÞ
j

þ log r
r7

CðllllÞ
j þ o

�
log r
r7

�
;

Cð1Þ
j ¼ Cð2Þ

j ¼ CðllÞ
j ¼ Cð3Þ

j ¼ CðlogÞ
j ¼ C̃ðlllÞ

j ¼ CðlllÞ
j ¼ Cð4Þ

j

¼ Cð1Þ ¼ CðlogÞ ¼ Cð2Þ ¼ CðllÞ ¼ 0;

Cð3Þ ≠ 0: ð6:29Þ

By (6.29), Cj ¼ Oððlog rÞ2
r7 Þ and Hphys ¼ Oðr−5Þ. From

(5.88)

fCj;Gbg ¼ ∂jðrbÞHphys;

¼ Oðr−5Þ: ð6:30Þ

Then Cð3Þ
j becomes nonvanishing, so the boundary

conditions of Cj in (6.29) are broken. These boundary
conditions are important for ensuring that both
δ
R
S d

3VHphys and δ
R
S d

3VrbHphys are well defined by
adding appropriate boundary terms. Indeed, similar to the
discussions in Sec. III B, there are boundary terms
−2

H
S2 d

2SNjδðπrkgjkÞ and −2R
H
S2 d

2SbNjδðπrkgjkÞ from
δ
R
S d

3VHphys and δ
R
S d

3VrbHphys, respectively. b has odd
parity, so the boundary terms cannot vanish at the same
time, no matter what parity condition is assigned to
NjδðπrkgjkÞ. Imposing the boundary conditions in (6.12)
can resolve this problem. Since the boundary conditions in
(6.12) are broken, Gb is not a boundary-preserving
symmetry charge.

VII. CONCLUSION AND OUTLOOK

In this paper, we introduce asymptotic boundary con-
ditions for the asymptotic flatness in BK formalism and

investigate the symmetries preserving these conditions. A
counterterm is added to the symplectic form to make it
finite. We add the boundary term to the physical
Hamiltonian Hphys to make δHphys well defined. The
boundary term coincides with the ADM mass.
We define the boundary-preserving symmetry charges

on the reduced phase space consisting contributions from
both bulk and boundary of the dust space. Unlike the usual
formulation in general relativity (on the nonreduced phase
space), the bulk terms of these charges do not generally
vanish on shell. The Poisson brackets of the charges form a
closed Lie algebra up to a central term. The resulting Lie
algebra of symmetry charges relates to the BMS algebra by
a suitable quotient.
Our work is the first step of investigating the boundary

terms in relational formalism. There are several projects we
plan to do in future:
(1) We can apply our work to the connection dynamics

formalism [50]. In this formalism, the canonical
variables are converted to the densitized tetrads and
Ashtekar-Barbero connections fEa; Aag. In the
canonical formalism of loop quantum gravity,
fEa; Aag are the basic variables in the quantization
(e.g., see [2,51,52]). Applying our work in con-
nection dynamics may benefit our understanding of
asymptotically flat quantum gravity.
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(2) It may be interesting to investigate the BK formalism
in asymptotically anti–de Sitter spacetimes. Unlike
asymptotically flat spacetimes, the boundary of an
asymptotically anti–de Sitter spacetime is a three-
dimensional timelike hypersurface [53,54]. This
may relate to the bulk/boundary duality.

(3) In this work, we require the asymptotic symmetry
preserve the metric on S2. We may relax this
requirement and allow generic diffeomorphisms
on S2 as the asymptotic symmetries. Some existing
results along this direction are given in, e.g.,
[34,55,56].

(4) In general relativity with asymptotically flat space-
time, asymptotic symmetry charges have close
relation with Weinberg’s soft theorem [57]. For
example, Refs. [58,59] show the equivalence be-
tween the BMS charges and soft graviton theorem

[60,61] at the null infinity by scattering a massless
scalar field. There is a subtlety to applying this
analysis to BK formalism, since BK formalism can
only analyze the structure at the spatial infinity,
whereas there is no dynamics at the spatial infinity.
Therefore, we expect that the analysis of the scatter-
ing process should be carried out in the regime near
spatial infinity but still with finite distance. We plan
to do this analysis in our future work.
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APPENDIX A: THE BOUNDARY TERMS FROM NδC

Using (1.5.10) in [2], the boundary terms from NδC are

½NδC�boundary ¼ − lim
R→∞

I
S2

ffiffiffi
g

p
gcdgef½ðDcNÞðdSdδgefÞ − ðDeNÞðdScδgdfÞ�

− lim
R→∞

I
S2

ffiffiffi
g

p
gcdN½−dScδΓe

ed þ dSeδΓe
cd�; ðA1Þ

with
ffiffiffi
g

p ¼ λ
ffiffiffi
γ

p
. With the results in Appendix A of [28], Eq. (A1) can be expressed in the spherical coordinates:

½NδC�boundary ¼ lim
R→∞

I
S2
d2S

ffiffiffi
γ

p �
−
1

λ
γABðDrNÞδγAB þ

λA

λ
γBCðDANÞδγBC

�

− 2 lim
R→∞

I
S2
d2SðNδKþNδðγACÞγABKC

BÞ þ lim
R→∞

I
S2
d2S

ffiffiffi
γ

p N
λ
δ

��
−
λA

λ
ð∂AλþKACλ

CÞ þDAλ
A

�
−DAδλ

A

�

− lim
R→∞

I
S2
d2S

ffiffiffi
γ

p
N
λA

λ

�
1

2
γBCDAδγBC − δ

�
λB

λ
KBA

��
þ lim

R→∞

I
S2
d2S

ffiffiffi
γ

p
N
λA

λ
δ

�
1

λ
ð∂AλþKABλ

BÞ
�

þ lim
R→∞

I
S2
d2Sλ

ffiffiffi
γ

p �
−N

λAλB

λ5
δKAB þNKAB

λAλB

λ4
δλ

λ2

�

þ lim
R→∞

I
S2
d2S

ffiffiffi
γ

p �
−NDA

�
1

λ

�
δλA −

λA

λ
γBCðDCNÞδγAB

�
: ðA2Þ

APPENDIX B: THE CONSERVATION OF THE BOUNDARY CHARGES

This appendix demonstrates the boundary charges defined in (4.14) are conserved. It is convenient to demonstrate this
statement in the asymptotically Cartesian coordinates. We first compute the physical time derivative of gij:

dgij
dτ

¼ Ng−
1
2

�
πij −

1

2
gijπ

�
þ LN⃗gij ¼ Oðr−2Þ: ðB1Þ

The physical time derivative of the h̄ij in (3.6) is given by expanding (B1) to the boundary, which reads
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dh̄ij
dτ

¼ 0: ðB2Þ

Note that all of the metric variables in (4.14) are the
components of h̄ij, so their physical time derivatives
vanish. Next, we compute the physical time derivative
of πij:

dπij

dτ
¼ −Ng

1
2

�
gikgjlð3ÞRlk −

1

2
gijð3ÞR

�

þ 1

2
Ng−

1
2gij

�
πmnπ

mn −
1

2
π2
�

− 2Ng−
1
2

�
πimπjm −

1

2
πijπ

�

þ g
1
2ðDiDjN − gijDmDmNÞ þ 1

2
HphysNiNj þLN⃗π

ij;

¼ Oðr−3Þ: ðB3Þ

It turns out that

dπ̄ij

dτ
¼ 0: ðB4Þ

Thus, the physical time derivatives of the conjugate
momenta with a bar on the top in (4.14) vanish, due to
they are the components of π̄ij. Finally, we deal with the
term with πð2ÞrA. By (B4),

dπð2ÞrA

dτ
¼ ∓ ffiffiffī

γ
p

γ̄ABð3ÞRð1Þ
rB : ðB5Þ

Here ð3ÞRð1Þ
rA is the coefficient of the leading order of ð3ÞRrA,

which reads

ð3ÞRð1Þ
rA ¼ D̄BD̄Aλ̄

B − D̄Bk̄BA þ 1

2
ðγ̄BC∂Ah̄BC − h̄BC∂Aγ̄BCÞ

− λ̄A þ 2∂Aλ̄;

¼ D̄AD̄Bλ̄
B þ γ̄RABλ̄

B − D̄Bk̄BA þ 1

2
γ̄BCD̄Ah̄BC

− λ̄A þ 2∂Aλ̄;

¼ D̄AD̄Bλ̄
B − D̄Bk̄BA þ 1

2
γ̄BCD̄Ah̄BC þ 2∂Aλ̄: ðB6Þ

In the last step, we use the fact that on a unit sphere we have

γ̄RAB ¼ γ̄AB: ðB7Þ

Then we find

2

I
S2
d2SYAγ̄AB

dπð2ÞrB

dτ
¼ ∓ 2

I
S2
d2SYA

�
D̄AD̄Bλ̄

B − D̄Bk̄BA

þ 1

2
γ̄BCD̄Ah̄BC þ 2∂Aλ̄

�
;

¼ 0: ðB8Þ

In the last step, we integrate by part and use the Killing
equation of YA. As the result, we demonstrate that the
boundary charges defined in (4.14) are conserved.

APPENDIX C: REVIEW OF (WEAK)
SYMPLECTIC FORM

In this appendix, we give a brief review of the (weak)
symplectic form. The details can be found in [62].
First, we define the strong and weak nondegenerate

bilinear forms of a Banach space.
Definition C.1. Let V be a Banach space, whose dual

space is denoted as V�. B∶V × V → R is a continuours
bilinear map. B naturally induces a continuous bilinear map
B̃∶V → V�, s.t. ∀ a; b∈V, B̃ðaÞ · b ¼ Bða; bÞ. Here “·”
denotes the inner product. If B̃ is injective, and ∀ b∈V,
Bða; bÞ ¼ 0 gives a ¼ 0, then we call B is weakly non-
degenerate. If B̃ is an isomorphism, then we call B is
nondegenerate or strongly nondegenerate.
With the bilinear form defined above, we can define the

(weakly) nondegenerate form as
Definition C.2. Let P be a Banach manifold and TP is

the tangent bundle of P. A two-form field Ω on P is called
a symplectic form if

(i) Ω is closed: δΩ ¼ 0 (δ denotes the exterior
derivative).

(ii) ∀ x∈P, the map Ωjx∶ TxP × TxP → R is non-
degenerate.

In particular, if Ωjx is weakly nondegenerate, we call Ω a
weak symplectic form.
In the following, we choose ðgijðσ⃗Þ; πijðσ⃗ÞÞ as the

canonical pairs of the phase space. Given any C1 function
fðgij; pijÞ of the phase space, we construct the correspond-
ing dual vector field as

ðδfÞα ¼
Z
S
d3σ

�
δf
δgij

ðδgijÞα þ
δf
δπij

ðδπijÞα
�
: ðC1Þ

Here, the greek letters α; β; γ;… are the indexes of P.
Definition C.3. Given a Banach manifold P equipped

with a weak symplectic form Ω. D is a domain of P:
D ⊂ P. Let X∈TD, where TD ⊂ TP. X is said to be a
Hamiltonian vector field if there ∃ a C1 function
h∶D → R, s.t.

½ΩαβXαvβ�jx ¼ ½ðδhÞαvα�jx; ðC2Þ

∀ x∈D and ∀ vα ∈TD.
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In the following, we denote Xh as the Hamiltonian vector
field of h.
Theorem C.1. Suppose Xα

f is a Hamiltonian vector on the
domain D, then Xα

f is a (infinitesimal) symmetry:

LX⃗f
Ωαβ ¼ 0: ðC3Þ

Proof.

LX⃗f
Ωαβ ¼ δαðXγ

fΩγβÞ þ ðδΩÞγαβXγ
f ¼ δαðXγ

fΩγβÞ: ðC4Þ

Here we have used δΩ ¼ 0 in the last step. Then with (C2),
we have

Xγ
fΩγβ ¼ δβf; ðC5Þ

thus

LX⃗f
Ωαβ ¼ δαδβf ¼ 0: ðC6Þ

▪

Suppose a C1 function f on D has corresponding
Hamiltonian vector field Xf, we can check that

Xα
f ¼

Z
S
d3σ

�
δf
δπij

�
δ

δgij

�
α

−
δf
δgij

�
δ

δπij

�
α
�

ðC7Þ

with the (weak) symplectic form

Ω ¼
Z
S
d3σðδgijÞα ∧ ðδπijÞβ;

¼
Z
S
d3σ½ðδgijÞαðδπijÞβ − ðδgijÞβðδπijÞα�: ðC8Þ

To see this, we introduce an arbitrary vector field vα ∈TD:

vα ¼
Z
S
d3σ

�
vij

�
δ

δgij

�
α

þ v̄ij
�

δ

δπij

�
α
�
; ðC9Þ

here vij and v̄ij are the coefficients of vα. With (C1), and
(C7)–(C9), the left-hand side of (C2) reads

½ΩαβXα
fv

β�jx ¼
�Z

S
d3σ1d3σ2d3σ3½ðδgijÞαðδπijÞβ − ðδgijÞβðδπijÞα

i

×

�
δf
δπkl

�
δ

δgkl

�
α

−
δf
δgkl

�
δ

δπkl

�
α
��

vmn

�
δ

δgmn

�
β

þ v̄mn

�
δ

δπmn

�
β
��				

x
;

¼
�Z

S
d3σ

�
δf
δπij

v̄ij þ δf
δgij

vij

��				
x
; ðC10Þ

and the right-hand side of (C2) reads

½ðδfÞαvα�jx ¼
�Z

S
d3σd3σ0

�
δf
δgij

ðδgijÞα þ
δf
δπij

ðδπijÞα
��

vmn

�
δ

δgmn

�
α

þ v̄mn

�
δ

δπmn

�
α
��				

x
;

¼
�Z

S
d3σ

�
δf
δπij

v̄ij þ δf
δgij

vij

��				
x
: ðC11Þ

Thus, we have checked (C7). The Poisson bracket between the C1 functions of the phase space which have the
corresponding Hamiltonian vector fields is defined as follows:
Definition C.4. Suppose P is a Banach manifold equipped with a (weak) symplectic form Ω. D1; D2 ∈P, and

D1 ∩ D2 ≠ 0. f is a C1 functions on D1, whose Hamiltonian vector field is Xf; g is another C1 functions on D2, whose
Hamiltonian vector field is Xg. The Poisson bracket ff; gg is a map:

ff; gg∶ D1 ∩ D2 → R; ðC12Þ

given by

ff; ggðxÞ ¼ ΩðXfðxÞ; XgðxÞÞ; ðC13Þ

with x∈D1 ∩ D2.
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With (C2) and (C13), we have

ff; gg ¼ ΩðXf; XgÞ ¼ ðδfÞαXα
g ¼ LX⃗g

f ¼ −LX⃗f
g: ðC14Þ

Next, we prove the Poisson bracket we define satisfies the
Jacobi identity. To do this, we first proof the follow-
ing lemma:
Lemma C.2. Supposed f, g are the C1 functions with

domains D1, D2, respectively, and D1 ∩ D2 ≠ 0. We have

Xα
ff;gg ¼ −½Xf; Xg�α; ðC15Þ

where ½·; ·� denotes the Lie bracket.
Proof. Since Ωαβ is (weakly) nondegenerate, we just

need to show

ΩαβðXα
ff;gg þ ½Xf; Xg�αÞ ¼ 0: ðC16Þ

With (C3), we have

Ωαβ½Xf; Xg�α ¼ ΩαβLX⃗f
Xα
g ¼ LX⃗f

ðΩαβXα
gÞ − LX⃗f

ðΩαβÞXα
g ;

¼ LX⃗f
ðΩαβXα

gÞ: ðC17Þ

Then with (C2), the left-hand side of (C16) reads

ΩαβðXα
ff;gg þ ½Xf; Xg�αÞ ¼ ΩαβXα

ff;gg þ LX⃗f
ðΩαβXα

gÞ;
¼ −δβff; gg − LX⃗f

ðδβgÞ: ðC18Þ

Use (C14), we have

−δβff;gg−LX⃗f
ðδβgÞ ¼ δβðLX⃗fgÞ−LX⃗f

ðδβgÞ
¼LX⃗fðδβgÞ−LX⃗f

ðδβgÞ ¼ 0: ðC19Þ

▪
Thus, we have the following theorem:
Theorem C.3. Given three C1 functions f, g, h with

domainsD1,D2,D3, respectively, andD1 ∩ D2 ∩ D3 ≠ ∅.
Xα
f is the Hamiltonian vector field of f. Xα

g is the
Hamiltonian vector field of g. Xα

h is the Hamiltonian vector
field of h. ∀ x∈D1 ∩ D2 ∩ D3, we have the Jacobi
identity:

ffg;hg;fgðxÞþff;gg;hgðxÞþffh;fg;ggðxÞ¼0: ðC20Þ

Proof. Note that δΩ ¼ 0,

½ðδΩÞαβγXα
fX

β
gX

γ
h�jx ¼ 0: ðC21Þ

Use the properties of the exterior derivative, (C21) gives

0¼ ½Xα
fδαðΩβγX

β
gX

γ
hÞ−Xα

gδαðΩβγX
β
fX

γ
hÞþXα

hδαðΩβγX
β
fX

γ
gÞ

−Ωαβ½Xf;Xg�αXβ
hþΩαβ½Xf;Xh�αXβ

g −Ωαβ½Xg;Xh�αXβ
f�jx:

ðC22Þ

With (C14), we have

Xα
fδαðΩβγX

β
gX

γ
hÞ ¼ Xα

fδαfg; hg ¼ ffg; hg; fg: ðC23Þ

With Lemma C.2 we have

−Ωαβ½Xf; Xg�αXβ
h ¼ ΩαβXα

ff;ggX
β
h ¼ fff; gg; hg: ðC24Þ

Thus, (C22) reads

0 ¼ ½Xα
fδαðΩβγX

β
gX

γ
hÞ − Xα

gδαðΩβγX
β
fX

γ
hÞ þ Xα

hδαðΩβγX
β
fX

γ
gÞ−Ωαβ½Xf; Xg�αXβ

h þΩαβ½Xf; Xh�αXβ
g −Ωαβ½Xg; Xh�αXβ

f�jx;
¼ ½ffg; hg; fg − fff; hg; gg þ fff; gg; hg þ fff; gg; hg − fff; hg; gg þ ffg; hg; fg�jx;
¼ 2½ffg; hg; fg − fff; hg; gg þ fff; gg; hg�jx;
¼ 2½ffg; hg; fg þ ffh; fg; gg þ fff; gg; hg�jx: ðC25Þ

▪
We consider a simple example. Suppose D1 ¼ D2 and the Ω takes the form of (C8), we have

ff; ggðxÞ ¼
�Z

S
d3σ1d3σ2d3σ3½ðδgijÞαðδπijÞβ − ðδgijÞβðδπijÞα

i

×

�
δf
δπkl

�
δ

δgkl

�
α

−
δf
δgkl

�
δ

δπkl

�
α
��

δg
δπml

�
δ

δgml

�
β

−
δg
δgml

�
δ

δπml

�
β
��				

x
;

¼
�Z

S
d3σ

�
δf
δgij

δg
δπij

−
δg
δgij

δf
δπij

��				
x
: ðC26Þ

This result agrees with Eq. (3.31).
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It is proven that the symplectic form defined in (3.29) is
strong [2]. Also note that the variation of the boundary-
preserving symmetry chargesGðξ; ξ⃗Þ construct in Sec. IV is
well defined. Therefore, for any Gðξ; ξ⃗Þ, there is corre-
sponding Hamiltonian vector field. Consequently, the
symplectic form is preserved the transformations generated
by Gðξ; ξ⃗Þ.

APPENDIX D: PROPERTIES OF ðξ̂; ξ̂jÞ
From (5.17), we have

ξ̂ ¼ f̂ þOðr−1Þ; ξ̂r ¼ Ŵ þOðr−1Þ;

ξ̂A ¼ ŶA þ 1

r
ÎA þOðr−2Þ; ðD1Þ

ŶA ¼ YB
1 D̄BYA

2 − ð1 ↔ 2Þ;
f̂ ¼ YA

1 ∂Af2 − ð1 ↔ 2Þ;
Ŵ ¼ YA

1 ∂AW2 − ð1 ↔ 2Þ;
ÎA ¼ YB

1 D̄BIA2 þ IB1 D̄BYA
2 − ð1 ↔ 2Þ: ðD2Þ

Since f, W are functions of S2 and YA is the Killing vector
of S2, f̂, Ŵ are also functions of S2. Similarly, ÎA is the
vector field of S2. Note that YA

1 , Y
A
2 are the Killing vector

fields on S2, their commutator ŶA ≔ ½Y1; Y2�A is also the
Killing vector field on S2. Therefore, ðξ̂; ξ̂jÞ satisfies (4.2).

APPENDIX E: DETAILS OF SECTION 5.1

This subsection gives some detailed calculations of
Sec. VA. We first give the details of (5.11). By (2.31)
and (2.30), (5.11) yields

fGðξ⃗1Þ; Gðξ2Þg ¼
Z
S
d3Vξi1DiðNξ2ÞCþ

Z
S
d3V½ξi1DiðNjξ2Þ − Niξ2Diξ

j
1�Cj

−
Z
S
d3Vξ2HphyNjNkDjðξ1Þk − δξ⃗1B̃ðξ̃2Þ − lim

r→∞

I
S2
d2Sξr1ξ̃2Cþ 2 lim

r→∞

I
S2
d2S½ξ⃗1; ⃗ξ̃2�

j
πrj;

¼
Z
S
d3V

�
�ξi1

gjkNjDiNkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gjkNjNk

q ξ2Cþ ξi1Diðξ2Þ
C2

Hphys

�

þ
Z
S
d3V

�
ξi1DiðNjÞξ2 −

Cj

Hphys
ξi1Diðξ2Þ þ

Ci

Hphys
ξ2Diξ

j
1

�
Cj

−
Z
S
d3Vξ2

CjCk

Hphys
Djðξ1Þk − δξ⃗1B̃ðξ̃2Þ − lim

r→∞

I
S2
d2Sξr1ξ̃2Cþ 2 lim

r→∞

I
S2
d2S½ξ⃗1; ⃗ξ̃2�

j
πrj;

¼
Z
S
d3V½ξi1NjDiðNjÞHphyξ2 þ ξi1DiðNjÞξ2Cj� þ

Z
S
d3Vξi1Diðξ2Þ

C2 − gjkCjCk

Hphys

þ
Z
S
d3Vξ2

�
CjCk

Hphys
ξ2Djðξ1Þk −

CjCk

Hphys
Djðξ1Þk

�
− δξ⃗1B̃ðξ2Þ −

I
S2
d2Sξr1ξ̃2Cþ 2

I
S2
d2S½ξ⃗1; ⃗ξ̃2�

j
πrj;

¼
Z
S
d3Vξi1Diðξ2ÞHphys − δξ⃗1B̃ðξ̃2Þ − lim

r→∞

I
S2
d2Sξr1ξ̃2Cþ 2 lim

r→∞

I
S2
d2S½ξ⃗1; ⃗ξ̃2�

j
πrj: ðE1Þ

Next, we show that B in (5.13) is vanished. By (2.31) and (2.30),

B ¼
Z
S
d3V½Nξ1DjðNξ2Þ − Nξ2DjðNξ1Þ�Cj þ

Z
S
d3V½Njξ1DjðNξ2Þ − Njξ2DjðNξ1Þ�C

þ
Z
S
d3V½Niξ1DiðNjξ2Þ − Niξ2DiðNjξ1Þ�Cj þ

1

2

Z
S
d3VHphysNiNjξ1Nξ2g−

1
2

�
πij −

1

2
πgij

�

−
1

2

Z
S
d3VHphysNiNjξ2Nξ1g−

1
2

�
πij −

1

2
πgij

�
þ
Z
S
d3VHphysNiNjξ1DiðNjξ2Þ

−
Z
S
d3VHphysNiNjξ2DiðNjξ1Þ;
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¼
Z
S
d3VðN2ξ1Djξ2 − N2ξ2Djξ1ÞCj þ

Z
S
d3VðNNjξ1Djξ2 − NNjξ2Djξ1ÞC

þ
Z
S
d3Vðξ1NiNjDiξ2 − ξ2NiNjDiξ1ÞCj þ

Z
S
d3VHphysNiNjξ1NjDiξ2

−
Z
S
d3VHphysNiNjξ2NjDiξ1;

¼
Z
S
d3V

�
C2

H2
phys

ξ1CjDjξ2 −
C2

H2
phys

ξ2CjDjξ1

�
−
Z
S
d3V

�
C2

H2
phys

ξ1CjDjξ2 −
C2

H2
phys

ξ2CjDjξ1

�

þ
Z
S
d3Vðξ1NiNjCjDiξ2 − ξ2NiNjCjDiξ1Þ −

Z
S
d3VðNiNjξ1CjDiξ2 − NiNjξ2CjDiξ1Þ;

¼ 0: ðE2Þ

APPENDIX F: PROOF OF (5.34)

D̄AðLY⃗ λ̄BÞ ¼ D̄AðYCD̄Cλ̄B þ λ̄CD̄BYCÞ;
¼ YCD̄AD̄Cλ̄B þ D̄AðYCÞD̄Cλ̄B þ D̄Aðλ̄CÞD̄BYC þ λ̄CD̄AD̄BYC;

¼ YCD̄CD̄Aλ̄B þ YC γ̄RACB
Dλ̄D þ D̄AðYCÞD̄Cλ̄B þ D̄Aðλ̄CÞD̄BYC þ λ̄CD̄AD̄BYC: ðF1Þ

On the other hand

LY⃗ðD̄Aλ̄BÞ ¼ YCD̄CD̄Aλ̄B þ D̄Cðλ̄BÞD̄AYC

þ D̄Aðλ̄CÞD̄BYC: ðF2Þ

To prove (5.34), we need to show

YC γ̄RACB
Dλ̄D þ λ̄CD̄AD̄BYC ¼ 0: ðF3Þ

For a Killing vector field on the spacetime ξμ, we have

∇μ∇νξσ ¼ −Rνσμ
ρξρ; ðF4Þ

then

λ̄CD̄AD̄BYC ¼ λ̄CD̄AD̄BYC;

¼ −λ̄C γ̄RBCA
DYD: ðF5Þ

We have

YC γ̄RACB
Dλ̄D þ λ̄CD̄AD̄BYC

¼ YC γ̄RACB
Dλ̄D − λ̄C γ̄RBCA

DYD;

¼ YCλ̄D γ̄RACBD − YDλ̄C γ̄RBCAD;

¼ YCλ̄D γ̄RACBD − YCλ̄D γ̄RACBD;

¼ 0: ðF6Þ

APPENDIX G: CENTRAL CHARGES

We first give the definition of the central extension of a
Lie algebra Lg, which can be find in, e.g., [63]. For a Lie
algebra Lg, its central extension ĝ is the direct sum of
itself and a one-dimensional complex vector space with the
basis c

Lg ⊕ Cc; ðG1Þ
satisfying the following requirements:

½ξþ αc; ηþ βc� ¼ ½ξ; η� þ ωðξ; ηÞc;
ξ; η∈Lg; α; β∈C;

½c; ξ� ¼ 0: ðG2Þ

Here the square bracket denotes the Lie bracket of the
algebra, and the ω is a bilinear form, ω∶Lg × Lg → C
satisfying the 2-cocycle condition:

ωðx; yÞ ¼ −ωðy; xÞ;
ωð½x; y�; zÞ þ ωð½y; z�; xÞ þ ωð½z; x�; yÞ ¼ 0; ðG3Þ

with x; y; z∈Lg.
With the definition above, we can check that the Cðξ̂; ˆξ⃗Þ

in (5.40) provides a central extension of the algebra.
Introduce ξμ1 ≔ ðξ1; ξ⃗1Þ, ξμ2 ≔ ðξ2; ξ⃗2Þ, and ξμ3 ≔ ðξ3; ξ⃗3Þ,
which satisfy (4.2). Define their commutators with Poisson
bracket:
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fGðξμ1Þ; Gðξμ2Þg ¼ Gð½ξμ1; ξμ2�Þ þ Cð½ξμ1; ξμ2�Þ: ðG4Þ

Here ½ξμ1; ξμ2� is the commutator of ξμ1 and ξ
μ
2 defined by the Poisson bracket. In our case, ξ

μ ∈Lg. The complex vector space
C is restricted to be the real vector R. Especially, c ¼ 1. The ω is given by

ωðξμ1; ξμ1Þ≡ Cð½ξμ1; ξμ2�Þ:

By (5.39),

ωð½ξμ1; ξμ2�Þ ¼ −ωð½ξμ2; ξμ1�Þ: ðG5Þ

By (5.18) and (5.39),

ωð½ξμ1; ξμ2�; ξμ3Þ ¼ �2

I
S2
d2S

ffiffiffī
γ

p ½ðYA
1 D̄Af2 − YA

2 D̄Af1ÞðD̄BD̄BW3 − D̄BIB3 Þ

− f3D̄AD̄AðYB
1 D̄BW2 − YB

2 D̄BW1Þ þ f3D̄AðYB
1 D̄BIA2 þ IB1 D̄BYA

2 − YB
2 D̄BIA1 − IB2 D̄BYA

1 Þ�: ðG6Þ

Since

D̄AðYB
1 D̄BIA2 þ IB1 D̄BYA

2 − YB
2 D̄BIA1 − IB2 D̄BYA

1 Þ
¼ D̄AðYB

1 ÞD̄BIA2 þ YB
1 D̄AD̄BIA2 þ D̄AðIB1 ÞD̄BYA

2 þ IB1 D̄AD̄BYA
2

− D̄AðYB
2 ÞD̄BIA1 − YB

2 D̄AD̄BIA1 − D̄AðIB2 ÞD̄BYA
1 − IB2 D̄AD̄BYA

1 ;

¼ D̄AðYB
1 ÞD̄BIA2 þ YB

1 D̄BD̄AIA2 þ YB
1RBAC

AIC2 þ D̄AðIB1 ÞD̄BYA
2 þ IB1 D̄BD̄AYA

2 þ IB1RBAC
AYC

2

− D̄AðYB
2 ÞD̄BIA1 − YB

2 D̄BD̄AIA1 − YB
2RBAC

AIC1 − D̄AðIB2 ÞD̄BYA
1 − IB2 D̄BD̄AYA

1 − IB2RBAC
AYC

1 ;

¼ D̄AðYB
1 ÞD̄BIA2 þ YB

1 D̄BD̄AIA2 þ YB
1RBCIC2 þ D̄AðIB1 ÞD̄BYA

2 þ IB1 D̄BD̄AYA
2 þ IB1RBCYC

2

− D̄AðYB
2 ÞD̄BIA1 − YB

2 D̄BD̄AIA1 − YB
2RBCIC1 − D̄AðIB2 ÞD̄BYA

1 − IB2 D̄BD̄AYA
1 − IB2RBCYC

1 ;

¼ D̄AðYB
1 ÞD̄BIA2 þ YB

1 D̄BD̄AIA2 þ D̄AðIB1 ÞD̄BYA
2 − D̄AðYB

2 ÞD̄BIA1 − YB
2 D̄BD̄AIA1 − D̄AðIB2 ÞD̄BYA

1 ;

¼ YB
1 D̄BD̄AIA2 − YB

2 D̄BD̄AIA1 ; ðG7Þ

Eq. (G6) becomes

ωð½ξμ1; ξμ2�; ξμ3Þ ¼ �2

I
S2
d2S

ffiffiffī
γ

p ½ðYA
1 D̄Af2 − YA

2 D̄Af1ÞðD̄BD̄BW3 − D̄BIB3 Þ

− f3D̄AD̄AðYB
1 D̄BW2 − YB

2 D̄BW1Þ þ f3D̄AðYB
1 D̄BD̄AIA2 − YB

2 D̄BD̄AIA1 Þ�: ðG8Þ

Similarly

ωð½ξμ3; ξμ1�; ξμ2Þ ¼ �2

I
S2
d2S

ffiffiffī
γ

p ½ðYA
3 D̄Af1 − YA

1 D̄Af3ÞðD̄BD̄BW2 − D̄BIB2 Þ

− f2D̄AD̄AðYB
3 D̄BW1 − YB

1 D̄BW3Þ þ f2D̄AðYB
3 D̄BD̄AIA1 − YB

1 D̄BD̄AIA3 Þ�; ðG9Þ

and

ωð½ξμ2; ξμ3�; ξμ1Þ ¼ �2

I
S2
d2S

ffiffiffī
γ

p ½ðYA
2 D̄Af3 − YA

3 D̄Af2ÞðD̄BD̄BW1 − D̄BIB1 Þ

− f1D̄AD̄AðYB
2 D̄BW3 − YB

3 D̄BW2Þ þ f1D̄AðYB
2 D̄BD̄AIA3 − YB

3 D̄BD̄AIA2 Þ�: ðG10Þ

With the results above, we can show that ωðξμÞ satisfies the Jacobi identity:

ωð½ξμ1; ξμ2�; ξμ3Þ þ ωð½ξμ3; ξμ1�; ξμ2Þ þ ωð½ξμ2; ξμ3�; ξμ1Þ ¼ 0: ðG11Þ
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First

ωð½ξμ1; ξμ2�; ξμ3Þ þ ωð½ξμ3; ξμ1�; ξμ2Þ þ ωð½ξμ2; ξμ3�; ξμ1Þ

¼ �2

I
S2
d2S

ffiffiffī
γ

p ½ðYA
1 D̄Af2 − YA

2 D̄Af1ÞðD̄BD̄BW3 − D̄BIB3 Þ

− f3D̄AD̄AðYB
1 D̄BW2 − YB

2 D̄BW1Þ − f3D̄AðYB
1 D̄BD̄AIA2 − YB

2 D̄BD̄AIA1 Þ
þ ðYA

3 D̄Af1 − YA
1 D̄Af3ÞðD̄BD̄BW2 − D̄BIB2 Þ

− f2D̄AD̄AðYB
3 D̄BW1 − YB

1 D̄BW3Þ − f2D̄AðYB
3 D̄BD̄AIA1 − YB

1 D̄BD̄AIA3 Þ
þ ðYA

2 D̄Af3 − YA
3 D̄Af2ÞðD̄BD̄BW1 − D̄BIB1 Þ

− f1D̄AD̄AðYB
2 D̄BW3 − YB

3 D̄BW2Þ − f1D̄AðYB
2 D̄BD̄AIA3 − YB

3 D̄BD̄AIA2 Þ�: ðG12Þ

Next since

D̄AD̄AðYBD̄BWÞ ¼ D̄AðD̄AðYBÞD̄BW þ YBD̄AD̄BWÞ;
¼ D̄Að−D̄BðYAÞD̄BW þ YBD̄AD̄BWÞ;
¼ −D̄AðD̄BYAÞD̄BW − D̄½BðYA�ÞD̄ðAD̄BÞW þ D̄½AðYB�ÞD̄ðAD̄BÞW þ YBD̄AD̄AD̄BW;

¼ −D̄BðD̄AYAÞD̄BW − YCRBCD̄BW þ YAD̄AD̄BD̄BW þ YARACD̄CW;

¼ YAD̄AD̄BD̄BW; ðG13Þ

we have

� 2

I
S2
d2S

ffiffiffī
γ

p ½ðYA
1 D̄Af2 − YA

2 D̄Af1ÞD̄BD̄BW3 − f3D̄AD̄AðYB
1 D̄BW2 − YB

2 D̄BW1Þ

þ ðYA
3 D̄Af1 − YA

1 D̄Af3ÞD̄BD̄BW2 − f2D̄AD̄AðYB
3 D̄BW1 − YB

1 D̄BW3Þ
þ ðYA

2 D̄Af3 − YA
3 D̄Af2ÞD̄BD̄BW1 − f1D̄AD̄AðYB

2 D̄BW3 − YB
3 D̄BW2Þ�

¼ �2

I
S2
d2S

ffiffiffī
γ

p ½ðYA
1 D̄Af2 − YA

2 D̄Af1ÞD̄BD̄BW3 − f3ðYA
1 D̄AD̄BD̄BW2 − YA

2 D̄AD̄BD̄BW1Þ

þ ðYA
3 D̄Af1 − YA

1 D̄Af3ÞD̄BD̄BW2 − f2ðYA
3 D̄AD̄BD̄BW1 − YA

1 D̄AD̄BD̄BW3Þ
þ ðYA

2 D̄Af3 − YA
3 D̄Af2ÞD̄BD̄BW1 − f1ðYA

2 D̄AD̄BD̄BW3 − YA
3 D̄AD̄BD̄BW2Þ�

¼ �2

I
S2
d2S

ffiffiffī
γ

p ½−ðYA
1f2D̄AD̄BD̄BW3 − YA

2f1D̄AD̄BD̄BW3Þ

− ðYA
1f3D̄AD̄BD̄BW2 − YA

2f3D̄AD̄BD̄BW1Þ − ðYA
3f1D̄AD̄BD̄BW2 − YA

1f3D̄AD̄BD̄BW2Þ
− ðYA

3f2D̄AD̄BD̄BW1 − YA
1f2D̄AD̄BD̄BW3Þ − ðYA

2f3D̄AD̄BD̄BW1 − YA
3f2D̄AD̄BD̄BW1Þ

− ðYA
2f1D̄AD̄BD̄BW3 − YA

3f1D̄AD̄BD̄BW2Þ�
¼ 0: ðG14Þ

Furthermore,
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� 2

I
S2
d2S

ffiffiffī
γ

p ½−ðYA
3 D̄Af1 − YA

1 D̄Af3ÞD̄BIB2 − ð−f2ðYB
3 D̄BD̄AIA1 − YB

1 D̄BD̄AIA3 ÞÞ

− ðYA
1 D̄Af2 − YA

2 D̄Af1ÞD̄BIB3 − ð−f3ðYB
1 D̄BD̄AIA2 − YB

2 D̄BD̄AIA1 ÞÞ
− ðYA

2 D̄Af3 − YA
3 D̄Af2ÞD̄BIB1 − ð−f1ðYB

2 D̄BD̄AIA3 − YB
3 D̄BD̄AIA2 ÞÞ�

¼ �2

I
S2
d2S

ffiffiffī
γ

p ½ðYA
3f1D̄AD̄BIB2 − YA

1f3D̄AD̄BIB2 Þ þ ðf2YB
3 D̄BD̄AIA1 − f2YB

1 D̄BD̄AIA3 Þ

þ ðYA
1f2D̄AD̄BIB3 − YA

2f1D̄AD̄BIB3 Þ þ ðf3YB
1 D̄BD̄AIA2 − f3YB

2 D̄BD̄AIA1 Þ
þ ðYA

2f3D̄AD̄BIB1 − YA
3f2D̄AD̄BIB1 Þ þ ðf1YB

2 D̄BD̄AIA3 − f1YB
3 D̄BD̄AIA2 Þ�

¼ 0: ðG15Þ

As the result, we verify (G11).
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[12] K. V. Kuchař and J. D. Romano, Gravitational constraints
that generate a lie algebra, Phys. Rev. D 51, 5579 (1995).

[13] B. Dittrich, Partial and complete observables for Hamil-
tonian constrained systems, Gen. Relativ. Gravit. 39, 1891
(2007).

[14] B. Dittrich, Partial and complete observables for canonical
general relativity, Classical Quantum Gravity 23, 6155
(2006).

[15] J. Tambornino et al., Relational observables in gravity: A
review, SIGMA 8, 017 (2012).

[16] A. Ashtekar and P. Singh, Loop quantum cosmology: A
status report, Classical Quantum Gravity 28, 213001 (2011).

[17] M. Domagala, K. Giesel, W. Kaminski, and J.
Lewandowski, Gravity quantized: Loop quantum gravity
with a scalar field, Phys. Rev. D 82, 104038 (2010).

[18] K. Giesel, S. Hofmann, T. Thiemann, and O. Winkler,
Manifestly gauge-invariant general relativistic perturbation
theory: I. foundations, Classical Quantum Gravity 27,
055005 (2010).

[19] K. Giesel, J. Tambornino, and T. Thiemann, LTB spacetimes
in terms of dirac observables, Classical Quantum Gravity
27, 105013 (2010).

[20] G. Domènech and M. Sasaki, Hamiltonian approach to
second order gauge invariant cosmological perturbations,
Phys. Rev. D 97, 023521 (2018).

[21] J.-c. Hwang, D. Jeong, and H. Noh, Gauge dependence of
gravitational waves generated from scalar perturbations,
Astrophys. J. 842, 46 (2017).

[22] K. Tomikawa and T. Kobayashi, Gauge dependence of
gravitational waves generated at second order from scalar
perturbations, Phys. Rev. D 101, 083529 (2020).

[23] V. De Luca, G. Franciolini, A. Kehagias, and A. Riotto, On
the gauge invariance of cosmological gravitational waves,
J. Cosmol. Astropart. Phys. 03 (2020) 014.

[24] C. Yuan, Z.-C. Chen, and Q.-G. Huang, Scalar induced
gravitational waves in different gauges, Phys. Rev. D 101,
063018 (2020).

[25] H. Noh and J.-c. Hwang, Second-order perturbations of the
friedmann world model, Phys. Rev. D 69, 104011 (2004).

[26] J. D. Brown and K. V. Kuchař, Dust as a standard of space
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