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An interesting idea, dating back to Feynman [Report from Chapel Hill Conference, edited by
C. M. DeWitt and D. Rickles (1957)], argues that quantum mechanics may break down for large masses
if one entertains the possibility that gravity can be “classical,” thereby leading to predictions different from
conventional low-energy quantum gravity. Despite the technical difficulty in testing such deviations, a large
number of experimental proposals have been put forward due to the high level of fundamental interest.
Here, we consider the Schrödinger-Newton (SN) theory and the correlated worldline (CWL) theory, and
show that they can be distinguished from conventional quantum mechanics, as well as each other, by
performing pulsed optomechanics experiments. For CWL specifically we develop a framework resembling
the commonly used “Heisenberg-picture” treatment of coupled oscillators, allowing one to perform simple
calculations for such systems without delving into the deeper path-integral formalism. We find that
discriminating between the theories will be very difficult until experimental control over low frequency
quantum optomechanical systems is pushed much further. However, the predicted departures of SN and
CWL from quantum mechanics occur at the same scale, so both alternative models could in principle be
probed by a single experiment.
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I. INTRODUCTION

A. Motivations

Ever since quantum mechanics (QM) was discovered,
reservations have been posed about its applicability at
macroscopic scales. In recent decades QM has been tested
in experiments on superconducting SQUID devices [1],
which confirmed the QM predictions made by Leggett et al.
[2]; similar tests were also done in magnetic systems [3].
A key question—of just how macroscopic were the super-
positions involved in the SQUID tests—is still being
debated [4–6].
However, such experiments do not test the most

widely discussed mechanism for a breakdown of QM, that
coming from gravitation [7–10]. To test this requires “mass
superpositions,” in which a sufficiently massive object is
quantum delocalized. Such experiments are very difficult—
the largest “2-slit” mass superpositions achieved so far
involve molecules with mass ∼34;000 amu [4].
At issue here are two of the biggest questions in physics,

viz., (a) how can one reconcile QM with general relativity
(GR), which governs physics at large scales; and (b) how to

reconcile quantum superpositions with the everyday mac-
roscopic world of definite classical states (often called the
“measurement problem”).
The claim is that these problems may be resolvable in a

theory wherein gravity causes a breakdown of QM.
Candidates for this theory [11] include:

(i) Collapse models: A phenomenological nonrelativ-
istic approach in which a universal noise field,
arising from gravity, causes collapse of the Schrö-
dinger wave-function [12–14]. Recent experiments
seem to have ruled out this “CSL collapse” idea
[15,16], both for general collapse scenarios, and for
the “gravitational collapse” version.

(ii) Schrödinger-Newton: A semiclassical approach,
again nonrelativistic, in which gravity modifies
the Schrödinger equation to a “Schrödinger-
Newton” (SN) equation for the wave-function dy-
namics [10,17,18], leading to a dynamics different
from standard QM for this wave function. Ap-
proaches like this have been criticized because they
allow superluminal signal propagation [19,20], and
for other reasons [21].
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A careful examination of these criticisms reveals
that such superluminal signal propagations all arise
from the prescription that once a measurement is
made locally, a system’s wave function simultane-
ously collapse across the entire constant-time slice
of space-time. Superluminal signal propagation can
then be circumvented if the wave function used to
generate gravity at each point is instead taken to be
the “local conditional state” that is only sensitive to
measurement results within the past light cone,
leading to a “causal conditional” formulation [22],
which we shall adopt in this paper. We do caution
that while this formulation avoids superluminal
signal propagation, it has not been shown to be
generalizable to full general relativity with general
covariance.

(iii) Correlated worldlines: A covariant relativistic field-
theoretic approach in which the fundamental objects
are the path integral “histories” of the matter and
metric quantum fields. Although these fields are
quantized, their histories are coupled by gravity
(also quantized), and this modifies their dynamics
and causes a breakdown of the superposition prin-
ciple [23,24]. For large masses this leads to a “path-
bunched” dynamics which eventually becomes
classical. The form of this “correlated worldline”
(CWL) theory is actually fixed by very general
considerations, with no adjustable parameters, and
it turns out to satisfy all the relevant Ward identities
[25], has a consistent classical limit (Einstein’s
theory), and consistent expansions in both Newton’s
constant GN and ℏ.

Each of these theoretical approaches helps to give a
framework for experiments to work in—in principle they
give predictions different from QM and from each other.
Such theoretical frameworks are very important for any
experimental tests—it is hard to test a theory unless one can
compare specific predictions with those of competitors.
What then is the best way to test theories of this kind?

Feynman’s original thought experiment [7,8] involved a
2-path system, and there have been several analyses of
2-path experiments since then, both phenomenological
[9,26], and microscopic [24,27].
However a genuine 2-path interference experiment for a

massive object is forbiddingly difficult, simply because the
de Broglie wavelength is far too short (for an object having
the Planck mass Mp, moving at ∼1 m= sec, the de Broglie
wavelength λ ∼ 5 × 10−27 m). Instead the interest of the
community has focused primarily on optomechanical
experiments, and there is good reason for this—systems
such as LIGO have shown how fantastically sensitive an
optomechanical setup can be, in spite of a large variety of
noise and decoherence sources [28]. In this paper we
investigate a class of tests that may be done with opto-
mechanical experiments, and provide detailed predictions

for the Schrödinger-Newton and CWL theories, and
for QM.

B. Optomechanical experiments

The sensitivity of some optomechanical systems is such
that if QM is obeyed at the mass scale of the LIGO mirrors
(i.e., 40 kg), then one may at some point expect to see clear
evidence for the macroscopic quantum behavior of these
mirrors [29]. Such an observation would constitute an
increase in the mass scale at which QM has been verified by
a factor of 7 × 1023, and would thus certainly have
extremely important consequences for future physics.
However, as we will argue here, it will not in fact be so

easy to eliminate competitor theories to QM; and in
optomechanics experiments it will require advancing
the frontier of present experimental capabilities. This
is because the competing theories only show sharp
differences from QM under certain circumstances, i.e.,
for nonlinear measurements and/or non-Gaussian states.
Thus, the Gaussian-shaped quantum delocalization most
commonly achieved in optomechanical systems will look
almost identical whether the physics is fundamentally
described by QM, Schrödinger-Newton, or CWL theory.
So far ideas for optomechanical tests of QM at the

macroscopic scale mostly involve, in one way or another,
the probing of the motion of macroscopic mechanical
oscillators. The use of an optomechanical set-up to test
low-energy quantum gravity was apparently first suggested
20 yrs ago [30,31], within the context of Penrose’s idea [10]
that self-gravitational effects could dephase state super-
positions of a massive body; this idea was later discussed
using a Schrödinger-Newton equation for the wave-
function dynamics [32,33], as well as in the related semi-
classical gravity approach [34].
There have been many more recent proposals for

optomechanical tests of QM. Perhaps the best known
example is the observation of suspended test masses (the
LIGO system being a classic example of this). At first
glance these experiments [35,36] indicate that the test
mirrors are behaving quantum mechanically—however,
as noted above, we will show in this paper that the issue
is more subtle. Other proposals include the measurement of
nanosphere dynamics [37] and membranes [38]. General
reviews of this field also exist [39,40].
Most of these optomechanical designs involve quantifi-

able mass displacements between the elements of two or
more quantum states in a state superposition, i.e., they
involve mass superpositions. In what follows we will
develop a theoretical framework which allows us to analyze
a variety of different experiments designed to look for
departures from QM in such mass superpositions. One
important piece of this work is the quantitative discussion
of the effects of thermal noise and other environmental
effects. The other is a new convenient framework for
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studying oscillator systems within the CWL theory. CWL is
based upon an infinite number of coupled systems in a
path-integral formalism, and may be perceived as techni-
cally foreboding. To remove this obstacle we have devel-
oped a simple framework, specifically for studying
oscillators, which resembles Heisenberg picture oscillator
creation/annihilator operators calculus.
Provided one ignores the coupling of an optomechanical

system to its environment, optomechanical experiments are
in principle straightforward to analyze, since we are essen-
tially just dealing with a set of coupled oscillators (of which
one or more can be considered to be macroscopic).
Most of this paper will be focused on the example of a

fairly simple optomechanical system, which nevertheless
captures all of the essential features we require. This will be
a single optical cavity, fed by an external driving laser, in
which one of the two mirrors is mobile. The cavity optical
field then couples to the mechanical motion of the mirror—
both motions are quantized, and we are interested in the
way in which the dynamics of a macroscopic mirror is
predicted to be affected by gravity, in the case of 3 different
theories, viz., (i) traditional QM, (ii) CWL theory, and
(iii) Schrödinger-Newton theory.
We also consider a specific experimental design, which

has been widely discussed in the present context, this being
a pulsed optomechanics setup [41], in which the external
laser is pulsed. We propose a specific protocol based on
a series of pulses. This test is designed such that one
expects a certain outcome to occur with probability zero in
QM, but with a nonzero probability in both SN and CWL
theory.

C. Organization of paper

Our paper is organized as follows: we begin in Sec. II
with a presentation of the optomechanical setup, designed
for readers who do not work in quantum optics. The role of
an dissipative coupling to the environment also turns out to
be important, particularly for the CWL theory where it
facilitates “path bunching” [24,42].
In Sec. III we briefly describe the SN approach to low-

energy quantum gravity; the description is fairly brief since
this has been reviewed elsewhere, and previous discussions
of tests of QM in SN theory already exist. In Sec. IV we
recall the salient details of the CWL theory, and then in
Sec. V we then give a detailed discussion of the behavior of
a simple harmonic oscillator in CWL theory. In Sec. VI we
then move on to the description of a cavity optomechanics
experiment in CWL theory.
All of this prepares the ground for a discussion of

experiments using the three theories. Section VII focuses
on the specific case of a pulsed optomechanics experiment.
One can compare the “ground states” of the system for the
three theories (QM, CWL, and SN), insofar as these states
are properly defined. Finally, Sec. VIII gives a general
discussion of our results, and our conclusions.

We find that for typical values of experimental param-
eters currently prevailing, the difference in predictions of
the three theories for optomechanical experiments are very
small—however, we see that they can be calculated, with
no adjustable parameters. We thus conclude that to test
these theories it will require significant advances in the
control of quantum states of low frequency massive
oscillators (e.g., torsional pendulums).

II. CONVENTIONAL CAVITY OPTOMECHANICS

Before looking at how an optomechanical system will
behave in theories where QM breaks down, we first
consider how it behaves in conventional theory. By this
we mean a theory in which QM is obeyed at low energies,
and wherein low-energy quantum gravity is described by a
path integral in which one integrates out the quantized
metric field gμνðxÞ according to the usual rules of quantum
field theory (QFT).

A. QM description of optomechanical experiments

There is a large variety of different experimental opto-
mechanical systems [43], and one can certainly treat each
of these individually. However the key physics is summa-
rized in the setup shown in Fig. 1(a), where one assumes a
cavity optical mode with resonant frequency ωcav to be
excited by an external drive laser, and wherein one of the
cavity mirrors, of mass M, is mobile and behaves as a
harmonic oscillator with frequency ωm; the other mirror is
fixed rigidly.

tp tp

T

Mo

t

(a)

(b)

(c)
Qo(t)

FIG. 1. The optomechanical system considered in the text. In
(a) we show the cavity schematically; the laser field is injected
from the right, and the oscillating mirror of massMo is on the left
side of the cavity. In (b) the pulse sequence protocol is shown as a
function of time. In (c) we show a spacetime diagram for a pulsed
optomechanics experiment, with time along the vertical axis;
the initial state (at bottom) and the final state (at top) have all the
energy in the cavity mode, with a stationary mirror; the
intermediate state has an oscillating mirror. The mirror coordinate
is QoðtÞ.
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If both mirrors were dynamical, or there was another
mechanical oscillator nearby, conventional low-energy quan-
tum gravity predicts graviton-mediated correlations between
the massive oscillators’ motion. Genuine experimental pro-
posals based on variants of this setup have been put forth to
measure these correlations, and thereby test conventional
quantum gravity at low-energies [44]. In this paper we will
focus only on systems with just one moveable mass, so that
conventional gravitational effects are negligible.
If there are departures from QM to be seen in such an

optomechanical system, it is most natural to assume they
will be shown in the dynamics of the massive moveable
mirror. This assumption simply reflects the belief that QM
has been adequately tested on microscopic systems, and on
excitations of the EM field AμðxÞ. If one is interested in
departures from QM caused by gravity, we note that
interactions between AμðxÞ and the metric field gμνðxÞ
are here completely negligible.
To be specific we assume the moveable mirror to be in

the form of a cylindrical plate, of radius Ro, thickness Lo,
and density ρo. The internal structure can be amorphous or
crystalline, and as we note below, some quantitative
differences between the two can show up in experiments.
A detailed description of the mirror and its interaction

with the quantized EM field is actually quite complicated.
In particular one needs to account for:

(i) The structure of the mirror surface. This may be very
complex, with multiple layers having different
dielectric properties. At length scales ≫ ao, the
interatomic spacing, one may model these using a
position dependent dielectric function ϵðr;ωÞ. How-
ever the microscopic structure of the mirror, both in
the surface layers and in the bulk, is also relevant,
because dynamic defects (often modeled as “two
level systems”) will interact with both mechanical
and EM modes.

(ii) Both the fundamental mechanical mirror coordinate
and the other higher mechanical modes interact
dissipatively with the mirror supports, whatever
these may be—this interaction involves microscopic
defects of various kinds.

In a simplified treatment these details are ignored, and
one uses a model in which the pressure on the mirror from
the cavity optical mode gives a simple linear bilinear
coupling λQA†A between the mirror center of mass
coordinate Q and the cavity photon operators A†; A, with
a coupling λ ¼ −∂QωcavðQÞjQ¼0. The cavity photons also
couple to an external driving laser, whose “classical”
amplitude inside the cavity is written as

αinðtÞ ¼ e−iωLtωcav
1ffiffiffi
κ

p αðtÞ ð1Þ

where αðtÞ is a slowly varying (relative to the main
frequency ωL) envelope pulse profile; this amplitude gives

the mean number of photons sustained in the cavity mode
by the laser.
Our system is then that illustrated in Fig. 1(a). The

Hamiltonian for this system is written in the form of a pair
of coupled oscillators with a driving force coupled to the
optical cavity oscillator, viz.,

H ¼
�
P2

2M
þMω2

m

2
Q2

�
þ ωcav

�
A†Aþ 1

2

�
− λQA†A −

ffiffiffi
κ

p ðA†αin þ Aα�inÞ ð2Þ

where
ffiffiffi
κ

p
is a phenomenological coupling constant

between the driving laser and the cavity mode in question.
We also introduce operators a; a†, with a ¼ A − α,

which describe photon fluctuations about the mean photon
amplitude in the cavity. In the same way we define
“phonon” operators b; b† for the mirror coordinate Q.
We then have

H ¼ ωmb†bþ ωcava†a − gðtÞðbþ b†ÞðaeiωLt þ a†e−iωLtÞ
ð3Þ

plus irrelevant constants. We have here defined an opto-
mechanical coupling strength as

gðtÞ ¼ λzoαðtÞ ð4Þ

where zo is the zero point amplitude for the moveable
mirror. Notice that gðtÞ essentially measures the strength of
the indirect interaction between the incoming laser field
and the mechanical oscillator, simply because the cavity
photon density is entirely dominated by this field, with only
small fluctuations around it. Thus, by switching on and off
the laser field, we can to first approximation switch on and
off the optomechanical coupling, neglecting only the
correction due to small photon fluctuations.
Finally, let us pass to the interaction picture, with

b → e−iωmtb, a → e−iωcavta, and define the laser detuning
frequency Δ ¼ ωL − ωcav. Our quantum optomechanical
Hamiltonian is now given by the simple form

Hint ¼ −gðtÞðbe−iωmt þ b†eiωmtÞðaeiΔt þ a†e−iΔtÞ ð5Þ

so that we have isolated out the effect of the interaction
between the cavity fluctuation photons and the mechanical
quanta, with the coupling strength gðtÞ being proportional
to the driving laser field amplitude.
Consider now the effect of the driving laser on the

system. We note from Eq. (5) that in the “red-detuned” case
when Δ ¼ −ωm, the effect of the driving laser field in the
combined space of the optical/mechanical oscillations is
simply to “rotate” the basis—i.e., we can swap the energy
back and forth between the 2 oscillation modes. Let us
define the phase factor

WILSON-GEROW, CHEN, and STAMP PHYS. REV. D 109, 064078 (2024)

064078-4



ϕðtÞ ¼
Z

t

0

dτgðτÞ ð6Þ

which gives the integrated effects of the coupling over time.
Again in the resonant case, we see that when ϕðtÞ ¼
ðnþ 1

2
Þπ=2 we precisely swap the states of the mechanical

and optical oscillators, whereas when ϕðtÞ ¼ nπ, we return
the system to its t ¼ 0 state; here n is an integer.
This suggests applying a pulse sequence exactly analo-

gous to that in spin echo experiments. We start at t ¼ 0 with
the mechanical oscillator in its ground state and the cavity in
some excited state, and then apply a π=2 pulse, effectively
loading the cavity state into the mechanical oscillator. We
then let the system evolve—and later we apply a second π=2
pulse. If the system has evolved coherently, without
decoherence, then we should recover the initial t ¼ 0 state.
Formally, we choose a pulse sequence such that gðtÞ has

the form

gðtÞ ¼ ð2nþ 1Þπ
2tp

�
rect

�
t − 1

2
tp

tp

�

þ rect

�
t − 1

2
tp − ðT þ tpÞ

tp

��
ð7Þ

which describes a rectangular pulse of duration tp, followed
by a free evolution for time T, and then another rectangular
pulse of duration tp. The amplitude is chosen such that
ϕðtÞ ¼ ðnþ 1

2
Þπ between the pulses and ϕðtÞ ¼ ð2nþ 1Þπ

after both pulses, for some positive integer n. This pulse
sequence is shown as a function of time t in Fig. 1(b).
It is also useful to plot the time evolution of the system,

during this pulse sequence, on a spacetime diagram. This is
shown in Fig. 1(c). Physically what happens is that in the
initial (unpulsed) state the mirror is stationary; all of the
energy is in the cavity mode. The first pulse is then applied,
and the mirror now oscillates, having acquired the energy
from the cavity mode. The second pulse then returns the
energy to the cavity mode, and the mirror is again stationary.
As we will see, the interest of this sort of protocol for

testing QM lies in the fact that corrections to QM caused by
gravity can alter the mirror dynamics, and prevent the system
from returning precisely to its initial state, after the sequence
of pulses just described. Depending on what sort of theory
we are dealing with, this may or may not look like a
decoherence effect. By construction, such a pulse protocol
will leave zero excitations in the mirror degree of freedom if
QM is the correct description of the dynamics whereas (as
we will see in later sections) both SN and CWL predict a
nonzero occupation number, so this experiment could in
principle distinguish between QM, SN, and CWL theory.
Schemes like this, where phonon/photon numbers

are measured, are sometimes referred to as “nonlinear
measurement” protocols. Moreover the intermediate state
is a Fock state excitation which is an example of a

“non-Gaussian state.” It is not obvious a priori why linear
measurements and Gaussian states are not sufficient for
distinguishing the three theories, and this will be explained
in detail in a later section. Given that we have not yet
introduced the technical description of SN and CWL we
must leave it for the moment as a statement of fact that, at
least for CWL theory, linear measurements on Gaussian
states are insensitive to departures from QM.

B. Dissipation and decoherence

Any complete description of the optomechanical system
also has to include its coupling to background environ-
mental degrees of freedom, which lead to both dissipation
and decoherence effects. If the optomechanical system is in
thermal equilibrium with the environment, then this envi-
ronment also sets the effective temperature of the system.
Since any tests of QM or alternative theories to QMmay be
sensitive to temperature as well as to dissipation and
decoherence effects, it is important to quantify them.
Here we just describe the key environmental couplings

and how they are parametrized—their effects are dis-
cussed below.
The optomechanical coordinate Q and its conjugate

momentumP couple to two kinds of environment, as follows:
(i) There is a coupling to delocalized modes, modeled

themselves by oscillator coordinates ðqk; pkÞ; we
write the Hamiltonian as Heff ¼ HoðP;QÞ þHosc,
where HoðP;QÞ is just the mechanical oscillator
Hamiltonian in Eq. (2), and where the “oscillator
bath” part of the Hamiltonian is [45–47]

Hosc ¼
XNo

k¼1

½FkðP;QÞxk þ GkðP;QÞpk�

þ 1

2

XN
k¼1

�
p2
k

mk
þmkω

2
kx

2
k

�
ð8Þ

The couplings FkðP;QÞ and GkðP;QÞ are
∼OðN−1=2

o Þ, so that in the “thermodynamic limit”
where the number of bath oscillators No ≫ 1,
appropriate to a macroscopic environment of delo-
calised oscillators, these couplings are small.

(ii) There is a coupling to localized modes (primarily
defects in the mirror coatings), which are commonly
modeled as a set of 2-level systems, with a “spin
bath” environmental term [48,49]:

HSB¼F ðP;Q;fσμgÞþ
XNs

μ

hμ ·σμþ
XNs

μ;μ0
Vαβ
μμ0σ

α
μσ

β
μ0

ð9Þ

Here the Pauli spins fσμg are the environmental varia-
bles, with μ ¼ 1; 2;…Ns, and the couplings F ðP;Q; fσμgÞ
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and the local fields hμ may now be independent of Ns, and
are not necessarily weak (unlike the couplings in the
oscillator bath model). These couplings are in general
functions of the entire set of bath spins.
The interactions Vαβ

μμ0σ
α
μσ

β
μ0 between the spin bath modes

can be weak or strong depending on what these modes are
(the dipolar interactions between defects in the mirror
coating can be strain-mediated or electric dipole interaction
mediated, with nearest-neighbor interactions of strengths
up to hundreds of Kelvin).
For any well-designed mirror one typically assumes that

these environmental effects are weak and that they can be
parameterized by an effective Q-factor for the mirror, with
Q ≫ 1. This amounts to assuming an oscillator bath model
for the environment, with the additional assumption that
this bath is in equilibrium at some temperature T. If the
coupling of the spin bath modes to the mirror is weak, and
if the inter-defect coupling is weak, then one can map the
spin bath to an oscillator bath [48], justifying this step. In
our view this assumption needs further investigation, but
we will adopt it here.
Under these (quite stringent) circumstances one can

describe the classical behavior of the mirror as a classical
damped oscillator. The quantum dynamics is described by a
quantum oscillator coupled to a quantized oscillator bath.
Both of these models have been studied for conventional
quantum systems in great depth [50]. Later in this paper we
will discuss what happens in the CWL and SN models.

III. SCHRÖDINGER-NEWTON THEORY

The Schrödinger-Newton (SN) theory is a nonrelativistic
modification of the Schrödinger equation in which QM
breaks down because of a “self-interaction” mediated by
the Newtonian gravitational interaction. It us thus a theory
in which the matter particles are quantized (nonrelativisti-
cally) and the Newtonian gravitational field is treated
classically.
From this point of view one can perhaps think of SN

theory as a nonrelativistic variant of a semiclassical gravity
theory (we recall that semiclassical gravity is defined by the
field equation GμνðxÞ ¼ κhTμνðψðxÞÞi, where ψðxÞ is the
matter wave-function, and κ ¼ 8πGN=c4 in MKS units).
SN theory has been extensively reviewed [13,14].
For our purposes we wish to consider SN theory for an

extended body. The Hamiltonian of the center of mass of an
extended object with mass M is given in SN theory by

H ¼ p2

2M
þ VNG þ VGðx;ψÞ ð10Þ

where VNG is the nongravitational part of the potential
energy, and VG is the gravitational potential, which
depends on the objects center of mass wave function
ψðxÞ. In the regime when the quantum uncertainty in
the center of mass motion is much less than the zero-point

uncertainty of nuclei near their equilibrium positions, this
can be simplified into

VG ¼ Mω2
SN

2
ðx − hxiÞ2 ð11Þ

where ΩSN is the Schrödinger-Newton frequency, and hxi
the expectation value of the position in the quantum state ψ .
The structure of semiclassical gravity becomes nonun-

ique when measurements are made. First of all, it is clear
that after a projective measurement is made at t0, the
quantum state ψ should be projected to the eigenstate ψ 0
consistent with the result of measurement—as already
noted by Page and Geilker [26]. However, if we use the
collapsed state function ψ 0 for times greater than t0, this is
not frame independent, and will allow superluminal signal-
ing, as Polchinski noted somewhat later [19]. In the causal
conditional formulation of semiclassical gravity [22], for
measurements made at space-time event ðt0;x0Þ, one will
incorporate its result in the future light cone of this event.
For experiments whose light crossing time is much

shorter than the timescale of the experiment, the causal
conditional formulation has a negligible difference from a
theory in which one instantly collapses the quantum state.
Let us consider a test mass with massM monitored by light,
with phase modulation of light due to the test masses
detected via homodyne detection. The stochastic master
equation for this is then given by [22]

dρ̂ ¼ −
i
ℏ
½Ĥ; ρ̂�dt − α2

4
½x̂; ½x̂; ρ̂��dt − iαffiffiffi

2
p ½x̂; ρ̂�dW ð12Þ

where

Ĥ ¼ p̂2

2m
þmω2

mx̂2

2
þmω2

SNðx̂ − hx̂iÞ2
2

ð13Þ

with measurement record given by

ydt ¼ αhx̂idtþ dWffiffiffi
2

p ð14Þ

Here h·i signifies that we take the expectation value using ρ,
with

hxi ¼ trðx̂ ρ̂Þ ð15Þ

Here dW is a Wiener increment, and the stochastic differ-
ential equations follow the Ito rule,

dW2 ¼ dt: ð16Þ

The formulation here, except the last term of Eq. (13),
follows the standard “quantum trajectory” treatment of
continuous position measurement, which can be found in
the textbook [51] and the review article [40].
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For Gaussian states, which are completely characterized
by expectation values hx̂i, hp̂i and the covariance matrix
components Vxx, Vxp and Vpp, there is a self-contained set
of equations for these first- and second moments [22]. At
steady state, for the second moments, we have

Vxx ¼
ℏffiffiffi
2

p
MΩ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

pp ð17Þ

Vxp ¼ Vpx ¼
ℏ
2

Λ2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p ð18Þ

Vpp ¼ MΩffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ4

p ð19Þ

Here we have defined

Ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m þ ω2

SN

q
; Λ ¼

ffiffiffiffiffiffiffiffiffiffi
ℏα2

MΩ2

r
: ð20Þ

Interestingly, these second moments are the same as those
obtained in standard quantum mechanics—if the oscilla-
tor’s mechanical resonant frequency were upshifted to Ω.
This is consistent with the intuition that in semiclassical
gravity, the “self-interaction” term increases the oscillation
frequency of the oscillator’s quantum uncertainty, as
indicated in Fig. 1 of Ref. [17].
In the limit of very weak measurement, with Λ ≪ 1, this

is the ground state of a harmonic oscillator with eigenfre-
quency Ω. This is a squeezed state with

Vxx ¼
ωm

Ω
Vvac
xx ; Vxx ¼

ωm

Ω
Vvac
xx : ð21Þ

This state has a squeeze factor of

e2r ¼ ωm

Ω
ð22Þ

IV. CORRELATED WORLDLINE THEORY

We now turn to the CWL theory. We begin with a brief
description of its salient features, followed by a discussion
of how one can treat extended massive bodies. In the next
section we deal with the specific case of a massive
oscillator.

A. Key results from CWL theory

Introductory discussions of CWL theory have appeared
in a few places, either as general overviews [11], or in the
introductory sections of more specialized papers [24,42]. In
this section we very briefly recall those features of CWL
theory relevant to this study.

1. Propagator in CWL theory

CWL theory is formulated in terms of paths (for
particles) or “histories” (for fields). Thus one starts from
Feynman paths; recall that the conventional nonrelativistic
Feynman propagator Koð2; 1Þ for a particle with action
So½Q�, between states j1i≡ jQ1i and j2i≡ jQ2i at times t1
and t2, is

Koð2; 1Þ ¼
Z

2

1

DQðtÞeiSo½Q� ð23Þ

in which one sums over all different possible paths for the
system, with each path contributing independently to
the sum.
In the CWL theory one uses the same action, but there is

a key difference in the evaluation of path integrals; now one
has interactions between all the paths, mediated by the
spacetime metric field gμνðxÞ (which we will often write as
g). The CWL propagatorKð2; 1Þ for a particle is then found
by labeling each of the different paths qk in a multiplet of N
paths by the index k ¼ 1; 2;…N. One then defines the
propagator for the combined SHOþmetric field system
between 2 spacetime hypersurfaces Σ1 and Σ2, as:

Kð2;1Þ¼ lim
N→∞

ðKNð2;1ÞÞ1=N

¼ lim
N→∞

�
N −1

N

Z
h2

h1

DgeiNSG½g�
YN
k¼1

Z
Q2

Q1

DqkeiSo½qk;g�
�1=N
ð24Þ

in which hab1 ; hab2 , are the initial and final induced metrics,
specified on the initial and final hypersurfaces Σ1 and Σ2

respectively. Henceforth we will simple take these hyper-
surfaces to be time slices at times t1 and t2. The factor N N
is a normalization factor which we will not need.
The action So½qk; g� in (24) is written for a point-particle.

In the next subsection we discuss how things work for an
extended mass. More generally CWL theory can be used
for a set of quantum matter fields, in which case the paths
are replaced by “histories,” i.e., the functional integration
over different configurations of the fields [24].
As discussed in some detail in Ref. [24], the expression

(24) can be evaluated both in exact form and as a
perturbation expansion in the Newtonian coupling GN ;
both forms are useful. The exact result, up to an overall
renormalization, is

Kð2; 1Þ ¼ eiðSG½ḡ21�þψ0ð2;1jḡ21ÞÞ; ð25Þ

in which ḡ21 is that metric which satisfies the conditional
stationary phase requirement

δ

δg
ðSG½g� þ ψ0ð2; 1jgÞÞjg¼ḡ21 ¼ 0: ð26Þ
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i.e., it is the solution to this differential equation with the
metric ḡðxÞ subject to the boundary condition that the
induced metrics on Σ1 and Σ2 are hab1 and hab2 as before.
The phase ψ0ðQ2; Q1jg0Þ appearing in this equation is just
the logarithm of a conventional propagator, given for a
system with coordinate Q by

K0ðQ2; Q1jg0Þ ¼ eiψ0ðQ2;Q1jg0Þ ð27Þ

where g0 is the background spacetime.
One then finds that

δ

δgμνðxÞψ0ð2; 1jgÞ ¼ −
1

2

hQ2jTμν½xjg�jQ1i
hQ2jQ1i

≡ −
1

2
χTμνð2; 1jx; gÞ ð28Þ

which defines the quantity χTμνð2; 1jx; gÞ, which is basically
a complex-valued matrix element. We think of it as a
“conditional stress-energy,” i.e., the stress energy TμνðxÞ,
subject to the condition that QðtÞ propagates between Q1

on Σ1 (i.e., at time t1) and Q2 on Σ2 at time t2, on a
background metric g. Another way to think of χTμνð2; 1jx; gÞ
is as an expectation value of TμνðxÞ, but one which is
conditional on the pre- and postselection of states jQ1i and
jQ2i respectively (what is often referred to as a “weak
measurement” [52,53]).
The first functional derivative δSG=δg is of course that

which normally defines the Einstein tensor Gμν, as it
appears in the equation of motion GμνðxÞ ¼ 8πGNTμνðxÞ.
However here we have instead that

Gμνðḡ21ðxÞÞ ¼ 8πGNχ
T
μνð2; 1jx; ḡ21Þ ð29Þ

in which the left- and right-hand sides are complex valued.
Turning now to the perturbative expansion of Kð2; 1Þ,

we show in Fig. 2 the first few terms; for a detailed
discussion see Ref. [24]. We emphasize two points here:

(i) The key physical point is that there are now
attractive gravitational interactions between all paths
of a given particle or matter field. In general one
expects these interactions will cause all the paths to
“bunch” together, provided one can get rid of the
kinetic energy stored up in relative motions between
them—we will often in this paper refer to this as the
“internal” CWL energy. However, this bunching
interaction is negligible unless the mass M of the
object is sufficiently large [24,42].
There are several ways that path bunching can

occur. If, for example, the matter system is coupled
to a cold environment, then the energy in the matter
paths will be dissipated into this environment, and
the loss of kinetic energy in the matter paths then

allows them to bunch. Note however that if the
environment is hot, the opposite can happen.

(ii) Many of diagrams that one sees in conventional
quantum gravity are actually absent in CWL theory.
For example, the “rainbow graph” in Fig. 2, which in
conventional theory gives the lowest-order radiative
correction to the dynamics of the mass M, is absent.
As a general rule, there is no contribution in CWL
theory from any diagram in which a loop integral
contains a graviton line.

However, one finds that if path bunching has occurred,
all the conventional diagrams are restored [24], since the
separate paths now collapse into one single “semiclassical”
path. In this way the interactions between separate paths are
transformed into self-interactions for the classical path.

2. Extended mass in CWL theory

All of the above results are formal. We now discuss what
happens when one applies them to the motion of a non-
relativistic extended solid mass. It is clear from the lowest-
order calculations done in CWL theory [24,42], up to
∼OðGNÞ, that for masses M ∼ 10−17 kg or greater, one has
to do all CWL calculations for an extended mass. This mass
is far less than the Planck mass Mp ∼ 2 × 10−8 kg. An
object of mass ∼10−17 kg will have linear dimension
∼1.5 × 10−7 m, and (for SiO2) contain ∼3 × 108 ions.
We also note that this mass may have an internal

structure ranging from entirely crystalline order to one
that is completely amorphous. The question at issue is
then—what is the effective CWL interaction between
different paths for the center of mass motion of this mass?

(i)

(iv)

(ii) (iii)

(vi)(v)

FIG. 2. Low-order contribution to the propagator Kð2; 1Þ in
CWL theory; the thick dark lines represent the oscillator
coordinate Q, an the hatched lines represent gravitons. In
CWL theory, graph (i) is a “rainbow” graph, (ii) is a tadpole
graph, and (iii) incorporates a 3-graviton vertex. Graph (iv) de-
scribes graviton exchange between a pair of paths for the
oscillator, and graphs (v) and (vi) exchange gravitons between
triplets of paths. Graphs (i)–(iii) give zero contribution in CWL
theory, whereas graphs (iv)–(vi) all give finite contributions.
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This question has been examined in detail elsewhere
[54,55]; here we just summarize the results which will be
needed in the rest of this paper.
We first note that almost all of the mass of the object is

contained in the nuclei. To calculate the CWL interaction
between 2 paths of the entire mass, one begins by
describing the extended mass by the standard nonrelativ-
istic action

So½fqjg� ¼
Z

dτ

�X̃N
j¼1

mj

2
q̇2
j −

X̃N
i<j

Vðqi − qjÞ
�

ð30Þ

where the 3-vectors qjðtÞ label the positions of each of the
Ñ ions as a function of time t, and the fmjg are the masses
of the nuclei at sites fjg in the system.
We now define the relative coordinates rjðtÞ by

qj ¼ Ro þ rj, where

RoðtÞ ¼
1

Ñ

X̃N
j¼1

qjðtÞ ð31Þ

is the center of mass of the body (so that
P

Ñ
j¼1 rj ¼ 0).

In ordinary QM the dynamics of this system is then
obtained, in path integral theory, by separating out the
center of mass and rotational dynamics of the entire
extended mass, from the internal phonon modes [54,55].
Let us here ignore rotational modes modes here, and
assume for the moment that the object is at low tempera-
ture, with T ≲ 50 K (we restore the effect of thermal
phonons later). One then finds, as expected, that for a
given center of mass trajectory RoðtÞ, which then deter-
mines the equilibrium paths r̄jðtÞ for each nucleus, the
paths of each individual nucleus show quantum fluctua-
tions in the quantum fluctuation coordinate ujðtÞ around
the equilibrium paths (so that r ¼ r̄þ u).
At low T, these fluctuations are nothing but the zero-

point phonons of the system. For a crystalline system these
phonons have dispersion

ω2
kμ ¼

X
j

1

ðmimjÞ1=2
Vijeik·r̄ij ð32Þ

where Vij ≡ Vðr̄i − r̄jÞ, and r̄ij ≡ r̄i − r̄i; and the phonon
correlator is

huαi ðt1Þuβj ðt2Þi ¼
1

Ñ

X
kμ

1

ðmimjÞ1=2

×
êαkμê

β
kμ

2ωkμ
ei½k·r̄ij−ωkμðt1−t2Þ� ð33Þ

At low T the zero-point amplitude ξo of these fluctua-
tions can be estimated in various ways—thus, in a simple

Debye model one has ξo ∼ 3
2
ℏðmθDÞ−1=2, and more gen-

erally, one has ξo ∼ aoEΦ=EC, where ao is the typical
nearest neighbor distance between nuclei, EΦ the character-
istic elastic energy and EC the characteristic Coulomb
energy in the solid. Typically one has ξo ∼ 1–3 × 10−12 m,
i.e., ξo ∼ 103 nuclear radii.
Now in a CWL calculation to lowest-order in GN , in

which pairs of paths for the extended mass interact via
nonrelativistic Newtonian interactions, one must then
evaluate a sum over all pairs of interactions of form

Veff ½Ro;R0
o;fuiðtÞ;u0

jðtÞg�

¼−GN

X̃N
i;j¼1

mimj

jðRoðtÞþ r̄iþuiðtÞÞ−ðR0
oðtÞþ r̄jþu0

jðtÞÞj
ð34Þ

and, once one has then path integrated over all pairs of
paths fuiðtÞÞ;u0

jðtÞÞg for the phonon fluctuations, we get
an effective interaction VeffðRo;R0

oÞ between pairs of paths
for the center of mass coordinate of our extended body.
The general results are quite complicated [54,55]. Let us

consider the case of an amorphous system, which is gives
an approximate description of many of the mirrors used in
optomechanical systems (for the discussion of different
crystalline system see Refs. [54,55]). For simplicity we will
assume mj ¼ m for all the ions in the system.
We then get the result shown in Fig. 3 for the

effective CWL interaction, as a function of the distance
R ¼ jRo −R0

oj. There is a slowly varying part, fairly
accurately described by

VslowðRÞ ¼ −
GM2

R
Erf

� ffiffiffi
π

p
2

γ
R

a0Lo

�
ð35Þ

Spike
potential

Bulk 
“smoothed”
potential

FIG. 3. The effective potential acting between the center of
mass coordinates of a pair of paths, for an extended massive body.
The bulk smoothed potential is VslowðRÞ from Eq. (35), and the
“spike” potential is given in Eq. (37). The width and depth of the
spike contribution are exaggerated.
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where, as before, Lo is the spatial extent of the massive
body (in this case, the width of the mirror along the
direction it moves), where ao is the typical lattice spacing,
and where

γ ¼ V−5=3
o

Z
Vo

d3r
Z
Vo

d3r0
1

jr − r0j ð36Þ

is an Oð1Þ constant characterizing the shape of the body
(here Vo ¼ πR2

oLo is the volume of the system). We also
have, in the center of the slowly varying potential, a spike
potential, which itself is accurately described by

VspikeðRÞ ¼ −
GMm
R

Erf

�
Rffiffiffi
2

p
ξo

�
ð37Þ

with a characteristic range ξo.
Because of this attractive interaction between pairs of

paths, the paths will exhibit characteristic oscillations
around each other (see Fig. 4). The period of each of
these oscillations depends on their amplitude:

(i) For the slowly varying bulk part of the potential, one
has an oscillator frequency

ωB ¼
�
π

6
γ3GNρo

�
1=2

ð38Þ

where again ρo ¼ M=πR2
oLo is the average mass

density of the mirror. The timescale of these oscil-
lations is long—thus, for amorphous SiO2, one finds
a period τB ¼ 2π=ωB ∼ 21.2 mins. We note that the
period is independent of the size of the mirror—this

is because an increase in this size increases the
strength of the coupling between the paths, but also
increases the inertia associated with each path.

(ii) On the other hand the oscillation frequency inside
the central spike potential is

ωsp ¼
� ffiffiffi

2

π

r
Gm
3ξ3o

�1
2

: ð39Þ

which is considerably higher; for amorphous SiO2,
we get a period τsp ¼ 2π=ωsp ∼ 16 secs; again, this
period is independent of the size of the mirror.

Finally, let us note that one can generalize these
calculations to finite temperature T. For a general crystal-
line structure the results are rather complicated; however,
for the isotropic amorphous system with a single ionic
species just discussed, the modification is very simple. One
finds that we must replace the factor ξo in the above
equations by a T-dependent ξoðTÞ, with

ξ2oðTÞ ¼
ℏ2

2m

Z
dE
E

gðEÞ
h
1þ 2nðE; TÞ� ð40Þ

in which nðE; TÞ is the Bose distribution function, and gðEÞ
the phonon density of states. In a simple Debye model, with
Debye energy θD, this just gives

ξ2o ¼
9ℏ2

m

�
1

4θD
þ 1

θ3D

Z
θD

0

dE
E

eβℏE − 1

�
ð41Þ

where β ¼ 1=kT; this just reduces to the expression given
previously as T → 0. Note that while the spike potential is
noticeably affected by a finite T, the slowly varying bulk
part is completely unaffected—this is because it is deter-
mined by the smoothed density of the system.

B. Factorizability of CWL states

A key motivation for discussing the pulsed optome-
chanics experiment is the insensitivity of Gaussian oscil-
lator states to CWL interactions. It is useful to give a simple
explanation of why this is. Let us consider first a simple
perturbative argument, to lowest order in the gravitational
coupling, and suppose we have a simple harmonic oscil-
lator (SHO) subject to some time-dependent force FðtÞ,
with action

So½qjF� ¼
Z

dt

�
1

2
mðq̇2 − ω2

mq2Þ − FðtÞqðtÞ
�

ð42Þ

with coordinate zðtÞ.
In CWL theory at lowest order in GN we simply deal

with pairwise interactions between paths [24,42]. We can
then define “sum” and “difference” variables for the 2 paths
q1ðtÞ and q2ðtÞ of the system, given by Q ¼ 1

2
ðq1 þ q2Þ

(i)

(ii)

FIG. 4. Trajectories of a pair of paths for a single object, under
the influence of attractive gravitational CWL interactions (sche-
matic). In (i) these are shown in the absence of any path bunching,
for a conservative system. In (ii) the paths are rapidly bunching as
CWL gravitational energy is lost via emission of bath excitations.
Solid lines are paths for the object, hatched lines are gravitons,
and dotted lines are bath excitations.
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and z ¼ 1
2
ðq1 − q2Þ. Then then, up to OðGNÞ, the propa-

gator for the oscillator is

Kð2; 1jFÞ ¼ K−1
0 ð2; 1jFÞ

Z
2

1

DQ
Z

0

0

Dz

× e
i
ℏðS0½QþzjF�þS0½Q−zjF�Þ expiSCWL½z� ð43Þ

where SCWL½z� is the CWL action representing the coupling
between the pair of paths q1, q2. Note that there is no
requirement in the following argument for the CWL
interaction to be harmonic, as we have so far assumed
for an extended body. We could, for example, choose a
Newtonian form between pairs of paths for a point particle,
for which one has

SCWL ¼ Gm2

2

Z
t2

t1

dt
jzðtÞj ð44Þ

in which the paths for QðtÞ have boundary conditions
Qðt1Þ ¼ Q1 and Qðt2Þ ¼ Q2, while the paths for zðtÞ have
boundary conditions zðt1Þ ¼ zðt2Þ ¼ 0.
It is immediately clear that in the case where we have a

quadratic form in q and q̇ for the action So½qjF�, as given in
(42), then the double path integral in (43) factorizes [42].
The result is then

Kð2; 1jFÞ ¼ 1

K0ð2; 1jFÞ
Z

2

1

DQe
i
ℏSþ½QjF�

Z
0

0

Dze
i
ℏS−½z�

ð45Þ

where the two action terms are

Sþ½QjF� ¼ 2

Z
dt

�
1

2
mðQ̇2 − ω2

mQ2Þ − FðtÞQðtÞ
�

S−½z� ¼ 2

Z
dt

1

2
mðż2 − ω2

mz2Þ þ
Gm2

2

Z
dt

jzðtÞj ð46Þ

in which the time integrals are taken between t1 and t2.
Equation (46) yields a propagator Kð2; 1jFÞ, of factor-

ized form, i.e., we have

Kð2; 1jFÞ ¼ K0ð2; 1jFÞKCð0; 0Þ ð47Þ

where the first term K0ð2; 1jFÞ is the conventional
QM propagator for a driven oscillator, and where
KCð0; 0Þ describes the “path-bunching” dynamics of the
relative coordinate zðtÞ between the 2 paths, here in the
Newtonian limit.
This argument generalizes to the full situation with N

paths. The path integral for a CWL propagator contains the
action

Seff ¼
X
k

So½qk� þ
X
k;k0

SCWL½qk − qk0 � ð48Þ

and if the system is an oscillator we have, as before, that

X
k

So½qk� ¼
m
2

Z
dtNðQ̇2 − ω2

mQ2Þ

þ
X
k

Z
dtðż2k − ω2

mz2kÞ ð49Þ

where Q ¼ N−1P
k qk and zk ¼ qk −Q are the new sum

and difference coordinates [compare, e.g., Eq. (46)]. Thus
again the path integral factorizes.
We can now conclude the proof of our claim from Sec. II

A. For such a factorized path-integral the “sum” coordinate
decouples from the “difference” coordinates. If the initial
state is Gaussian, it too will factorize into a Gaussian for the
sum coordinate and Gaussians for the difference coordi-
nates. Evolution under the factorized propagator preserves
this form and the final state continues to be factorized.
From here follows the main point, the CWL interactions
occur only betweeen the difference coordinates but a linear
measurement (i.e., of the position of the particle) is only
sensitive to the sum coordinate. This is a simple fact about
how the different paths in CWL do not describe different
particles, rather they are different paths (or histories) of the
same particle. For nonlinear measurements or non-
Gaussian states the factorization between sum and differ-
ence coordinates is spoiled and the CWL interactions play a
nontrivial role. However, for linear measurements and
Gaussian states the CWL effects simply decouple.

V. OSCILLATORS IN CWL THEORY

In traditional QM one defines quantum states at specific
times; in QFT one can define state functionals on specific
hypersurfaces (which in flat spacetime are usually chosen
to be time slices). In CWL theory, one can adapt the
standard QFT treatment to give a definition of states on a
spacelike hypersurface.
Rather than give a general treatment, we simply work

things out for the case of a harmonic oscillator. One can
give explicit results for this case, and it is of course directly
related to the optomechanical system we are dealing with.

A. CWL oscillator states

The conventional action for the SHO is just

So ¼
1

2

Z
dtMðQ̇2 − ωmQ2Þ ð50Þ

and in what follows we will define the notion of “state” for
the SHO, focusing on the ground state, and then we will
show how to calculate this in CWL theory.
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1. Ground state of SHO

Conventional QM. For conventional QM we define the
evolution of a quantum state jψðtÞi in the usual way,

jψðtÞi ¼ e−iHtjψi ¼
X
n

cne−iEntjϕni ð51Þ

where the ϕn are the eigenstates of the Hamiltonian. One
can formally extract the ground state of this system by
rotating to Euclidean time, i.e., let t ¼ −iτ, so that [56]

lim
τ→∞

jψðτÞi ¼ lim
τ→∞

X
n

cne−τEn jψni ¼ c0jψ0i; ð52Þ

where we have assumed E0 ¼ 0 and a unique ground state.
For a any state such that ðc0 ≠ 0, we then have the ground
state wave function

ψ0ðQÞ ∝ lim
τ→∞

hQjψðτÞi: ð53Þ

In a path integral treatment, this simply means that we
have a ground state wave function given (up to normali-
zation), for a system whose Lagrangian is a function of a
coordinate Q, by

ψ0ðQÞ ¼
Z

Q
Dqe−SE½q� ð54Þ

where the Euclidean action is produced by the same
rotation to imaginary time. Thus, e.g., for a Lagrangian
of form

L ¼ 1

2
mjk dqj

dt
dqk
dt

− VðfqjgÞ ð55Þ

we get the Euclidean action

SE½fqjg� ¼
Z

0

−∞
dτ
�
1

2
mjk dqj

dτ
dqk
dτ

þ VðfqjgÞ
�
: ð56Þ

Note that we leave the initial condition for each qj
unspecified because it is clear that the final result is
insensitive to this data. It is often convenient to choose
qjð−∞Þ ¼ 0.

CWL states. Consider the general result given in Eq. (24)
for the propagator Kð2; 1Þ in CWL theory, between states
1≡Q1 at time t1 and 2≡Q2 at time t2. Let us generalize
this somewhat so that the system propagates between
arbitrary states jαi and jβi, and also carry out the functional
integration in (24) over the metric field gμνðxÞ.

We are then left with

Kðβ; αÞ ¼ lim
N→∞

�Z
β

α
Dq1…

Z
β

α
DqNeiS½fqkg�

�1
N ð57Þ

where the effective (nonrelativistic) CWL action for our
SHO contains not only the oscillator potential in Eq. (50),
which acts equally on all of the CWL paths and which has
frequency ωm, but also the CWL interactions between all of
the paths. We will assume this interaction to be that derived
in the last section, containing the slowly varying term
Vslowðqi − qjÞ in Eq. (35), along with the spike term
Vspikeðqi − qjÞ in Eq. (37).
Wewill assume the system to be at very lowT, and that the

system has been prepared so that the paths have collapsed to
the point where they are all confined to the interpath spike
potential (for what happens at finite temperature, see the end
of this section). In this case we will simply write the spike
potential as an approximate harmonic potential well, with
frequency ωSN (where “SN” denotes “Schrödinger-
Newton”). The assumption is thatωSN ∼ ωsp, i.e., that value
given in Eq. (39) for the spike oscillation frequency is a good
approximation to the true value ωSN.
In this case we can write the effective CWL action

in (57) as

S ¼ 1

2

XN
j¼1

Z
dt

�
M

�
dqj
dt

�
2

−Mω2
mq2j

−
1

2

Mω2
SN

N

XN
k¼1

ðqj − qkÞ2
�
: ð58Þ

and the Euclidean form of this, which we shall use below, is
then

SE ¼ 1

2

XN
j¼1

Z
0

−∞
dτ

�
M

�
dqj
dτ

�
2

þMω2
mq2j

þ 1

2

Mω2
SN

N

XN
k¼1

ðqj − qkÞ2
�

ð59Þ

Returning now to our propagator Kðβ; αÞ, we notice that
each of the initial states is the same (equal to jαi) and
likewise for the final states (equal to jβi); this is what we
mean by a propagator.
However suppose we wish to examine the state at some

intermediate time (we assume here flat space). Then we can
cut the propagator on the intermediate time slice ((for more
details, see Ref. [24]). We can then equivalently write the
propagator as

Kðβ; αÞ ¼ lim
N→∞

�Z
dy1…dyNΨðfyjg; αÞ ×

Z
β

y1

Dq1…
Z

β

yN

DqNeiS½fqjg�
�1

N

; ð60Þ
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where the intermediate “path multiplet” state function (for
N paths) is defined by

Ψðfyjg; αÞ ¼
Z

y1

α
Dq1…

Z
yN

α
DqNeiS½fqjg�: ð61Þ

In what follows we will sometimes abbreviate the term
“path multiplet” to “pathlet” and refer to individual paths as
“replicas.” We can represent the function in (61) in
diagrammatic form as shown in Fig. 5.
Note that this intermediate state function Ψ is in general

quite complicated—the effect of the CWL gravitational
interactions is to correlate the paths, and so the functionalΨ
will not factorize into a product over each path. Note also
that we have defined Ψðfyjg; αÞ starting from the initial
state jαi; but there is nothing stopping us from also writing
a functionalΨðfyjg; βÞ which starts from the final state jβi.
Our choice simply makes the traditional choice of retarded
boundary conditions.
Finally, note that the intermediate state function is not an

“observable” since all of the paths have different endpoints.
Once computed, proper observables can be derived by
integrating wave-functions against this functional. We will
often find it useful to describe the evolution of these
intermediate state functions via intermediate state propa-
gators,

Kðfyjg; fxjgÞ ¼
Y
j

�Z
yj

xj

Dqj

�
expiS½fqjg�; ð62Þ

where each replica qj may have its own start and endpoints
independent of the other paths. The utility of this object is

obvious, aside from the Nth root in the definition of the
CWL propagator we simply have a conventional unitary
quantum mechanical system of N particles coupled via
gravity. The properties of, and rules for manipulating, these
“intermediate” quantities are then identical to those in QM.
Only at the end of the computation when we are to compute
probabilities do we perform the novel-to-CWL Nth root
and encounter somewhat unfamiliar structures.

B. Euclidean time evolution

We now choose the intermediate state function to be a
representation of the ground state of the system. That is, we
write the Euclidean path integral

Ψ0ðfyjgÞ ¼
Z

y1
Dq1…

Z
yN
DqNe−SE½fqjg� ð63Þ

in which we can now drop all reference to the initial state—
this is precisely the maneuver we used in ordinary QM to
define the ground state using a path integral [in Eq. (54)].
The Euclidean effective action in (63) is just that given
in Eq. (59).
Let us now evaluate this function. Since the action is

quadratic, the integral is Gaussian and can be performed
exactly via saddle-point evaluation. The saddle-point equa-
tion, i.e., classical equation of motion, is

d2qj
dτ2

¼ ðω2
m þ ω2

SNÞqj − ω2
SNQ; ð64Þ

where we have defined the average coordinate

Q≡ 1

N

X
j

qj: ð65Þ

We can see in (64) that each replica behaves like a
(Euclidean) simple harmonic oscillator, with effective
frequency Ω≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
m þ ω2

SN

p
, and driving force FðtÞ ¼

mω2
SNQðtÞ determined by the average motion of all

replicas.
We can obtain an equation of motion for Q by summing

over the different pathlets in (64), and it is simply

d2Q
dτ2

¼ ω2
mQ: ð66Þ

The average pathlet coordinate for the oscillator system
evolves without CWL corrections. We can immediately
solve this equation for Q,

QðτÞ ¼ Yeωmτ; ð67Þ

where we have eliminated the solution which is divergent
as τ → −∞, and we have defined the average final
coordinate Y ≡ 1

N

P
j yj.

t1

�

|�>

�| >

�({yj; �)

y4y3y2y1

FIG. 5. The “path multiplet” state functional Ψðfyjg; αÞ. A
physical system (here an oscillator with coordinate q) propagates
from an initial state jαi at time t1 to a state jΨi at time τ. In CWL
theory one follows the fate of N different paths for this object,
which includes CWL interactions between the paths, thereby
correlating them. The final position of the jth path is yj.
Oscillator paths are shown as solid lines, gravitons interactions
between these paths as hatched lines.
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With this solution for QðτÞ in hand, the equation of
motion (64) literally describes independent forced
oscillators.
Given the simplicity we have found in the equation of

motion, it is useful to go back to the action (59) and rewrite
it to demonstrate this factorization explicitly. To do so, note
that the interaction can be written as

1

N

X
jk

ðqj − qkÞ2 ¼ 2
X
j

q2j − 2N

�
1

N

X
k
qk

�
2

¼ 2
X
j

q2j − 2NQ2: ð68Þ

We can insert this simple result directly into the action to
write it as

SE ¼ −Nmω2
SN

2

Z
0

−∞
dτQ2

þ
X
j

Z
0

−∞
dτ

�
1

2
m

�
dqj
dτ

�
2

þ 1

2
mðω2

m þ ω2
SNÞq2j

�
:

ð69Þ

Aside from the first term, the action is simply that of N
identical oscillators.
The on-shell action, i.e., that evaluated on the saddle-

point solution, can be simplified further if we use the
standard “integrate-by-parts and apply the equation of
motion” trick to rewrite the kinetic term as

Z
0

−∞
dτ

�
1

2
m

�
dqcl
dτ

�
2
�

¼ m
2

�
qcl

dqcl
dτ

�
τ¼0

τ¼−∞
−
Z

0

−∞
dτ

�
1

2
mΩ2q2cl −

1

2
mω2

SNQq

�
ð70Þ

The total on-shell action is then

SE ¼ −Nmω2
SN

2

Z
0

−∞
dτQ2 þ

X
j

m
2

�
qjcl

dqj cl
dτ

�
τ¼0

τ¼−∞

þ 1

2
mω2

SN

X
j

Z
0

−∞
dτQqjcl: ð71Þ

We now recognize that the final term, after evaluating the
sum over j, exactly cancels the first term. The whole result
for the on-shell action is simply

SE ¼ m
2

X
j

�
qjcl

dqj cl
dτ

�
τ¼0

τ¼−∞
: ð72Þ

It remains only to solve for qjcl.

The general form of the solution to (64) is

qjclðτÞ ¼ ajeΩτ þ bje−Ωτ − ω2
SN

Z
0

−∞
dτ0Gðτ; τ0ÞQðτ0Þ;

ð73Þ

where the Green’s function is

Gðτ; τ0Þ ¼ −
Z

∞

−∞

dλ
2π

e−iλðτ−τ0Þ

λ2 þΩ2
¼ −

e−Ωjτ−τ0j

2Ω
: ð74Þ

Regularity as τ → −∞ requires bj ¼ 0, and we fix aj by
imposing qjð0Þ ¼ yj. Using the explicit solution for QðτÞ
in (67) we can then write down the remarkably simple
solution for each replica’s trajectory,

qjclðτÞ ¼ ðyj − YÞeΩτ þ Yeωmτ: ð75Þ

Substituting this solution into Eq. (72) for the on-shell
action, we arrive at our final expression for the CWL
ground state “wave function”

Ψ0ðfyjgÞ ¼ exp

�
−
1

4
yjykAjk

�
; ð76Þ

with

Ajk ¼ 2mΩδjk − 2mðΩ − ωmÞ
1

N
1j1k; ð77Þ

where 1j is a vector of ones. For future applications it is
often useful to write it as

Ajk ¼ 2mωme2ζδjk þ 2mωm
δ

N
1j1k; ð78Þ

where we have identified the effective squeezing parameter

ζ ¼ 1

2
ln

�
Ω
ωm

�
¼ ω2

SN

4ω2
m
þO

��
ωSN

ωm

�
4
�
; ð79Þ

and the dimensionless CWL correlation parameter

δ ¼ ωm −Ω
ωm

¼ −
ω2
SN

2ω2
m
þO

��
ωSN

ωm

�
4
�
: ð80Þ

One key limitation is that the oscillator center of mass
coordinate is well within the “spike” potential shown in
Fig. 3. As such they rely on our assumption of very low
temperatures, which, as we discuss in the next section, will
typically not apply for real experiments.

VI. OPTOMECHANICS IN CWL THEORY

We now turn to a detailed description of our optome-
chanical system in CWL theory. To do this it is convenient
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to introduce a holomorphic (coherent state) description of
the photon variables, using a coherent state path integral
generalized to CWL theory. This work is done in prepa-
ration for the next section, where we show how one
describes a pulsed optomechanics experiment of the kind
described in the introduction.
We will be introducing coherent states for actions taking

the general form

S½fqjg� ¼
X
j

Z
dt

�
m
2
q̇j2 − VðqjÞ

�

−
1

2N

X
j≠k

Z
dtVCWLðqj − qkÞ ð81Þ

in which VðqjÞ is just the quadratic mechanical mirror
potential:

VðqjÞ ¼
mω2

m

2
q2j ð82Þ

and where the CWL potential VCWL is also a quadratic
form, describing the bottom of the spike potential intro-
duced earlier:

VCWLðqj − qkÞ ¼
mωSN

2
ðqj − qkÞ2: ð83Þ

Thus we are typically interested in very low temperatures,
when the center of mass motion of the system is confined to
this spike potential (i.e., to length scales ∼10−12 m or less).

A. Coherent state representation

To evaluate the intermediate state propagator for the
oscillator, and later for an optomechanical system, it is
convenient to utilize a coherent state representation.
To develop this, we first note that the CWL interaction

has a useful simplifying feature; we can write

1

2N

X
j≠k

mωSN

2
ðqj−qkÞ2¼

mωSN

2
qjqk

�
δjk−

1j1k

N

�
; ð84Þ

Using this notation, the CWL action reads

S½fqjg� ¼
Z

dt

�
m
2
q̇jq̇j −

mΩ2

2
qjqkVjk

�
; ð85Þ

where we have defined a matrix

Vjk ¼ δjk −
ω2
SN

Ω2

1j1k

N
; ð86Þ

and we have defined the shifted frequency Ω2 ¼ ω2
m þω2

SN.

In what follows we will be working only to leading
order in the dimensionless CWL coupling strength
ϵ2 ¼ ω2

SN=2Ω2.
We will also make frequent use of the matrix

Pjk ¼ δjk − ϵ2
1j1k

N
; ð87Þ

which to leading order is the square root of Vjk.
To move toward a a coherent state representation, we

first integrate in the momentum variable. That is, we
multiply by

1 ¼
Y
j

Z
Dpje

− i
2m

R
dtðpj−mq̇jÞ2 ; ð88Þ

which puts the intermediate state propagator into first-order
form

Kðfyjg;fxjgÞ¼
Y
j

�Z
Dpj

Z
yj

xj

Dqj

�

×exp

�
i
Z

dt

�
pjq̇j−

pjpj

2m
−
mΩ2

2
qjqkVjk

��
ð89Þ

In the present form we have fixed boundary data for the
positions an unfixed boundary data for the momenta. We
can however change basis quite easily by fixing, e.g., the
momenta and not the positions, the initial positions and
final momenta, or linear combinations of positions and
momenta, provided we supplement the action with appro-
priate boundary terms so that the variational problem is
well posed.
The coherent state representation follows from defining

the new variables

bj ¼
ffiffiffiffiffiffiffiffi
mΩ
2

r
qj þ

iffiffiffiffiffiffiffiffiffiffi
2mΩ

p P−1
jk p

k

bj ¼
ffiffiffiffiffiffiffiffi
mΩ
2

r
qj −

iffiffiffiffiffiffiffiffiffiffi
2mΩ

p P−1
jk p

k ð90Þ

in terms of which the CWL action is simply

S½fbj; b̄jg� ¼ −ib̄jðtfÞPjkbkðtfÞ

þ
Z

dtðib̄jPjkḃ
k −Ωb̄jP2

jkb
kÞ ð91Þ

Since the equations of motion which follow from this
action are first-order, we must fix mixed boundary data in
the propagator in order for the variational problem to be
well posed. We then get
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Kðfβ̄ðfÞj g; fβðiÞj gÞ ¼
Y
j

�Z
β̄ðfÞj

Db̄j

Z
βðiÞj

Dbj

�
exp

�
β̄ðfÞjPjkbkðtfÞ þ i

Z
dtðib̄jPjkḃ

k − Ωb̄jP2
jkb

kÞ
�

ð92Þ

The coherent state path-integral is almost trivial to
evaluate, because the anti-holomorphic variables b̄j appear
only as Lagrange multipliers. We can thus immediately
integrate them out, forcing the holomorphic variables bj to
satisfy an equation of motion. The result is

Kðfβ̄ðfÞj g; fβðiÞj gÞ ¼ exp½β̄ðfÞjPjkbkclðtf; fβðiÞj gÞ� ð93Þ

where the bkclðt; fβðiÞj gÞ satisfy the first order equations of
motion

iḃk −ΩPjkbj ¼ 0 ð94Þ

with the boundary conditions bjð0Þ ¼ βðiÞj .
As an aside, we should note that these variables make it

trivially quick to find the ground state of the CWL
oscillator. The effective Hamiltonian can be read off as

H ¼ Ωb̄jP2
jkb

k; ð95Þ

and since the matrix P2 is positive definite the ground state
is the state for which all bj ¼ 0. Translating this to an
operator statement it reads�

d
dxj

þmΩPjkxk
�
Ψ0ðfxjgÞ ¼ 0; ð96Þ

which is satisfied by the wave function

Ψ0ðfxjgÞ ¼ exp

�
−
mΩ
2

xjPjkxk
�
: ð97Þ

This result agrees precisely with the wave function derived
above [Eq. (76)] using a different method.

B. Effect of finite temperature

All of the above calculations are essentially done in the
limit where temperature T → 0; physically, the assumption
is the thermal energy kT ≪ jVspikej, the depth of the spike
potential, i.e., that the system is confined to the spike
potential in Eq. (37).
To see how realistic this is, let us consider an example.

Suppose we have a mirror-shaped mass M ¼ 40 kg, made
from SiO2, with thickness Lo ¼ 16 cm, and diameter do ¼
35 cm (this is the mass and shape of the advanced LIGO
mirror). The we find the following results:

(i) The depth of the smoothed potential well is
jVsmoothj∼GM2=Lo ∼ 5.17× 1012 eV≡6×1016 K,

and the bulk small oscillation frequency is ωB ¼
8.5 × 10−4 Hz, so that the period of oscillation is
τB ¼ 2π=ωB ∼ 123 mins.

(ii) The depth of the spike potential well is jVspikej∼
GMmo=ξo, where we will pick a massmo ∼ 30 amu,
and zero point length ξo ∼ 4 × 10−13 m. One then
finds that jVspikej ∼ 20.8 × 10−4 eV ∼ 24 K (i.e.,
corresponding to a frequency ∼500 GHz). The small
oscillation frequency is then ωspike≡ωSN¼ 0.37Hz,
so that the oscillation period is τSN ∼ 8.5 secs.

From these numbers we see that unless the system is at
temperatures ≪ 24 K, i.e., cooled to liquid 4He temper-
atures or below, it will not be described by the zero-T
calculations just performed. At room temperature its
motion will in fact hardly depend on the spike potential,
and it will be in a high-T state, oscillating rather slowly in
the smooth bulk potential.
From a purely theoretical point of view one can adopt

two different approaches to the problem of describing the
finite-T motion.
The first is to simply assume that not only is the entire

system in thermal equilibrium, but the that the internal
“kinetic” CWL degrees of freedom are also in thermal
equilibrium with each other, at the same temperature. In
this case one can redo the zero-T calculations just done in a
finite-T generalization of the formalism. It is intuitively
obvious that when kT ≫ jVspikej, the CWL oscillation
frequency will drop from ωSN down to ωB, and the
magnitude of the corrections to conventional QM will then
be ∼ðωB=ωmÞ2, i.e., far smaller again than even the very
small corrections we have just derived for the T ¼ 0 case.
The second way one can approach this problem is by

looking at the “quantum relaxational dynamics” of the
system, and in particular at the way in which the CWL
internal kinetic degrees of freedom relax to the “central”
QM dynamics. In fact this relaxation may be very slow,
because they may be very weakly coupled to each other.
Thus, for our mechanical mirror system, in many cases the
internal CWL degrees of freedom fqkg, associated with the
kth path, may be very far from equilibrium with the center
of mass coordinate RoðtÞ, and at a quite different
temperature.
One obvious way that this mutual equilibrium can be

established is via the surrounding environment. To see how
this happens, let us assume the mirror is coupled to an
oscillator bath at a temperature T, with the oscillator
Hamiltonian given in Eq. (8).
It is then possible to evaluate the dynamics of the

oscillator center of mass density matrix ρðQ;Q0; tjβÞ as
a function of time in CWL theory, by generalizing the work
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done in this paper. To do this is quite lengthy, so here we
simply describe some of the conclusions:
(a) Without loss of generality we can keep only the

coupling FqðP;QÞ in the mirror-bath interaction
[47]. We then find that in addition to this direct
coupling between the mirror center of mass coordinate
Q and the bath modes fxqg, there is also a coupling
between all the internal CWL degrees of freedom (i.e.,
the internal relative coordinates qk − qk0 between
different paths qk; qk0 for the mirror) and the difference
coordinates xq − x0q for the bath variables.

(b) One can see how this works already by doing a
calculation at leading order in perturbation theory,
in which only the CWL interactions between pairs of
paths are incorporated. To evaluate ρðQ;Q0; tjβÞ one
averages over the bath variables in the usual way. In
CWL theory one then finds two influence functionals
in ρðQ;Q0; tjβÞ, one for the summed (center of mass)
coordinate ðQþQ0Þ=2, and the other for the differ-
ence coordinate ðQ −Q0Þ=2 which, at OðGNÞ repre-
sents the internal CWL mode. For the FqðP;QÞ
coupling just given, one finds this influence functional
to be

F ½u; u0� ¼ exp
Z

dτ1

Z
dτ2ðuðτ2Þ − uðτ1ÞÞ

× ½Dðτ1 − τ2Þuðτ2Þ −D�ðτ1 − τ2Þu0ðτ2Þ�
ð98Þ

where the effective dynamic coupling, mediated by the
bath, between the relative CWL coordinates, is

DðτÞ ¼
X
q

1

2mqω
2
q

�
∂FqðuÞ
∂u

�
2
����
u¼ðQ−Q0Þ=2

×

�
eiωqτ þ 2

cosωqτ

eβωq − 1

�
. ð99Þ

(c) As a consequence of this, the internal CWLmodes will
gradually equilibrate at the temperature of the bath.
The timescale can be very long—as already noted

previously [24], if the characteristic frequency of
relative oscillations between internal CWL modes is
ωSN, and for a given Q-factor describing the oscillator
decay when it is in contact with the bath, we find that a
decay time τR ∼Q=ωSN. Since Q may be as high
as 108, this can give times of thousands of years. If
however Q ∼Oð1Þ, then the internal CWL degrees of
freedom can relax to the bath temperature in
times ∼10 secs.

VII. PULSED OPTOMECHANICS EXPERIMENT

We now return to the experimental protocol described in
Sec. II, in which the rectangular pulse gðtÞ in Eq. (7) is
applied using the external laser. As a reminder, the idea
we’d previously alluded to was to start with a mechanical
oscillator in its ground state and the cavity mode in an
excited state, apply a pulse to completely swap their states,
wait a duration T, and then apply a pulse to completely
swap their states back (see Fig. 1).
We will discuss first the CWL theory and then the SN

theory—the case where ordinary QM applies will be
obvious as the limit where GN → 0.

A. Pulsed optomechanics in CWL theory

To treat the pulsed system in CWL theory we first write
down the expression for the CWL propagator for our
general optomechanical system in coherent state represen-
tation, and then specialize to the case of the pulsed
experiment described in the introduction. The most inter-
esting thing to do is compare the state of the system before
and after pulses, which we do by preparing the initial state
of the mirror as a Fock state.

1. CWL propagator

We begin again with the general optomechanical
Hamiltonian (2) given in Sec. II. To write the propagator
in CWL theory we write set up N-path multiplets for both
the cavity mode and the mechanical oscillator, and couple
them according to Eq. (2), via the position coordinate. The
CWL action is then

S ¼ −iĀjðtfÞAjðtfÞ þ
Z

dt

�
iĀjȦj − ωcavĀjAj þ

m
2
q̇jq̇j −

mΩ2

2
qjqkVjk þ GqjĀjAj

�
; ð100Þ

where we are no longer explicitly writing the classical drive terms.
If we now pass to the CWL (anti-)holomorphic variables, expand about the classical equilibrium, and perform a variable

change to move to a “corotating frame,” aj → e−iωcavtaj, bj → e−iΩtbj, we find the CWL action corresponding to the
interaction Hamiltonian (5) to be
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S½fāj; aj; bj; b̄jg� ¼ −iājðtfÞajðtfÞ − ib̄jðtfÞPjkbkðtfÞ

þ
Z

dt
�
iājȧj þ ib̄jPjkḃ

k þ ω2
SN

2Ω
1j1k

N
b̄jbk þ gðtÞðbje−iΩt þ b̄jeiΩtÞðajeiΔt þ āje−iΔtÞ

�
ð101Þ

with corresponding CWL propagator Kfi ≡ Kðfβ̄ðfÞj ; ᾱðfÞj g; fβðiÞj ; αðiÞj gÞ, such that

Kfi ¼
Y
j

�Z
e−iΩtf β̄ðfÞj

Db̄j

Z
βðiÞj

Dbj

Z
e−iωcavtf ᾱðfÞj

Dāj

Z
αðiÞj

Daj

�
exp ðiS½fāj; aj; bj; b̄jg�Þ: ð102Þ

2. Red-detuned pulse

Let us now consider a finite duration pulse, i.e., gðtÞ which has compact support and laser detuning Δ ¼ −Ω. If we now
apply the standard rotating wave approximation we can retain only the “beam-splitter interaction terms,” to get

S½fāj; aj; bj; b̄jg� ¼ −iājðtfÞajðtfÞ − ib̄jðtfÞPjkbkðtfÞ þ
Z

dt

�
iājȧj þ ib̄jPjkḃ

k þ Ωϵ2
1j1k

N
b̄jbk þ gðtÞðbjāj þ b̄jajÞ

�
ð103Þ

The form of this action makes the path-integral very simple; we can immediately integrate over the Lagrange multipliers
āj; b̄j, yielding delta functions enforcing the equations of motion

ȧj ¼ −igðtÞbj ð104Þ

Pjkḃ
k ¼ −igðtÞaj − iΩϵ2

1j1k

N
bk: ð105Þ

To solve this system of equations, we first define “mean” variables A ¼ N−11jbj, B ¼ N−11jbj. We can isolate equations
of motion for A and B by summing over j in Eqs. (111) and (112), to get

Ȧ ¼ −igðtÞB ð106Þ

Ḃ ¼ −igðtÞð1þ ϵ2ÞA − iΩϵ2B: ð107Þ

The solution is

�
AðtÞ
BðtÞ

�
¼ ei

ϵ2

2
Ωt

0
B@ Að0Þ cosΦðtÞ − iBð0Þ sinΦðtÞ − ϵ2

2

	
Ωt
Φ Að0Þ − iBð0Þ



sinΦðtÞ

Bð0Þ cosΦðtÞ − iAð0Þ sinΦðtÞ − ϵ2

2

	
Ωt
Φ Bð0Þ þ iAð0Þ



sinΦðtÞ

1
CA; ð108Þ

where we have defined the integrated pulse strength

ΦðtÞ≡
�
1þ ϵ2

2

�����
Z

t

0

dτgðτÞ
����; ð109Þ

and we have assumed that the optomechanical coupling is
stronger than the CWL interactionΦðtÞ ≫ ϵ2Ωt. The initial
values are the mean values of the initial data for the various
replicas,

Að0Þ ¼ 1

N

X
j

αðiÞj

Bð0Þ ¼ 1

N

X
j

βðiÞj : ð110Þ

As a sanity check we can see that when ϵ ¼ 0 we recover
the expected Rabi oscillations between the phonon and
photon operators.
Now with the mean variables solved for, we can

substitute them back into Eqs. (111) and (112), to obtain
the equations of motion for each replica
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ȧj ¼ −igðtÞbj ð111Þ

ḃj ¼ −igðtÞaj − iϵ2
�
gðtÞ
2

AðtÞ þ ΩBðtÞ
�
: ð112Þ

The solutions are

�
ajðtÞ
bjðtÞ

�
¼

� αðiÞj cosϕðtÞ − iβðiÞj sinϕðtÞ
βðiÞj cosϕðtÞ − iαðiÞj sinϕðtÞ

�

− iϵ2
Z

t

0

dτ

�
gðτÞ
2

AðτÞ þ ΩBðτÞ
�

×

�
i cosϕðtÞ sinϕðτÞ − i sinϕðtÞ cosϕðτÞ
sinϕðtÞ sinϕðτÞ þ cosϕðtÞ cosϕðτÞ

�

ð113Þ

where ϕðtÞ is again the uncorrected integrated pulse, i.e.,
ϕðtÞ ¼ R

t
0 dτgðτÞ. We can now write the final expression for

the CWL propagator in (102), viz.,

Kðfβ̄ðfÞj ; ᾱðfÞj g; fβðiÞj ; αðiÞj gÞ
¼ exp ðe−iωcavtf ᾱðfÞj ajðtfÞ þ e−iΩtf β̄ðfÞj PjkbkðtfÞÞ ð114Þ

where ajðtÞ, bjðtÞ are the solutions given in (113). This
expression can be used to answer a variety of optome-
chanics questions in CWL theory.

3. Fock state probabilities

One place we expect to see a signature of CWL theory is
when the mechanical oscillator is prepared in a Fock state.
The red-detuned regime studied above is perfect for this, as
it allows one to effectively transfer quantum states into the
oscillator.
Consider the following scenario in standard quantum

mechanics. By taking ϵ ¼ 0, Eq. (113) tells us that
excitations will rotate between the mechanical oscillator
and the cavity mode. In particular, if we were to apply a
pulse such that ϕðtfÞ ¼ π=2 we would precisely swap the
states of the two oscillators. In principle one could prepare

the mechanical oscillator in its ground state, βðiÞj ¼ 0, with

the cavity in some excited state, αðiÞj ≠ 0, and then apply a
π=2 pulse, effectively loading the cavity state into the
mechanical oscillator. This nontrivial state would then
evolve coherently, and then another π=2-pulse could be
applied at a later time to transfer the mechanical oscillator
state back to the cavity mode. One could then perform a
photon count on the cavity mode and if the entire evolution
was coherent one expects to recover the initial photon state
with high fidelity.
In CWL there are a number of steps in this protocol

where the physics may differ from conventional quantum

mechanics. First, we have seen that the system dynamics
during the pulse are modified such that a π=2-pulse does
not completely swap the oscillator states and this ineffi-
ciency would manifest during the both the loading and the
readout pulses. Additionally, in the absence of optome-
chanical coupling there is still a nontrivial modification to
the oscillator dynamics because of the CWL interactions.
Let us actually compute the CWL modifications to this

specific process. To be specific, we will again chose the
pulse profile to be that given in Eq. (7) and shown in
Fig. 1(b), which describes a rectangular pulse of duration
tp, followed by a free evolution for time T, and then another
rectangular pulse of duration tp.
We will assume that pulse sequence duration is short

compared with the CWL interaction timescale, i.e., so that
2tp þ T ≪ ðϵ2ΩÞ−1, and that the mechanical oscillator is

initially in its ground state, βðiÞj ¼ 0.
With all of these choices the solutions (113) simplify

considerably,

ajð2tp þ TÞ ¼ −αðiÞj þ iϵ2Ωðtp þ TÞ
�
1

N

X
j

αðiÞj

�
ð115Þ

bjð2tp þ TÞ ¼ iϵ2
ð2nþ 1Þπ

4

�
1

N

X
j

αðiÞj

�
ð116Þ

We can see clearly how the CWL corrections alter the
result so that the excitation does not completely rotate back
into the cavity mode after the pulse sequence. The
propagator for the system for this process is thus

Kðfβ̄ðfÞj ; ᾱðfÞj g; f0; αðiÞj gÞ ¼ exp
�
ζkαðiÞk

� ð117Þ

where we have defined

ζk ¼ e−iωcavtf ᾱðfÞj

�
−δjk þ iϵ2Ωðtp þ TÞ 1

j1k

N

�

þ iϵ2e−iΩtf β̄ðfÞj
ð2nþ 1Þπ

4

1j1k

N
ð118Þ

How can we use this result to predict photon counting
statistics? It is actually quite simple because the coherent
state path-integral is a generating function for Fock ampli-
tudes. This can be seen immediately in operator notation;
from an unnormalized coherent state jαi≡ eαa

† j0i one
obtains Fock states by simple differentiation

jni ¼ 1ffiffiffiffiffi
n!

p dn

dαn
jαi

����
α¼0

: ð119Þ

Fock state transition amplitudes immediately follow
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hmjÛðtÞjni ¼ 1ffiffiffiffiffiffiffiffiffiffi
m!n!

p dm

dβ̄m
dn

dαn
hβjÛjαi

����
α¼β̄¼0

ð120Þ

We can utilize this to “prepare” a single photon initial
state in our optomechanical system by differentiating (117)
with respect to all of the αðiÞj and then setting all of the

αðiÞj ¼ 0. This is trivial to do, and we obtain the amplitude
to evolve from an oscillator in its ground state plus a single
cavity photon into CWL coherent states as

Kðfβ̄ðfÞj ; ᾱðfÞj g; f0; 1gÞ ¼
YN
k¼1

ζk: ð121Þ

To describe a photon counting measurement, we must
further differentiate this result. Since the result is a
homogeneous polynomial of degree N in the ᾱðfÞj and

β̄ðfÞj there are two replica symmetric possibilities: every
replica has one cavity photon and zero mechanical exci-
tations, or zero cavity photons and one mechanical
excitation.
The zero photon case is straightforward to compute; one

gets

Kðf1;0g;f0;1gÞ¼
�
iϵ2e−iΩtf

ð2nþ1Þπ
4

�
N N!

NN ð122Þ

The one photon case requires a little more algebra, but the
result is

Kðf0; 1g; f0; 1gÞ ¼ d

dᾱðfÞ1

…
d

dᾱðfÞN

�YN
k¼1

ζk

�����
ᾱðfÞj ¼0

¼ ð−e−iωcavtfÞN
�
1 −

ix
N

�
N

× e1þiNxðN − ixÞ−NΓ
�
1þ N; 1þ i

N
x

�
;

ð123Þ

where x ¼ ϵ2Ωðtp þ TÞ.
We can now take these amplitudes and compute the

preprobabilities (i.e., the probabilities before we renorm-
alize them to sum to unity). We have

pð0Þ ¼ lim
N→∞

jKðf1; 0g; f0; 1gÞj2=N

¼ ϵ4
�ð2nþ 1Þπ

4e

�
2

; ð124Þ

and, amusingly,

pð1Þ ¼ lim
N→∞

jKðf0; 1g; f0; 1gÞj2=N

¼ 1: ð125Þ

The true probabilities are given by a simple renormalization
of these

Pð0Þ ¼ ϵ4
�ð2nþ 1Þπ

4e

�
2

Pð1Þ ¼ 1 − Pð0Þ ð126Þ

Of course, by design, we find probabilities Pð0Þ ¼ 0 and
Pð1Þ ¼ 1 in the limit of conventional QM. The deviations
from QM are the main result of our calculation.

B. Pulsed optomechanics in Schrödinger-Newton

1. Pulse protocol result

We begin again from the discussion of SN theory given
in Sec. III, where we derived the form for the covariance
matrix components under conditions of a weak measure-
ment. Here we can see that the mass behaves as an
oscillator with eigenfrequency Ω. During the pulsed opto-
mechanics experiment that follows, it continues to act as
such an oscillator. We will adopt the Heisenberg picture,
and use B̂ and B̂† as the annihilation and creation operator
of this ωq effective oscillator, and Â and Â† as those of the
cavity mode. During the pulse, we have

˙̂A ¼ −iðωm −ΩÞÂ − ig0

ffiffiffiffiffiffiffi
ωm

Ω

r
B̂ ð127Þ

˙̂B ¼ −ig0

ffiffiffiffiffiffiffi
ωm

Ω

r
Â ð128Þ

Here we are in the rotating frame in which Ω oscillation
frequency is removed for both B̂ and Â, and in this case the
operator Â will have a detuning of ωm − Ω. The g0 here is
the designed optomechanical coupling in standard quantum
mechanics, such that each pulse will lead to a ð2nþ 1Þπ
rotation between the mechanical and optical modes. It is
multiplied by an additional factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωm=Ω

p
since the

physical coupling between Q and Â†Â is fixed, and now
the relation between Q̂ and B̂ is a modified one

Q̂ ¼
ffiffiffiffiffiffiffiffi
ℏ
mΩ

r
B̂þ B̂†ffiffiffi

2
p ð129Þ

and

g ¼ λĀ

ffiffiffiffiffiffiffiffi
ℏ
mΩ

r
ð130Þ

while in standard quantum mechanics we have
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g0 ¼ λĀ

ffiffiffiffiffiffiffiffiffiffi
ℏ

mωm

s
ð131Þ

At time t, we have

�
ÂðtÞ
B̂ðtÞ

�
¼ e−

iΔt
2

2
64 cosΦ − iΔ sinΦffiffiffiffiffiffiffiffiffiffiffiffi

4g2þΔ2
p − 2ig sinΦffiffiffiffiffiffiffiffiffiffiffiffi

4g2þΔ2
p

− 2ig sinΦffiffiffiffiffiffiffiffiffiffiffiffi
4g2þΔ2

p cosΦþ iΔ sinΦffiffiffiffiffiffiffiffiffiffiffiffi
4g2þΔ2

p

3
75

×

�
Âð0Þ
B̂ð0Þ

�
ð132Þ

with

Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 þ Δ2

p
t

2
; ð133Þ

and

g ¼ g0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωm=Ω

p
; Δ ¼ ωm −Ω: ð134Þ

We can invert Eq. (132) and take the Hermitian conjugate,
obtaining

�
Â†ð0Þ
B̂†ð0Þ

�
¼ e−

iΔt
2

2
64 cosΦ − iΔ sinΦffiffiffiffiffiffiffiffiffiffiffiffi

4g2þΔ2
p − 2ig sinΦffiffiffiffiffiffiffiffiffiffiffiffi

4g2þΔ2
p

− 2ig sinΦffiffiffiffiffiffiffiffiffiffiffiffi
4g2þΔ2

p cosΦþ iΔ sinΦffiffiffiffiffiffiffiffiffiffiffiffi
4g2þΔ2

p

3
75

×

�
Â†ðtÞ
B̂†ðtÞ

�
ð135Þ

Starting from an initial state with only one photon in the
cavity, we have

Â†ð0Þj0i ¼ e−
iΔt
2

��
cosΦ −

iΔ sinΦffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 þ Δ2

p �
Â†ðtÞ

−
2ig sinΦffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 þ Δ2

p B̂†ðtÞ
�
j0i; ð136Þ

where the first term contains one photon in the cavity and
the second term contains zero photon in the cavity. After
two pulses with ðnþ 1=2Þπ rotation, each with

tp ¼ ðnþ 1=2Þπ=g0 ð137Þ

for cavity mode, zero-photon and one-photon probabilities
are given by

p0 ¼
�ð2nþ 1Þπ

4

�
2

ϵ4; p1 ¼ 1 − p0: ð138Þ

Note that here p0 is a factor e2 greater than the CWL case.

2. Finite temperature effects

In the presence of thermal fluctuations, let us consider
two effects. First being the imperfect preparation of the
ground state, while the second being thermal disturbances
during the pulses. When considering thermal noise, let us
take ωSN → 0, and have

˙̂A ¼ −ig0B̂ ð139Þ

˙̂B ¼ −ig0Â − γmB̂ −
ffiffiffiffiffiffiffiffi
2γm

p
Fth ð140Þ

Here Fth is a classical thermal force acting on the slowly
varying amplitude B. Assuming that it has a white spectrum
(in the case of viscous damping), and imposing that the
variance of B caused by Fth to be kBT=ðℏωmÞ, we obtain a
double-sided spectral density of

SFth
¼ 2γmkBT

ℏωm
ð141Þ

which also leads to

hFthðtÞF�
thðt0Þi ¼

2γmkBT
ℏωm

δðt − t0Þ: ð142Þ

Then, solving Eqs. (139) and (140) leads to

ÂðtÞ ¼ −Âð0Þ − i
Z

2tp

0

Fthðt0Þ sinðgt0Þdt0; ð143Þ

which leads to

Â†ð0Þj0i ¼ Â†ðtÞj0i þ i
Z

2tp

0

Fthðt0Þ sinðgt0Þdt0j0i: ð144Þ

This causes a zero-cavity-photon probability of

pth
0 ¼ 4γmtpkBT

ℏωm
¼ 2ωmtp

kBT
ℏωmQ

: ð145Þ

The imperfect preparation of ground state for the oscillator
gives rise to initial excitations in B̂ð0Þ—but in the case
ωSN → 0 that does not show up in the number of cavity
photons at t ¼ 2tp, because ÂðtÞ is unrelated to B̂ð0Þ. This
means imperfect initial-state preparation due to thermal
noise is less important than thermal excitations during the
pulsed optomechanics process.
In order for the pulsed optomechanics regime to work, tp

cannot be much less than 1=ωm, hence the requirement for
pth
0 to be less than unity is

kBT
ℏωmQ

≲ 1: ð146Þ
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As we have seen earlier in this section, both CWL and SN
theory predicts a p0 ∼ 1 when ωSN is comparable to ωm.
Assuming that thermal noise acts similarly, the will require
then conclude that the regime for the CWL and SN
experiment to work will be

ωm ∼ ωSN;
kBT

ℏωSNQ
< 1: ð147Þ

For Tungsten, we have ωSN ¼ 2π × 4.0 mHz, which leads
to the following requirements on the mechanical oscillator:

ωm ∼ 2π × 4.0 mHz;
T
Q

< 2 × 10−13 K: ð148Þ

In principle this mechanical frequency could be achieved
with optomechanical systems based on torsional pendu-
lums. To achieve the necessary temperatures and Q-factor
however goes beyond present-day capabilities. Given that
both SN and CWL both predict departures fromQM for this
experimental protocol with these experimental parameters,
one can certainly view these parameters as an exciting target
for future experimental work in quantum optomechanics.

VIII. DISCUSSION AND CONCLUSIONS

The results given in the bulk of this paper are somewhat
technical—here we would like to give a more general
discussion of what one learns from these calculations. One
general conclusion is that it is likely to be quite difficult to
test the CWL theory with present day quantum optome-
chanical technology—however there is a clear target for
future experimental parameters which could test both CWL
and SN theory.
In Sec. IV B we demonstrate the primary obstacle to

performing simple tests of CWL, i.e., for linear measure-
ments and Gaussian states CWL predicts no departures
from QM. It follows that:

(i) To see any observable difference between CWL
predictions and ordinary QM predictions for an
oscillator, we must use non-Gaussian input states,
or else a nonlinear measurement of the states must be
employed (as in our example of the pulsed opto-
mechanics experiment). Even then, as we have seen,
the predicted differences may be very small, because
of the large frequency mismatch between typical
mechanical oscillator frequencies ω and the very
low Schrödinger-Newton frequency ωSN. None-
theless, in this paper we have performed a concrete
computation of the predicted departure from QM for

a particular pulse protocol and it unambiguously
demonstrates the need for better quantum control
over low frequency mechanical oscillators.

(ii) Alternatively, one can employ what are effectively
anharmonic effective potentials governing the sys-
tem dynamics. This opens up a wide set of pos-
sibilities which we will not explore here.

One might add as a corollary to this that recent
observations of “squeezed state” behavior in a LIGO-type
system [36] only shows that the mirror dynamics is not
classical—they do not yet allow one to discriminate
between QM predictions and the predictions of either
CWL or SN theory. Under the usual conditions in which
LIGO is operated, the behavior will be indistinguishable
from the QM predictions.
For SN theory there is not such a strict statement about

linear measurements and Gaussian states, and one could
aim to test SN using different experimental techniques. It is
interesting though that both CWL and SN predict nearly
identical probabilities for the pulsed optomechanics experi-
ment discussed herein. This offers the exciting opportunity
for a single experiment to simultaneously test both models
against QM.
Regardless of experimental details, it seems clear that the

magnitude of the departures from QM will be controlled
by the ratio of a characteristic mechanical frequency ω
with the Schrödinger-Newton frequency ΩSN, suggesting
that these models may be best tested by quantum opto-
mechanics experiments operating in the mHz regime. Our
estimates on the required temperature and Q-factor are
certainly difficult to achieve for such a low frequency
oscillator, so it may be that one needs a more innovative
experimental protocol than what we have discussed
here.
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