
Parameterizing black hole orbits for adiabatic inspiral

Scott A. Hughes
Department of Physics and MIT Kavli Institute, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, USA

(Received 17 January 2024; accepted 15 February 2024; published 26 March 2024)

Adiabatic binary inspiral in the small mass ratio limit treats the small body as moving along a geodesic of
a large Kerr black hole, with the geodesic slowly evolving due to radiative backreaction. Up to initial
conditions, geodesics are typically parameterized in two ways: using the integrals of motion energy E, axial
angular momentum Lz, and Carter constant Q; or, using orbit geometry parameters semilatus rectum p,
eccentricity e, and (cosine of) inclination xI ≡ cos I. The community has long known how to compute orbit
integrals as functions of the orbit geometry parameters, i.e., as functions expressing Eðp; e; xIÞ, and
likewise for Lz and Q. Mappings in the other direction—functions pðE; Lz; QÞ, and likewise for e and
xI—have not yet been developed in general. In this note, we develop generic mappings from (E; Lz; Q) to
(p; e; xI). The mappings are particularly simple for equatorial orbits (Q ¼ 0, xI ¼ �1), and can be
evaluated efficiently for generic cases. These results make it possible to more accurately compute adiabatic
inspirals by eliminating the need to use a Jacobian which becomes singular as inspiral approaches the last
stable orbit.
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I. INTRODUCTION: KERR BLACK HOLE ORBITS
AND ADIABATIC INSPIRAL

The leading order model for computing the inspiral of
small bodies into large black holes is known as “adiabatic”
inspiral. Adiabatic inspirals use orbit-averaged radiation
reaction to approximate the inspiral of a small-mass-ratio
binary as the slow evolution of a black hole’s geodesic
orbits. The framework for computing adiabatic inspirals
and their associated gravitational waveforms is well devel-
oped [1], and forms the basis of the Fast EMRI Waveform,
or “FEW,” program [2–4]. FEW is likely to play an
important role in studies assessing the ability of the low-
frequency gravitational-wave detector LISA [5] to measure
“extreme mass-ratio inspirals,” or EMRIs, small mass-ratio
binaries formed by the capture of stellar-mass (roughly
10 − 100M⊙) compact objects onto strong-field orbits of
massive black holes (roughly 105–107M⊙) in the cores of
galaxies. Adiabatic models also serve as a foundation for
understanding postadiabatic effects. Many important post-
adiabatic effects can likely be incorporated into wave-
form models with slight augmentations to the adiabatic
waveform framework already developed. It is thus of great
interest to develop accurate tools and data for computing
precise adiabatic inspirals and waveforms, covering the
astrophysical parameter space expected for EMRI events.
Bound geodesic orbits of Kerr black holes are typically

described using the orbit integrals energy E, axial angular
momentum Lz, and Carter constant Q; or, by a set of para-
meters which characterize an orbit’s geometry (p; e; xI).

The parameters p and e describe the range of radial motion
over which the orbit moves: in Boyer-Lindquist coordinates
(which we use in this analysis), an orbit oscillates between
periapsis and apoapsis radii

ra ¼
p

1 − e
; rp ¼

p
1þ e

: ð1:1Þ

The parameter xI ≡ cos I determines an orbit’s inclination
to the black hole’s equatorial plane: the orbit oscillates in
polar angle θ between θmin and π − θmin, where I and θmin
are related by

I ¼ π=2 − sgnðLzÞθmin; ð1:2Þ

which in turn means that

xI ≡ sgnðLzÞ sinðθminÞ: ð1:3Þ

The angle I is 0 for prograde equatorial orbits, 180° for
retrograde equatorial, and smoothly varies between these
extremes. Note that the sign of xI usefully encodes the
prograde or retrograde character of black hole orbits.
Data describing backreaction and inspiral waveforms are

typically parameterized using (p; e; xI), since these param-
eters determine the properties of the source term to the
equations of black hole perturbation theory. To make an
inspiral, we need to compute the rates of change of these
parameters (dp=dt, de=dt, dxI=dt). Adiabatic backreaction
calculations directly determine the rates at which the orbit

PHYSICAL REVIEW D 109, 064077 (2024)

2470-0010=2024=109(6)=064077(11) 064077-1 © 2024 American Physical Society

https://orcid.org/0000-0001-6211-1388
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.109.064077&domain=pdf&date_stamp=2024-03-26
https://doi.org/10.1103/PhysRevD.109.064077
https://doi.org/10.1103/PhysRevD.109.064077
https://doi.org/10.1103/PhysRevD.109.064077
https://doi.org/10.1103/PhysRevD.109.064077


integrals change (dE=dt, dLz=dt, dQ=dt). It is simple to
write down a Jacobian which yields (dp=dt, de=dt, dxI=dt)
given (dE=dt, dLz=dt, dQ=dt). As a matter of principle,
computing adiabatic inspiral is straightforward once the
rates of change (dE=dt, dLz=dt, dQ=dt) are known.
Unfortunately, that Jacobian becomes singular as we

approach the last stable orbit (LSO). This behavior can be
seen particularly clearly by examining the simplest limit,
circular inspiral into a Schwarzschild black hole. Such an
orbit is characterized by its radius ro (which is equivalent to
p when e ¼ 0), which in turn determines orbital energy per
unit mass E:

EðroÞ ¼
1 − 2M=roffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3M=ro

p : ð1:4Þ

(We use units with G ¼ 1, c ¼ 1.) Suppose that we have
computed dE=dt at many values of ro. Using this dataset
and this functional form, we find dro=dt:

dro
dt

¼ dE=dt
dE=dro

¼ 2ðroðro − 3MÞÞ3=2
Mðro − 6MÞ

dE
dt

: ð1:5Þ

Note the singularity as ro → 6M. Here, geodesic orbits are
marginally stable, so a small push (small dE=dt) produces a
large response (large dro=dt), making dro=dt stiff as we
approach ro ¼ 6M. Suppose that we have stored dro=dt
on a grid of orbits that covers the domain from close to
the LSO ro ¼ 6M to some large radius. These data will be
difficult to interpolate on this grid, and we will lose
numerical accuracy as we approach ro ¼ 6M. We can in
principle compensate by using a very dense grid near the
LSO and by taking small step sizes in this region. However,
these fixes only postpone the difficulty, which fundamen-
tally reflects the change from stable to unstable orbits at this
radius.
A better approach is to work with data from which the

pathology has been removed. In Eq. (1.5), the singularity is
simple enough that it can be removed analytically: rather
than storing dro=dt on our grid, we store ẏðroÞ≡
ðro − 6MÞdro=dt. Data for ẏðroÞ are smooth all the way
to the LSO; they can be interpolated accurately over the
entire domain of inspiral and used to compute dro=dt
accurately.
Unfortunately, the singularity is more complicated in the

general case than what we see in Eq. (1.5), and is not as
amenable to such a simple “repair.” A more robust (and
arguably more elegant) approach to curing the fundamental
pathology is to parameterize using a quantity that is never
singular. For circular and equatorial orbits, energy is such a
parameter. Though the rate of change dE=dt grows as one
moves into the strong field, it does so in a way that is
smooth and well behaved. Beginning at some initial orbit, it
is straightforward to integrate dE=dt to construct EðtÞ,
the orbital energy along the inspiral worldline’s sequence

of orbits. If one needs orbital radius along the inspiral
(say because backreaction and waveform data have been
stored on a grid parameterized with ro), then it is simple to
invert Eq. (1.4):

roðEÞ ¼
8M�

4 − 3E2 − E2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9E2 − 8

p � : ð1:6Þ

As energy varies over 2
ffiffiffi
2

p
=3 ≤ E < 1, Eq. (1.6) yields the

radii of all stable1 circular orbits in 6M ≤ ro < ∞.
Although we have focused in this introductory discus-

sion on circular orbits of Schwarzschild black holes, this
core pathology holds for all black hole orbits: the Jacobian
between (dE=dt, dLz=dt, dQ=dt) and (dp=dt, de=dt,
dxI=dt) is singular as we approach the LSO, so using
(dp=dt, de=dt, dxI=dt) will almost certainly result in poor
numerical accuracy when computing adiabatic inspiral.
Switching the parameterization from (p; e; xI) to (E;Lz;Q)
cures this pathology in the general case.
A challenge to implementing this cure is that the

“inverse” mapping, from integrals of motion to orbital geo-
metry parameters, has not been developed for the general
case. In this paper, we develop and present this inverse
mapping for general Kerr geodesics. We begin by briefly
reviewing the relevant properties of Kerr geodesics in
Sec. II. In Sec. III, we develop the mapping from (E;Lz)
to (p; e) for equatorial orbits (which have Q ¼ 0 and
xI ¼ �1), for which the mapping is particularly simple.
We present the solution for the general case in Sec. IV. In
Sec. V, we compare inspirals that use these two parameter-
izations. Concluding discussion, including plans to use
these results to extend the parameter coverage of FEW, is
given in Sec. VI.

II. KEY PROPERTIES OF KERR BLACK HOLE
BOUND GEODESIC ORBITS

In Boyer-Lindquist coordinates, the equations governing
orbits of a small body of mass μ ≪ M about a Kerr black
hole with mass M and spin parameter a ¼ jSj=M (where S
is the hole’s spin angular momentum) are

�
dr
dλ

�
2

¼ �
Eðr2 þ a2Þ − aLz

�
2

− Δ½r2 þ ðLz − aEÞ2 þQ�≡ RðrÞ; ð2:1Þ

�
dθ
dλ

�
2

¼ Q − cot2θL2
z − a2cos2θð1 − E2Þ

≡ ΘðθÞ; ð2:2Þ

1A second solution, with opposite sign for the square root in
the denominator, yields unstable orbit radii in 4M < ro ≤ 6M.
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dϕ
dλ

¼ csc2θLz þ
2MraE

Δ
−
a2Lz

Δ
; ð2:3Þ

dt
dλ

¼ E
	ðr2 þ a2Þ2

Δ
− a2sin2θ



−
2MraLz

Δ
: ð2:4Þ

The time parameter λ we use here is known as Mino time;
an interval of Mino time dλ is related to an interval of
proper time along the orbit dτ by dλ ¼ dτ=Σ, where Σ ¼
r2 þ a2 cos2 θ. We have introduced Δ ¼ r2 − 2Mrþ a2.
The quantities E, Lz, and Q are the orbit’s energy (per
unit μ), axial angular momentum (per unit μ), and Carter
constant (per unit μ2). These quantities are conserved along
any geodesic; choosing them specifies an orbit, up to initial
conditions. Writing d=dλ ¼ Σd=dτ puts these equations
into more familiar forms typically found in textbooks, such
as Eqs. (33.32a)–(33.32d) of Ref. [6].
The functions RðrÞ and ΘðθÞ determine an orbit’s

properties. In particular, some of the zeros of these func-
tions tell us about an orbit’s turning points, and some of the
zeros of RðrÞ encode whether an orbit is stable or not.

Consider the polar motion first. The orbit’s polar velocity
goes to zero at an angle θmin defined by

Q − cot2 θminL2
z − a2 cos2 θminð1 − E2Þ ¼ 0: ð2:5Þ

This condition tells us that the polar motion stops and
reverses direction at θ ¼ θmin, which is the minimum value
of θ reached by the orbit. Thanks to reflection symmetry
about the Kerr equatorial plane θ ¼ π=2, the polar motion
likewise stops and reverses at θ ¼ θmax ¼ π − θmin, the
maximum value of θ reached by the orbit.
Rewriting Eq. (2.5) in terms of the cosine of inclination

defined by Eq. (1.2) yields a quadratic equation for x2I :

0 ¼ a2ð1 − E2Þx4I þ
�
Qþ L2

z − a2ð1 − E2Þ�x2I − L2
z ¼ 0:

ð2:6Þ

Solving this yields xI as a function of the integrals of
motion. We write this solution

xIðE;Lz;QÞ ¼
ffiffiffi
2

p
Lzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Qþ L2
z − a2ð1 − E2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQþ L2

z − a2ð1 − E2ÞÞ2 þ 4a2L2
zð1 − E2Þ

pq : ð2:7Þ

This form is written to be well behaved as a → 0. It is
straightforward to show that Eq. (2.7) respects the equa-
torial limit: xI → Lz=jLzj as Q → 0.
Inverse solutions for the other two parameters are found

by examining the radial equation. We present detailed
solutions in the following two sections, beginning here with
general considerations on the properties of these solutions.
We start by carefully examining RðrÞ, which we write in
two different ways:

RðrÞ ¼ ðE2 − 1Þr4 þ 2Mr3 þ ½a2ðE2 − 1Þ − L2
z −Q�r2

þ 2M½Qþ ðaE − LzÞ2�r − a2Q; ð2:8Þ

¼ ð1 − E2Þðr1 − rÞðr − r2Þðr − r3Þðr − r4Þ: ð2:9Þ

Equation (2.8) is what we get when we write Eq. (2.1) as an
explicit polynomial in r; Eq. (2.9) rewrites this in a way that
emphasizes its four roots. These roots are ordered such that
r1 ≥ r2 ≥ r3 > r4. The root r4 is inside the event horizon,
and so is never reached by bound orbits. Indeed, r4 ¼ 0 for
Schwarzschild black holes (a ¼ 0) and equatorial orbits
(Q ¼ 0). The properties of bound orbits are thus deter-
mined by the values of r1, r2, and r3. Four cases are
particularly important:
(1) Stable eccentric orbits: r1 > r2 > r3. The orbiting

body’s coordinate radial velocity reverses, passing

through zero, when r ¼ r1 and r ¼ r2. When the
three outer roots are distinct, one can show that the
coordinate acceleration d2r=dλ2 does not vanish at
these turning points, but it has a sign which ensures
that the motion oscillates between these points.

(2) Stable circular orbits: r1 ¼ r2 > r3. When the two
outermost roots coincide but are distinct from the
third, both the coordinate velocity dr=dλ and the
coordinate acceleration d2r=dλ2 vanish at r ¼ r1, so
the orbiting body sits at this radius for all time.
Further analysis shows that this orbital motion is
stable against small perturbations.

(3) Marginally stable eccentric orbits: r1 > r2 ¼ r3. In
this case, the outer root at r ¼ r1 remains a turning
point, but both radial coordinate velocity and coor-
dinate acceleration vanish at r ¼ r2. After reversing
direction at r ¼ r1, a geodesic with this configura-
tion will “whirl” eternally at r ¼ r2. The inner
turning point is not stable; the condition r2 ¼ r3
defines the last or innermost stable orbit.

(4) Marginally stable circular orbits: r1 ¼ r2 ¼ r3.
This combines the circularity condition r1 ¼ r2 with
the marginal stability condition r2 ¼ r3. This defines
the innermost stable circular orbit.

For eccentric orbits, it is useful to relabel the outer two
roots, which define the range of the smaller body’s motion:
we call the outermost root the apoapsis, and the next root in

PARAMETERIZING BLACK HOLE ORBITS FOR ADIABATIC … PHYS. REV. D 109, 064077 (2024)

064077-3



the periapsis: r1 ¼ ra, r2 ¼ rp. Using Eq. (1.1), we remap
these radii to the semilatus rectum p and eccentricity e:

p ¼ 2rarp
ra þ rp

; e ¼ ra − rp
ra þ rp

: ð2:10Þ

For circular orbits, the coinciding outer roots are simply the
orbit’s radius: r1 ¼ r2 ¼ ro. In all cases, we have closed-
form expressions for Eðp; e; xIÞ, and likewise for Lz andQ;
see Refs. [7–9] for explicit formulas.

III. CONVERTING THE PARAMETERS
OF EQUATORIAL ORBITS

Our goal is now to find expressions for the roots r1;2;3;4
given an orbit’s integrals of motion E, Lz, and Q (plus the
Kerr parameter a). We begin with equatorial orbits, for
which Q ¼ 0 and r4 ¼ 0. Equations (2.8) and (2.9)
simplify in this case to

ReqðrÞ ¼ r
�ðE2 − 1Þr3 þ 2Mr2 þ �

a2ðE2 − 1Þ − L2
z

�
r

þ 2MðaE − LzÞ2
�
; ð3:1Þ

¼ ð1 − E2Þr½ðr1 − rÞðr − r2Þðr − r3Þ�: ð3:2Þ

Taking advantage of the trivial root r4 ¼ 0, what remains is
a cubic. Closed-form solutions for cubic equations with real
coefficients yielding real roots have been known since 1615
[10]; our discussion follows that presented in Ref. [11].
Dividing Eq. (3.1) by rðE2 − 1Þ, the polynomial whose
roots we wish to find is given by

R3ðrÞ ¼ r3 þA2r2 þA1rþA0; ð3:3Þ

where

A2 ¼
2M

ðE2 − 1Þ ; ð3:4Þ

A1 ¼
a2ðE2 − 1Þ − L2

z

ðE2 − 1Þ ; ð3:5Þ

A0 ¼
2MðaE − LzÞ2

ðE2 − 1Þ : ð3:6Þ

Define

Q ¼ 1

9

�
A2

2 − 3A1

�
; ð3:7Þ

R ¼ 1

54

�
2A3

2 − 9A2A1 þ 27A0

�
; ð3:8Þ

and

ϑ ¼ arccos
�
R=

ffiffiffiffiffiffi
Q3

p �
: ð3:9Þ

Then, the roots governing equatorial Kerr black hole orbits
are given by

ra ¼ −2
ffiffiffiffi
Q

p
cos

�
ϑþ 2π

3

�
−
A2

3
; ð3:10Þ

rp ¼ −2
ffiffiffiffi
Q

p
cos

�
ϑ − 2π

3

�
−
A2

3
; ð3:11Þ

r3 ¼ −2
ffiffiffiffi
Q

p
cos

�
ϑ

3

�
−
A2

3
: ð3:12Þ

With ra and rp known, we find p and e using Eq. (2.10).
Since originally posting this paper, we have learned that a
similar solution to Eqs. (3.10)–(3.12), focusing on unbound
orbits of Schwarzschild black holes and based on unpub-
lished work by van de Meent, appears in Ref. [12].
In the Supplemental Material [13] accompanying this

paper, we provide a Mathematica notebook which imple-
ments these formulas, as well as Eq. (2.7). It is straightfor-
ward to verify that these results accurately yield pðE;LzÞ,
eðE; LzÞ, and r3ðE; LzÞ. For example, using the Black Hole
Perturbation Toolkit package KerrGeodesics [14], compute
Eðp; eÞ, Lzðp; eÞ, and r3ðp; eÞ for an equatorial Kerr
orbit. Inserting the numerical results for E and Lz into
Eqs. (3.10)–(3.12) and using (2.10) returns the original
values of p and e, and confirms r3. A C-code imple-
mentation of these formulas (also provided with the
Supplemental Material [13]) likewise validates these results
to machine precision.

It is worth noting that cosϑ ¼ R=
ffiffiffiffiffiffi
Q3

p
has magnitude

less than 1 for all stable bound geodesics, and is equal to 1
for marginally stable geodesics. This is straightforward to
show for Schwarzschild: using the closed-form solutions
for E and Lz in this limit,

ESchw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp − 2Mð1þ eÞÞðp − 2Mð1 − eÞÞ

pðp −Mð3þ e2ÞÞ

s
;

Lz;Schw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2M
p −Mð3þ e2Þ

s
; ð3:13Þ

we find cosϑ < 1 for all orbits outside of the
Schwarzschild LSO at ð6þ 2eÞM, and cos ϑ ¼ 1 exactly
on the LSO. (This calculation is done in the Mathematica
notebook included in the Supplemental Material [13].)
For Kerr, this evaluation is not so clean because the
expressions for E and Lz are more complicated, but one
can nonetheless validate this behavior. Our C-code checks
whether cos ϑ ≤ 1; if it is not, the code exits with a warning
that the parameters provided do not correspond to bound
stable orbits. The Mathematica notebook will evaluate
Eqs. (3.10)–(3.12) even for parameters inside the LSO,
but returns roots off the real axis in such cases.
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IV. CONVERTING THE PARAMETERS
OF GENERIC ORBITS

For generic orbits, the radial function does not simplify,
and we must find all four of its roots. Closed-form solutions
for the real roots of real quartic polynomials have also been
known for quite some time. The solution we use was
developed by Euler [15], though we follow the slightly
modified algorithm given by Wolters [16]. Begin by
dividing Eq. (2.8) by E2 − 1, and writing the resulting
quartic

R4ðrÞ ¼ r4 þA3r3 þA2r2 þA1rþA0; ð4:1Þ

defining the coefficients

A3 ¼
2M

ðE2 − 1Þ ; ð4:2Þ

A2 ¼
a2ðE2 − 1Þ − L2

z −Q
ðE2 − 1Þ ; ð4:3Þ

A1 ¼
2MðQþ ðaE − LzÞ2Þ

ðE2 − 1Þ ; ð4:4Þ

A0 ¼ −
a2Q

ðE2 − 1Þ : ð4:5Þ

Define further

B2 ¼ A2 −
3A2

3

8
; ð4:6Þ

B1 ¼ A1 −
A2A3

2
þA3

3

8
; ð4:7Þ

B0 ¼ A0 −
A1A3

4
þA2A2

3

16
−
3A4

3

256
: ð4:8Þ

These Bn coefficients appear in the resolvent cubic function,

frcðzÞ ¼ z3 þ C2z2 þ C1zþ C0; ð4:9Þ

where the coefficients introduced here are related to
quantities defined above by

C2 ¼
B2

2
; C1 ¼

B2
2

16
−
B0

4
; C0 ¼ −

B2
1

64
: ð4:10Þ

The resolvent cubic has the dimension of length to the sixth
power; its three roots are real across the parameter space of
bound Kerr orbits, only becoming complex if we examine
orbits inside the last stable orbit. To find these roots, first
define

Qrc ¼
1

9

�
C22 − 3C1

�
; ð4:11Þ

Rrc ¼
1

54

�
2C32 − 9C2C1 þ 27C0

�
; ð4:12Þ

ϑrc ¼ arccos
�
Rrc=

ffiffiffiffiffiffiffi
Q3

rc

q �
: ð4:13Þ

Then,

zrc1 ¼ −2
ffiffiffiffiffiffiffi
Qrc

p
cos

�
ϑrc þ 2π

3

�
−
C2
3
; ð4:14Þ

zrc2 ¼ −2
ffiffiffiffiffiffiffi
Qrc

p
cos

�
ϑrc − 2π

3

�
−
C2
3
; ð4:15Þ

zrc3 ¼ −2
ffiffiffiffiffiffiffi
Qrc

p
cos

�
ϑrc
3

�
−
C2
3
: ð4:16Þ

The roots zrcn, which each have the dimension of length
squared, allow us to assemble the roots of the Kerr radial
function RðrÞ:

ra¼
M

2ð1−E2Þþ
ffiffiffiffiffiffiffi
zrc1

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zrc2þ zrc3−2sgnðB1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zrc2zrc3
pq

;

ð4:17Þ

rp¼
M

2ð1−E2Þþ
ffiffiffiffiffiffiffi
zrc1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zrc2þ zrc3−2sgnðB1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zrc2zrc3
pq

;

ð4:18Þ

r3¼
M

2ð1−E2Þ−
ffiffiffiffiffiffiffi
zrc1

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zrc2þ zrc3þ2sgnðB1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zrc2zrc3
pq

;

ð4:19Þ

r4¼
M

2ð1−E2Þ−
ffiffiffiffiffiffiffi
zrc1

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zrc2þ zrc3þ2sgnðB1Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

zrc2zrc3
pq

:

ð4:20Þ

We again emphasize that it is simple to convert (ra; rp) to
(p; e) using Eq. (2.10).
We have found that this method yields robust and accu-

rate solutions across the parameter space of generic bound
Kerr geodesic orbits. During this study, we also examined
Ferrari’s method, which corresponds to the solution
returned by the Solve[] function of Mathematica; see
also discussion in Ref. [16]. (Indeed, we learned that an
inverse mapping based on this technique had been imple-
mented by van de Meent in the Black Hole Perturbations
Toolkit [14].) We have found, however, that Ferrari method
solutions can be numerically unstable, including terms
that have a limiting form ϵ=

ffiffiffiffiffi
ϵ2

p
with ϵ approaching zero.

Although the Mathematica implementation can handle
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this “0/0” behavior (which has a well-behaved, finite limit)
without difficulty, roundoff error leads to occasional in-
accurate roots in the C-code implementation of Ferrari’s
method. We have not encountered any such difficulties
using Eqs. (4.17)–(4.20). Mathematica and C-code imple-
mentations of these solutions are provided in the
Supplemental Material [13] accompanying this paper.

V. COMPARING ADIABATIC INSPIRALS

We now examine adiabatic inspiral constructed by
integrating the rates of change of orbit integrals (dE=dt,
dLz=dt, dQ=dt) to build [EðtÞ, LzðtÞ, QðtÞ], and by
integrating the rates of change of orbit geometry (dp=dt,
de=dt, dxI=dt) to build [pðtÞ, eðtÞ, xIðtÞ]. For this
comparison, we use data computed for the FEW project,
including data for an ongoing extension to Kerr. We also
use data that was originally developed and used in Ref. [1].
As such, we present results for three datasets:
(1) Equatorial Schwarzschild: These data are used in

the FEW package. The data are computed on a grid
in the (p; e) plane; there are 40 points in the e
direction over the domain 0 ≤ e ≤ 0.8, evenly
spaced in e2 to yield denser coverage at small
eccentricity. There are 36 points in the p direction,
spaced according to the formula

pj ¼ pmin þ 4MðejΔu − 1Þ; 0 ≤ j ≤ 35: ð5:1Þ

We use Δu ¼ 0.035, and set pmin ¼ pLSO þ Δp.
Until recently, our frequency-domain code for solv-
ing the Teukolsky equation experienced numerical
difficulty for eccentric orbits very close to the LSO.
Most of the data we have generated accordingly are
on a grid whose inner edge is shifted from the LSO
by Δp ¼ 0.05M. We have recently fixed this diffi-
culty (which was related to resolving the Teukolsky
source function when integrating orbits very close
to the LSO), and have begun making data with
much smaller Δp. Because closeness to the LSO is
particularly relevant for examining the singular
Jacobian, we also present Schwarzschild equatorial
results for Δp ¼ 10−4M.

(2) Equatorial Kerr, a ¼ 0.9M, prograde: These data
were developed for an ongoing extension of FEW to
Kerr. The grid is identical to that used for equatorial
Schwarzschild, but with pLSO adjusted to a form
appropriate for Kerr black hole orbits. We present
results only for Δp ¼ 0.05M.

(3) Generic Kerr, a ¼ 0.7M: The generic grid is in an
older format, covering the range 0 ≤ e ≤ 0.4, uni-
formly spaced with Δe ¼ 0.1 (a total of five grid
points in eccentricity); uniformly spaced in inclina-
tion from retrograde to prograde, −1 ≤ xI ≤ 1 with
ΔxI ¼ 2=15 (16 grid points in inclination); and with
50 grid points in p, uniformly spaced in

u ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p − 0.9pLSO

p : ð5:2Þ

The generic grid covers pmin ¼ pLSO þ 0.02M ≤ p ≤
pmax ¼ pmin þ 10M.
At each point on these grids, we solve the frequency

domain Teukolsky equation [17], including enough modes
to achieve flux convergence of roughly 10−5; see Ref. [1]
for detailed discussion of our procedure. We thus have
data describing (dE=dt, dLz=dt, dQ=dt) at each orbit on
our grids; by applying the Jacobian, we also have data
describing (dp=dt, de=dt, dxI=dt) at each orbit.
To obtain data away from grid points, we use cubic

spline interpolation along (p; e; xI). Because the data vary
significantly over the grid, we flatten them by dividing each
datum with their lowest order form. For most data, the
lowest order form is obtained by applying the quadrupole
formula to orbits in Newtonian gravity [18]. Inclination is
constant at lowest order, so next-order terms provide a low-
order estimate of dxI=dt [19]:�

dE
dt

�
LO

¼ −
32

5
η2
�
M
p

�
5

ð1 − e2Þ3=2

×

�
1þ 73

24
e2 þ 37

96
e4
�
; ð5:3Þ

1

xI

�
dLz

dt

�
LO

¼ −
32

5
η2M

�
M
p

�
7=2

ð1 − e2Þ3=2

×

�
1þ 7

8
e2
�
; ð5:4Þ

1

ð1 − x2I Þ
�
dQ
dt

�
LO

¼ −
64

5
η3M3

�
M
p

�
3

ð1 − e2Þ3=2

×

�
1þ 7

8
e2
�
; ð5:5Þ

�
dp
dt

�
LO

¼ −
64

5
η

�
M
p

�
3

ð1 − e2Þ1=2

×

�
1 −

1

8
e2 −

7

8
e4
�
; ð5:6Þ

1

e

�
de
dt

�
LO

¼ −
304

15

η

M

�
M
p

�
4

ð1 − e2Þ3=2

×

�
1þ 121

304
e2
�
; ð5:7Þ

1

a

�
1

1 − x2I

��
dxI
dt

�
LO

¼ −
244

15

η

M

�
M
p

�
11=2

ð1 − e2Þ3=2

×

�
1þ 189

61
e2 þ 285

488
e4
�
: ð5:8Þ
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This procedure was introduced in the original presenta-
tion of FEW [2], and has been found to be a valuable tool
for developing accurate interpolants on our data grids.
Thus, for example, rather than developing spline fits to our
numerical data for dE=dt, we develop spline fits to
ðdE=dtÞ=ðdE=dtÞLO. Several of the low-order formulas
that we use go to zero within the grid: ðdLz=dtÞLO vanishes
at xI ¼ 0, ðdQ=dtÞLO and ðdxI=dtÞLO vanish at xI ¼ �1,
ðdxI=dtÞLO vanishes at a ¼ 0, and ðde=dtÞLO vanishes at
e ¼ 0. To avoid dividing by zero, in Eqs. (5.4), (5.5), (5.7),
and (5.8) we have factored out the contributions that remain
nonzero everywhere on the grid, and flatten using only
these contributions. Thus, for example, we develop spline
fits to ðdLz=dtÞ=½ð1=xIÞðdLz=dtÞLO�. Some examples of
how these different data fields vary over an inspiral are
shown in Fig. 1, as well as how their variations can be
flattened by normalizing with low-order formulas.
Note that Eqs. (5.3)–(5.8) have been converted from the

forms presented in Refs. [18,19] by taking the small mass
ratio limit (m1 ≪ m2) and changing semimajor axis to
semilatus rectum using aaxis ¼ p=ð1 − e2Þ. (We write aaxis
for the semimajor axis to avoid confusion with the Kerr
parameter.) We have introduced the reduced mass ratio
η ¼ μ=M, with M ¼ m1 þm2 and μ ¼ m1m2=M. Note
that the result for ðdQ=dtÞLO follows from the fact that at
leading order Q ¼ jLj2 − L2

z, where L is an orbit’s total
angular momentum. The result for ðdxI=dtÞLO uses the fact

that our inclination angle I is equivalent to the angle ι of
Ref. [19] in the weak field.
In the Schwarzschild limit, it is not hard to show that the

Jacobian from (dE=dt, dLz=dt, dQ=dt) to (dp=dt, de=dt,
dxI=dt) introduces terms proportional to 1=½p − pLSOðeÞ�,
where pLSOðeÞ ¼ ð6þ 2eÞM for a ¼ 0. This singularity
only affects dp=dt and de=dt; dxI=dt is not affected. Under
the hypothesis that this scaling holds more generally, this
suggests that a further useful flattening of the data is to
multiply dp=dt and de=dt by p − pLSOðe; xIÞ before splines
are constructed. Figure 1 includes an example showing how
this factor reduces the singular spikiness of de=dt near the
LSO. We then divide by p − pLSOðe; xIÞ after spline
interpolation to fully compute each off-grid datum.
We now compare inspirals computed by using the rates

of change of the orbit integrals (dE=dt, dLz=dt, dQ=dt)
and by using the rates of change of the orbit geometry
(dp=dt, de=dt, dxI=dt). In both cases, we use precomputed
data stored on a grid parameterized in (p, e, xI) as described
above. For the inspirals computed using (dE=dt, dLz=dt,
dQ=dt), we use Eqs. (2.7) and (2.10) in conjunction with
either Eqs. (3.10)–(3.12) or Eqs. (4.17)–(4.20) to determine
the orbit’s geometry. In all cases, we use a simple fourth-
order Runge-Kutta integrator, with step size given by

dt ¼ dt�

�
p
3M

�
3

: ð5:9Þ

FIG. 1. The change of energy, dE=dt, and of orbital eccentricity, ė≡ de=dt, along prograde equatorial adiabatic inspiral into a black
hole with a ¼ 0.9M; further details of this inspiral are shown in Fig. 4. Top left shows dE=dt; bottom left shows the same data
normalized by the weak-field formula ðdE=dtÞLO from Eq. (5.3). The normalized data are significantly flattened, showing much less
variation than “raw” data. Right-hand panels show de=dt: top shows “raw” de=dt along the inspiral; middle shows these data
normalized by ð1=eÞðde=dtÞLO, from Eq. (5.7); and bottom shows the normalized data multiplied by p − pLSOðeÞ. Normalizing to the
weak-field form greatly reduces the variation for p≳ 2.7M, but a large spike remains at the end of inspiral. This spike is due to the
singular Jacobian which converts ðdE=dt; dLz=dtÞ to ðdp=dt; de=dtÞ, and scales as 1=½p − pLSOðeÞ�. The bottom-right panel shows that
the multiplicative factor significantly ameliorates the near-LSO spike.
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In the weak-field, circular limit, this scaling yields data
with constant spacing in p as inspiral proceeds; note that
ðdp=dtÞLO scales as p−3. Though this scaling does not
precisely describe strong field and noncircular inspirals, we
have found it nonetheless effectively compensates for the
rate at which inspiral accelerates. When we get close to the
inner edge of our grid (p − pedge < 0.1M), we decrease dt�
by a factor of 10 to more closely approach the edge of our
dataset. We repeat this when p − pedge < 0.01M, terminat-
ing the inspiral when p − pedge < 0.001M. We start
with dt� ¼ 0.005M2=μ.
We begin with equatorial inspiral, for which Q ¼ 0 and

xI ¼ 1 (we focus on prograde cases in this brief study).
Figure 2 looks at inspiral into a Schwarzschild black hole.
We show three inspirals: inspiral I is computed by
integrating the rates of change of orbit integrals (dE=dt,
dLz=dt); inspiral G is computed by integrating the rates of
change of orbit geometry (dp=dt, de=dt); and inspiral GF
is computed by integrating the rates of change (dp=dt,
de=dt), but further flattening all grid data by p − pLSOðeÞ.

All inspirals start at p ¼ 10M, e ¼ 0.5, and proceed until
they reach the inner edge of the data grid (which, as
discussed above, is shifted away from the LSO by
Δp ¼ 0.05M). Inspiral I is shown as a solid black curve,
inspiralG is a dotted blue curve, and inspiralGF is a dashed
red curve.
The top panel shows the full span of all three inspirals.

The three curves can barely be distinguished at this scale;
these three methods of treating the data yield inspirals that
are nearly identical, at least for p≳ 7.5M or so. The bottom
panel enlarges the end of inspiral, showing significant
differences between inspiral G and the others, and smaller
differences between inspirals I and GF. The variations
between G and the other inspirals are numerical artifacts
that arise from attempting to fit such spiky data with a cubic
spline. Interestingly, inspirals I and GF are quite similar.
Removing the singularity with the factor p − pLSOðeÞ
yields an inspiral using (dp=dt, de=dt) that is nearly
identical to that found using (dE=dt, dLz=dt).
Figure 3 reexamines Schwarzschild inspiral, but now

using data that come closer to the LSO (Δp ¼ 10−4M).
Aside from the deeper span of data, the inspirals are
identical to those shown in Fig. 2. Inspirals I and GF
are not significantly affected by the new data, though the
difference between these two inspirals is slightly larger than

FIG. 2. Comparison of equatorial inspiral into a black hole with
a ¼ 0, computed using (dE=dt, dLz=dt) (solid black curve),
using (dp=dt, de=dt) (dotted blue curve), and using (dp=dt,
de=dt) flattened by p − pLSOðeÞ prior to spline interpolation
(dashed red curve) to remove effects of the singular Jacobian at
the LSO (black dashed line). Top panel shows complete inspirals
from p ¼ 10M, e ¼ 0.5 until they hit the edge of our data grid
near the LSO. The different methods are clearly distinguished
in the bottom panel by enlarging the end of inspiral. Inspiral
constructed using (dE=dt, dLz=dt) and using (dp=dt, de=dt)
flattened by p − pLSOðeÞ are quite similar on this plot. However,
inspiral using (dp=dt, de=dt) without correcting for the singular
Jacobian shows significant differences. The variations seen in the
dotted blue curve are numerical artifacts of fitting a cubic spline
to such spiky data.

FIG. 3. Same as Fig. 2, but using a grid that comes much closer
to the LSO (Δp ¼ 10−4M rather than Δp ¼ 0.05M). Inspiral
constructed using (dp=dt, de=dt) without accounting for the
p − pLSO singularity is totally pathological here: the dotted blue
curve showing this inspiral noticeably deviates even in the large
scale top panel. Lower panel enlarges the end of inspiral, shows
more detail of this evolution. Evolution using (dE=dt, dLz=dt)
(solid black curve) and using (dp=dt, de=dt) flattened by
p − pLSOðeÞ (dashed red curve) are again similar, though with
larger differences than seen in Fig. 2.
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the difference seen when Δp ¼ 0.05M. By contrast, the
numerical artifacts which affect inspiral G are so large that
the inspiral’s behavior is quite pathological: it begins
oscillating at p ≃ 7.5M, e ≃ 0.345, and deviates completely
from the other inspirals. Cubic spline fits to data processed
by the singular Jacobian are extremely ill behaved for data
that comes so close to the LSO.
Figure 4 likewise examines equatorial inspiral from

p ¼ 10M, e ¼ 0.5, but now into a Kerr black hole with
a ¼ 0.9M. The pattern we see is largely the same as what
we saw in the Schwarzschild cases, but because the LSO is
at smaller p, inspiral proceeds much deeper into the strong
field. In particular, we see strong oscillations in G in the
deep strong field. Inspirals I and GF are similar to each
other, though one can see that inspiral GF shows a small
amplitude oscillation about the trajectory defined by
inspiral I. These oscillations are nearly identical in period
to the oscillations seen in inspiral G, suggesting that the
flattening obtained by using p − pLSOðeÞ does not fully
correct for the singular Jacobian.
We conclude our examination of inspirals with a generic

example: inspiral into a black hole with a ¼ 0.7M. As
shown in Fig. 5, these inspirals begin at p ¼ 10M,
e ¼ 0.35, xI ¼ 0.5, and reach the edge of our dataset near

the LSO at p ≃ 4.75M, e ≃ 0.152, xI ≃ 0.49. Interestingly,
we see that inspiralsG andGF barely differ—this flattening
of the data does not have much impact on the results. Both
cases differ slightly from I. Careful inspection shows that
both inspirals G and GF oscillate around inspiral I, likely a
numerical artifact arising from cubic spline interpolation
applied to the singular Jacobian.
In all cases that we examine, inspirals generated using

(dE=dt, dLz=dt, dQ=dt) are free of numerical artifacts and
well behaved. Inspirals generated using (dp=dt, de=dt,
dxI=dt) are often affected by numerical artifacts arising
from the singular behavior of the Jacobian between the
two parameterizations near the LSO. The effects of these
artifacts can be tamed somewhat by multiplying data by the
factor p − pLSO prior to developing spline interpolants, but
even data flattened in this way show signs of oscillations
which are characteristic of spline interpolation applied to
spiky data.

FIG. 4. Comparison of equatorial inspiral into a black hole with
a ¼ 0.9M; aside from the different black hole spin, the param-
eters are the same as those used in Fig. 2. We again see that these
inspirals are similar until they come close to the LSO: inspiral
constructed using (dE=dt, dLz=dt) (solid black curve) and using
(dp=dt, de=dt) with data flattened by p − pLSOðeÞ prior to spline
interpolation (dashed red curve) differ significantly from data
computed using (dp=dt, de=dt) without flattening (dotted blue
curve). However, the difference between the (dE=dt, dLz=dt)
inspiral and the flattened (dp=dt, de=dt) inspiral is somewhat
larger than we saw in the Schwarzschild inspiral.

FIG. 5. Comparison of generic inspiral into a black hole with
a ¼ 0.7M. The color scheme is similar to previous figures: solid
black shows an inspiral computed using (dE=dt, dLz=dt, dQ=dt);
dotted blue shows an inspiral computed using (dp=dt, de=dt,
dxI=dt); and dashed red shows an inspiral that uses (dp=dt,
de=dt, dxI=dt), with (dp=dt, de=dt) flattened by p−pLSOðe; xIÞ.
These three inspirals are very similar, though deviations can be
discerned near the end. Interestingly, the inspiral computed using
(dp=dt, de=dt, dxI=dt) barely differs from the inspiral computed
using these data flattened by p − pLSOðe; xIÞ; at least at this
inclination, the effect of singularity flattening does not appear
to be significant. It is worth noting that both of the inspirals
computed using the rates of change of orbit geometry oscillate
with small amplitude around the inspiral computed using the rate
of change of orbit integrals. Note also that inclination barely
changes during inspiral, decreasing from xI ¼ 0.5 to xI ¼ 0.49 at
the end of inspiral. The three tracks along xI are so similar that we
do not show them.
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VI. CONCLUSIONS

Recent progress has significantly advanced our ability to
compute precise gravitational waveforms in the small mass
ratio limit. As a matter of principle, the construction of
adiabatic waveforms is essentially fully understood. Such
waveforms serve as a foundation for computing postadia-
batic effects, and for examining issues in science and data
analysis with future low-frequency gravitational wave
measurements. As such, it is of great importance to
understand systematic errors and limitations which affect
these waveform models.
Though understood in principle, many details must come

together to expedite developing these waveform models
in practice. A major systematic limitation in computing
adiabatic waveforms is our ability to accurately evolve a
system from orbit to orbit due to the backreaction of
gravitational waves. Leading order backreaction computes
the rates of change of orbit integrals (dE=dt, dLz=dt,
dQ=dt). If these quantities were known everywhere, it
would be a simple matter to integrate them up to compute
the trajectory through orbit integral space [EðtÞ, LzðtÞ,
QðtÞ]. In fact, the parameter space is typically discretely
sampled, so that these data are only known on some finite
grid. These grids tend to be laid out in coordinates
describing the orbit geometry (p; e; xI). One thus needs
accurate methods for converting between the parameter-
izations, and accurate techniques for interpolating data off
the grid points.
Accurate formulas expressing the orbit integrals as

functions of orbit geometry—Eðp; e; xIÞ, etc.—have been
known for quite some time [7–9]. Because of this, many
adiabatic inspirals to date have been made by converting
(dE=dt, dLz=dt, dQ=dt) to (dp=dt, de=dt, dxI=dt) using
the Jacobian between these sets of rates of change
(cf. Appendix B of Ref. [1]). This makes it possible to
find the trajectory in orbit geometry space, [pðtÞ, eðtÞ,
xIðtÞ]. Unfortunately, this Jacobian is singular near the
LSO. Though its singularity can be accounted for at least
in part, using this Jacobian is very likely to introduce
systematic errors into inspirals, and thus into waveform
models. These errors are particularly severe if moderately
stiff methods like cubic spline interpolation are used to

compute quantities away from on-grid data points—
attempting to fit a spline to the near-LSO singular spike
introduces oscillations which can persist even after apply-
ing tricks which remove most of the singular behavior.
In this paper, we have developed “inverse” mappings of

the orbit parameterizations, pðE;Lz;QÞ and likewise for e
and xI . The mappings are particularly simple for equatorial
orbits, but can be implemented quite efficiently for all
bound Kerr orbits. Using them, we can easily integrate up
to find [EðtÞ, LzðtÞ, QðtÞ] and then convert to [pðtÞ, eðtÞ,
xIðtÞ] in a way that avoids using the singular Jacobian and
thus avoids introducing systematic error due to its singu-
larity. Comparing a sample of inspirals computed using
data developed for the FEW project, we find that inspirals
constructed by integrating (dE=dt, dLz=dt, dQ=dt) do not
show behavior associated with artifacts of the near-LSO
singularity. This method of constructing inspirals appears
to be quite accurate and robust, significantly expanding the
ways one can construct adiabatic inspirals using back-
reaction data. To facilitate their use by the community, we
provide code implementing these formulas in this paper’s
Supplemental Material [13].
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