
Spacetime geometry from Dirac spinor theory

Yuri N. Obukhov1,* and G. E. Volovik 2,3,†

1Theoretical Physics Laboratory, Nuclear Safety Institute, Russian Academy of Sciences,
B. Tulskaya 52, 115191 Moscow, Russia

2Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland
3Landau Institute for Theoretical Physics, acad. Semyonov av., 1a, 142432 Chernogolovka, Russia

(Received 18 February 2024; accepted 5 March 2024; published 26 March 2024)

The quintet of Dirac 4 × 4 matrices suggests that the fundamental dimension of the internal (spin) space
is n ¼ 5, instead of the conventional dimension n ¼ 4. Then instead of the conventional 4 × 4 tetrads
(vierbein), gravity is described in terms of the 5-bein (fünfbein or five legs). We discuss the properties of the
spacetime geometry induced from this 5-leg Dirac spinor theory, where the spin connection contains
10 × 4 ¼ 40 elements instead of 24 elements in the tetrad formulation of the general relativity theory.
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I. INTRODUCTION

In the modern formulation of general relativity the
spacetime metric is not the primary object. The reason is
that the metric does not describe the interaction between
gravity andDirac fermions.Gravity enters theDirac equation
in terms of the vierbein (or tetrads), the 4 × 4 matrix eμa,
which is the primary object. The metric is the secondary
object—the bilinear combination of tetrads. The index μ
refers to coordinates of the curved spacetime, and the index a
refers to the internal space, which is the SOð1; 3Þ spin space.
In more general theories, which combine general rela-

tivity with Standard Model, the higher-dimensional internal
spaces can be considered. The internal space may include
the groups of Standard Model and the fermionic families.
Examples are the SOð1; 7Þ and SOð3; 11Þ groups [1,2], the
Clifford algebra Clð0; 6Þ [3], higher-spin fields [4–7], etc.
The situation when the dimension of the internal space n is
larger or smaller than the dimension D of the spacetime
takes place also in condensed matter, where the rectangular
vielbein naturally emerge [8–10]. Such examples suggest
the possibility to describe gravity using the rectangular
D × n vielbein with n ≠ D.
In principle, vielbein’s legs are not necessary associated

with the local axes of spacetime coordinate system. They
can be the emergent fields, which have nothing to do with
the geometry of spacetime. Examples are the Akama-
Diakonov-Wetterich theory [11–15] and superfluid 3He
in the B-phase [16], where the dynamical vielbein emerge
as the bilinear combinations of the fermionic fields. In this
case it is also natural that the dimension of spin space can
be larger than the dimension of the coordinate space.

In the Dirac equation in D ¼ 4, the dimension of the
Dirac spinor ψ is 4. If we consider only single fermionic
species and ignore the gauge degrees of freedom, then from
the properties of the Dirac matrices it follows that the
internal spin space may have dimension n ¼ 5. Moreover,
n ¼ 5 is the largest possible dimension of the internal spin
space for Dirac fermions. This suggests that the spin group
SOð1; 4Þ and the corresponding 4 × 5 rectangular vielbein
can be the natural elements of the theory describing the
interaction of Dirac fermions with gravity.
In this paper we consider the 5-bein (fünfbein) Dirac

spinor theory. Our notations and conventions are as
follows. Spacetime coordinates are labeled by indices from
the Greek alphabet μ; ν;… ¼ 0, 1, 2, 3, while the spin
indices a; b;… ¼ 0, 1, 2, 3, 4 take the values from the Latin
alphabet.

II. FÜNFBEIN DIRAC EQUATION

The fundamental quintet of the Dirac 4 × 4 matrices Γa

with a ¼ 0, 1, 2, 3, 4, which obey the anticommutation
relations,

fΓa;Γbg¼ 2ηab; ηab ¼ diagð1;−1;−1;−1;−1Þ; ð1Þ
can be introduced in terms of the conventional 4 × 4 Dirac
γ-matrices. Using Peskin-Schröder notations [17] for γ
matrices in terms of the Pauli matrices τ and σ one has

Γ0≔ γ0¼ τ1 ða¼ 0Þ; ð2Þ
Γa ≔ γa ¼ iτ2σa ða¼ 1;2;3Þ; ð3Þ
Γ4 ≔−iγ5¼ iτ3 ða¼ 4Þ; ð4Þ
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Here εabcde is the five-dimensional totally antisymmetric
Levi-Civita tensor; its only nontrivial component is
ε01234 ¼ þ1, hence also ε01234 ¼ þ1.
In order to formulate the dynamics of a spinor field in the

curved four-dimensional spacetime, we combine the 4 × 5

vielbein eμa and five matrices Γa, which form the 5-vector in
spin space, into a 4 × 4 Dirac matrices γμðxÞ ¼ eμaðxÞΓa

which form the 4-vector on the spacetime. The resulting
Dirac equation for a fermion with the rest mass M in the
curved manifold then reads

ðieμaΓa∇μ −MÞψ ¼ 0: ð6Þ

This wave equation is covariant under arbitrary general
coordinate transformations, x ⟶ xðx0Þ, on the spacetime
manifold and under the local SOð1; 4Þ transformations in
spin space:

eμa ⟶ eμbΛb
a; ψ ⟶ U−1ψ ; ð7Þ

U−1ΓaU ¼ Λa
bΓb: ð8Þ

The orthogonal 5 × 5 matrices Λa
bðxÞ (such that

Λa
cΛb

dη
cd ¼ ηab) generate the SOð1; 4Þ spin transforma-

tions UðxÞ by means of the operators

Sab ¼ i
4
½Γa;Γb�: ð9Þ

The latter determine the covariant spinor derivatives in
terms of the spin connection ωabμ ¼ −ωbaμ. Explicitly, for
the fermion wave function one has

∇μψ ¼ ∂μψþωμψ ; ωμ ¼
i
2
ωabμSab: ð10Þ

Note that the SOð1;4Þ spin connection contains 10×4¼ 40
elements instead of 24 elements in the tetrad formulation
of the general relativity (GR) theory. By evaluating the
commutator of covariant derivatives,

ð∇μ∇ν −∇ν∇μÞψ ¼ i
2
ΩabμνSabψ ; ð11Þ

we derive the spin field strength, or a spin curvature:

Ωa
bμν ¼ ∂μω

a
bν−∂νω

a
bμþωa

cμω
c
bν−ωa

cνω
c
bμ; ð12Þ

It is worthwhile to recall the key algebraic relations:

½Γa; Sbc� ¼ iðηabΓc − ηacΓbÞ; ð13Þ

fΓa; Sbcg ¼ εabcdeSde: ð14Þ

Furthermore, the SOð1; 4Þ generators (9) satisfy

½Sab; Scd� ¼ ið−Sacηbd þ Sadηbc

þ Sbcηad − SbdηacÞ; ð15Þ

fSab; Scdg ¼ 1

2
ðηacηbd − ηadηbc þ εabcdeΓeÞ: ð16Þ

III. SPACETIME GEOMETRY INDUCED
BY SOð1;4Þ SPIN STRUCTURE

We treat feμa;ωa
bμg as the fundamental internal spin

variables in this approach. Let us demonstrate that they give
rise to an induced geometrical structure on the spacetime
manifold, that encompasses the metric gμν and the linear
connection Γα

βμ.
The traditional 4 × 4 spacetime metric is expressed in

terms of the 4 × 5 vielbein in a pretty much the sameway as
in the tetrad GR,

gμν ¼ eμaeνbη
ab: ð17Þ

This metric gμν then enters the usual equations for the
electromagnetic gauge fields and for the other bosonic
fields, which do not depend on spin degrees of freedom.
Obviously, the spacetime metric (17) is a symmetric
covariant second rank tensor field, and it is invariant under
arbitrary local SOð1; 4Þ transformations (7) in the
spin space.
Provided the spacetime metric is nondegenerate (i.e.,

det gμν ≠ 0), we can construct the inverse tensor field gμν.
However, since (17) relates four- and five-dimensional
spaces, the rectangular 4 × 5 vielbein eμa cannot be inverted.
Nevertheless, we can introduce a 5 × 4 matrix

eaμ ≔ ηabgμνeνb; ð18Þ

which by construction is semi-inverse of the original
vielbein, in the sense that

eaμeνa ¼ δνμ: ð19Þ

However,

eaμe
μ
b ¼ Πa

b ≠ δab: ð20Þ

From the definition, we prove that this is an idempotent
object (hence, a projector),

Πa
cΠc

b ¼ Πa
b: ð21Þ

In general, it depends on the spacetime coordinates,
Πa

b ¼ Πa
bðxÞ.

Despite its peculiar properties above, the semi-inverse
matrix is a quite valuable variable because with its help one
can define the new hybrid object,
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Θa
μν ¼ ∂μeaν − ∂νeaμ þ ωa

bμebν − ωa
bνebμ: ð22Þ

Together, the spin curvature (12) and the spin torsion (22)
play the role of the generalized structure relations in
spin space.
After these preliminaries, we are in a position to discuss

the linear connection Γα
βμ on the curved spacetime mani-

fold. Let us demonstrate how it arises from the crucial
consistency condition of the internal SOð1; 4Þ spin struc-
ture with the geometrical structure of the spacetime:

∇μγ
ν ¼ ∂μγ

ν þ Γν
λμγ

λ þ ωμγ
ν − γνωμ ¼ 0: ð23Þ

Making use of (10) and (13), we recast (23) into an
equivalent form,

∇μeνa ¼ ∂μeνa þ Γν
λμeλa − ωb

aμeνb ¼ 0: ð24Þ
Since the vielbein cannot be inverted, one cannot solve this
to find the spin connection ωb

aμ in terms of the spacetime
geometrical structures. However, with the help of the semi-
inverse matrix eaμ we straightforwardly derive from (24),

Γα
βμ ¼ eαaωa

bμebβ þ eαa∂μeaβ: ð25Þ
Summarizing, we have demonstrated that the SOð1; 4Þ

spin structure induces the geometrical structure of the
spacetime,

ðeμa;ωa
bμÞ ⇒ ðgμν;Γα

βμÞ; ð26Þ

by means of (17) and (25).

IV. PROPERTIES OF INDUCED
SPACETIME GEOMETRY

In general, the metric-affine manifold, endowed with the
metric and the linear connection fgμν;Γα

βμg, is character-
ized by the curvature, torsion and nonmetricity [18].
By differentiating (24) we derive the integrability con-

dition of this consistency relation:

Rα
βμνe

β
a −Ωb

aμνeαb ¼ 0; ð27Þ

which relates the spacetime curvature

Rα
βμν ¼ ∂μΓα

βν − ∂νΓα
βμ þ Γα

λμΓλ
βν − Γα

λνΓλ
βμ; ð28Þ

and the SOð1; 4Þ spin curvature (12). Thereby, with the
help of the semi-inverse vielbein from (27) we find the
spacetime curvature in terms of the spin curvature:

Rα
βμν ¼ Ωa

bμνeαaebβ: ð29Þ

By contraction, we derive the corresponding relations for
the Ricci tensor and the curvature scalar:

Rμν ¼ Rλ
μλν ¼ eλaebβΩa

bλν; ð30Þ

R ¼ gμνRμν ¼ eμaeνbΩab
μν: ð31Þ

Using (17) and (25), we straightforwardly verify that the
spacetime connection Γα

βμ is compatible with the metric:

∇μgαβ ¼ ∂μgαβ þ Γα
λμgλβ þ Γβ

λμgαλ ¼ 0: ð32Þ

In other words, the induced spacetime geometry has the
vanishing nonmetricity.
However, the induced spacetime torsion

Tα
μν ¼ Γα

νμ − Γα
μν ¼ eαaΘa

μν: ð33Þ

can be nontrivial, in general, which is explained by the
larger number of components (4×10¼ 40) of the SOð1; 4Þ
spin connection.
Multiplying the generalized Dirac equation (6) by

ð−ieμaΓa∇μ −MÞ, with an account of the key consistency
condition (23), one obtains the generalized Klein-Gordon
equation:

ðgμν∇μ∇ν þ T λ∇λ þRþM2Þψ ¼ 0: ð34Þ

Here the operators

T λ ¼ iSabeμaeνbe
λ
cΘc

μν; ð35Þ

R ¼ 1

2
SabScdeμaeνbΩcdμν; ð36Þ

are determined by the SOð1; 4Þ spin torsion and curvature.
Using (15) and (16) we can reduce (36) to

R ¼ R
4
− iSbcΩa

cμνe
μ
aeνb þ

1

2
εabcdeΓeΩcd

μνe
μ
aeνb; ð37Þ

which generalizes the earlier results [19,20]. The two last
terms are trivial in Einstein’s GR.

V. UNDERSTANDING
RECTANGULAR VIELBEIN

A. Asymmetric splitting of vielbein

The structure of an arbitrary 4 × 5 vielbein can be quite
complicated, in general but from the formal mathematical
point of view this is a rectangular matrix,

eμa ¼

0
BBBBBB@

e00 e01 e02 e03 e04

e10 e11 e12 e13 e14

e20 e21 e22 e23 e24

e30 e31 e32 e33 e34

1
CCCCCCA
; ð38Þ
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and it is natural to split this matrix into a square 4 × 4 block
eμα (with α ¼ 0, 1, 2, 3) and treat the last column kμ ≔ eμ4 as
an additional 4-vector element.
Using this decomposition eμa ¼ feμα; kμg, we recast the

Dirac equation (6) into an equivalent form

ðieμαγα∇μ þ γ5kμ∇μ −MÞψ ¼ 0: ð39Þ
We immediately recognize this as a particular case of the
so-called standard-model extension (SME), where the
variable kμ manifests the Lorentz-violating effects, see
Kostelecky et al. [21,22]. This appears to be a natural
result, since the spin group SOð1; 4Þ is indeed an extension
of the Lorentz SOð1; 3Þ symmetry.
On the other hand, inserting eμa ¼ feμα; kμg into (17), we

find for the induced spacetime metric,

gμν ¼ gμν
ð0Þ

− kμkν; ð40Þ

where the first term, gμν
ð0Þ

¼ eμαeνβη
αβ, is constructed with

the standard four-dimensional flat Minkowski ηαβ ¼
diagð1;−1;−1;−1Þ. The representation (40) is known as
the generalized Kerr-Schild ansatz, which is a powerful tool
widely used in gravity theory to generate exact solutions of
the gravitational field equations, see [23–25]. Of special
interest is the case when kμ is null (lightlike) vector field

with respect to both metrics gμνkμkν ¼ gμν
ð0Þ

kμkν ¼ 0. The
representation (40) may be particularly useful for the study
of physical effects in the Kerr geometry (with a nontrivial
torsion, in general), such as the superradiance [26,27], for
example, however, this goes beyond the scope of the
present paper.

B. Symmetric five-leg vielbein

The Euclidean four-dimensional space with gμν ¼ δμν ¼
diagð1; 1; 1; 1Þ (where μ, ν ¼ 0, 1, 2, 3), Γa ¼ iγa (for
a ¼ 1, 2, 3) and Γ4 ¼ γ5, can be constructed using the
symmetric five-leg vielbein—the vertices of the 4-simplex:

eμa ¼ 1

2

0
BBBBB@

1 1 −1 −1 0

1 −1 1 −1 0

1 −1 −1 1 0

− 1ffiffi
5

p − 1ffiffi
5

p − 1ffiffi
5

p − 1ffiffi
5

p 4ffiffi
5

p

1
CCCCCA: ð41Þ

Note that the internal spin group is the Euclidean SOð5Þ.
The hyperpyramid is fully symmetric:

eμ0þeμ1þeμ2þeμ3þeμ4 ¼ 0; μ¼ 0;1;2;3; ð42Þ

δμνe
μ
aeνb ¼

4

5
; a ¼ b; ð43Þ

δμνe
μ
aeνb ¼ −

1

5
; a ≠ b: ð44Þ

This has natural geometrical connection to two golden
ratios, ϕþ and ϕ−:

ϕ� ¼ 1� ffiffiffi
5

p

2
; ð45Þ

ϕþþϕ−¼ 1; ϕþ−ϕ−¼
ffiffiffi
5

p
: ð46Þ

C. Vacuum quasicrystal

The rectangular vielbein emerges also in such condensed
matter systems as quasicrystal; the structure in the (D ¼ 3)-
dimensional space, which is obtained from a regular space
crystal in dimension n > D by dimensional reduction [28].
The quasicrystal structure can be described as a system of n
crystallographic planes, XaðxÞ ¼ 2πNa, Na ∈Z with
a ¼ 1; 2;…; n. The elasticity properties of the quasicrystals
are described by the so-called elasticity vielbein, which are
the gradients of the phase functions:

eai ðxÞ ¼ ∂iXaðxÞ; i ¼ 1; 2; 3; a ¼ 1; 2;…; n: ð47Þ

The five-leg vielbein in Eq. (41) can be considered in
terms of the quasicrystalline vacuum, which is obtained by
reduction from the regular 5D crystal to the 4D space:

eaμ ¼ ∂μXaðxÞ; μ¼ 0;1;2;3; a¼ 0;1;2;3;4: ð48Þ
In the flat spacetime, this gravitational quasicrystal-
line vacuum looks as uniform, since gμν ¼ δμν ¼
diagð1; 1; 1; 1Þ.
In the elasticity vielbein approach, the curvature and

torsion are obtained by introduction of the topological
defects into the crystal structure—dislocations and discli-
nations [29–31].

VI. DE SITTER SPACETIME
AND DE SITTER GROUP SOð1;4Þ

The 4 × 5 vielbein can be also obtained if one considers
the de Sitter spacetime as the (1þ 3)-hypersurface in the
(1þ 4)-dimensional Minkowski spacetime M1;4. With the
Cartesian coordinates Xa; a ¼ 0, 1, 2, 3, 4, and the line
element ds2 ¼ ηabdXadXb onM1;4, the de Sitter space Σ1;3

can be embedded in it as the hyperboloid [32],

ηabXaXb ¼ −l2: ð49Þ
The constant parameter l is called a radius of the de Sitter
space Σ1;3. The embedding (49) can be, for example,
conveniently described in parametric form by the
Cartesian coordinates xμ ¼ ðt; x; y; zÞ:

X0¼lfðrÞSðtÞ; X4 ¼lfðrÞCðtÞ; ð50Þ
X1¼ x; X2¼ y; X3¼ z; ð51Þ
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where r2 ¼ x2 þ y2 þ z2 and the functions

f¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−

r2

l2

s
; C¼ coshðt=lÞ; S¼ sinhðt=lÞ: ð52Þ

Thereby, on the hypersurface (49) the metric is induced

ds2 ¼ gμνdxμdxν; gμν ¼ eaμebνηab; ð53Þ
by the 5 × 4 vielbein of the embedding (50), (51):

eaμ ¼
∂Xa

∂xμ
¼

0
BBBBBB@

fC − xS
lf − yS

lf − zS
lf

0 1 0 0

0 0 1 0

0 0 0 1

fS − xC
lf − yC

lf − zC
lf

1
CCCCCCA
: ð54Þ

The resulting induced metric (53),

gμν ¼
�f2 0

0 −δij−
xixj
l2f2

�
; i;j¼ 1;2;3; ð55Þ

describes Σ1;3 as a homogeneous four-dimensional space-
time of constant curvature Rα

βμν ¼ 1
l2 ðδανgβμ − δαμgβνÞ.

Transforming from the Cartesian ðx; y; zÞ coordinates to
the spherical ones ðr; θ;ϕÞ, we can recast (53)–(55) into a
familiar de Sitter line element

ds2¼
�
1−

r2

l2

�
dt2−

dr2

1− r2

l2
−r2ðdθ2þ sin2 θdϕ2Þ: ð56Þ

Geometrically, the orthogonal group SOð1; 4Þ is the
group of motions of the de Sitter space, and the latter
arises as homogeneous Σ1;3 ¼ SOð1; 4Þ=SOð1; 3Þ space.
Hence, it is common to call SOð1; 4Þ a de Sitter group.
Choosing the point Xa

0 ¼ f0; 0; 0; 0;lg∈Σ1;3 as a center,
we have as its stabilizer the Lorentz group SOð1; 3Þ formed

by 5 × 5 matrices Λa
b

L
¼ ðL

0
0
1
Þ, with L∈ SOð1; 3Þ.

Accordingly, the action of the 10-parameter de Sitter group
SOð1; 4Þ is naturally parametrized by the product of 5 × 5
matrices,

Λ ¼ Λ
L
Λ
S
; ð57Þ

where Λ
L
is an arbitrary 6-parameter Lorentz rotation, and

the matrix Λ
S

describes a 4-parameter de Sitter boost
that maps the center Xa

0 ∈Σ1;3 to an arbitrary point
Xa ¼ lta ∈Σ1;3, with ηabtatb ¼ −1. Explicitly,

Λa
b

S ¼
�Sαβ tα

tβ t4

�
; Sαβ ¼ δαβ þ

tαtβ
1þ t4

; ð58Þ

where α, β ¼ 0, 1, 2, 3, and tα ¼ ηαβtβ, with the four-
dimensional Minkowski metric ηαβ ¼ diagð1;−1;−1;−1Þ.
In the limit of l ⟶ ∞, the de Sitter space Σ1;3 reduces

to the flat spacetime Rα
βμν ¼ 0 with (55) becoming the

standard Minkowski metric, whereas the de Sitter group
SOð1; 4Þ reduces to the corresponding group of motions of
the Minkowski spacetime M1;3, i.e., the 10-parameter
Poincaré group. In terms of the Lie algebras, the reduction
of soð1; 4Þ to the Poincaré algebra is known as the Inönü-
Wigner contraction [33].
Interestingly, Dirac [34] proposed an alternative wave

equation for a spin-1
2
particle in the de Sitter spacetime,

which was later revisited by Gürsey and Lee [35], by
making use of the 5D Clifford algebra (1) and the
embedding geometry (49). Despite certain formal similar-
ities, that spinor wave equation is quite different from our
approach based on the 4 × 5 vielbein.

VII. CONCLUSION

The generalized Dirac equation (6) suggests a nontrivial
extension of the Lorentz SOð1; 3Þ spin group to the de
Sitter group SOð1; 4Þ, introducing the rectangular 4 × 5

vielbein eμa as a new fundamental variable along with
the spin connection ωabμ ¼ −ωbaμ that is necessary to
provide the covariance of the Dirac wave equation under
arbitrary general coordinate transformations on the space-
time manifold and under the local de Sitter SOð1; 4Þ
transformations (7) in spin space.
Herewe demonstrated that the fundamental spinvariables

feμa;ωa
bμg give rise to an induced geometrical structure on

the spacetime manifold (26), and determine the metric gμν

and the linear connection Γα
βμ via (17) and (25), respec-

tively. The resulting Riemann-Cartan spacetime geometry is
characterized by the vanishing nonmetricity (32), whereas
the nontrivial spacetime curvature and torsion are con-
structed in terms of the spin curvature and the spin torsion
via (29) and (33).
The use of rectangular vielbeins introduces a new field-

theoretic approach for the discussion of the physically
important questions such as the chirality issue and the
possible Lorentz symmetry violation, that allows for an
interesting mixing of internal and spacetime symmetries,
thereby naturally taking gravity into account; however,
without bringing in extra spacetime dimensions of the
Kaluza-Klein type. Among other prospective applications
of rectangular vielbeins, it is also worthwhile to mention
the study of their potential role in condensed matter
physics [8–10,16].

ACKNOWLEDGMENTS

G. E. V. thanks Sergey Bondarenko, Thibault Damour,
Michael Stone, Sergey Vergeles, Wei Lu, Andrei Zelnikov,
and Mikhail Zubkov for discussion.

SPACETIME GEOMETRY FROM DIRAC SPINOR THEORY PHYS. REV. D 109, 064076 (2024)

064076-5



[1] F. Nesti and R. Percacci, Chirality in unified theories of
gravity, Phys. Rev. D 81, 025010 (2010).

[2] A. Maiezza and F. Nesti, Parity from gauge symmetry, Eur.
Phys. J. C 82, 491 (2022).

[3] Wei Lu, Clifford algebra Cl(0,6) approach to beyond the
standard model and naturalness problems, Int. J. Geom.
Methods Mod. Phys. 21, 2450089 (2024).

[4] M. A. Vasiliev, Consistent equation for interacting gauge
fields of all spins in (3þ 1)-dimensions, Phys. Lett. B 243,
378 (1990).

[5] M. A. Vasiliev, Nonlinear equations for symmetric massless
higher spin fields in ðAÞdSd, Phys. Lett. B 567, 139 (2003).

[6] X. Bekaert, S. Cnockaert, C. Iazeolla, and M. A. Vasiliev,
Nonlinear higher spin theories in various dimensions, in
Proceedings of the 1st Solvay Workshop on Higher Spin
Gauge Theories, edited by R. Argurio, G. Barnich, G.
Bonelli, and M. Grigoriev (Université Libre de Bruxelles,
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